前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的光纤传感技术论文主题范文,仅供参考,欢迎阅读并收藏。
参考文献
[1]梁瑞冰,孙琪真,沃江海,刘德明.微纳尺度光纤布拉格光栅折射率传感的理论研究[J].物理学报.2011(10)
[2]钱银博.基于SOA的长距离无源光网络理论与实验研究[D].华中科技大学2010
[3]赵攀,隋成华,叶必卿.微纳光纤构建M-Z干涉光路进行液体折射率变化测量[J].浙江工业大学学报.2009(03)
[4]李宇航,童利民.微纳光纤马赫-泽德干涉仪[J].激光与光电子学进展.2009(02)
[5]刘盛春.基于拍频解调技术的光纤激光传感技术研究[D].南京大学2011
[6]高学强,杨日杰.潜艇辐射噪声声源级经验公式修正[J].声学与电子工程.2007(03)
[7]胡家艳,江山.光纤光栅传感器的应力补偿及温度增敏封装[J].光电子·激光.2006(03)
[8]牛嗣亮.光纤法布里-珀罗水听器技术研究[D].国防科学技术大学2011
[9]曹锋.新一代周界防入侵软件系统研究及其应用[D].华中科技大学2010
[10]唐天国,朱以文,蔡德所,刘浩吾,蔡元奇.光纤岩层滑动传感监测原理及试验研究[J].岩石力学与工程学报.2006(02)
[11]詹亚歌,蔡海文,耿建新,瞿荣辉,向世清,王向朝.铝槽封装光纤光栅传感器的增敏特性研究[J].光子学报.2004(08)
[12]孙运强.激光内通道传输的气体热效应研究[D].国防科学技术大学2011
[13]刘浩吾,吴永红,丁睿,文利.光纤应变传感检测的非线性有限元分析和试验[J].光电子·激光.2003(05)
[14]邓磊.OFDM技术在无源光网络及光无线系统中的应用与研究[D].华中科技大学2012
[15]胡家雄,伏同先.21世纪常规潜艇声隐身技术发展动态[J].舰船科学技术.2001(04)
[16]ZuyuanHe,QingwenLiu,TomochikaTokunaga.Ultrahighresolutionfiber-opticquasi-staticstrainsensorsforgeophysicalresearch[J].PhotonicSensors.2013(4)
[17]YiJiang,WenhuiDing.Recentdevelopmentsinfiberopticspectralwhite-lightinterferometry[J].PhotonicSensors.2011(1)
[18]AnSun,YuliyaSemenova,GeraldFarrell.Anovelhighlysensitiveopticalfibermicrophonebasedonsinglemode-multimode-singlemodestructure[J].Microw.Opt.Technol.Lett..2010(2)
参考文献
[1]孙运强.激光内通道传输的气体热效应研究[D].国防科学技术大学2011
[2]赵兴涛.掺镱、亚波长空芯及新型高非线性光子晶体光纤的研究[D].北京交通大学2015
[3]杨春勇.GMPLS智能光网络中波长路由器的研究[D].华中科技大学2005
[4]许荣荣.光纤环形腔光谱技术与传感应用的研究[D].华中科技大学2012
[5]张磊.基于光子晶体光纤非线性效应的超宽带可调谐光源[D].清华大学2014
[6]王超.基于高频等离子体法制备掺镱微结构光纤及其特性的研究[D].燕山大学2014
[7]林桢.新型大模场直径弯曲不敏感单模及少模光纤的研究[D].北京交通大学2014
[8]苏伟.新型光子准晶光纤及石英基光纤的微观机制研究[D].北京交通大学2015
[9]许艳.基秒光频梳的绝对距离测量技术研究[D].华中科技大学2012
[10]钱新伟.PCVD单模光纤高速拉丝工艺与光纤性能研究[D].华中科技大学2009
[11]刘国华.高功率光纤激光器的理论研究[D].华中科技大学2007
[12]常宇光.光纤射频传输(ROF)接入系统及无线局域网应用研究[D].华中科技大学2009
[13]张雅婷.基于光子晶体光纤的表面等离子体传感技术研究[D].华中科技大学2013
[14]张小龙.同轴电缆接入网信道建模与故障诊断方法研究[D].华中科技大学2013
[15]张传浩.电信级以太无源光网络接入理论与实验研究[D].华中科技大学2009
[16]吴广生.无源光网络与电网络复合接入技术研究[D].华中科技大学2009
[17]江国舟.10Gbps以太无源光网络关键技术与应用研究[D].华中科技大学2009
[18]张利.以太无源光网络安全性与增强技术研究[D].华中科技大学2009
[19]冯亭.MOPA光纤激光系统放大级增益光纤特性与高质量种子源关键技术研究[D].北京交通大学2015
[20].EPON和WLAN融合网络架构下的上行链路调度算法研究[D].华中科技大学2009
[21]孙琪真.分布式光纤传感与信息处理技术的研究及应用[D].华中科技大学2008
[22]孙运强.Ⅰ钳式镍配合物的合成及性质反应研究Ⅱ有机氟化物的合成新方法研究[D].山东大学2014
参考文献
[1]刘钰旻.纳米功能材料在能量转换与储存器件中的应用[D].武汉大学2013
[2]曾谦.声表面波技术在微流控芯片中的集成及应用研究[D].武汉大学2011
[3]彭露,朱红伟,杨旻,国世上.微沟道内两相流速比对液滴形成的影响[J].传感技术学报.2010(09)
[4]郭志霄.微液滴和海藻酸凝胶颗粒在微流控芯片中的应用研究[D].武汉大学2011
[5]全祖赐.环境友好型多功能氧化物薄膜的微结构、光学、电学和磁学性能研究[D].武汉大学2010
[6]彭涛.功能电极材料在染料敏化太阳能电池中的应用[D].武汉大学2014
[7]黄妞.光阳极修饰和二氧化钛形貌调制在染料敏化太阳能电池中的应用[D].武汉大学2013
[8]国世上.电子辐照铁电共聚物P(VDF-TrFE)及超声传感器的研究[D].武汉大学2004
[9]韩宏伟.染料敏化二氧化钛纳米晶薄膜太阳电池研究[D].武汉大学2005
[10]何荣祥.纳米功能材料器件及其在流体和细胞检测中的应用研究[D].武汉大学2013
[11]周聪华.染料敏化太阳能电池中电极材料和寄生电阻的研究[D].武汉大学2009
[12]胡浩.碳材料对电极在染料敏化太阳能电池中的应用[D].武汉大学2011
[13]李伟平.铁电共聚物P(VDF-TrFE)的性能和换能器的模拟研究[D].武汉大学2004
[14]蓝才红,蒋炳炎,刘瑶,陈闻.聚合物微流控芯片键合微通道变形仿真研究[J].塑料工业.2009(05)
【关键词】光纤光栅传感器 数据采集 光纤布拉格光栅
光纤传感器是通过检测光信号来测量环境中参量变化(生物量、物理量或化学量),这些参量变化会引起光的传输特性变化。光纤传感器有很多种类,按照传感机理它可以分为强度型、干涉型和光纤布拉格光栅型这三种。这其中光纤布拉格光栅不仅具有强度型和干涉型的优点,并且具有波长分离能力强、灵敏度高、传感精度好、抗干扰能力强等优势。光纤光栅传感器有着很大的发展前途,它可以在需要精确定位或者是绝对数字测量时,可以构成多光栅空间分布单一光纤传感网络系统。
本文研究的基于光纤光栅的数据采集,光纤光栅传感器即采用的是光纤布拉格光栅,光纤光栅的原理如图1所示。
光纤布拉格光栅的中心波长随着外界环境参量的变化而随之变化,它广泛应用于压力、温度、应变等参数的测量。
一、基于光纤光栅数据采集系统的组成
(一)光纤光栅传感系统
该系统通过光纤光栅传感器采集数据,这是该数据采集系统的前提条件。不同功能的光纤光栅传感器能够将不同的物理参量如温度、压力、应变和加速度等调制为相对应的光栅波长。光纤光栅传感器输出光波以后直接通过光缆便可以进行远距离传送。
(二)光纤光栅网络分析系统
该系统作用是将光纤光栅传感器采集的光信号经光缆的远程传输后,将光信号转化为数字量并以物理参量的方式在计算机终端记录、显示或存入数据库中。
该系统主要由光开关、光纤光栅解调仪及光纤跳线组成。光纤光栅解调仪的作用是将光纤光栅中心波长解调为数字信号。光开关的主要作用是将多路光信号一起或是分别进入光纤光栅解调仪,这样就克服了光纤光栅通道数不能满足工程应用的缺点。
(三)光纤通讯传输网络
该系统由光缆和光纤适配器等组成。光缆是光信号传输的通道,光纤适配器连接光缆且损耗很低,这样就可以避免工程现场的光纤熔接。单桥监控室采用光缆以低损耗方式接连光缆,将远距离采集的光信号引入中心监控室的数据处理及分析系统上。
(四)数据处理及分析系统
该系统是对采集后的数据进行预处理且分析,为后续系统的基础。该系统是由软件系统组成,在现场工控机上运行,为专家评估系统奠定坚实的基础平台,是后续工作提供可靠的依据。
二、数据采集系统的设计
在光纤数据采集系统中,首先运用了多线程技术,以保证数据采集、实时显示界面和数据存储同时进行;其次,运用数据安全队列来保护线程之间数据安全传递的同时,还要使采集到得数据可以在最快的时间内得到显示,最后在VS平台下实现数据采集系统程序,由于VS库函数和空间丰富,编程环境界面友好,使得软件不仅界面漂亮,而且开发难度大大的降低。数据采集的流程图3-5所示。
在基于光纤光栅数据采集系统中,为了使数据采集、储存和实时显示同时进行,必须采用多线程技术。此外,还可以采用数据安全队列使采集到的数据能够在最快时间实现显示并能够保护线程之间数据的安全传递。由于VS平台下库函数和空间丰富、界面友好,采用VS平台实现数据采集系统程序可以使开发难度大大降低且软件界面漂亮。数据采集的流程图如图2所示。
三、数据采集系统的程序实现
随着社会的发展,大型桥梁的安全问题越来越受到人们的重视,为了保证桥梁运行的安全性、可靠性及耐久性等,研究表明,得到科学管理的桥梁有着更好的安全性以及耐用性,桥梁健康监测系统已经是桥梁建设中不可少的一部分,数据采集系统则是整个监测系统的基石。对于桥梁健康监测来说,传感器具有数量大、种类多,信号采集的储存实时性高等要求,这样对于数据采集和处理系统有较高要求。本文以武汉某大型斜拉桥为例,研究基于光纤光栅的数据采集系统的软件设计及具体实现。
根据要求,传感器数据采集系统能够提供监测数据。以某斜拉桥为例的健康监测系统中,系统采用光纤光栅应力传感器、光纤光栅温度传感器、光纤光栅位移传感器、压电式低频加速度传感器等等监测斜拉桥应力、温度等参数。本文主要针对的是光纤光栅型传感器,将采集到的光信号通过光缆传输后经过解调仪解调,最后通过网口对解调仪采集到数字信号存入数据库中,为后续监测系统做准备。
光纤光栅解调仪具有以太网接口,根据实际需要进行网络编程,实现网络程序有很多种方式,Windows Socket是其中比较简单的方法。本系统监测对象比较多并且要求系统实时性高,多线程技术可以满足系统要求,它支持系统一个进程中执行多个线程,多个操作可以在不同线程中同时进行。光信号经解调仪传输后是字节流,可以使用memmove函数对字节流进行分解处理。
(一)光纤光栅传感器的配置
数据采集方案的确定和传输方式的选择一般是根据传感器空间分布情况确定的。斜拉桥的跨度比较大,一般为几百米到几千米,桥上敷设的传感器的数量种类也特别多,这个时候为了减少信号在传输中受到干扰、衰减失真等情况,首先要对传感器进行配置,再选择合适的数据采集方案和传输方式。
数据采集之前要确定传感器的总数、解调仪的数量、所需通道数、采样频率和存储频率等各方面信息。传感器的总数决定了数据传输设备的数量和数据的传输方式。传感器的采样频率是由数据处理系统对数据的要求以及数据本身的动态特性决定的。在进行传感器配置的时,采取四层结构,采用树形控件,应用如图3所示。第一层是光纤光栅系统,第二层是光纤光栅解调仪,第三层是通道,第四层是传感器。在数据采集系统首次运行时要进行初始配置,这样才能提高系统的运行速率。传感器配置有两种方式,一种是在界面进行配置,第二种是修改配置文件的内容。开始配置时首先将配置信息显示在界面上,对界面进行配置,然后将数据写入数据库。
界面的配置步骤为:光纤系统总配置、光纤光栅解调仪配置、通道配置、传感器配置。将每一个配置的传感器编号,通过传感器编号可以查询具体信息。比如:传感器的名称、类别、位置、初始应变、报警上限、报警下限、标定系数、标定斜率、是否要温度补偿、基准波长、标定波长、所属的解调仪和通道数等信息。
(二)网口采集
武汉某斜拉桥健康监测系统需采集的信号数量大、实时性高、处理较复杂。数据采集系统负责将光纤光栅解调仪的信号通过网口以后,进行数据的采集、分析、转化为相应数据储存,为后续的数据分析处理以及安全评估提供可靠地实时数据。本系统是采用开放式Windows系统平台,软件开发环境为Visual Studio 2005,把任务分成几个独立的线程,使用多线程方式,这样就能够保证数据采集的实时性,用户其他操作也能及时响应,这样提高了利用率和程序的运行效率。
光纤光栅解调仪主要作用是把光纤光栅中心波长解调出来,解调的机理有很多,本系统采用的解调原理是基于F―P滤波器的原理,基于网口的数据采集技术较成熟,解调仪的通信协议为UDP协议,传输速率要求能够完全满足系统要求。
对于UDP无连接的数据报服务,客户机给服务机发送一个含有地址的数据报,客户机和服务器并没有建立连接。服务器是通过调用Recvfrom()等待客户端数据。基于UDP的socket编程思路为:首先创建套接字(socket),然后将套接字绑定到一个本地端口和地址上,等待接收的数据,最后关闭socket。
根据实际情况开发服务端软件基于UDP的,UDP能够提供端口机制便于UDP用户使用。UDP长度中包括UDP本身长度、源端口、目的端口、用户数据和UDP校验等。实际开发,端口号为5000,首先使用“ping”命令判断测试网络是否连通,原理为发送UDP数据包给对方主机,对方主机回复是否收到数据报,如果回复及时,则网络已经连接,软件流程如下图4所示。
四、小结
光纤光栅传感器使用越来越普遍,本文介绍基于光纤光栅传感器的数据采集监测系统的组成,对数据采集系统进行软件设计和介绍基于网络的数据采集的关键技术,最后对数据采集系统进行实例应用。
参考文献:
[1]柳旭.基于光纤传感技术的桥梁健康监测数据序系统研究:[工学硕士论文].武汉:武汉理工大学,2006
关键词:高等学校管理制度创新科技
科技创新作为高校创新的重要内容,既是高校提高人才培养质量的关键,也是高校加快发展的主要动力和源泉,更是提高教师队伍整体素质和水平的重要手段。加强高校科技创新工作,对于提高高校创新能力和综合实力,促进高校持续、稳定、协调、科学发展具有重要意义。
西安石油大学在国家“十五”科技工作方针指导下,结合学校实际,以特色求生存,以创新求发展,深入实施科技精品工程,以制度创新为总抓手,通过优化管理体制机制,营造科研良好环境,发挥重大项目作用,加大科技奖励力度,规范科技评价体系,扩大学术交流范围等举措,充分调动全校教师投身科技创新的积极性、主动性和自觉性,使学校科技创新工作实现持续健康发展。
1 优化管理体制机制,构筑科技创新基地
创新基地包括各级重点实验室、工程技术研究中心和人文社会科学重点研究基地。创新基地建设是提高科技创新能力的重要手段,是进行科研工作的基础和保证,是汇聚科技人才的根本途径。对创新基地建设而言,完善的科技管理体制和运行机制是根本保证。为此,学校坚持与时俱进,不断创新科技管理制度,建立有利于发挥创新基地学术环境优势,有利于学科交叉、队伍整合和资源共享,有利于调动科技人员积极性,有利于优秀拔尖人才脱颖而出的科技管理体制和运行激励机制。经过广泛调研和科学论证,相继制定了“重点实验室管理办法”、“工程技术研究中心管理办法”、“人文社会科学重点研究基地管理办法”等制度。同时学校也自筹资金7000多万元用于基地建设,使得制度的导向和引领作用更加凸显。学校紧跟国家创新体系建设、西部大开发、陕西建设西部强省的步伐,抢抓机遇,充分发挥石油石化主干学科优势、人才优势、成果优势,突出特色研究方向,通过资源整合、加强条件建设、技术装备改造、增建实验室等举措,使创新基地得到快速发展。目前学校已拥有2个联合建设的国家工程实验室,1个省部共建教育部重点实验室,8个省部级重点实验室,7个省级工程技术和研究中心,1个省部级人文社会科学重点研究基地。
2 营造良好科研环境,推进创新人才培养
高校由于“扩招”导致教师缺编严重,使得青年教师过早地担负起教学科研的重任。据调查,全校40岁以下的青年教师占整个教师队伍的三分之二左右。青年教师以后要成为学校教学和科研的主力,但是他们普遍缺乏系统的科研训练,能力和经验也都不足,也缺乏科研启动资金。为此,学校专门制定了《科技创新基金管理办法》,引导和资助青年教师开展科学研究工作。同时对获得博士学位的教师,学校也给与科研启动金,资助他们开展科学研究、参加学术交流。近几年学校共投入200多万元,资助了200多位青年教师,占青年教师总数的三成以上。青年教师的科学研究能力得到了锻炼和提高,他们中的许多人已快速成长为学校教学科研的骨干。
3 发挥重大项目作用,凝聚科技创新团队
科技创新团队的建设是高校教学、科研和学科建设的重要保障。要建设一流高校,必须要有一批素质优良、结构合理、专兼结合、相对稳定的创新团队。国家中长期科学和技术发展纲要指出:“争取政府资源是高校自身发展的需要,也是高校科技创新实力的集中展现。高校围绕国家目标开展创新活动,可以不断提高自身创新能力和学术地位,促进高质量人才的培养,促进科技创新团队的形成。”目前,许多高校都存在科研团队整体素质不高、队伍不稳定的现象。针对国家级科研目标开展科技攻关,进行学科交叉,可以稳定科技队伍,凝聚科技创新团队,改变这种现状。
为了激励教师积极争取和承担国家、省部级科研项目,同时保障高层次科研项目的顺利实施,制定了《纵向科研项目经费资助办法》。学校组织各学科技术骨干组成科研团队,积极申请国家自科基金、社科基金、国家科技支撑计划、国家“863”计划及各省市设立的重大科技项目,以重大科技项目为载体凝聚科技力量,培育科技精品。几年来,学校投入配套资金400多万元,极大地促进了科学研究工作的发展。对加强科技团队建设,稳定学术队伍,坚持自身特色,形成新的科研方向起到了重要作用。近五年,学校主持和参加国家“863”计划项目9项,参加国家“973”计划项目5项,主持和参加国家科技支撑计划项目9项,主持和参加国家自然科学基金项目17项。主持国家社会科学基金项目3项。其中,我校承担的国家“863”计划“旋转导向可控偏心器工程化技术研究”项目,经费达1500万元,是建校以来第一个经费突破千万元的科研项目。学校科研经费大幅度增长,由2003年的3100多万元增加到2008年的1亿多元,年均增幅达30%以上。通过重大项目形成了多个稳定的科研方向,凝聚了多支科研团队。比较典型的是“光纤光栅传感技术研究”创新团队,取得了多项创新成果,获得了2008年“全国五一劳动奖状”。
4 加大科技奖励力度,催生科技创新成果
学校革新科技奖励办法,拓展授奖范围,加大奖励力度,制定了《科技奖励办法》。对高水平的理论和技术成果进行奖励,对省部级以上的科技项目、获省部级以上奖励的科技成果、获授权的专利技术、高水平的论文、经费数额较大的横向科研项目进行奖励。奖励以工资或现金形式兑现,几年来共发放奖金300多万元。此项制度在教师中反响很大,极大地鼓舞了大家的创新热情,也调动了更多的教师,特别是中青年教师的科研积极性,使得学校科技工作呈现出了“长江后浪推前浪,一浪更比一浪强”的可喜局面,有力地促进了学科建设和科技创新工作的跨越式发展。
近几年学校主持完成的“气田污水综合处理与防腐阻垢技术”、“油气管线分布式光纤光栅智能传感系统研究”等4项成果荣获陕西省科学技术奖一等奖,“高温高压分布式光纤光栅传感技术”成果荣获2007年度国家技术发明二等奖,此外学校还获得了130多项各级科技奖励。近五年6000余篇、被SCI、EI、ISTP收录近500篇,出版学术专著100多部。
5 规范科技评价体系,激励教师创新热情
高校近年来存在单纯以论文数量考核教师的现象,导致大量低水平重复的论文出现。学校为此制定了《权威期刊、核心期刊认定办法》,从自然科学到人文社会科学,从国内核心期刊到国外核心期刊,从不同角度规范和引导教师通过科技创新和长期积累,发表高质量、高水平的学术论文,促进学校科技创新工作再上新台阶。
学校的科技评价体系是引导教师进行科技创新的指挥棒。在强化科技业绩考核的同时,一定要处理好数量指标与质量指标的关系。学校制定了《教师科技工作业绩与成果量化计算办法》,与学校的其他科技管理制度一起,形成了科技评价体系。此办法的实施使得学校科技成果认定更加公平合理。科技工作业绩评价更加科学规范,形成了积极有效的激励机制,教师的科技创新热情进一步高涨。仅2008年一年就申请发明专利20多项,超过了学校前十年申请量的总和。
6 扩大学术交流范围,增强学校学术影响
学校的科学研究要想创一流,就要积极开展各种学术合作与交流,就要选择高水平的合作伙伴,了解本学科的前沿领域和发展方向,提高科学研究的起点。通过国内外学术交流可及时获取最前沿的学术信息。许多创新的想法、概念和思路,往往就是在学术交流中提出或受到启迪。
关键词 光电信息 实践教学 实验室建设
中图分类号:G424 文献标识码:A
Optical Engineering Professional Practice Teaching
System Construction and Exploration
XIAO Yanshan, WANG Fei, HE Huiling
(College of Science, China Three Gorges University, Yichang, Hubei 443002)
Abstract According to Optical Engineering expertise structural characteristics and social requirements, combined with our school practice for Optical Engineering practice teaching system optimization, raised my school Optical Engineering Professional Practice teaching training objectives, build professional practice teaching content, build professional practice teaching hierarchical, multi-module, the system architecture to further improve students 'knowledge, cultivate students' innovative spirit and practical ability, so that students can better serve the photovoltaic industry and the local economic and social development.
Key words optical; practice teaching; laboratory construction
0 引言
按照国家专业目录的指导思想,我校光电信息工程专业的培养目标为:培养既具有扎实的数理基础,又熟练掌握光电技术、光学工程、信号处理、计算机应用与控制方面的知识和各种实验测试技能,了解有关光学工程、光纤通信技术、电子技术、光电图像处理等方面的基础知识,能在光电系统与信息处理、光纤通信与传感及其相关领域从事科研教学、科技开发、工程技术及生产管理的综合型人才。①与机械、电气、电子、材料等专业相比,光电信息工程专业具有非常鲜明的特点,就是其知识的广泛交叉性。②③本专业学生不仅在光电信息的获取、传递、处理及应用等方面具有坚实的理论基础,同时还需在光电信息处理、光电系统设计、光电技术及其应用等专业领域具有扎实的专业知识和熟练的实践技能。④
针对本专业实践教学中普遍存在的实验课课时数不足、学生开展自主创新实验机会不多、学生实验动手能力不强以及实验教学内容明显落后于技术发展等问题,本文提出以行业和社会需求为导向、鼓励学生自主探究和创新、专业实验与专业实践环节相结合的实践教学理念,构建科学的实践教学内容,建立分层次、多模块、系统的实践教学环节,进一步优化和完善学生知识结构体系,培养学生的创新精神和实践能力。
1 实践教学体系的设计
1.1 实践教学层次设计
根据本专业实践教学的要求、功能及特点,实验教学内容可由基础演示型、应用提高型、综合设计型以及研究创新型等四个不同层次的实验组成。
基础演示型实验:实验教学内容与光电专业基础理论课内容相对应,进行基本的专业技能训练。通过开展这类实验项目,帮助学生加深对所学专业课程内容的理解与掌握,并使学生有机会学习正确使用本学科领域的常用仪表和设备。
应用提高型实验:它是基础演示型实验的提高和拓展,根据本专业发展方向和实验室特点,主要实验内容应包括光纤通信与传感技术、光电检测技术以及激光技术等。通过开展这类实验项目帮助学生了解光电专业知识在实际生产生活中的应用领域、光电技术的应用原理和测量方法,提高学生解决实际问题的能力,增强学生的就业竞争能力。⑤
综合设计型实验:它涉及的专业知识内容较广泛,包括光电检测与传感的部分实验,光纤通信的部分实验以及激光技术的部分实验。这类实验内容比较丰富,实验仪器比较复杂,开展这类实验可以培养学生利用所学专业知识解决复杂问题的能力。实验可在老师指导下,由学生自行设计实验方案、实验步骤,并由学生自行实施完成。
通过以上三个层次实验课程的学习,学生学习如何做好实验,掌握研究光电规律和分析光电实验现象的思想和方法,学会分析和评价实验结果,达到激发学习热情、变被动学习为主动学习的目的。由以前教师安排好实验、准备好实验仪器、学生来做实验的状态,过渡到学生在老师的指导下,自己设计实验,自己准备实验仪器完成实验,从而培养和提高学生的综合思维和创造能力。
研究创新型实验:主要安排融合各分支学科和交叉学科的综合创新性实验。特别是突出光电技术与计算机技术、信息前沿科学发展的融合。部分实验项目采用项目式管理模式,题目由学生自由选择,实验时间不受限制,实验室对学生实行全方位开放。由学生自己查阅资料、设计实验方案、选择实验仪器、独立完成实验、撰写总结报告并口头交流,注重创新意识和创新能力的培养,为学生提供发展个性和施展才能的机会。
1.2 实践教学模块设计
本专业的实践教学模块可分为四类,如表1 所示。第一类是基础实验,主要开设在大一、大二学年。这一环节的实验内容主要有计算机语言程序设计、物理实验、数电模电实验以及工程基础训练。这一实验模块主要是学生自己动手进行实物制作,从而提高动手能力。第二类是专业课程设计,包括光电检测与信号处理课程设计、电子线路设计与PCB、光学软件设计、光电子系统课程设计等。课程设计内容与专业理论课知识相衔接,使学生将理论课中学到的知识应用到实践中去。大三年级以后,每学期都开设有专业课程设计环节,而且课程设计的内容逐步与生产实践相结合。第三类是专业综合类实验,包括学科基础实验、光电子学专业实验、毕业设计等。通过这类专业综合实验,来系统训练学生的光电信息专业知识,提升学生的光电信息专业素养。第四类是社会生产实践,包括生产实践、毕业实习等。这类实验包括大学生光电设计竞赛、大学生电子设计大赛、大学生数学建模大赛、寒暑期勤工俭学、毕业实习等。通过统筹安排这些实践内容,使学生尽快了解、认识社会、企业对光电信息专业的实际需求,真正理解专业学习目的,以增加学生毕业后的就业竞争力。
表1 光电信息工程专业实践教学模块
2 实践教学内容的实施
2.1 基础实验
在大二年级之前完成全部基础类实践教学环节,主要是关于仪器、仪表的使用、基本量测量、基本实验技能的训练和基本测量方法等,设计物理、电子学以及计算机技术实验的一些基本实验技能和基本知识点,培养学生的观察能力、分析能力和判断能力。除了传统的演示实验,还包含学生自己动手操作完成的实验,让学生在实验中通过探索获取知识和经验。
通过该实践教学环节,可以使学生具备基本实验技能,学会基本测量仪器的使用,掌握基本的实验方法和经验,为下一阶段的学习打下良好的基础。⑥
2.2 课程设计
课程设计是实践教学体系的重要环节,是理论课程的互补,理论课程中抽象的理论知识可以在课程设计中直观地反映。指导老师根据所学专业课内容给出多个设计题目,学生选择后自己查阅相关资料对所选题目做出课程设计报告。课程设计分布在第2学年与第3学年,这一阶段学生已经有了一定的理论基础及实践基础,可以完成相关课程设计要求。
通过课程设计这一实践教学环节,可以提升学生的思维能力,尤其是锻炼学生应用理论知识解决实际问题的能力。
2.3 专业实验
充分利用现有实验室设备设计专业实验,可将专业实验划分到多个实验室,指导教师在固定实验室指导,学生分组完成规定的实验,有效地克服了实验设备台数不足的问题。毕业设计是教学过程中最重要的实践性教学环节,是本专业学生毕业前的一个重要的综合性实践环节。该实践环节的任务是,通过指导教师对学生有针对性的指导,让学生系统完成选题、文献检索、文献综述、开题、实证研究、论文撰写、论文修改、答辩等各个具体环节,深入探讨专业知识,综合运用专业技能,学会选用合适的研究方法,从而完成毕业论文。毕业设计的目的在于通过这些环节,使学生巩固所学的光电专业知识和各项技能,对培养学生开拓务实的工作学习作风、拓宽专业视野、锻炼专业技能有很好的帮助作用。
2.4 社会实践
社会实践是本专业教学计划中非常重要的实践性教学环节之一,实践形式包括校内实践和校外实践。通过社会实践让学生真正接触、了解社会实际。一方面让学生认识到光电信息专业在社会经济建设中的地位和作用,了解光电信息技术的发展前沿;同时增加学生对光电信息专业的认识和理解,通过本专业知识在实际生产中的应用来巩固所学习的理论知识,培养学生分析和解决工程实际问题的能力;最后通过社会实践让学生熟悉工程技术人员的工作职责和工作程序,学习组织和管理生产的初步知识,培养学生严谨认真的科学态度和严谨求实的工作作风。
3 结束语
根据光电信息工程专业知识结构特点和社会对本专业学生的要求,结合我校实际对光电信息工程专业实践教学体系进行优化,在拓展学生专业知识面的同时,更加注重现代光电信息领域的高、新、尖技术,并且充分利用校内外教学资源,提高学生的综合素质,促进教学改革、科研和产业的发展。
基金项目:三峡大学教研项目(J2014069)
注释
① 中华人民共和国教育部高等教育司.中国普通高等学校本科专业设置大全[M].北京:高等教育出版社,2003:201-202.
② 郁道银,蔡怀宇,葛宝臻,李清,陈晓冬.光电信息工程专业建设的探索与实践[J].光学技术,2007(S1):293-294.
③ 刘向东,刘旭,刘玉玲.从高等教育的发展到光学工程类专业研究型人才培养方案再调整的思考[J].光学技术,2007(S1):276-277,279.
④ 刘蓉,侯宏录,陈海滨.电子科学与技术专业实践教学体系优化建设的探索[J].科级信息,2011(19):198-199.
【论文摘要】:机电一体化是一种复合技术,是机械技术与微电子技术、信息技术互相渗透的产物,是机电工业发展的必然趋势。本文简述了机电一体化技术的基本结构组成和主要应用领域,并指出其发展趋势。
现代科学技术的发展极大地推动了不同学科的交叉与渗透,引起了工程领域的技术改造与革命。在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品机构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入了“机电一体化”为特征的发展阶段。
一、机电一体化的核心技术
机电一体化包括软件和硬件两方面技术。硬件是由机械本体、传感器、信息处理单元和驱动单元等部分组成。因此,为加速推进机电一体化的发展,必须从以下几方面着手:
(一) 机械本体技术
机械本体必须从改善性能、减轻质量和提高精度等几方面考虑。现代机械产品一般都是以钢铁材料为主,为了减轻质量除了在结构上加以改进,还应考虑利用非金属复合材料。只有机械本体减轻了重量,才有可能实现驱动系统的小型化,进而在控制方面改善快速响应特性,减少能量消耗,提高效率。
(二) 传感技术
传感器的问题集中在提高可靠性、灵敏度和精确度方面,提高可靠性与防干扰有着直接的关系。为了避免电干扰,目前有采用光纤电缆传感器的趋势。对外部信息传感器来说,目前主要发展非接触型检测技术。
(三) 信息处理技术
机电一体化与微电子学的显著进步、信息处理设备(特别是微型计算机)的普及应用紧密相连。为进一步发展机电一体化,必须提高信息处理设备的可靠性,包括模/数转换设备的可靠性和分时处理的输入输出的可靠性,进而提高处理速度,并解决抗干扰及标准化问题。
(四) 驱动技术
电机作为驱动机构已被广泛采用,但在快速响应和效率等方面还存在一些问题。目前,正在积极发展内部装有编码器的电机以及控制专用组件-传感器-电机三位一体的伺服驱动单元。
(五) 接口技术
为了与计算机进行通信,必须使数据传递的格式标准化、规格化。接口采用同一标准规格不仅有利于信息传递和维修,而且可以简化设计。目前,技术人员正致力于开发低成本、高速串行的接口,来解决信号电缆非接触化、光导纤维以及光藕器的大容量化、小型化、标准化等问题。
(六) 软件技术
软件与硬件必须协调一致地发展。为了减少软件的研制成本,提高生产维修的效率,要逐步推行软件标准化,包括程序标准化、程序模块化、软件程序的固化、推行软件工程等。
二、机电一体化技术的主要应用领域
(一) 数控机床
数控机床及相应的数控技术经过40年的发展,在结构、功能、操作和控制精度上都有迅速提高,具体表现在:
1、 总线式、模块化、紧凑型的结构,即采用多CPU、多主总线的体系结构。
2、 开放性设计,即硬件体系结构和功能模块具有层次性、兼容性、符合接口标准,能最大限度地提高用户的使用效益。
3、 WOP技术和智能化。系统能提供面向车间的编程技术和实现二、三维加工过程的动态仿真,并引入在线诊断、模糊控制等智能机制。
4、 大容量存储器的应用和软件的模块化设计,不仅丰富了数控功能,同时也加强了CNC系统的控制功能。
5、 能实现多过程、多通道控制,即具有一台机床同时完成多个独立加工任务或控制多台和多种机床的能力,并将刀具破损检测、物料搬运、机械手等控制都集成到系统中去。
6、 系统的多级网络功能,加强了系统组合及构成复杂加工系统的能力。
7、 以单板、单片机作为控制机,加上专用芯片及模板组成结构紧凑的数控装置。
(二) 计算机集成制造系统(CIMS)
CIMS的实现不是现有各分散系统的简单组合,而是全局动态最优综合。它打破原有部门之间的界线,以制造为基干来控制“物流”和“信息流”,实现从经营决策、产品开发、生产准备、生产实验到生产经营管理的有机结合。企业集成度的提高可以使各种生产要素之间的配置得到更好的优化,各种生产要素的潜力可以得到更大的发挥。
(三) 柔性制造系统(FMS)
柔性制造系统是计算机化的制造系统,主要由计算机、数控机床、机器人、料盘、自动搬运小车和自动化仓库等组成。它可以随机地、实时地、按量地按照装配部门的要求,生产其能力范围内的任何工件,特别适于多品种、中小批量、设计更改频繁的离散零件的批量生产。
(四) 工业机器人
第1代机器人亦称示教再现机器人,它们只能根据示教进行重复运动,对工作环境和作业对象的变化缺乏适应性和灵活性;第2代机器人带有各种先进的传感元件,能获取作业环境和操作对象的简单信息,通过计算机处理、分析,做出一定的判断,对动作进行反馈控制,表现出低级智能,已开始走向实用化;第3代机器人即智能机器人,具有多种感知功能,可进行复杂的逻辑思维、判断和决策,在作业环境中独立行动,与第5代计算机关系密切。
三、机电一体化技术的发展前景
纵观国内外机电一体化的发展现状和高新技术的发展动向,机电一体化将朝着以下几个方向发展:
(一) 智能化
智能化是机电一体化与传统机械自动化的主要区别之一,也是21世纪机电一体化的发展方向。近几年,处理器速度的提高和微机的高性能化、传感器系统的集成化与智能化为嵌入智能控制算法创造了条件,有力地推动着机电一体化产品向智能化方向发展。智能机电一体化产品可以模拟人类智能,具有某种程度的判断推理、逻辑思维和自主决策能力,从而取代制造工程中人的部分脑力劳动。
(二) 系统化
系统化的表现特征之一就是系统体系结构进一步采用开放式和模式化的总线结构。系统可以灵活组态,进行任意的剪裁和组合,同时寻求实现多子系统协调控制和综合管理。表现特征之二是通信功能大大加强,一般除RS232等常用通信方式外,实现远程及多系统通信联网需要的局部网络正逐渐被采用。未来的机电一体化更加注重产品与人的关系,如何赋予机电一体化产品以人的智能、情感、人性显得越来越重要。机电一体化产品还可根据一些生物体优良的构造研究某种新型机体,使其向着生物系统化方向发展。
(三) 微型化
微型机电一体化系统高度融合了微机械技术、微电子技术和软件技术,是机电一体化的一个新的发展方向。国外称微电子机械系统的几何尺寸一般不超过1cm3,并正向微米、纳米级方向发展。由于微机电一体化系统具有体积小、耗能小、运动灵活等特点,可进入一般机械无法进入的空间并易于进行精细操作,故在生物医学、航空航天、信息技术、工农业乃至国防等领域,都有广阔的应用前景。目前,利用半导体器件制造过程中的蚀刻技术,在实验室中已制造出亚微米级的机械元件。
(四) 模块化
模块化也是机电一体化产品的一个发展趋势,是一项重要而艰巨的工程。由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、电气接口、动力接口、信息接口的机电一体化产品单元是一项复杂而重要的事,它需要制订一系列标准,以便各部件、单元的匹配和接口。机电一体化产品生产企业可利用标准单元迅速开发新产品,同时也可以不断扩大生产规模。
(五) 网络化
网络技术的飞速发展对机电一体化有重大影响,使其朝着网络化方向发展。机电一体化产品的种类很多,面向网络的方式也不同。由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾,而远程控制的终端设备本身就是机电一体化产品。
(六
) 绿色化
工业的发达使人们物质丰富、生活舒适的同时也使资源减少,生态环境受到严重污染,于是绿色产品应运而生。绿色化是时代的趋势,其目标是使产品从设计、制造、包装、运输、使用到报废处理的整个生命周期中,对生态环境无危害或危害极小,资源利用率极高。机电一体化产品的绿色化主要是指使用时不污染生态环境,报废时能回收利用。绿色制造业是现代制造业的可持续发展模式。
综上所述,机电一体化技术是众多科学技术发展的结晶,是社会生产力发展到一定阶段的必然要求。它促使机械工业发生战略性的变革,使传统的机械设计方法和设计概念发生着革命性的变化。大力发展新一代机电一体化产品,不仅是改造传统机械设备的要求,而且是推动机械产品更新换代和开辟新领域、发展与振兴机械工业的必由之路。
参考文献
1、 李运华.机电控制[M].北京航空航天大学出版社,2003.
2、 芮延年.机电一体化系统设计[M].北京机械工业出版社,2004.
3、 王中杰,余章雄,柴天佑.智能控制综述[J].基础自动化,2006(6).
王文生,博士,研究员,中国农业科学院农业信息研究所副所长,科技部国家农村信息化专家委员会评审组组长,农业部农业物联网专家委员会成员。主要研究方向为农业农村信息化,物联网、大数据和云计算在农业农村应用,运用新一代信息技术解决“三农”问题。部分科研成果先后入选科技部国家“十一五”重大成果和农业部十年重大科技成果,获国家专利和软件登记30多项,在国内外发表学术论文50余篇,出版英文《信息和通信技术对中国农户的影响》专著1部,主编《中国农村信息化服务模式与机制研究》《农业网格技术研究与应用》《大数据与农业应用》著作3部,参编中英文著作6部。
大数据主要来源于大联网、大集中、大移动等信息技术的社会应用,不但是信息技术从单项应用到多项融合的结果,而且是信息技术从前端简单处理向后端复杂分析演变的表现,更是社会高度信息化的必然产物。大数据将给我们带来更大的视野和更新的发现,进而改变我们的生活、工作和思维方式。许多科学家预言,在21世纪,无论是自然科学领域还是社会科学领域,大数据都将带来无限的发展机遇。
计算机技术应用于农业已有30多年的历史了,经历了从起步、普及、提高、推进等一系列阶段。进入21世纪以来,农业与农村信息技术的研究和应用进入高速发展阶段,已成为现代农业的重要标志。农业领域中每一项技术的进步,都从某种程度上加深了农业大数据存在和研究的必要性。
我国是农业大国,一直非常重视全国性的农业科技信息资源数据资源建设。农业领域是大数据产生的无尽源泉,具有浩大的数据基础。随着各种智能传感终端在农业领域的应用,农业数据来源更加广泛、新颖、迅速,类型更加多样,农业数据体量大、结构复杂、模态多变、实时性强、关联度高,利用大数据技术进行农业相关应用研究,其意义将非常明显。
一、 大数据
与云计算的横空出世非常相似,大数据似乎也在一夜之间家喻户晓。但略有不同的是,云计算发展早期主要由企业推动,而大数据则几乎同时得到了政府、企业、学术界等各界的共同青睐。大数据最早是由著名未来学家阿尔文・托夫勒在1980年提出的,他在《第三次浪潮》书中,将大数据称为“第三次浪潮的华彩乐章”。大数据具备3个基本特征:体量浩大(volume)、模态繁多(variety)、生成快速(velocity),或者就是简单的“3V”,即庞大容量、极快速度、种类丰富的数据。
二、 农业大数据
(一)农业大数据内涵
农业数据主要是对各种农业对象、关系、行为的客观反映,一直以来都是农业研究和应用的重要内容,但是由于技术、理念、思维等原因,对农业数据的开发和利用程度不够,一些深藏的价值关系不能被有效发现。随着大数据技术在各行各业广泛研究,农业大数据也逐渐成为当前研究的热点。
农业大数据解决的问题不是存量数据激活的问题,而是实时数据的快速采集和利用的问题;农业大数据解决的问题不是关系型数据库集成共享的问题,而是不同行业、不同结构的数据交叉分析的问题。农业大数据至少包括下述几层含义:
基于智能终端、移动终端、视频终端、音频终端等现代信息采集技术在农业生产、加工以及农产品流通、消费等过程中广泛使用,文本、图形、图像、视频、声音、文档等结构化、半结构化、非结构化数据被大量采集,农业数据的获取方式、获取时间、获取空间、获取范围、获取力度发生深刻变化,极大地提高农业数据的采集能力。
跨领域、跨行业、跨学科、多结构的交叉、综合、关联的农业数据集成共享平台取代了关系型数据库成为数据存储与管理的主要形式,基于数据流、批处理的大数据处理平台在农业领域中的应用越来越频繁,交互可视化、社会网络分析、智能管理等技术在农业生态环境监测、农产品质量安全溯源、设施农业、精准农业等环节大量应用。
农业产业链各个环节的政府、科研机构、高校、企业达成竞争与合作的平衡,农业大数据协同效应得到更好的体现。农业大数据形成一个可持续、可循环、高效、完整的生态圈,数据隔离的局面被打破,不同部门乐于将自己的数据共享出来,全局、整体的产业链得以形成,数据获取的成本、渠道大大降低。
大数据的理念、思维被政府、企业、农民等广泛接受,海量的农业数据成为决策的依据和基础,天气信息、食品安全、消费需求、生产成本、市场价格等多源数据被用来预测农产品价格走势,耕地数量、农田质量、气候变化、作物品种、栽培技术、产业结构、农资配置、国际市场粮价等多种因素用来分析粮食安全问题,政府决策更加精准,政府管理能力、企业服务水平、农民生产能力都得到大幅度提高。
(二)农业大数据获取
农业大数据获取是指利用信息技术将农业要素数字化并进行有效采集、传输的过程。目前,农业领域的数据积累还处于相对初级阶段,达不到电信、金融、互联网等领域的数据积累水平。然而农业数据采集方式的变化,自动化、智能化、人工化信息终端的大量涌现,数据的实时、高清以及长久保存等需求,使得农业大数据成为可能。农业大数据源来自农业生产、农业科技、农业经济、农业流通等方方面面,不同的数据源,对应不同的数据获取技术。从目前情况分析,农业大数据获取主要包括以下几方面。
1. 农业生产环境数据获取
农业生产环境数据获取是指对与动植物生长密切相关的空气温湿度、土壤温湿度、营养元素、CO2含量、气压、光照等环境数据进行动态监测、采集,主要依靠农业智能传感器技术、传感网技术等。随着多学科交叉技术的综合应用,光纤传感器、MEMS(micro-electro mechanical systems)微机电系统、仿生传感器、电化学传感器等新一代传感器技术以及光谱、多光谱、高光谱、核磁共振等先进检测方法在植物、土壤、环境信息采集方面广泛应用,农业生产环境数据的精度、广度、频度大幅度提高。与此同时,传感器终端的成本逐渐降低,大范围、分布式、多点部署成为现实,数据量呈级数增长。
2. 生命信息智能感知
生命信息智能感知是指对动、植物生长过程中的生理、生长、发育、活动规律等生物生理数据进行感知、记录,如检测植物中的氮元素含量、植物生理信息指标,测量动物体温、运动轨迹等。常用的生命信息感知技术包括光谱技术、机器视觉技术、人工嗅觉技术、热红外技术等。生命信息智能感知改变了原有的、以经验为主的、人工检测模式,使生命信号感知更加科学、更加智能,实时性、动态性、有效性得到大大提高。农业生命信息是对农业生产对象本身的数字化描述,是对生命个体进行监测管理的重要依据,具有典型的时效性。
3. 农田变量信息快速采集
农田变量信息快速采集主要是对农田中的土壤含水量、肥力、土壤有机质、土壤压实、耕作层深度和作物病、虫、草害及作物苗情分布信息采集,一般分为接触式传感技术、非接触式遥感技术。国内在农田空间信息快速采集技术领域已经积累了较丰富的理论基础和实践经验,已设计出便携式土壤养分测试仪、基于时域反射仪(TDR)原理的土壤水分及电导率测试仪、基于光纤传感器土壤pH值测试仪,并在作物病虫草害的识别、作物生长特性与生理参数的快速获取等方面开展了有益的探索。精准农业是农业信息化的重要方向,快速、有效采集和描述影响作物生长环境的空间变量信息,是精准农业的重要基础。高密度、高速度、高准确度的农田信息具有数据量大、时效强、关联度高等特点。农田变量信息主要服务于精准农业生产,强调实时性、精准性等特点,属于局部、微观、持续的农业数据。
4. 农业遥感数据获取
农业遥感数据获取是指利用卫星、飞行器等对地面农业目标进行大范围监测、远程数据获取,主要采用遥感技术。遥感技术是一种空间信息获取技术,具有获取数据范围大、获取信息速度快、周期短、获取信息手段多、信息量大等特点。农业遥感技术可以客观、准确、及时地提供作物生态环境和作物生长的各种信息,主要应用在农用地资源的监测与保护、农作物大面积估产与长势监测、农业气象灾害监测、作物模拟模型等几个方面。农业遥感数据能反映大面积、长时间的农业生产状况,属于宏观、全局层面的农业数据。
5. 农产品市场经济数据采集
农产品市场经济数据采集是指对农产品生产、质量、需求、库存、进出口、市场行情、生产成本等数据进行动态采集,涉及农业流通、农产品价格、农产品市场、农产品质量安全等,具有较强的突发性、动态性、实时性、变化性,一般由“智能终端+通信网络+专业群体”组成。随着科学技术的发展,移动终端诸如手机、笔记本、平板电脑等随处可见,加上网络的宽带化发展以及集成电路的升级,人类已经步入了真正的移动信息时代,基于智能终端的农产品市场经济数据采集越来越频繁,数据量越来越大,图片、视频等数据格式激增。基于3G的基层农技推广平台等是农产品市场经济数据采集的典型应用。
6. 农业网络数据抓取
农业网络数据抓取指利用爬虫等网络数据抓取技术对网站、论坛、微博、博客中涉农数据进行动态监测、定向采集的过程。网络爬虫(网页蜘蛛),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本,有广度优先、深度优先2种策略。农业网络数据是在互联网层面对农业各方面的客观反映,具有规模大、实时动态变化、异构性、分布性、数据涌现等特点。搜农、农搜等搜索引擎都是基于主题爬虫的农业数据获取平台,在农业网络数据获取方面具有一定基础。
(三)农业大数据现状
1. 农业大数据重要性日益凸显
经过多年的发展,农业数据库、农业信息系统、农业专家系统、农业遥感、农业物联网等现代信息技术在农业生产活动中应用取得了非常显著的成果。云存储、数据仓库等技术为数据的海量存储提供了可能,传感器、遥感数据、移动终端、网络等都积累了大量的农业数据。伴随着大数据技术的飞速发展,农业信息化的发展必然从“技术驱动”向“数据驱动”转变。目前,农业领域都在积极部署农业大数据相关方面的研究,农业大数据重要性日益凸显。中国农业科学院农业信息研究所发起了信息联盟,旨在促进涉农信息资源与专家队伍的集成、共享,联合推进农业信息云服务;山东农业大学发起了农业大数据产业技术创新战略联盟(http://.cn/),以期促进大数据在山东农业领域研究及成果应用发展。2014年,科学数据大会举行,专门设立农业与农村信息化大数据技术与应用分论坛。
2. 农业大数据积累初具规模
我国农业信息化研究长期以来一直非常重视农业数据的积累,目前农业大数据已经具备了一定的规模,数据的存储格式以结构化数据为主,视频、图片等数据量也在不断攀升。农业科学数据共享中心(试点)项目于2003年正式启动,重点采集作物科学、动物科学与动物医学类科学、农业科技基础数据等农业科技类基础数据。截至2012年,农业科学数据中心数据总量448.93GB。全国基层农技推广信息化平台,构建了粮食作物、经济作物、蔬菜、果树、畜牧等农业技术数据库,面向全国70万农技员提供服务,总记录超过10万条,视频数据超过5000个。中国科学院计算机网络中心研发的地理空间数据云平台(http:///),现有地学遥感数据资源约280 TB,以中国区域为主,覆盖全球地理范围。中国作物种质资源信息网(CGRIS),拥有粮食、 纤维、油料、 蔬菜、果树、糖、烟、茶、桑、牧草、绿肥、热作等200种作物,41万份品种、种质、基因信息。
3. 农业大数据研究具备了一定基础
农业信息化研究工作一直与农业数据密切相关,相关方面的研究主要集中在监测与预警、数据挖掘、信息服务等方面,基于数据的农业信息处理分析具备了一定的基础条件。据不完全统计,目前全国与农业相关的主要监测、预警系统共有84个,其中食物保障预警系统12个,食品安全监测预警系统18个,市场分析与监测系统35个,作物分析与预警系统19个;中国搜农作为国内首款农业垂直搜索引擎,持续稳定运行6年,获取了海量的农业信息,信息总量超过100TB,信息更新周期平均为30min,目前每周平均信息增长量3GB,每天监控3万多个农业网站的超过2万多个农产品批发、集贸市场的2万多个农产品品种的价格、供求等信息。
三、 农业大数据应用展望
基于大数据的理论和技术,不断推进传统领域创新与应用实践,为国家经济社会发展提供了新的生长点。在农业信息化不断发展的过程中,已有部分领域完成了大数据积累,具备了利用大数据理论与技术进行深入数据分析和价值发现的条件。根据当前农业信息化发展的现状,笔者认为大数据在农业领域的应用主要集中在以下几个方面。
(一)精准农业可靠决策支持系统
变量决策分析是精准农业技术体系中的核心,致力于根据农田小区作物产量和相关因素,在农田内的空间差异性,实施分布式的处方农作。高密度的农田信息获取后,怎样根据这些不同角度的农田信息,推出一整套具有可实施性的精准管理措施,是需要多学科交叉的研究课题。专家系统、作物模拟模型、作物生产决策支持系统传统的生产决策技术取得了一些成果,但效果并不理想。利用大数据处理分析技术,集成作物自身生长发育情况以及作物生长环境中的气候、土壤、生物、栽培措施因子等数据,综合考虑经济、环境、可持续发展的目标,突破专家系统、模拟模型在多结构、高密度数据处理方面的不足,为农业生产决策者提供精准、实时、高效、可靠的辅助决策。
(二)国家农村综合信息服务系统
国家农村综合信息服务,按照“平台上移,服务下延”的思路,集成与整合各分散的信息资源与系统,在全国范围实现信息资源的共享,数据资源体量大、数据处理流程复杂、信息服务模式多样,需要实现海量农业信息化数据获取、传输、加工、服务一体化处理。利用大数据处理分析技术,研究复杂多样、动态时变用户需求的快速聚焦与大规模服务及用户动态需求组合的学习和进化机制模型,突破农户需求智能聚焦技术,实现信息服务按需分配以及云环境下大规模部署的智能系统服务与庞大“三农”用户群的多样性、地域性、时变性等个性化需求快速对接。
(三)农业数据监测预警系统
农业数据监测预警是指对农业生产、市场运行、消费需求、进出口贸易及供需平衡等情况进行的全产业链信息采集、数据分析、预测预警与信息,其主要任务包括感知市场异常波动、实时监控生产风险、及时应对突发事件、推动管理关口前移等。2002年以来,农业部开始建立农产品市场监测预警系统,启动了稻谷、小麦等关系国计民生的7种重点农产品的市场监测预警工作。目前,监测预警技术已在农产品质量安全、农业病虫草害、农产品价格、农产品市场等领域进行了广泛应用。利用大数据智能分析和挖掘技术,实现农业信息流监测、农业数据关联预测、农业数据预警多维模拟等,大幅度提高农业监测预警的准确性。
(四)天地网一体化农情监测系统
农情信息遥感监测主要是指利用遥感等信息技术对农业生产情况信息,如作物面积、长势和产量信息、农业灾害信息、农业资源信息等进行远程监测和综合评价,辅助农业生产决策的过程。基于遥感-地面-无线传感网的一体化农情信息获取体系,在解决了数据时空不连续的难点的同时,也带来了海量农情数据融合处理的问题。与此同时,遥感技术飞速发展,特别是传感器分辨率的提高、新型传感器的应用等,遥感影像的数据量急剧增加,海量数据的存储、快速产生、信息提取、融合应用等,为遥感数据分析带来了挑战。利用大数据分析处理技术,研究天地网一体化农业监测系统中的多源多类数据的智能融合与分析、定量化反演以及网络化集成与共享关键技术,实现全局数据发现与跨学科的数据集成和互操作,为农业遥感信息的深入分析提供支撑。
(五)农业生产环境监测与控制系统
(一)背景及意义
二十一世纪我国将面临人口众多、交通拥挤、医院容量有限,以及由于独生子政策导致的日益严重的人口老龄化等一系列严重的社会问题,远程医疗技术的发展可望为我们提供一个缓解上述问题的有效途径。最简单的远程医疗形式是通过PSTN(公共电话网络)进行心电(ECGs)的远程解释,但目前的远程医疗技术研究与试验则是伴随当前IT技术的发展而发展的一个范围更加广泛,意义更加深远的新兴领域。它是现代通讯技术和计算机与现代医学相结合的产物,它利用电子通讯及多媒体技术实现远距离医学检测,监护,咨询,急救,保健,诊断,治疗,以及远距离教育和管理等等。远程医疗旨在通过提供一种管理良好、高效和跨越时空障碍的全新医疗保健服务模式,最终达到共享医疗保健资源,降低医疗保健费用,提高医疗效率和质量的目的。另外,在战场救护,交通等意外事故危重病人的紧急处理等方面,远程医疗技术也有很大的应用价值!广义地讲,远程医疗是指医护人员利用通讯和电子技术来跨越时空障碍、向人们提供医疗保健服务。根据不同的应用,远程医疗又可分类为远程监护,远程治疗,远程会诊和远程教育等等。
(二)发展过程
最早的远程医疗雏形可以追溯到1905年Einthoven等人利用电话线进行的心电图数据传输实验。但真正具有一定实用价值的远程医疗系统在50年代才开始出现,该系统可以通过电话线和专用线传送简单的医学数据。而在70~80年代远程医疗开始利用电视系统传输医学图像,即以远程放射医学(Tele-radiology)为主。随着现代微电子学、通讯技术、计算机及网络技术的发展,在90年代人们开始实践与评估该系统在远程医疗咨询、远程教育、远程专家会诊等多方面的应用。近几年来,随着医用数字影象设备如CT、MRI、B超以及DSA等的迅速普及,促使越来越多的医院采用数字图像存储通讯系统(PACS,PictureArchivingandCommunicationSystem),逐步实现医院的无胶片管理,为普及远程医疗奠定了良好基础。当前,远程医疗系统技术的技术支持有:交互视频影像设备(interactivevideo),高分辨监视器(high-resolutionmonitors),计算机网络(computernetworks),蜂窝电话(cellulartelephones),高速开关系统(high-speedswitchsystems),以及以光纤和卫星通信为核心的信息高速公路等。需要说明的是,在目前的中国,由于网络的普及面仍然十分有限,在一些中小县城市,既缺少高水平的医疗专家又缺少足够带宽的信息网络,患者的经济能力也十分有限。在这种背景下,基于电话线的远程医疗服务在一定程度上满足了当前的需求,显示出了一定的发展空间,值得国内的医疗电子企业重视。
(三)适宜范围和初步的临床效果
远程医疗技术(Tele-medicine)最大的作用在于它对农村和不发达国家的那些得不到良好服务的人群提供健康护理服务。在这些地方,合格医生的缺乏是一个很大的问题。其他需要远程医疗的地方包括:边远的兵站,需要保密的地方,出院后病人的监护,家庭监护,病人教育,医学教育等。有些医学部门,如放射学(radiology),病理学(pathology)和心脏病学(cardiology),他们需要高保真的电子医务数据和图像为诊断服务,因而特别适合于采用远程医疗。随着远程医疗技术的成熟,它能够提供服务的医学部门和范围也会随之相应地增加。比如,以下这些领域的远程医疗实践正在逐步增多:矫形外科学(orthopedics),皮肤病学(dermatology),精神病学(psychiatry),肿瘤学(oncology),神经病学(neurology),儿科学(pediatrics),产科学(obstetrics),风湿病学(rheumatology),血液学(hematology),耳咽喉科学(otolaryngology),眼科学(ophthalmol-ogy),泌尿科学(urology),外科(surgery)等。总的来说,有关报告显示,远程医疗提供了医生与远端之间的可靠的高质量的数据和音频视频通信。通过将远程医疗和直接的医生诊断相比较发现,二者没有大的差异。这些初步的结果说明,远程医疗提供了与医院相当的服务质量。目前,远程医疗已被成功地用于直接的病人监护,它明显地改进了医生的诊断能力和对病人的处理选择。远程医疗在临床医学中的作用已被完全证实,它的使用情况已经超过了立法和行政部门的步伐。因此,在未来健康监护工业的发展策略中,远程医疗应是一个不可忽略的因素。一个重要的目标是实现两个“所有”:方便地实现所有的医学服务和面向所有的地方。
(四)远程医疗系统与信息技术
很显然,远程医疗(Tele-medicine)应当有许多不同的系统和技术要求(分级的)。但大致可分为两类:实时的(RealTime,RT)和先收集后处理的(store-and-forward,SAF)。对于RT交互模式,病人与现场医生或护理人员一起在远处,专家在医学中心。对于SAF模式,所有相关的信息(数据、图形、图像等)用电子方式传到专家处,在这里,专家的反应不必是立即的。在大多数情况下,几小时或几天后才能收到专家的报告。一种理想的远程医疗系统当然是同时具备RT和SAF两种模式,但显然这种复合模式意味着显著增加的费用。例如,一个理想的RT-SAF组合,需要在急诊室内或附近有一个基站,并在远处有多个对病人实施治疗计划的地方,那里带有诊断室或移动的监护单元。基站需要有控制系统或工作站、在线的医学数据库、视频相机和监护仪、微型耳机和话筒以及图形图像输入设备。在远端,需要有完全可移动的视频相机和监护仪、各种诊断设备、图形图像输入设备、PC或工作站等。如上所述,当前的技术可以使得远程医疗系统具有可靠的高质量的数据和视频-音频通信(在医学中心的医生和远端病人之间),能够提供与到医院就诊相当的服务。随着远程医疗的范围和广度的扩展,需要进一步关注的技术和临床问题包括:传输的图像、视频信息的知觉质量以及其他临床完善性所要求的程序;当前技术能够提供的检查的透彻性,以及远程医疗服务和当前临床常规检查的有机结合问题等。远程医疗当中的一个重要技术成份是通信系统,它的基本的传输介质是铜质电缆、光导纤维,微波中继,卫星转发。一个混合的网络可能是,卫星传送用于很远距离的情况,光纤用于视频图像,铜电缆传数据、信号和控制信息。RT、SAF两种模式的通信要求都可以预测。RT模式要求短时间内传送大量的信息,它强调的重点是传输、交换和交互的时间。它的决定性因素是容许能力(传输速率和带宽)。而SAF模式则对传输速率和带宽的要求不大。只要能将整块的数据传送就行。一般的多媒体远程医疗系统应具有获取、传输、处理和显示图像、图形、语音、文字和生理信息的功能。按照远程医疗系统的组成划分,它一般由三个部分构成:用户终端设备,医疗中心终端设备和联系中心与用户的通讯信息网络。不同的远程医疗应用,对通讯系统和系统终端设计又有不同的要求。相应的设备费用也依要求的不同而变动较大。
(五)相关的有待解决的技术问题
仍然有待解决的,与远程医疗全面、广泛地实施有关的关键技术问题包括:数码医院的建立,目前有些医院己有医院信息系统(HIS)和图像归档与通信系统(PACS—picturearchivingandcommunicationsystem)和DICOM(Digitalimagingandcommuni-cationsinmedicine)。医院现有的这些系统是远程医疗的重要组成部分,它们的扩展是建立远程医疗系统的一个有利条件。此外,还需要建立标准的医学信息库;开发功能可靠、操作方便的终端设备•以及接口技术问题,因为远程医疗系统涉及多种医疗设备与通讯系统的连接,建立通用的标准接口将会减少系统建立时的复杂程度和节省费用;系统加密问题,以确保医疗数据在通讯网络传输中的安全性,维护病人的隐私权;家庭以及偏远地区的宽频通讯问题,初期通讯网络的铺建应考虑到远程医疗的用途。目前,有关研究主要集中在:(1)人-机接口和通讯网络的研究,主要解决各种信息的有效上网和传送;(2)传感器技术的研究,目标在于研制有源、无线和小型的换能器,实现生理信号的方便而可靠、准确而无损的测量;(3)各种先进的数据与图像压缩方法的研究,在尽可能减低有用信息丢失的同时,达到尽可能高的压缩率,最终实现远程医疗数据与图形图像信息的的高效传输;(4)医学信息与数据传输安全问题的研究,为相应的立法等提供技术保证。
二、医学成像技术与三维医学图像处理
(一)医学成像技术
1895年德国物理学家伦琴发现了X射线,并被应用于医学,产生了以X光照片为标志的医学影象学。此后的整个20世纪可以说是医学成像的盛世。面对各种纷纷涌现的众多成像模式,我们不仅要问:这些成像技术各有何特点?它们的发展前景又如何呢?到目前为止出现的所有成像方法,几乎都与核或电磁有关。如果从利用的电磁波的频率高低上对医学成像模式进行分类,在静态场领域有电生理成像,低频领域有阻抗CT,高频领域有微波CT,光领域有光学CT,在更高的频率领域有X线CT。其中X线CT早已进入实用的阶段。此外还有利用磁场相互作用机制的磁共振成像技术(MRI)。加上最近受到重视的一些功能成像方法,如功能磁共振成(fMRI)和正电子发射断层扫描技术(PositronEmissionTomography,PET)等,如此众多的医学影象手段提供了大量的有关病人的各种信息,包括形态的和功能的、静态的和动态的等,被广泛应用于诊断和治疗,成为现代化中必不可少的手段和工具。
1•电阻抗断层成像技术
电阻抗断层成像技术(ElectricalImpedanceTomography,EIT)是近些年来兴起的一项医学成像技术。其基本思想是利用人体组织的电特性差异形成人体内部的图像。它通过体表电极向人体送入一交流电流,在体表不同部位测量产生的电压值,由此重检一幅电极位置平面的人体组织电特性图像。这种图像不仅包含了解剖学信息,更为重要的是,某些组织和器官的电特性随其功能状态而改变,因此图像也包含了功能信息在内。此外加上对人体几乎无创伤、廉价、操作简便等优点,EIT受到了日益广泛的关注。但由于受到数据采集系统和算法等因素的限制,目前该技术并不十分成熟,基本处于实验室阶段。EIT技术根据测量目标的不同可以分为两类:静态EIT和动态EIT。静态EIT以测量对象内部电阻(导)率的分布为成像目标;而动态EIT则是测量对象内部的电阻(导)率的相对变化量的分布为成像目标。由于动态EIT技术只需反映阻抗的相对变化量,相应地,其算法简便、快速,可以实时成像,而且系统对具体目标形状有较高的鲁棒性。虽然由于假设条件难以满足、推导过程不严格等缺点使得动态EIT的成像质量不高,但由于其对人体形状和电极摆放位置的适应性强、能反映变化的信息等优于静态EIT的这些优点,它已被用来进行临床研究。相信随着算法的改进和成像质量的提高,动态EIT有望在临床上发挥更大的作用。
2•电生理成像技术
电生理成像技术指基于体表电磁信号的观测,进行的体内电活动情况成像的技术。具体有心电磁和脑电磁问题两大类。但两类问题在技术上是密切相关的,它们分别是利用测量得到的心电图(Electrocardiogram,ECG)和脑电图(Electroen-cephalogram,EEG)来研究人体的功能。这里以脑电为例,其中又可以分为两个层次,一为脑电源反演,一为成像。在成像方面,人们希望能从头皮上获得的空间分辨率较低的电位分布推算出皮层表面上空间分辨率较高的脑电电位分布,因也称为高分辨率EEG成像。人们相继发展了等效源方法(Sidmanetal,1992;Yao,2000),有限电阻网络法(杨福生等,1999),和球谐谱分析方法(Yao,1995)。脑电源反演就是利用测得的头皮电位,推算颅骨内脑电活动源的空间位置的一项技术。其具体方法有非线性优化算法和子空间分解算法。在这些方法中,大都是以某一时刻的电位观测值为已知信息,唯有子空间分解算法是直接建立在一段观测记录之上,从而较好地同时利用了观测记录中的时间和空间信息,因而受到了广泛的重视(Mosher,1992;尧德中,2000)。电生理成像技术与其它的医学成像技术如CT、MRI等相比,具有其不可替代的独特功能。它检测的是生物体的自发(或诱发)的功能信息,是一种真正的非损伤性的成像技术,且可以进行长期检测,而fMRI等只能检测诱发的间接的功能信息。另外一个优点就是它具有很高的时间分辨率。目前的一个重要发展方向是,电生理成像技术与其它影像技术相结合(如EEG与fMRI结合),实现优势互补,以得到两“高”(高时间分辨率和高空间分辨率)的结果,帮助研究人员进行更精确的分析和判断。
3•微波CT
微波CT可以说是一种比较新的成像模式,它是1978年才被提出来的。它的基本原理是:利用电磁波的传输特性,通过测定透过身体的电磁波来重建体内图像。微波CT大体可以分为两大类:被动测定型和主动测定型。被动测定型也可以称为无源型,利用的是由生物体发出的属于微波范围的那一部分电磁波,如人体热辐射等,最终获得热图像(因此,类似的还有红外成像);主动测定型也叫有源型,是用外部入射微波照射生物体,然后利用透过微波和反射微波重构图像,获得的是形态图像。微波CT作为一种医学成像模式,它的主要特点是,同X-CT相比更容易查出癌变组织;与超声相比更有利于肺的诊断;不存在电离辐射的危险性。微波CT需要解决的最大问题是如何提高空间分辨率。要想提高分辨率,必须缩短波长,提高频率,但波长愈短其在体内的衰减愈大。同时,微波在介质中传播时产生的衍射和散射会造成重建图像的模糊。所以提高微波CT的图像分辨率是一件极为困难的工作。随着技术的进步和图像分辨率的提高,微波CT将很有希望成为新一代的医学成像手段。
4•光学CT
光学CT也将是21世纪的重要研究领域。其基本思路是将光输入待测组织,测量其输出,重建该组织。由于人体对可见光是屏蔽的,但对红外或红外波段的光有一定的穿透能力,利用它进行断层成像。光学CT大致可以分为内禀(Intrinsic)光学成像、光学相干层析成像、光子迁移技术成像等几种。内禀信号指的是,由组织活动(如神经元活动)引起的有关物质成分、运动状态的改变而导致起光学特性发生变化,而这种变化在与某些特定波长的光量子相互作用后得到的包含了这些特性的光信号。通过成像仪器探测到这些光信号的某一时间间隔内的空间分布,进而重建组织图像。无损伤内禀光学成像方法近年来正加紧研究,以期用于人脑功能的研究。光学相干层析成像,即将光学相干剖析术(OCT)用于成像,它是采用低相干的近红外光作为光源,采用特制干涉仪完成光的相干选通,这样接收到的信号就只包含尺度相应于相干长度的一薄层生物组织的信息。若同时加以扫描,就能得到三维剖析图像。OCT技术从提出至今虽然只有短短几年的时间,但已表现出极为诱人的应用前景。目前它已在视网膜及黄斑疾病的早期诊断,皮肤、肠、胚胎检测等领域发挥出巨大的作用。这种技术已成为国内外在生物光学方面的一个活跃点。利用灵敏的探测器和适当的重检算法,就可以确定测量组织的光学特性。通过检测组织的光学特性,可用于肿瘤诊断、代谢状态动态监护、药物分析及光动力学治疗等场合。光子迁移技术成像(PhotonMigrationImaging,PMI)利用的是在红光和近红外光谱区,生物组织的某些不同成分对于光的散射和吸收表现出不同特性,而且在不同生理状态下的组织光学参数也不大相同。高频调控的正弦入射光经组织传播后,由于吸收和散射延迟了光子行程时间,引起了相位和光子能量密度的变化,显著和精确的相位变化体现了吸收的变化。光学方法正处于迅速发展之中,一方面,与XCT、MRI等其它成像方法相比,光学CT具有价格低廉、运行安全,另一方面,它体积小重量轻,特征信号容易获得,技术发展成熟。光学CT还有一个吸引人的优势是,它在空间分辨力和时间分辨力这两个基本的成像性能上可以说是首屈一指,目前已达约5mm的物方象素和每秒25帧以上的视频速度。因而可以预料,光学CT会在医学研究和临床等方面发挥越来越大的作用。
5•正电子发射断层扫描技术
正电子发射断层扫描技术(PositronEmissionTomography,PET)作为一种传统的核医学成像技术,它的历史可以追溯到1932年,在那一年CarlAnderson在研究宇宙射线所拍的云室照片时发现了β+的存在;此后不久ErnestLawrence发明了可发射β+核素的回旋加速器,这些是实施PET的两个不可缺少的前提条件。PET的成像原理是,将由发射正电子β+的核素标记的药物由静脉注入人体,随血液循环至全身。正电子与人体内的电子相遇并湮灭产生两个背对背的γ光子,这对具有确定能量的光子可以穿透人体,被体外的探测器接收,从而得到正电子在体内的三维密度分布及这种分布随时间变化的信息。PET的标记药物很丰富,且这些核素的半衰期都很短,病人所受到的辐射剂量可以说是微乎其微,并可在短期内进行重复测量。尽管PET具有近乎无损的测量、三维动态成像、定量检测化学物质分布及实现真正的功能成像等独特的优点,但早期由于对短寿命核素认识的不足及探测技术缺乏等原因,直到1976年第一台全身(whole-body)PET才正式投入市场并应用于临床。此后PET才真正开始进入了一个蓬勃发展的时期。目前全世界已有上百家的PET中心,利用PET进行临床医学、基础医学、脑科学等方面的研究。在临床方面,主要用于诊断神经类疾病、心脏疾病、癌症等,也可辅助设计治疗方案和评估药物疗效,并可用于探讨一些神经类疾病的发病机制。因为各种精神类疾病,如癫痫、精神分裂症、痴呆等,以及脑肿瘤、脑血管病等,都将引起血流、葡萄糖和氧代谢的异常,PET即可通过测量这些生理参数来诊断疾病。同时,PET的独特优点也给神经科学提供了观测手段,被越来越多地用来研究人类的学习、思维、记忆等的生理机制,帮助人类进一步了解自身。因为给正常人不同的刺激(如光、语言等)或让其进行不同的活动(如记忆、学习、喜怒哀乐等),也将引起不同脑区域的血流和代谢的变化,进而帮助研究脑的功能。相信在不远的将来,随着PET技术的进一步成熟,PET将会成为诊断和研究上不可缺少的工具。
6•X-线成像技术
X-线成像技术可以说是在医院当中应用的最传统、最广泛的一种医学影象技术。X-线图像建立在当X-线透过人体时,各种脏器与组织对X-线的不同吸收程度的基础上,因而接收端将得到不同强度的射线,传统的做法是将之记录在胶片上得到X胶片。随着电子技术的发展,这种传统方法的弊端日趋突显出来。当X-线图像一旦形成,其图像质量便不能做进一步改善;不便于计算机处理,也不便于存储、传输和共享等。在评价20世纪X成像技术时,多数资深专家均认为影像的数字化是最新、最热门及最重要的进展。数字化成像可以利用大容量磁、光盘存储技术,以数字化的电子方式存储、管理、传送、处理、显示医学影象及相关信息,使临床医学彻底摆脱对传统硬拷贝技术的依赖,真正实现X-摄影的无胶片化。目前采用的直接数字化X-线影象的方法主要有两种:直接X-线影象探测仪(DirectRadiographyDetector,DRD)和平板探测仪(FlatPanelDetector,FPD)。DRD最早由Sterling公司申请专利,现已进入商品化阶段。FPD由Trexell公司研制成功。这两项技术的发展方向均是设法进一步提高分辨率和实时性。数字影像可以说是伴随着计算机技术的发展应运而生。1981年第15届国际放射医学会议上首次展出了数字放射新产品。进入90年代中后期,国外已经推出了多种新型的数字化X-线影象装置;传统X-线装置中的X-线乳腺影像设备也已数字化。到目前为止,市场上的数字化的X-线影像设备已占70%以上。可以预期,数字化的X-线影像设备将逐步成为市场的主宰,并将使21世纪的X-线诊断发生令人瞩目的变化。
7•磁共振成像(MRI)
在磁共振成像(MagneticResonanceImaging,MRI)领域,自从1946年哈佛大学的E•M•Purcell和斯坦福大学的F•Bloch发现了核磁共振现象并因此获得1952年诺贝尔物理奖起,直到70年代初,它一直沿着高分辨核磁共振波谱学的方向发展,成为化学、生物学等领域研究分子结构不可缺少的分析工具。1972年R•Damadian注册了第一个关于核磁共振成像的专利,提出了磁共振成像的思想,并指出可以用磁共振成像仪扫描人体检查疾病。1982年MRI扫描仪开始应用于临床。由于质子(1H)结构简单,磁性较强,是构成水、脂肪和碳水化合物的基本成分,所以目前医学上主要利用质子(1H)进行MRI成像。其成像主要利用磁共振原理,以一定宽度的射频脉冲磁场使具有磁性核的原子产生共振激发;被激发的原子核的退激时间的长短反映了磁性核周围的环境情况。通过测量生物组织退激过程中磁化强度的变化,即可获取反映内部结构的图像。磁共振成像由于其空间分辨率高、对人体危害性小、又能提供大量的解剖结构信息等优点而被广泛应用于临床诊断。随着技术的发展和需求的提高,动态成像或功能成像是未来世纪MRI的研究方向(functionalMRI,fMRI)。一个成功的应用是用外面的造影剂或内生的血氧度相关效应(BOLD)描述视觉皮层的活动。BOLD的成像原理是基于血红蛋白的磁化率随脱氧过程而急剧变化。在静脉血管内脱氧血红蛋白浓度发生变化时,会在血管周围引起磁场畸变,而这种变化可以被探测记录下来。在功能神经科学研究领域中,BOLD成像有很多优点。这类研究完全非侵入性,产生的图像数据与解剖结构的数据是完全配准的。BOLD技术已经发展得比较好,它在解释大脑在正常和病理状态的功能方面很有前途。迄今为止,fMRI虽然只有短短几年的历史,但理论与实验都已取得了许多有重要意义的结果。它的最大优点是无损伤(不用外源介质),可以直接进行反复的非侵入性的功能测量。与同样属于功能成像的PET相比,fMRI则是更新的技术,成像速度比PET快,而且提供了更好的空间分辨率。fMRI未来的发展方向是,一要进一步加强对fMRI信号的实质的认识和理解,这是基本的前提。另一方面,从实验设备的硬件和软件的结合上进一步提高灵敏度和分辨率(包括时间分辨率和空间分辨率),这是核磁共振现象的本质决定的一个永恒的研究主题。除了以上与电磁或射线相关的成像技术外,还有基于超声波的多种结构、组织和功能的成像技术,这里不再详述。
(二)三维医学图像处理
医学图像处理是指对已获得的图像作进一步的处理,其目的或者是使不够清晰的图像复原,或者是为了突出图像中的某些特征信息,或者是对图像做模式分类等。随着技术的发展,医学图像的处理已开始从二维转向了三维,以求从中获得更多的有用信息。三维医学图像分析所包含的研究问题很广,目前主要有:图像的分割、边缘检测、多模式图像和数据的配准(Registration)和融合(Fusion)、虚拟现实技术、图像的快速重建和显示、图像处理算法性能评估、信息集成(Informationintegration)和传输技术等。所有这些的研究都可以集中到如下两个方面:
1•图像的融合和可视化
医学影象技术的发展为临床诊断和治疗提供了包括解剖图像和功能图像在内的多种图像模式。临床上通常需要将同一个病人的多种成像结果结合起来进行分析,以提高医学诊断和治疗水平。比如在放射治疗中,CT扫描可以用于计算放射剂量的分布,而MRI可以很好地定位病灶区域的轮廓。常规的方法(如将几张图像胶片挂在灯箱上)使医生很难对几幅不同的图像进行定量分析,首先要解决的这几幅图像的严格对准问题。所谓医学图像配准与融合,就是通过寻找某种空间变换,用计算机图像处理技术使各种影象模式统一在一个公共坐标系里,融合成一个新的影象模式显示在计算机屏幕上,使多幅图像的对应点达到空间位置和解剖结构上的完全一致,并突出显示病灶或感兴趣部位,帮助医生进行临床诊断,制定放射治疗计划和评价等。近年来医学图像配准和融合技术的研究和应用日趋受到医学界和工程界的重视。对医学图像匹配方法的分类可以有多种不同的标准。1993年,VandenElsen等人对医学图像匹配的方法进行了分类,归纳出了多达七种分类标准。一般的匹配方法的实现步骤为:特征提取;特征配对;选取图象之间的几何变换、确定参数;执行变换。基于特征点选取的不同,匹配算法可以分为两种:基于外部特征的图像配准方法和基于内部特征的图像配准方法。基于外部特征的图像配准通常是在研究对象上设置一些标志点(如采用螺丝植入骨头方法固定立体定位框架等),使这些标志点在不同的影象模式中均有显示,然后以这些共同的标准点为标准对图像进行配准。这种配准方法因为不受图像畸变等因素的影响,所以精度很高,可达1~2mm,可以作为评估基于内部特征的图像配准方法的标准。但其植入式的特点会给患者带来一定的痛苦,一般仅限于手术室使用。目前的研究集中在基于内部特征的图像配准方法上,这种方法一般是用图像分割方法提取医学图像中相对运动较小的解剖结构,如点(血管分叉点等)、2D轮廓线、3D曲面等。用这些提取出来的特征对之间的位置变化和变形来确定图像之间的变换和配准。配准的精度取决于图像分割的准确性。这种方法优点之一就是其回溯性,即以前获取的图像(没有外标记点)也可以用内部特征点进行匹配。目前,基于内部特征的图像配准方法比较成熟并已广泛应用于临床。但目前大多数模糊动态图像的精确分割和特征提取仍是一个尚未完全解决的问题。最近又发展了一种直接利用所谓的基于体素相似性的配准方法,又称为相关性方法,它是直接利用不同成像模式的灰度信息的统计特性进行全局最优化匹配,不需要进行分割和特征提取。因此这种方法一般都较为稳定,并能获得相当准确的结果。但是它的缺点是对图像中的噪声信号敏感,计算量巨大。在目前出现的各种相关性算法,如互相关法(correlation)、联合熵法(jointentropy)、相对熵法(relativeentropy)等算法当中,临床评估的结果是相对熵法(又称为互信息法,mutualinformation)是最精确的。医学影像的三维重建和可视化也是一个值得关注的问题。常规影像如CT、MRI等得到的均为组织的二维切片,医生很难直接利用它们进行分析、诊断和治疗。三维医学图像的重建将有助于观察复杂结构的立体形态;有利于医生制定放射治疗计划;有助于神经外科手术的实施;有助于对不同治疗方案进行评估等。对三维图像重建算法的研究,近几年来国内外学者进行了许多探讨。目前通用的做法是,先从切片图像中提取出物体轮廓信息,重建三维结构,再由计算机图形学中的光线跟踪法(RayTracing),根据一定的光照模型和给定的观察角度、光源强度和方位来模拟自然景物光照效果,计算物体表面各点的灰度值,最终构成一幅近似自然景物的三维组织或器官图像。目前各种各样的图像所涉及的数据量越来越大,各种算法也越来越复杂,所以处理时间也较长,而用户则希望实时、快速地得到图像处理结果,及时用于诊断与治疗。因此,医学图像处理的加速也是一个主要的研究方向。为了提高系统的运行速度,当然有许多方法可以考虑。除了算法上的改进外,应用多处理器进行医学图像处理与分析的加速是一种不错的方法。在有些情况下可以直接利用DSP进行加速。
2•基于影象的计算机辅助治疗方法及系统
发展各种医学影象的最终目的就是为了更细致的了解人体的结构和功能,辅助医生对病人做出诊断和治疗,提高人类的生活质量。目前以此为目标的研究主要有:基于影象的三维放疗计划系统、立体外科手术仿真系统、医学中的虚拟现实系统等。在过去的放射治疗时,先有医生根据CT或MRI胶片上的定位标志点来计算病灶的三维坐标,然后根据病灶位置和形状布置焦点,经计算机计算出等剂量线,在灯箱上用打印输出的剂量线与胶片上的病灶进行对比,如不吻合则重新规划焦点。反复重复直到满意为止。最后计算出每个焦点的治疗时间。总的说来这个过程很不方便,而且可能会引起很大的误差。目前临床上开始采用的三维放射治疗计划系统则大大方便了肿瘤医师的工作。在整个治疗计划的计算机化过程中,可以说是涉及到了三维医学图像处理的各个环节,如图像配准与融合、轮廓提取、三维重建等。三维放疗计划系统的推出不仅提高了医生的工作效率,而且精度大大提高,是以后肿瘤治疗中心制定放疗计划的常规工具。今后放射治疗的方向是适形放射治疗(ConformalRadiotherapy,CR)。该方法通过旋转照射或静态多射野照射,使得高剂量区剂量分布的形状在三维上与靶区(病灶)的实际形状一致,同时尽可能地降低靶区周围的健康组织和重要器官(如脊髓)的照射量,从而大大提高治疗效果。CR由于能够调整射野内的射线强度分布,故又称为调强放疗(Intensity-modulationRadiotherapy,IMRT)。调强算法根据医生指定的限制因素计算每个射野的最接近医生要求的强度分布,是一个典型的多参数优化问题。1989年,英国科学家S•Webb首次提出采用模拟退火法求解最佳强度分布。此后各种调强算法可以说是层出不穷,成为当今放疗中的一个热点。随着多叶准直器技术(Multiple-LeafCollimator,MLC)的发展,医生可望给出单次肿瘤致死剂量,起到外科手术的效果。虚拟现实(VirtualReality,VR)就是力求部分或全部地用一个计算机合成的人工环境代替一个现实世界的真实环境,让使用者在这个三维环境中实时漫游和交互操作。VR是综合人机界面、图形学、传感技术、高性能计算机和网络等的一门新兴学科,涉及学科面广且发展十分迅速。VR在医学领域的应用前景非常广泛,Rosen认为,VR将构成最终实用的手术模拟器。随着医学成像可视化和虚拟现实技术的发展,科学家们已经有可能建立起一个具有部分人体特性的虚拟人体。由美国国家医学图书馆(NLM)发起的可视人计划(VisibleHumanProjects,VHP)正是基于这样的目的。虚拟人体可以提供模拟的诊断、治疗、计算机成像、内窥镜手术等等。例如在内窥镜手术中,外科医生通过观察电视屏幕来操作插入病人体内的手术器械。虚拟环境技术可大大改善这种手术过程。事实上,虚拟内窥镜系统(Virtualendoscopy)是目前发展比较快的一个方面。
三、网络化医学仪器人才的培养
生物医学工程专业的范畴很广,各高校的侧重点各不相同。我校本学科专业与其它高校相比具有明显的时代特色。我们一向以电子学、计算机科学为支撑平台,强调与生物医学、医疗仪器相结合,在医疗仪器的智能控制、管理方面有很强的优势。随着以上医学信息技术的发展,我们提出了依拓本校的优势专业如通信、计算机、自动控制、仪器测试等,在我校生物医学工程学科培养网络化、智能化医学仪器方向人才的设想。
(一)培养网络化医学仪器人才的依据
计算机及网络技术飞速发展,世界正进入一个数字化的时代。在医疗领域,数字诊断设备也逐渐成为一种新标准,被越来越多的医院和用户所接受。各大厂商相继推出数字X光机、CT、B超等,在一些发达国家,已经取代常规设备成为临床诊断的主流。医疗设备已经到了一个更新换代的时期。而DICOM标准的制订,则使医疗信息实现了网络模式的资源共享和远程传输。无疑,数字化、网络化将是21世纪医学发展的主流。而远程医疗系统则以其迅猛的发展势头为人们勾画出了一幅“让每一位医生都成为专家,让每一位患者都能请得到专家”的美好前景。社会的需求为高等院校的人才培养提出了新的要求,同时具有医学知识和网络技能的复合型人才将会受到社会的广泛青睐。“网络化医学仪器”作为本学科领域出现的新方向,在国内外没有现成的模式可以借鉴,为此我们提出了以下建设计划。