前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的六年级上册教案主题范文,仅供参考,欢迎阅读并收藏。
学习
目标
1、通过对生活环境的观察、记忆和想象,考虑怎样在画面中表现。
1、能用简练概括的线条描绘家园生活的景物,合理组织画面。
2、加强观察、引导记忆,提高学生绘画的取景和构图能力。
4、理解对颜色的运用与控制。
5、课堂实践中添加创作意图,增强学生丰富想象力和创作思维。
重点
难点
1、课堂实践,提高学生绘画的取景和构图能力。
2、简笔线到色彩的整体把握。
教学
方法
创情激趣法
实践演练法
教学具
准备
多媒体课件
纸本范画
授课
类型
新授
教学环节内容设计(第
1
课时)
学
生
活
动
一次备课
导
学
过
程
(一)
、导入图例欣赏,同学们了解到什么?
不同点:不同民族、不同地域、不同风情、异样特色。
相同点:美丽家园。
(二)
、今天让我们来回忆一下你自己美丽家园。(文学家通过深情的文字、音乐家用动听的旋律、美术家用深厚的笔触)。激发学生创作兴趣。
(三)
、作品分析,不同题材的美丽家园创作,学生在图片中发现了什么信息。(题材相同,技法不同)
(四)、美丽家园设计黑白范稿,(熟悉的生活一角)我们如何用绘画语言表现,分析构图、特点。
表现方法题材与技法(水彩铅笔、油画棒、水彩笔)
(五)、教师纸本分析,范画构图。
如何简化与表达。
1.根据画面加入自己有意思的想法,让画面更有意思。
2.色彩怎么排列。
(六)、学生作业课堂实践、随堂点评:
1.看图构思。
2.小组讨论,(景物形象的大小、色彩和表现手法)。
3.教师现场辅导教学。
4.作画过程中,及时反映学生遇到的问题,强调总结。
作品点评:
创作小组作品多媒体点评,构图及手法表现,(例如有画房子,有的添树木,有的画人物......),本课要求完成看图作画。
(七)、课堂总结:
1.能对照片整体把握,把握性较好。
2.能用不同表现形式进行绘画。
3.注意线条疏密对比和黑白灰调子的处理。
4.与同龄优秀作品的差距。
5.①颜色要鲜明。 ②注意对比色和谐。
6.做一个善于观察生活的学生,把身边最美丽的家园记录下来
(八)、板书设计:
美丽家园
构图
1/2
不取
色彩
排列
不重复
色彩
(冷暖)
明暗(深浅)
空间(前后)
线条(轻重)
探究方法
赏析作品
学习目标
1.我能掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2.能培养并提高分析、判断、探索能力及初步的逻辑思维能力。
学习重点
1.重点是弄清单位“1”的量,会分析题中的数量关系。
2.难点是分析题中的数量关系。
学习过程
师生笔记
一、知识链接
友情小提示:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
一大瓶果汁有900毫升,小瓶的果汁是大瓶的,一小苹果汁有多少毫升?
(1)分析题目的条件和问题,画出线段图。
(2)交流讨论并解答。组内检查核对,提出质疑。
二、新知探究
例5:一小瓶果汁有600毫升,小瓶的果汁是大瓶的,一大苹果汁有多少毫升?
(1)小瓶的果汁是大瓶的?应该把哪个数量看作单位“1”?
(2)理解题意,画出线段图。
(3)根据线段图,分析数量关系式:____________________________
(4)根据等量关系式列出方程式并解答,算完后梳理一下自己整道题的解题思路?(注意解题格式)
(5)想一想,和上一题比较有什么不同点和相同点?
试一试:
李刚早上喝了一盒牛奶的,正好是升。这盒牛奶有多少升?(先把数量关系式补充完整,在解答)组长检查核对,并可以提出质疑。
(
)×=(
)
达标检测
先把数量关系式补充完整,再列方程解答。
1.一桶油用去,正好用去12千克。这桶油重多少千克?
(
)的千克数×=(
)的千克数
2.学校饲养组养黑兔12只,是白兔只数的。饲养组养白兔多少只?
(
)的只数×=(
)的只数
1.一种裤子的单价是45元/条,是上衣单价的。求上衣的单价?
教学目标:
1.在设计名片、画镜框示意图等活动中,经历认识比例尺的过程。
2.了解比例尺的含义,能按自己确定的比例尺画示意图。
3.积极参加数学活动,认识有些问题可以借助比例尺解决。
教学重点:
1.正确理解比例尺的含义。
2.运用比例尺的有关知识,学会解决生活中的一些求实际距离的实际问题。
教学难点:运用比例尺的有关知识,解决生活中的实际问题。
教学过程:
师生活动
设计意图
一、引入并揭示比例尺的概念
1.结合杨利伟在太空中向全世界展示的中国国旗和联合国国旗,这两面特制旗的宽10厘米,请同学们在老师发给你的纸上画出这10厘米长的线段。
2.我们的飞船在离地球300千米左右的太空中翱翔。请同学们把这300千米的距离画在第三张纸上。
这条300千米长的线段怎么画呢?
你是用图上几厘米长的线段来表示实际的300千米呢?
3.具体分析某种画法:
给图上画的3厘米、5厘米……一个名称叫“图上距离”,实际的300千米呢,叫“实际距离”。
分析
“图上距离3厘米表示实际距离300千米”
缩小多少倍?说说怎么算的?
(2)在这一幅图中,图上距离和实际距离之间有怎样的关系呢?
(3)学生练说。
4.揭示概念:我们把:“图上距离与实际距离的比”叫做平面图的比例尺
数学在生活中,从学生感兴趣的生活中的实例,培养学生的兴趣。
”。(板书课题)
5.若要画出和原尺寸同样大的图形,我们就说这样的图是按1:1画的。
二、了解按比例画图
1.画一个长60厘米,宽45厘米的镜框的示意图。怎样画呢?
学生讨论得出:可以按比例缩小后画在纸上。
2.同学试着画一画并说出是按什么比例画的?
3.提出议一议的问题:把长和宽都缩小到原来的1/10,是什么意思?鼓励学生充分表达自己的意见。
三、介绍比例尺的含义
1.如果图上距离1厘米表示实际长度10厘米,我们就说这幅图的比例尺是1:10。
注意:比例尺书写时要注意:比例的前项写1,表示图上距离是1厘米,后项写几就表示实际的厘米数。
2.让学生观察聪聪来的示意图,鼓励学生说出比例尺。
3.让学生说自己画图的比例尺并标在图下。
四、练一练:
师生合作完成“试一试”中的内容:先测量出黑板的长和宽,再让学生按比例尺画图。
完成练一练的1、2题,巩固本节课内容。
教学目标:
1.
使学生联系商不变的规律和分数的基本性质,进行知识的类比迁移,理解比的基本性质。
2.
使学生在理解比的基本性质的基础上,尝试化简比,并掌握化简比的方法。
3.
培养学生自主探究、归纳总结的能力,掌握转化的数学思想。
教学重点:
联系商不变的规律和分数基本性质,理解比的基本性质。
教学难点:
在理解比的基本性质的基础上,掌握化简比的方法。
教学过程:
一、复习导入
师:在上课前,谁来说一说我们学过的商不变的规律和分数的基本性质分别是什么?
生1:商不变的规律是被除数和除数同时乘或除以相同的数(0除外),商不变。
生2:分数的基本性质是分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
设计意图:通过复习商不变的规律和分数基本性质,唤醒学生已有认知,为本节课学习比的基本性质奠定基础。
二、探究新知
1.
推导比的基本性质。
师:联系比和除法的关系,会不会存在像商不变这样的规律呢?
学生独立思考后小组讨论,得出结论:比中存在像商不变这样的规律。
师:谁来说一说你们组的思考过程。
生:
6∶8=(6×2)∶(8×2)=12∶16
6÷8=(6×2)÷(8×2)=12÷16
6÷8=(6÷2)÷(8÷2)=3÷4
6∶8=(6÷2)∶(8÷2)=
3∶4
师:联系比和分数的关系,想一想:会不会存在像分数基本性质这样的规律呢?
学生独立思考后小组讨论,得出结论:比中存在像分数基本性质这样的规律。
师:谁来说一说你们组的思考过程。
生:
6∶8=(6×2)∶(8×2)=12∶16
=
=
=
=
6∶8=(6÷2)∶(8÷2)=
3∶4
师:想一想:在比中有什么样的规律?你能概括成一句话吗?
生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
师:没错,这就叫做比的基本性质。根据比的基本性质,可以把比化成最简单的整数比。
设计意图:本环节学生利用比和除法、分数的关系,把除法和分数转化成比的形式,根据商不变的规律和分数的基本性质自主探究,并在此基础上,概括出比的基本性质。
2.
运用比的基本性质化简比。
师:“神舟”五号搭载了两面联合国旗,一面长15
cm,宽10
cm,另一面长180
cm,宽120
cm。这两面联合国旗长和宽的最简单的整数比分别是多少?我们先来看第一面旗。
师:15∶10=(15÷5)∶(10÷5)=
3∶2。思考在这里5是15和10的什么数?
生:5是15和10的最大公因数。
师:为什么要除以5?
生:除以最大公因数后,前项和后项互质,就是最简单的整数比。
师:是的,那怎样化简第二面联合国旗长和宽的最简整数比?180和120同时除以几?
生:180和120同时除以60,
就是180∶120=(180÷60)∶(120÷60)=
3∶2。
师:为什么?
生:因为180和120的最大公因数是60。
师:我们接着往下看,当前、后项出现分数,例如∶的情况,可以怎样化简比呢?
生:可以把前、后项同时乘18,就是∶=(×18)∶(×18)。
师:为什么要乘18?
生:因为18是分母6和9的最小公倍数,这样就可以将分数转化为整数了。
师:最简单的整数比是多少?
生:∶=(×18)∶(×18)=3∶4。
师:当前、后项出现小数,例如0.75∶2的情况,可以怎样化简比呢?
生:可以把前、后项同时乘100,
就是0.75∶2=(0.75×100)∶(2×100)。
师:为什么要乘100?
生:因为乘100后可以把小数变为整数。
师:那接下来怎么做呢?
生:按照前、后项是整数的情况进行化简:
0.75∶2=(0.75×100)∶(2×100)=
75∶200
=
3∶8。
师:想一想,当一个比的前项或后项不是整数时,怎样把它化成最简单的整数比?
生:当前、后项出现分数或小数时,可以先把前、后项化为整数,再根据前、后项是整数的情况化简为最简单的整数比。
设计意图:本环节通过化简前、后项是整数的比和前、后项不是整数的比,掌握了化简为最简整数比的方法。在化简的过程中使学生感受到化简的必要性,即使量与量之间的关系更加清晰、简明。
三、巩固练习
1.
把下面各比化成后项是100的比。
设计意图:本题是比的基本性质的具体应用,使学生初步感受比例的思想。
2.
把下面各比化成最简单的整数比。
设计意图:本题使学生练习各种类型的简化比,掌握灵活的化简比的方法,加深对比的基本性质的理解。
3.
小亮的说法对吗?
设计意图:本题出示不同单位的两个数量,使学生明确,在表示同类量的比时,应统一单位名称。
四、课堂小结
师:通过这节课的学习,说一说比的基本性质是什么?
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
师:怎样把比化成最简单的整数比?
“剪纸”是贯穿全文的线索,也是情感的载体。抓住这个主线,在教学设计时,我始终围绕姥姥的“剪纸”开展教学活动。我把全文分为两部分,第一、二段为第一部分,先是让学生找描写剪纸的语句,感受姥姥剪纸的形象生动、精巧细致,在感官上有一个形象的了解。接着,以“熟能生巧,总剪,手都有准头了!”为中心句,思辩姥姥为什么能“熟能生巧”,怎么练的,结果怎样,进一步感受姥姥的心灵手巧。学生通过朗读以及重点词句的理解,对姥姥高超的剪纸非常佩服,我能从他们有感情的朗读体会到这一点。
我们知道,整篇课文要表达的不光是姥姥的剪纸技艺,更是祖孙之间那份浓浓的亲情。
所以,在第二部分的教学中,我抓住剪纸,让学生找出三幅牛兔剪纸图,想想它们有什么特点,体会到在实际生活中姥姥的勤劳,作者的贪玩。学生在交流这三幅图片的含义时,能联系自己的实际生活,感受姥姥对作者的疼爱时,更激起对自己家人的感恩。所以,当我读着作者后来写的对姥姥临终前的回忆时,我感觉到自己的眼角润湿了,亲情打动了我,也打动了学生。我听到教室一片静默。我想这正是我要的教学效果,不仅仅是让学生欣赏姥姥栩栩如生的剪纸艺术,更是让学生体会到亲人的关爱,永远心存一份感激,并把这份情传递给身边所有的人。
能体会姥姥剪纸技艺的高超,又能感悟祖孙俩之间的浓浓亲情,就达到了我的教学目的。
精彩教案选录
一、读题
1、读题
2、再读,想像姥姥的剪纸作品
用词语形容
相机板书:惟妙惟肖、形态各异、意味深长
3、再读,想像这样身心入境地剪着纸的姥姥
用词语形容
相机板书:心灵手巧、勤劳善良、舐犊情深
过渡:这些都是初步印象,再走进课文,你会觉得这些剪纸更加栩栩如生、令人赞叹;姥姥更加真实熟悉,仿佛就在身边。
二、学习1——6
自读,圈画批注,思考:是个怎样的姥姥
交流:
1、心灵手巧
(1)第二小节
普普通通、翻来折去(反衬技艺高超)
神了(夸张,以他人之口衬托技艺高超)
理解“深入人心”(不是一个人这么说,也不是只有现在这么说)
小结:简直就是艺术作品,姥姥是一个了不起的民间艺术家!
(2)第五至七小节
摸黑都能剪纸
刁难:为难,出难题
无可挑剔:仿佛看到了什么?
(剪得好;我仔细地看,找不出瑕疵)
耍赖
联系上下文理解“熟能生巧”
小结:技艺真的高超,神乎其神了!
再分角色读对话,还体会到什么?
点化:这样的感觉,你是不是很熟悉?这样的场景,是不是也曾发生在你的身边?
2、勤劳善良
(1)左邻右舍
(2)广结善缘、有求必应
(3)“撩起蓝布围裙擦擦手:‘说吧,派什么用场?往哪儿贴?’”这个细节让你想到了什么?
(很忙,忙什么?点化:这样的老人家你是否觉得很熟悉?她是不是就在你的身边?)
(直爽,热情)
(为别人着想,认真负责)
(水平高,仿佛有仓库)
……
再读读
三、学习7——11
读到这里,姥姥的心灵手巧、勤劳善良都跃然纸上,而字里行间流露着的哝哝的情谊更让我们动容。除了喜鹊登枝、除了家家户户窗户上的窗花,剪得最多的是什么?自己读7——11,剪了些什么?为什么要这么剪?
交流
朗读
谈体会:舐犊情深
四、学习12——13
1、引读12
从姥姥剪的兔子和老牛中读懂了什么?
(对兔子的希望和爱)
(老牛敦厚淳朴,就像姥姥一样)
(俯首甘为孺子牛)
……
引读
反复读
2、过渡:是啊,从小……姥姥的剪纸已经成为我心中的一个梦境
然而,我上学了,越走越远,但……
期待些什么?
除了期待,你还读除了什么?
姥姥把所有的心血和爱全部倾注在了剪纸里。就算你远离家乡、远离姥姥,你忘记得掉吗?假如你在外地求学,收到了姥姥寄来的剪纸,你会想对姥姥说点什么?写一两句在空白处
相机朗读,小结,读最后两句话
五、总结
文中的姥姥和姥姥的剪纸以及祖孙之间浓农的情意我想打动了我们每一个人。
【教学目标】
1.结合生活实际,通过观察、操作等活动,认识圆及圆的特征;认识半径、直径,理解同一圆中直径与半径的关系。
2.初步学会用圆规画圆,培养学生的作图能力。
3.结合具体情境,体验数学与日常生活的密切联系,能用圆的知识来解释生活中的简单现象,解决一些简单的实际问题。
【教学重难点】
圆的各部分名称及其各部分之间的关系。
【教学过程】
一、创设情景,提出问题。
师:同学们,你们都知道哪些交通工具?
生:汽车
火车
飞机
轮船
自行车。
师:出示信息窗,这些交通工具都有轮子,这些轮子有什么特点?
生:轮子都是圆的。
师:看到这个,你有什么问题?
生:轮子为什么设计成圆形的呢?
师:让我们带着这个问题画一个圆研究一下。
二、探索尝试,交流研究。
师:借助你身边的工具,自己来创造一个圆,把它画下来。
生画圆。
师:你手中的圆是怎么画出来的?
学生交流展示。
师:同学们真有创造力,能用身边的工具创造出这么多圆,真厉害!但是,有的同学画的图出现了一点小问题——不圆,怎样才能画一个规范的圆呢?我看到有的同学画的圆很规范,看一下他们是怎么画的。
生:用圆规。
师:真棒,已经会用我们这节课要讲到的方法了,介绍一下怎么画。
师:下面老师来介绍一种规范画圆的工具——圆规。你会用圆规画圆吗?试一下,注意别让圆规的针扎到。
师:大家都画出一个圆了吧?跟你的同位说一下,你是怎么样画的。
学生交流。交流结束。
师:哪位同学来说一下你是怎么画圆的。
学生展示。
生:用圆规画圆时,先把圆规的两脚分开,定好两脚之间的距离,再把有针尖的一脚固定在一点上,把有铅笔的一脚转一圈。
师:非常好,下面看大屏幕,看看老师是怎么画圆的。
师:画圆,先把圆规的两脚分开,定好两脚之间的距离,再把有针尖的一脚固定在纸上,把有铅笔的一脚转一圈。大家根据这个步骤再来画一个漂亮的圆。
学生画圆,老师巡视指正。
师:大家这么快就学会了圆规画圆的方法,真厉害!再找个同学来说一下,规范的画圆的步骤。
生:描述步骤。
师:对,画圆就要规范,我们来看一下这个圆,有针尖固定的这一点,是圆的中心,叫做圆心,用字母O表示,看老师的圆心在这儿,圆就在这儿,如果圆心画在那,圆就在那边,也就是圆心决定了圆的位置。
师:连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,大家拿出自己画的圆,在上面画一条半径并标示出来。想想看你能画出多少条半径?
生:无数条。
师:那这些半径长度有什么特点?量量看。
生:相等。
师:很好,我们可以知道在圆里,有无数条相等的半径。在画图的时候可以发现,圆规两条腿间的距离就是半径,两腿间的距离越大,画的圆越大,两腿间的距离越小,画的圆越小,也就是说,圆规两腿间的距离决定了圆的大小,也就是什么决定了圆的大小?
生:半径。
师:对,半径决定了圆的大小,一个圆里有无数条相等的半径。刚才我们了解了圆的半径的特点,下面我们来根据半径的长度来画一个规范的圆,已知半径为2厘米,看老师是怎么画这个圆的。
老师画圆:先画一条2厘米的线段,有针尖的圆规脚放到线段的一个端点,有铅笔的这只脚放到线段的另一个端点上,旋转一圈,注意圆规的两脚不要随便动,这样就画好了一个用半径来画的圆。
师:看到老师怎么画圆了吧?自己在2号本上画一个半径为2厘米的圆。
生画圆。
师:画完了的同学,给你的同位看一下,互相说一下用半径画圆的步骤。
生:讨论。
师:现在把圆规收起来放在桌子右上角。下面我们来看这个圆。圆心为0,半径为r。现在拿出学具盒里的圆,对折几次,你发现折痕有什么特点?
生:相交于一点。
师:这个点是什么?
生:圆心。
师:那这几条线段两端有什么特点?
生:都在圆上。
师:这些通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。(教师边讲边板书。)下面拿出你刚才画的圆,在上面画出圆的直径,并表示出来。
生:画图
师:同位互相看一下画对了没有。
师:我们学习圆的半径的时候,知道了圆有无数条相等的半径,那圆的直径呢?有多少条?相等不相等?
师:真厉害!我们知道了一个圆中有无数条相等的半径,也有无数条相等的直径。那直径和半径是圆中的不同线段,它们之间有没有关系呢?有什么关系?同位合作研究试一下,可以折一折,也可以量一量,看看大家都有什么发现。
生:交流。
师:谁来说一下,你们是怎么研究的,有什么发现。
生:都通过圆心。师:正确的讲是他们都与圆心有关,直径经过圆心,半径以圆心为一个端点。
生:通过对折或测量发现这个圆里,直径是半径的两倍,半径是直径的一半。
师:大家太厉害了,看大屏幕,通过对圆的半径和直径的演示,我们发现。直径是半径的两倍,我们怎么样列算式表示?
生:d=2r。
师:半径是直径的一半这么表示?
生:。
师:下面我出题目,大家口算。
半径2厘米,直径是多少?
生:4厘米。
师:直径6厘米,半径是多少?
生:3厘米。
师:半径4厘米,直径是多少?
生:8厘米。
师:刚才我们画了一个半径为2厘米的圆,如果我给你一条直径,要求你画出一个直径为4厘米的圆,你会画吗?尝试一下。
生练习。
师:有的同学画的很好,下面来看一下老师怎么画的。先画一条4厘米的线段,根据我们推导出的直径与半径的关系,我们能知道半径是多少?那我们就取线段的一半为半径2厘米,线段的中点是圆心,画一个圆。注意,我们学到的直径的特点是:直径的两个端点都在圆上,如果你画的圆,直径的两个端点没有都在圆上,那这个圆就画的不规范。不是你的圆规的两条腿的距离动了,就是找圆心的时候,没有将线段平均分。所以大家在画的时候,要检查直径的两个端点是不是都在圆上。下面大家根据老师刚才的方法,在2号本上再画一个直径为4厘米的圆。
生练习。
师:认识了圆的直径和半径。下面我们来练习一下,找出下面圆中,哪条是圆的半径,哪条是圆的直径,为什么。(出示练习题。)
师:同学们掌握的真快!下面回想一下,以前我们学过的对称图形,圆是不是对称图形?
生:圆是对称图形。
师:圆的对称轴在哪里?
生:直径。
师:我明白你们的意思,但是这样的表述是不正确的,应该说是圆的对称轴是圆的直径所在的直线。它有多少这样的对称轴?
生:有无数条。
师:对称轴怎么表示?用点——画——线。看黑板,就这样表示。出示幻灯片。一定要超出图形。
师:会画圆的对称轴了,我们就来小试牛刀。课本自主练习第六题,画一下这些图形的对称轴,记得用点画线。
三、练习。
师:大家真棒!我们已经学习了圆的这么多特征,能不能解决一开始我们提的问题:为什么轮子要设计成圆形的呢?下面我们来看黑板,仔细观察,你发现什么样的的轮子跑起来不颠簸?
生:圆形的。
师:为什么这样呢?我们单独拿出正方形和圆形的轮子看一下。(出示幻灯片,圆形滚动,正方形滚动。)
师:看图,正方形的轮子滚动起来,看不同的位置,正方形的中心到底端的距离一样不一样?
师:滚动的时候正方形的中心就没有在一条水平线上。这样的轮子会不会颠簸?我们再看一下圆,圆心到底端的距离是什么?
生:半径。
师:半径有什么特点?
生:无数且相等。
师:圆形的轮子因为有无数条相等的半径,滚动起来是不是更加平稳,就不颠簸了?如果三角形的行不行?想想是不是只有圆形的轮子,跑起来才不会那么颠簸?
师:就是因为圆形的轮子不会上下颠簸,所有轮子才设计成圆形的,这是因为圆有——
生:无数相等的半径。
师:我们通过这节课的学习,齐心合力地解决了这个问题。非常棒!谁来说一下,这节课你都知道了什么?
④古人词云:“芭蕉不展丁香结”“丁香空结雨中愁”。在细雨迷蒙中,着了水滴的丁香格外妖媚。花墙边两株紫色的,如同印象派的画,线条模糊了,直向窗前的莹白渗过来,让人觉得,丁香确实该和微雨连在一起。
⑤只是赏过这么多年的丁香,却一直不解,何以古人发明了丁香结的说法。今年的一次春雨,久立窗前,望着斜伸过来的丁香枝条上一柄花蕾,小小的花苞,圆圆的,鼓鼓的,恰如衣襟上的盘花扣。我才恍然,果然是丁香结。
⑥丁香结,这三个字给人许多想象。再联想到那些诗句,立觉得她们负担着解不开的愁怨了。每个人一辈子都有许多不顺心的事,一件完了一件又来。所以丁香结年年都有。结,是解不完的;人生中的问题也是解不完的,不然,岂不太平淡无味了么?
⑦小文成后一直搁置,转眼春光已逝。要看满城丁香,须待来年了。来年又有新的结待人去解-—谁知道是否解得开呢?
1.联系第⑥节,说说作者的用意:(
)
A.总结全文,告诉我们人生处处都是结。
B.作者以丁香的雪白、甜香,映衬人们对美好理想的憧憬和追求,显露了作者对世事的洞明和对人生的洒脱。
C.人生不可能一帆风顺的,所以我们要及时行乐。
D.作者喜欢喧嚣的世界,所以希望每天不平淡。
2.文中引用“芭蕉不展丁香结”“丁香空结雨中愁”的诗句的作用是(
)
A.作者经历的春光完全和室外的三棵白丁香联系在一起的,所以作者有独特的感受。
B.引出下文,为下文作者的抒情做铺垫。
C.从另一角度展示了丁香结的形象,丰富了丁香结的内涵,为读者提供了展开丰富想象的天地。
D.增加文章浓厚的文学色彩,体现出作者深厚的文化修养。
3.下列对这篇散文的赏析,不正确的一项是(
)
A.作者经历过的春光,几乎都是和斗室外的三棵白丁香联系在一起的,所以作者花大量笔墨写这三棵白丁香。
B.作者在文中以细腻的笔调,描写出了一个色彩绚丽的丁香花的形象。
C.作者实写丁香花的形象,虚写寄托于丁香花的理念、志趣,创造出了一个深远的意境。
D.作者在文中一反古人寄托在丁香结上的情感,以开阔的胸襟为今天的读者开拓了一个“丁香结”全新的艺术境界。
参考答案
1.B
分数乘法
例1:看图写算式。
(1)
+(
)+(
)=(
)
(2)+(
)=(
)
×(
)=(
)
×(
)=(
)
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
例2:计算下面各题。
×3
×6
2×
×9
分数乘整数,用分数的分子和整数相乘的积做分子,分母不变。能约分(化简)的要约分(化简)。
例3:计算下面各题
×
×
×
×
分数乘分数,用分子相乘的积做分子,分母相乘的积做分母。能约分(化简)的要约分(化简)。
例4:先计算,再观察,看看有什么规律。
乘积是1的两个数互为倒数。
×
×
×
求倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
的倒数是,的倒数是,的倒数是(≠0),3的倒数是,0.4的倒数是。
练习一
一、乐想巧填。
1.
6×表示(
),×表示(
)。
2.
米的是(
)米,
公顷的是(
)公顷。
3.
3米的等于(
)米的
。
4.
一个数乘分数,就是求这个数的(
)。
5.的倒数是(
),(
)的倒数是,和(
)互为倒数。
二、判断。
1.一个数乘分数,积一定比它本身小。(
)
2.1的倒数是1,0的倒数是0。(
)
3.7千克的与1千克的相等地。(
)
4.和,是倒数,也是倒数。(
)
5.4个相加,可以写成+++,也可以写成
三、计算大本营
1、42×
11×
×
×
×
2、小时=(
)分
米=(
)厘米
吨=(
)千克
四、列式计算我最棒。
1.
5的是多少?
2.
4个是多少?
3.
千克的是多少千克?
4.
4.小时的是多少小时?
五、快来显身手(比较大小)。
×
×
六、实践乐园。
①一瓶果汁重千克,20瓶果汁重多少千克?
②一只水箱可以容水500千克,箱水重多少千克?
③一个平行四边形的底是6米,高是底的倍,高是多少?
④一个三角形的底是12厘米,高是底的,这个三角形的面积是多少平方厘米?
第二章
分数乘法混合运算
分数加法、减法、乘法混合在一起的时候,运算顺序跟整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也适用。
乘法的交换律:
乘法结合律:
乘法分配律:
例1:先说说下面各题的计算顺序,然后再计算。
12-×
()
例2:用简便方法计算下面各题。
(+)
练
一、选择题。
1.+=(
)。
A.
B.
C.
2.一根铁丝长4米,用去了它的,还剩下(
)米。
A.
B.
C.
3.计算+的结果是(
)。
A.
B.
C.
4.要简便计算,应该运用乘法(
)律。
A.
B.
C.
5.8元的是(
)。
A.
B.
C.
二、计算下面各题。
+
1+
(5-)
-
+
三、用简便方法计算下面各题。
13--
(+)
(-)
(8+)
﹙+0.08﹚×125
-﹙-﹚
×++×0.8
四、解决问题。
1.
阳光小学有男生750人,女生人数是男生的4/5,这个学校有女生多少人?一共有学生多少人?
2.
李庄共有小麦地320公亩,水稻地比小麦地多1/4,这个庄的水稻地比小麦地多多少公亩?有水稻地多少公亩?
3.修一条公路,长1000米,甲队已经修了这条路的2/5,剩下的由乙队修,乙队修多少米?
第三章
分数乘法应用题
例1:一件外套的价格是75元,一件毛衣的价格是外套的。一件毛衣多少元?
例2:有9000千克的黄沙,运走了它的,还剩下多少千克?
例3:老隆镇第一小学四月份用电160千瓦时。五月份比四月份节约,六月份的用电量刚好是五月份的。老隆镇第一小学六月份用电多少千瓦时?
练习三
一.填空。
1.指出下面每组中的两个量,应把谁看做单位“1”。
(1)男生人数占女生人数的4/5。(
)
(2)甲的6/7相当于乙。(
)
(3)乙的5/9与甲相等。
(
)
(4)男工人数比女工人数少1/8。(
)
2.一个数是56,它的4/7是(
);
120的2/3的4/5是(
)。
3.甲数是720,乙数是甲数的1/6,丙数是乙数的4/3倍,丙数是(
)。
4.学校买来新书240本,其中的2/3分给五年级。这里是把(
)看作单位“1”,如果求五年级分到多少本?列式是(
)。
5.五年级一班参加课外小组的有40人,五年级二班参加的人数是五年级一班的4/5。这里是把(
)看作单位“1”,如果求五年二班参加多少人列式是(
)。
6.小红有36张邮票,小新的邮票是小红的5/6,小明的邮票是小新的4/3。如果求小新的邮票有多少张,是把(
)看作单位“1”,列式是(
)。如果求小明有多少张是把(
)看作单位“1”,列式是(
)。
7.买30千克大米,吃了4/5千克还剩(
)千克;买30千克大米,吃了4/5,吃了(
)千克。
二.判断。
1.3吨钢铁的1/4和1吨棉花的3/4同样重。
(
)
2.12×2/5就是求12的2/5是多少。
(
)
3.1.2×4/15的积小于被乘数。(
)
4.大于4/9小于7/9的分数只有2个。(
)
5.3/4吨的2/15是1/10吨。(
)
6.5×2/9表示5个2/9相加。(
)
三.选择。
1.一种花茶每千克50元,买3/5千克用多少元?(
)
①50×3/5
②
50+3/5
2.学校买来200千克萝卜,吃了千克还剩多少千克?(
)
①
200×3/5
②
200-3/5
3.两位同学踢毽,小明踢了130下,小强踢的是小明的1/2,两人一共踢了多少下?(
)
①
130×1/2+130
②
130×1/2
③
130
+
1/2
4.果园里有桃树240棵,苹果树的棵数是桃树的3/4,梨树的棵数是苹果树的4/5,梨树有多少棵?(
)
①
240×3/4+240×4/5
②240×3/4×4/5
③240+
3/4×4/5
四.应用题。
1.一桶油10千克,用去这桶油的4/5,用去了多少千克?还剩下多少千克?
2.育民小学有男同学840人,女同学人数是男同学的4/7,这个学校共有同学多少人?
3.一堆煤12吨,又运来它的1/4,现有的煤是多少吨?
4.教师公寓有三居室180套,二居室的套数是三居室的,一居室的套数是二居室的。教师公寓有一居室多少套?
5.一袋大米重25千克,吃了的比它的还多2千克,吃了多少千克大米?
第四章
分数除法
例1:根据乘法算式写出两道除法算式。
=
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。遇到除法中带有分数时,只要把分数转化为相应的假分数,就可以按分数除法的法则进行计算。
例2:计算下面各题。
15÷
24÷
÷
÷
例3:解下列方程。
×=1
+=3.5
×=
9×﹙+﹚=
×﹙7+﹚=
练习四
一.填空题。
1.÷4意义是﹙
﹚。
2.甲乙两数的积是,甲数是,乙数是﹙
﹚。
3.20÷=20﹙
﹚=﹙
﹚。
4.
分数的除法的意义与整数除法的意义﹙
﹚,都是已知两个因数
﹙
﹚与
其中的一个﹙
﹚,求另一个﹙
﹚
的运算。
5.
55的( )是35;是﹙
﹚的。
6.
﹙
﹚8===9÷﹙
﹚=﹙
﹚36=(
)(填小数)
7.
在分数除以整数里,把一个数平均分成几份,就是求这个数的(
)。如表示把平均分成2份,求每份是多少,也就是求的(
)是多少?算式是(
)。
8.
一个数的是12,这个数是(
)。
9.
把米长的绳子平均分成5段,每段长( )米,每段占全长的(
)。
10.
一小时有(
)个小时。
二、选择题。
1.
下面各题中商大于被除数的是(
)
A.
÷2
B.÷
C.÷5
D.÷6
2.
如果分数的分子扩大100倍,分母不变,分数值将(
)
A.
不变
B.扩大100倍
C.缩小100倍
D.不能确定
3、0.3÷0.2的值是(
)
A.
B.
C.
4.
一个数的是,求这个数的算式是(
)。
A.
×
B.÷
C.÷
D.×
5.
=,b是a的(
)。
A.
B.6倍
C.16倍
6.
x÷y=2.4,=(
)。
A.
B.
C.
D.÷
三.
判断对错(正确的打“√”,错误的画“×”)。
1.
÷=×=
(
)
2.
÷>
(
)
3.
甲数除以乙数,等于甲数乘乙数的倒数。
(
)
4.
A和B都是自然数,若A÷=B×,则A>B。
(
)
5.
÷4与×的意义相同,结果相同。
(
)
四.
计算题。
÷=
÷4=
5÷=
÷=
÷5=
÷=
15÷=
24÷=
x×=1
x+x=3.6
7×﹙x+﹚=
x=
x÷=
8x=
五.
解决问题。
1.
一种大型的脱粒农用机器小时能脱粒吨,问这台农用脱粒机1小时能脱粒多少吨?
2.
一桶油倒出,刚好倒出36千克,这油原来有多少千克?
3.
饮料厂今年一季度共生产饮料1250吨,正好完成全年计划的,这个厂全年计划生产饮料多少吨
4.
一辆汽车行63千米,用小时,它以这样的速度从甲地开往相距126千米的乙地需要多少小时?
第五章
分数除法混合运算
例1:先说说下面各题的运算顺序,再计算。
2--
-)+)
18
一个算式里,如果既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。
练习五
一.填空
6.
算式应先算______,再算______,第三步算______,最后算_______
7.______
8.
9.
二.选择题:
A.
B.
C.
D.
3.下列问题中,计算正确的有__________(
)
(A)
题
(B)
1题
(C)
2题
(D)
3题
①
②
③
④
三.解答题.(能简便的要简便运算)
(1)
[1-()]÷
(4)一根电线长米,剪去一段后.剩下10.5米,问剪去了多少米?
(5)邮局与居民区相距1.25千米.
与工厂区相距千米.邮递员骑自行车到居民区需小时,他用同样的速度骑自行出到工厂区需要多少时间?
第六章
分数除法应用题
例1:找出下面各题中的单位“1”,并写出各题的数量关系式。
(1)
男生人数是女生人数的。
(
)看作单位“1”,( )=(
)。
(2)
白球的个数是红球的。
(
)看作单位“1”,( )=(
)。
(3)
做对的题占总数的。
(
)看作单位“1”,( )=(
)。
(4)
参加竞赛人数的得到了奖。
(
)看作单位“1”,( )=(
)。
例2:解决问题
(1)水果店运进苹果240箱,运进的梨比苹果多,运进的梨多少箱?
(2)水果店运进苹果240箱,比运进的梨多,运进的梨多少箱?
(3)水果店运进的苹果240箱,比运进的梨少
(5)
水果店运进苹果240箱,运进的梨比苹果少
练习六
一.选择。
1.一种商品的原价是840元,第一次降价,第二次又降价,这两次降价(
)
①
相等
②
不相等
③
第一次降的多
④
第二次降的多
2.修一条路,第一天修了150米,是第二天修的,两天正好修完,这条公路长多少米?列式是(
)
①
150÷
②
150÷+150
③
150×+150
3.一种商品去年年底价格提高,最近又降低了,现在价格与去年提价前相比,(
)
①
增加了
②
不变
③
降低了
④
无法确定
4.一条公路修了全长的,离中点还有40千米,这条公路全长多少千米?(
)
①
40÷(1-)
②
40÷
③
40÷(-)
④
40÷(1+)
5.5千克糖平均分成8包,每包糖重(
)
①
②千克
③
④千克
6、把6米长的一根绳子,平均分成13段,每段是这根绳子的(
)。
①
②
米
③米
④
7.鸡的只数是鸭的只数的,则把(
)看作单位“1”。
①
②
③
8.六年级人数占全校人数的,则全校人数=(
)。
①
②
③
二、填空。
1.香蕉质量是桃子质量的,把(
)看作单位“1”。数量关系式:(
)=(
),(
)。
2.12的是(
),(
)的是。
3.一个数的是50,这个数的
4.公鸡有48只,比母鸡多
5.“实际每月比原计划多生产”,应把(
)看作单位“1”,(
)+实际每月比计划多生产的量=(
)。
三.应用题。
1.一辆汽车从甲地到乙地,行了全程的,还剩84千米。这辆汽车行了多少千米?
2.参加数学竞赛的男生有40人,比女生多。参加数学竞赛的女生有多少人?
3.李师傅家四月份用电42度,四月份比三月份节约,李师傅家三月份用电多少度?
4.一张桌子比一把椅子贵20.8元,每把椅子的价钱是每张桌子价钱的,每把椅子多少元?
5.
工厂第一车间有工人63人,第二车间有37人,第三车间的人数占这两个车间的总人数的。第三车间有多少人?
第七章
比和比的基本性质
两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项,(比的后项不能是零)比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。同分数比较,比的前项相当于分子,后项相当于分母,比值相当于分数值。
比值通常用分数表示,也可以用小数或整数表示。
比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
例1:把下面各除式改写成比的形式。
13÷4
0.5÷4
3.7÷4.2
16÷18
62÷31
例2:求比值。
25:15
2.5:1.5
:
0.6:
63:21
2:
练习七
一、细心填写。
1、鸡有80只,鸭有100只,鸡和鸭只数的比是(
),比值是(
)。
2、长方形长3分米,宽12厘米,长与宽的比是(
),比值是(
)。
3、小李5小时加工60个零件,加工个数与时间的比是(
),比值是(
)。
4、一本书读了55页,45页没有读,已读与总数的比是(
),比值是(
)。
5、甲数相当于乙数的,甲数与乙数的比是(
),乙数与甲数的比是(
)。
6、三好学生占全班人数的,三好学生与全班人数的比是(
)。
7、白兔只数的与黑兔相等。白兔与黑兔的比是(
),白兔与黑兔的比是(
)
8、若A÷B=5(A、B都不等于0)则A:B=(
):(
)
若A=B(A、B都不等于0)
则A:B=(
):(
)
二、判断。
1.比的后项不能是0。(
)
2.5:4读作5比4,也可以写作。(
)
3.5:9的比值是
4.2:
三、选择题。
1.两个正方形的边长比是2:3,面积比是(
)。
A.2:3
B.3:2
C.4:9
2.下面各比中,不是最简分数整数比的是(
)。
A.
B.16:15
C.21:24
3.20分钟:0.8小时化成最简整数比是(
)。
A.
B.5:12
C.2
4.4:9的前项乘9,要使比值不变,后项应加上(
)。
A.
B.81
C.9
5.一种药水,药占,则药与水的质量比是(
)。
A.
B.99:1
C.1:99
四、把下面的比化成最简整数比。
:
0.3:0.02
:
:
28
0.21:6.3
48:36
7:3.5
3:
1:0.125
五、求比值。
4:8
2.4:0.2
0.75:
:
9:27
第八章
比的应用
例1:一个三角形三个内角的度数年比是1:2:3,这个三角形是一个什么三角形?
例2:小明、小红、小云的体重之比是5:4:3,已知小云的体重是30千克,小明和小红的体重各是多少千克?
例3:学校把栽72棵树的任务,按照六(1)班三个组的人数分配给各组,一组有9人,二组有7人,三组有8人。每个小组各应植树多少棵?
练习八
1、甲、乙、丙三个数的平均数是60。甲、乙、丙三个数的比是3:2:1。甲、乙、丙三个数各是(
)、(
)、(
)。
2、一个直角三角形的两个锐角度数的比是2:1,这两个锐角分别是(
)度,(
)度。
3、五角人民币与贰角人民币的张数比为12:35,那么伍角与贰角的总钱数比为(
)。
4、甲、乙、丙三个人的速度的比为:甲:乙=4:5,乙:丙=6:7。从A地到B地,甲走了20分钟,丙要走(
)分钟。
5、大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3:2。求大、小瓶里各装油(
)千克,(
)千克。
6、甲、乙、丙三位同学共有图书108本,乙比甲多18本,乙与丙的图书数之比是5:4,求甲、乙、丙三人各有图书(
)本,(
)本,(
)本。
7、一个直角三角形的三条边总和是60厘米,已知三条边的比是3:4:5.这个直角三角形的面积是(
)平方厘米。
8、盒子里有三种颜色的球,黄球个数与红球个数的比是2:3,红球个数与白球个数的比是4:5。已知三种颜色的球共175个,问红球有(
)个。
9、王老师用100元去买了20支圆珠笔和10支钢笔,每支钢笔的价钱和每支圆珠笔的价钱的比是3:1。问买圆珠笔和钢笔各花了(
)元(
)元。
10、甲、乙两包糖果的重量的比是4:1,如果从甲包取出10克放入乙包后,甲、乙两包糖果重量的比变为7:5。那么两包糖果重量的总和是(
)。
11、某小学男、女生人数之经是16:13,后来有几位女生转学到这所学校,男、女生人数之比变成为6:5,全体学生共有880人,问转学来的女生有(
)人。
12、小明读一本书,已读的和末读的页数比是1:5。如果再读30页,则已读的和末读的页数之比为3:5。这本书共有(
)页。
13、甲、乙、丙三人的彩球数的比例为9:4:2,甲给了丙30个彩球,乙也给了丙几个彩球,比例变为2:1:1。乙给了丙(
)个彩球。
14、两个相同的瓶子装满酒精溶液,一个瓶中酒精与水的体积之比是3:1,而另一个瓶中酒精和水的体积之比是4:1,若把两瓶酒精溶液混合,混合液中酒精和水的体积之比是(
)。
第九章
分数乘除法混合运算
例1:计算下面各题。
(2-0.6)
例2:解下列方程。
X
X
X
例3:共有350千克水果糖,每袋装千克,2小时才装完了,已经装好了多少袋?
练习九
1.把一根2米长的绳子平均分成3段,每段是(
)米,每段是全长的(——)。
2.
把5米长的钢筋锯成一样长的6段,每段占全长的(
),每段长
(
)米。如果锯断钢筋1次需2分钟,把这根钢筋锯成6段共需(
)分钟。
3.
一根长2米的绳子,用去3/4米,还剩下(
)米;如用去全长的3/4,还剩(
)米。
4.
修一条10千米的公路,第一天修1/5千米,第二天修了余下的1/4,第二天修( )千米。
5.
一捆电线长30米,第一次剪去3/4,第二次剪去3/5米,还剩(
)米。
6.女生人数比男生人数多2/5,男生人数比女生人数少(——)。
7.
苹果比梨少1/5,梨比苹果多(——)。
8.水结成冰后,体积比原来增加1/11,冰化成水后,体积减少(
)。
9.
甲数的4/5和乙数的5/6相等,那么乙数是甲数的(——)。
10.甲车的速度的1/4和乙车的速度的1/5相等,那么甲是乙的(——)。
11.小红看一本80页的故事书,第一天看了全书的1/5,第二天看了全书的1/4。(1)两天共看了多少页?
列式(
)
(2)第一天比第二天少看了多少页?
列式(
)
(3)还剩多少页没有看?
列式(
)
12.有一桶油,第一次取出总数的1/5,第二次取出总数的11/50。
(1)两次共取出42千克,这桶油原来重多少千克?
列式(
)
(2)第二次比第一次多取出2.4千克,这桶油原来重多少千克?
列式(
)
(3)还剩58千克,这桶油原来重多少千克?
列式(
)
13.(1)针织厂男职工人数占全厂人数的2/9,男职工是120人,全厂职工有多少人?
(2)针织厂男职工人数占全厂职工人数的2/9,女职工是420人,全厂职工有多少人?
(3)针织厂男职工人数占全厂职工人数的2/9,男职工比女职工少300人,全厂职工有多少人?
(4)针织厂男职工人数占全厂职工人数的2/9,女职工分3个车间,平均每个车间140人,全厂职工有多少人?
第十章
解决问题
例1:水果店卖出全部西瓜的后,又运进11000千克西瓜,结果比原来多出,问原来西瓜多少千克?
例2:甲数和乙数的比是11:7,乙数和丙数的比是5:2。甲数和丙数的比是多少?
例3:一只河马的最长寿命是52年,比一只乌龟的寿命少,一只乌龟的最长寿命是多少年?
练习十
1.
六年级一班有学生44人,参加合唱队的占全班学生的2/11。参加合唱队的有多少人?
2、一只鸡重2千克,一只鸡的重量是鸭的2/3。这只鸡重多少千克?
3.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的5/6。小新储蓄的钱是小华的2/3。小新储蓄了多少元?
4.一个长方形的面积是平方米,宽是长的米。这个长方形的周长是多少米?
5.3个同学跳绳,小明跳了120下,小强跳的是小明跳5/8,小亮跳的是小强的2/3。小亮跳了多少下?
6.六年级同学收集180个易拉罐,其中的1/3是一班收集的,2/5是二班收集的。两个班各收集多少个?
7.长跑锻炼,小雄跑了3千米,小雄跑的5/6等于小刚跑的。小勇跑的是小雄的4/5。小刚和小勇各跑多少千米?
8.小红体重42千克,小云体重40千克,小新的体重相当于小红和小云体重总和的1/2。小新体重多少千克?
9.六年级三个班学生帮助图书室修补图书。一班修补了54本,二班修补的本数是一班的5/6,三班修补的是二班的4/3。三班修补图书多少本?
10.爸爸比小明大30岁,小明的年龄是爸爸年龄的。爸爸今年多少岁?小明今年多少岁?
11.育才小学学生人数在800—900之间,总人数能被10整除,男、女生人数的比是6:5。育才小学的男、女生各有多少人?
11.
某校在“献爱心”活动中,六年级三个班共捐钱2700元。一班、二班、三班捐的钱数的比是3:2:4。三个班各捐多少元钱?
第十一章
圆
圆是最简单的曲线图形。
圆中心的一点叫做圆心,用字母O表示。
连接圆心和圆上一点的线段叫做半径,用字母r表示。
通过圆心并且两端都在圆上的线段叫做直径,用字母d表示。
圆的画法:根据圆心到圆上任意一点的距离(即半径)都相等地,我们可以用圆规来画圆。
在一个圆里,所有的半径都相等,所有的直径也都相等。直径等于半径的2倍,半径等于直径的,即:d=2r或
r=。
圆是轴对称图形,任何一条直径都是圆的对称轴,一个圆有无数条对称轴。
圆心决定圆的位置,圆的半径的长度决定圆的大小。
圆周长是围成圆的曲线的长。C=2∏r
或
c=∏d
圆面积是指圆所占平面的大小 。s=∏r2
例1:计算下面各题。
(1)
d=1.5米,c=?
s=?
(2)r=5cm,c=?
s=?
(3)c=25.12cm,d=?
r=?
s=?
例2:一个底面是圆形的锅炉,底面圆的周长是1.57米。底面积是多少平方米?(得数保留两位小数)
练习十一
一、填空题。
1.时钟的分针转动一周形成的图形是(
)。
2.从(
)到(
)任意一点的线段叫半径。
3.通过(
)并且(
)都在(
)的线段叫做直径。
4.在同一个圆里,所有的半径(
),所有的(
)也都相等,直径等于半径的(
)。
5.用圆规画一个直径20厘米的圆,圆规两脚步间的距离是(
)厘米。
6.以点O为圆心,以2厘米为半径画圆,这样的圆可以画(
)个.
7.将圆沿一条直线滚动,圆心O留下的痕迹是(
)。
8.一个圆的直径是16厘米,它的半径是(
)厘米。
9.小圆的半径是大圆半径的,则小圆的周长与大圆的周长的比是(
),面积的比是(
)。
10.两个圆的周长相等,这两个圆的面积(
)。
二、判断题(对的打“√”,错的打“×”)
1.直径相等的两个圆,它们的面积也一定相等。( )
2.在同圆或等圆中,圆的周长是半径的∏倍。( )
3.半径是线段,直径是射线。( )
4.一个圆的半径扩大为原来的3倍,面积也扩大为原来的3倍。( )
5.小圆的直径与大圆的半径相等,则小圆的面积是大圆面积的。( )
6.水桶是圆形的。(
)
7.所有的直径都相等。(
)
8.圆的直径是半径的2倍。(
)
9.两个圆的直径相等,它们的半径也一定相等。(
)
10.半圆的面积是整圆面积的一半,半圆的周长也是整圆周长的一半。( )
三、填表
半径
直径
周长
面积
6cm
0.8cm
1.5dm
18.84dm
四、作图题
用圆规画一个半径是3厘米的圆,并用字母标出它的圆心、半径和直径。
第十二章
解决问题
环形的意义:由两个半径大小不同的同心圆所围成的平面部分。环形是轴对称图形。环形面积是圆面积的一部分。
环形面积=外圆的面积-内圆的面积
S=∏R2-∏R2=∏(R2-r2)
圆上两点之间的部分叫做弧,一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心上的角叫做圆心角。扇形的大小与这个扇形的圆心角有关,当圆心角是900时,扇形是圆,当圆心角是1800时,扇形是半圆。
例1:一个圆形菜园的半径是15米,要用多长的粗铁丝才能把菜园围上3圈?(接头处忽略不计)如果每隔2米一根木桩,大约要装多少根木桩?
例2:在半径为8米圆形街心花坛的外围修一条宽5米的环形人行道,求这条人行道的占地面积是多少平方米?
练习十二
一、填空题
1.圆的周长总是它的直径的(
)
,
它是一个固定的值,用字母
( )表示。同一个圆中直径是半径的( )
,半径是直径的(
)
。一个圆的半径是3厘米,直径是(
)厘米,周长是(
)
厘米,面积是(
)平方厘米。
2.将一个圆沿半径剪开,得到若干个小扇形,然后拼成一个近似的长方形,这个长方形的长是圆的(
)
,宽是圆的(
)
。如果这个长方形的宽是2厘米,那么这个长方形的长是( )
厘米,周长是(
)厘米,面积是(
)平方厘米。如果拼成的长方形的长9.42分米,那么原来圆的面积是
(
)平方分米。
3.甲圆的半径是3厘米,乙圆的直径是9厘米,那么,甲、乙两圆直径的比是(
),周长的比是(
)
,面积的比是(
)。
4.圆是轴对称图形,它有(
)条对称轴,等腰三角形有( )
条对称轴,长方形有( )条对称轴,等边三角形有
( )条对称轴,正方形有(
)条对称轴。
5.一个圆的周长为9.42厘米,这个圆的半径是( )厘米,直径是(
)厘米,面积是(
)平方厘米。
6.做半径为1.5分米的铁环,20米长的铁丝够做(
)个。
7.右图中正方形的面积是16平方分米,圆的面积是(
)
平方分米;如果正方形的面积是20平方分米,圆的面积是( )
平方分米。
8.一个圆环的外圆半径是16厘米,内圆半径是6厘米,圆环面积是(
)平方厘米。
9.一个扇形的圆心角是2700,扇形面积是942平方厘米,扇形所在圆的面积是(
)平方厘米。
10.一个正方形、一个长方形、一个圆,如果它们的周长相等,那么面积最小的是(
),面积最大的是(
)。
二、看图计算
求下列各图阴影部分的面积(单位:厘米)
三、解决问题
1.在一个长5厘米,宽4厘米的长方形内画一个最大的圆。求这个圆的周长和面积。
2.一辆自行车轮胎的外直径是0.7米,如果车轮平均每分钟转90周,40分钟能行多远?要通过一座567米的大桥需多少分?(∏取3)
3.一个圆形花圃的周长为50.24米,在它里面留出的面积种。占地面积是多少?
4.一列火车的机车主动轮的直径是1.5米,如果平均每分钟转300周,这列火车每小时行多少千米?
5.给直径0.75米的水缸做一个木盖,木盖的直径比缸口直径大5厘米,这个木盖的面积是多少平方米?周长是多少米?
6.在边长是2分米的正方形内画一个最大的圆,这个圆的圆心怎样确定?这个圆的周长是多少分米?这个圆的面积是多少平方分米?
第十三章
百分数的意义和写法
百分数表示一个数是另一个数的百分之几。百分数也叫做百分率或百分比。
百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。例如:百分之九十 写作 90%
分数既可以表示一个数,又可以表示两个数年的关系。百分数只表示两个数的关系,所以它的后面不能写单位名称。
例1:写出下面的百分数。
百分之一
百分之三十五
百分之零点三
例2:读出下面的百分数。
17%
6.4%
33.5%
125.8%
例3:六年级有学生100人,达到(国家体育锻炼标准)儿童组的有96人,达标的人数年占六年级总人数年的百分之几?
练习十三
一.填空题.
1.表示一个数是另一个数的(
)叫做百分数.百分数也叫做(
)或(
)。
2.男生认输占全班认输的45%,是把(
)看作单位“1“.女生人数占全班人数的(
)%。
3.今年的粮食产量是去年的115%,今年的粮食产量比去年增产(
)%。
4.一项工程,完成了65%,还剩(
)%没有完成。
5.九月份比八月份节约用电是八月份的(
)%。
6.今年实际招生人数比计划多8%,今年实际招生人数是计划的(
)%。
7.十月份用水是九月份的85%,十月份比九月份节约用水(
)%。
8.50%读作(
),百分之一百零三点五写作(
)。
9.我国耕地面积占世界耕地面积的百分之七,写作(
),把(
)看作100份,(
)相当于这样的7份。
10.一家工厂九月份的产值相当于十月份的百分之一百零八,写出这个百分数(
),十月份的产值比九月份的多了还是少了?(
)。
二、选择题.
1.25/100米写成(
)是不正确的。
①1/4米
②0.25米
③25%米
2.一个百分点表示(
)。
①0.1%
②25
③1%
3.一条水渠,已修了75%,还剩(
)没有修。
①25%
②0.25
③2.5%
4.足球队个数的20%相当于排球的个数.这里是把(
)看作单位“1“。
①排球个数
②足球的个数
③总数
5.男生比女生人数多10%,这里10%表示(
)。
①男生人数是女生的10%
②男生比女生多的人数是女生人数的10%
③男生比女生人数总数人数的10%
第十四章
百分数和分数、小数的互化
例1:把小数化成百分数。
0.98
0.07
0.006
0.135
例2:把百分数化成小数。
63%
9%
0.2%
18.9%
例3:把下面的百分数化成分数。
17%
6.3%
160%
75%
例4:把下面的分数化成百分数。
练习十四
1.把下面各数化成百分数:
0.27=
1.52=
0.5=
0.08=
3.28=
10.06=
32=
0.005=
2.把下面百分数化成小数或整数:
52%=
1.23%=
248%=
70%=
0.4%=
15%=
100%=
2000%=
3.分别用分数、小数、百分数表示下面各图中的阴影部分:
分
数(
)
分
数(
)
分
数(
)
分
数(
)
小
数(
)
小
数(
)
小
数(
)
小
数(
)
百分数(
)
百分数(
)
百分数(
)
百分数(
)
4.谨慎选择:
(1)0.9%化成小数是(
)
A
0.009
B
0.09
C
0.9
(2)0.8里面有(
)个1%
A
8
B
80
C
800
(3)下面各数中最大的数是(
)
A
0.517517……
B
51.7%
C
0.517
5.37%的计数单位是(
),它有(
)个这样的单位。
6.六年级一班跳绳测验全部合格,可以用百分数(
)来表示。
7.把5.6%的百分号去掉,这个百分数就会扩大(
)倍。
8.把下面各组数从小到大排列。
(1)6.5%
650%
0.06
0.65
(2)2.75
27.5%
270%
2.57
6.5%=
2.75=
650%=
27.5%=
0.06=
270%=
0.65=
2.57=
9.在括号里填上“>”、“<”或“=”。
0.67(
)67%
31.3(
)313%
260%(
)2.6
(
)100%
1%
(
)0.1
0.25(
)25%
50%(
)
0.3(
)0.3%
10.某厂男工320人,女工180人。男工人数是女工人数的几倍?女工人数是男工人数的几分之几?男工人数比女工人数多几分之几?女工人数比男工人数少几分之几?
第十五章
用百分数解决问题
达标率=
发芽率=
及格率=
出勤率=
例1:王师傅今天加工了300个零件,有120个不合格,求他今天加工的这批零件的合格率。
例2:一个奶牛场去年养奶牛100头,今年比去年多养15%,今年养奶牛多少头?
例3:妈妈买了100个鸡蛋,已经吃了40个,已经吃了的鸡蛋比剩下的少百分之几?
例4:一个长方体木块的长、宽、高分别是8厘米,4厘米,5厘米。如果用它锯成一个最大的正方体,体积要比原来减少百分之几?
练习十五
1.
填空。
(1)10米比8米多(
)%,8米比10米少(
)%。
(2)六(1)班有男生30人,女生20人。男生人数年是女生的( )%,女生人数是男生的(
)%,男生人数比女生多( )%,女生人数比男生少( )%。
3.300的15%是( ),45的80%是( )。
4.张华做寿 了100道应用题,错了2道,他的正确率是( )%。
5.==( )%=( )=(
)(填小数)。
2.判断。
(1)=0.45=45%。( )
(2)102%化成分数是。( )
(3)一桶油用去30%,还剩下70%千克。( )
(4)一些种子的发芽率为120%。( )
(5)在一次数学测试中有106人参加,结果有100人合格,合格率为100%。( )
3.有一台冰箱,原价2000元,降价后卖1600元,降了百分之几?
4.有一台空调,原价1600元,涨价后卖2000元,涨了百分之几?
5.光明小学去年有篮球24个,今年新买了6个,今天一共有篮球多少个?今年比去年增加了百分之几?
6.有一个公园原来的门票是80元,国庆期间打8折,每张门票能节省多少元?相当于降价了百分之几?
7.南山小学共占地8000平方米,其中绿地面积占65%,其余为教学楼和道路等,南山小学的绿地面积有多少平方米?教学楼和道路等有多少平方米?
8.有一批种子的发芽率为98.5%,播种下3000粒种子,可能会有多少粒种子没发芽?
9.一个果园里去年产了4500千克的苹果,今年因为气候好,比去年增产了2成,今年产了多少千克苹果?
10.实验小学六年级的女生人数占全年级的48.75%,男生占全年级人数的百分之几?如果男生人数比女生人数多12人,那么实验小学六年级人数共有多少人?
11.504班参加美术兴趣小组的有20人,比参加体育兴趣小组的人数多20%,参加体育兴趣小组的有多少人?
12.小明家六月份用电180千瓦时,七月份比六月份多用了20%,每千瓦时电费为0.54元,小明家七月份的电费为多少元?〕
13.林林爸爸2000年的总工资收入13500元,2006年比2001年增加了240%,林林爸爸2006年的工资是多少元?
第十六章
分数、百分数的应用
例1:某厂五月份生产机床160台,六月份生产200台,六月份比五月份增产百分之几?
例2:有一桶汽油,第一次取出12千克,第二次取出剩下的,第三次取出全桶油的,正好取完,第二次取出多少千克?
例3:一根绳子截去20%后,再接上6m,结果比原来的绳子长了30%。这根绳子原来长多少米?
例4:粮库有一堆稻谷,第一次运走12吨,第二次比第一次多运走,两次共运走这堆稻谷的60%,这堆稻谷有多少吨?
练习十六
1.
某厂五月份计划用电2500度,实际用电2125度,节约百分之几?
2.
红星机床厂,上个月计划生产机床200台,实际比计划多生产40台,实际产量是计划的百分之几?
3.小研看一本课外书,4天看了全书总页数的,照这样计算,他看完这本书还要多少天?
4.一个钢厂去年产钢88万吨,今年计划比去年增产25%,今年计划产钢多少万吨?
5.
一种电冰箱,现在每台的价格是1840元,比原来降低了20%,原来每台的价钱是多少元?
6.学校里买来100米电线,第一次用去全长的,第二次用去全长的45%,还剩下电线多少米?
7.自行车厂上半年已经完成全年生产计划的55%,照这样的生产速度,今年可以超产10000辆,这个厂今年上半年生产多少辆自行车?
8.某小学四年级学生有136人,占全校学生总数的,五年级学生是全校学生数的15%,五年级有学生多少人?
9.
有一池水,第一天放出60吨,第二天放出65吨,剩下的水比原来这池水的少5吨,原来水池有多少吨水?
10.修一条路,第一天修了全长的20%,第二天修了200m,第三天修的是前两天的总和,这条路全长多少米?
11.录音机每台降价30%后,售价350元,这种录音机原来售价多少元?
12.
⑴建造一栋楼房,计划投资100万元,实际用了90万元,节约了百分之几?
⑵建造一栋楼房,用了90万元,比计划节约了10%,计划投资多少万元?
⑶建造一栋楼房,计划投资100万元,实际节约了10%,节约了多少万元?
⑷建造一栋楼房,计划投资100万元,实际超用了10%,实际投资了多少万元?
13.一件工程,甲、乙合作需6天完成,乙、丙合作需9天完成,甲、丙合作需15天完成,三人合作需多少天完成?
第十七章
折扣和纳税及利率
商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几。
缴纳的税款叫做应纳税额,应纳税额与各种收入(销售额、营业额……)的比率叫做税率。
利息=本金
存入银行的钱叫做本金,取款时银行多支付的钱叫做利息,利息与本金的比值叫做利率。
存银行存款的方式有多种,如活期、整存整取、零存整取等。
例1:商场搞打折促销,其中服装类打5折,文具类打8折。小明买一件原价320元的衣服,和原价120元的书包,实际要付多少钱?
例2:王叔叔把4000元存入银行,整存整存3年,年利率为3.15%,到期有利息多少元?要缴纳利息税多少元?王叔叔的本金加利息一共多少元?(现在的利息税为5%)
例3:张阿姨家买了一套总价为60万元的住房,要缴纳1.5%的房屋契税,要缴纳多少元房屋契税?
练习十七
一、判断题。
1.
一台电视机七五折出售,售价是原价的5%。( )
2.
应纳税额=纳税项目的总金额
3.
利息永远比本金少。( )
4.
税收主要分为消费税、增值税、营业税和个人所得税等几类。( )
5.
利率是表示本金与利息的比值。( )
6.
一个卷烟厂本月香烟的销售额是2000万元,如果按45%缴纳消费税,这个月应缴纳消费税950万元。( )
7.
本金=利息+时间。( )
8.
利率一定,存期相同,存入银行的本金越多,到期后得到的利息就越多。( )
二、选择题。
1.
小强买一台复读机,在打八折时花了170元,这台复读机原价( )元。
A.200
B.180
C.190
2.一家汽车运输公司十月份的营业额是260000元,如果按营业额的3%缴纳营业税,这家公司十月份缴纳营业税( )元。
A.7600
B.7800
C.10000
3.一件商品原价120元,现在打八折,现价是( )元。
A.100
B.98
C.96
4.将1000元钱存入银行,存期三年,到期时取出1153.9元,则取出的1153.9元叫( )。(不计利息税)
A.本金
B.利息
C.本金和利息之和
5.妈妈把1000元钱存入银行,存期为两年,年利率为4.68%,利息的税金按5%缴纳。到期时,她可取回税后利息多少元?正确列式是( )
A.1000
B.1000
C.1000
6.2010年5月,小刚将200元钱存入银行,存期为一年,年利率为4.14%,利息的税金按5%缴纳。到期时,可取得税后利息( )元。
A.8.8
B.7.866
C.7.8
三、解决问题。
1.买一套衣服,上衣200元,裤子100元。打8折,一共便宜了多少元?
2.
张叔叔去买鲜橙汁,看到同一种鲜橙汁在两个超市有不同的促销策略。甲超市:每瓶12元,买四送一;乙超市:每瓶12元,八五折。张叔叔要买5瓶鲜橙汗,去哪个超市合适?
3.
丽丽家买了一套普通住房,房子的总价为10万元,如果一次性付清房款,就有九五折的优惠价。
(1)
打完折后,房子的总价是多少万元?
(2)
买房还要缴纳实际房价1.5%的契税,需缴纳契税多少元钱?
第十八章
鸡兔同笼问题
1.假设全是“鸡”:
兔子只数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数)
鸡只数=总头数-兔子只数
2.假设全是“兔”:
鸡只数=(兔脚数×总有数-总脚数)÷(兔脚数-鸡脚数)
兔子只数=总头数-鸡头数
例1:张大爷家养了若干只鸡和兔子,共有75个头,210只脚,张大爷养了鸡和兔子各多少只?
例2:小兔采蘑菇,晴天每天可以采50个,雨天每天只能采20个。小兔一连几十天采了1200个,平均每天采40个,这些天当中有几天是雨天?
练习十八
一、填空题。
1.
鸡、兔同笼,共有50个头,158条腿,那么鸡有( )只,兔有( )只。
2.
六年级的100名师生参加植树活动,教师每人栽3棵树,学生每2人栽1棵树,共栽了100棵树,学生栽了( )棵树,教师栽了( )棵树。
3.
小红有2元和5元的人民币共100张,共计320元,2元的人民币有( )张,5元的人民币有( )张。
4.
学校总务处买了5张桌子、7把椅子用去700元,一套桌椅120元,每张桌子(
)元,椅子(
)元。
二、选择题。
1.
学校的乒乓球活动小组有12张乒乓球台,恰 好有34人正在进行单打和双打,正在进行单打的台子有( )张。
A.7
B.5
C.14
2.自行车和三轮车共有10辆,总共有26个轮子,自行车有( )辆,三轮车有( )辆。
A.4
B.8
C.6
3.龟和鹤共有100只,龟的腿和鹤的腿共有248条,则龟和鹤的数量分别是(
)。
A.龟有50只,鹤有50只。
B.龟有24只,鹤有76只。
C.鹤有24只,龟有76只。
4.一次数学竞赛时,共有20道题,做对一道题得5分,做错一道题扣3分,小明全部都做了,但只得了60分,小明做错了( )道题。
A.4
B.5
C.3
三、解决问题。
1.自行车和轿车共有8辆,它们共有22个车轮。
自行车和轿车各有几辆?
【珍惜/优质文档,不负/钻石店铺】
(本文档共
【
3
】页/【
980
】字)
单位
姓名
20XX年X月
六年级上册《道德与法治》教学工作总结
(20XX—20XX学年度第一学期)
本学期我担任了六年级X个班《道德与法治》教育教学工作。工作中,我严格要求自己,勤勤恳恳,兢兢业业,使各项工作有计划、有组织、有步骤地开展。立足本学期,放眼下学期,为使今后的工作取得更大的进步,现对本学期教育教学工作进行如下总结:
一、深入钻研教材,认真备课,精心选择教法。
备好课是上好课的前提和保证。在新课改新教材面前我觉得自己仍然是新手,故在课前做到认真备课,多方面去搜集与教学相关的资料。我根据教材内容及学生的实际,设计课堂教学,拟定采用的教学方法。在深入钻研教材和了解学生的基础上,认真写出了切实可行的教案,使每一节课都能做到“有备而上”。通过培养学生学习思想品德的兴趣,充分调动学生学习的积极性、主动性,达到了愉快教学的目的。
二、精心组织课堂教学,提高教学质量。
上好课是提高教学质量的有效途径。课堂教学中我尽量做到讲解清晰化、条理化;课堂语言力求准确化、情感化和生动化;教学思路做到线索清晰、层次分明。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主体作用,让学生学得容易,学得轻松,学得愉快;注意精讲多练,在课堂上老师讲得尽量少些,学生活动尽量多些;同时在每一堂课上都充分考虑不同层次学生的学习需求和学习能力,让各个层次的学生都得到提高,努力实现课程的趣味化。
三、存在不足与今后打算
个人备课有时针对性不强,比如在具体的课堂教学中,往往是备好的课不得不进行必要调整。一方面,学生的学习基础相对较弱;另一方面,有的同学比较活跃,上课气氛积极,但对中等生、学困生的关注度还要提高。有时讲得太深,没有照顾到整体,在备课时也要更加注意到这点。