前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的大学生数学建模竞赛主题范文,仅供参考,欢迎阅读并收藏。
>> 大学生数学建模竞赛的组织与培训 大学生数学建模竞赛培训问题的探索 浅议大学生数学建模竞赛的赛前培训 地方院校大学生数学建模竞赛的探索与实践 国际大学生数学建模竞赛培训模式探究 全国大学生数学竞赛培训的探索与实践 数学建模竞赛与大学生综合素质培养 浅谈独立学院数学建模竞赛对大学生创新能力的培养 对大学生数学建模竞赛的几点思考 以数学建模为平台提升大学生的应用、实践与创新能力 数学建模与大学生创新能力的培养 大学生数学建模教学与竞赛的交互培养模式研究 以大学生数学建模竞赛为平台,培养学生的创新思维能力 大学生数学建模创新能力与应用型人才培养的探索与实践 大学生数学竞赛非数学专业组竞赛培训模式的探讨 浅析大学生数学建模竞赛指导 中美大学生数学建模竞赛比较分析 依托数学建模课程教学培养大学生创新能力的实践 数学建模竞赛促进大学生数学素养和自主学习能力的提高 大学生科技竞赛与创新能力培养的研究与实践 常见问题解答 当前所在位置:l.
[5]杨桂元.财贸类院校数学建模的教学与实践[J].工科数学,2002,18(6):13-15.
[6]全国大学生数学建模竞赛赛题[EB/OL],[2012-09-20],
[7]乐励华等.数学建模教学模式的研究与实践[J].工科数学,2002,18(6):9-12.
论文摘要: 本文从我校数学建模竞赛推进数学建模课程开设的成功经验,浅淡了数学建模促进大学生能力的培养。
随着科学技术的迅速发展和计算机的日益普及,数学的应用越来越广泛和深入,数学科学的地位发生了巨大的变化,它正在从国民经济和科技的后台走到了前沿。
把数学与客观问题联系起来的纽带,首先是数学建模。应用数学去解决各类实际问题,首先是建立数学模型。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之一。
一、 以竞赛推进数学建模课程化
数学建模作为一门崭新的课程在20世纪80年代进入我国高校,萧树铁先生1983年在清华大学首次为本科生讲授数学模型课程,他是我国高校开设数学模型课程的创始人,1987年由姜启源教授编写了我国第一本数学建模教材。在八十年代后期开设数学建模选修课或必修课只是少数老牌大学。但自1992年由中国工业与应用数学学会举办全国大学生数学建模竞赛( 94年起由国家教委高教司和中国工业与应用数学学会共同举办)以来,随着参加竞赛高校的学生增加,各高校相继开设了数学建模课程。2008 年全国有31个省/市/自治区(包括香港)1023所院校、12846个队(其中甲组10384队、乙组2462队)、3万8千多名来自各个专业的大学生参加竞赛。目前,在本科院校根据自己学校特点基本上开设数学课程。
我校从95年开始开设数学建模选修课,到97年学校决定在原有的基础上,从97级学生开始,在部分专业开设数学建模必修课,并同时对其他专业开设数学建模选修课。最初开设选修课是因为参加数学建模竞赛的需要,选修的学生数较少,而且必须是往年成绩较优的学生才允许选修。我们通过以竞赛为平台, 加强引导与指导, 充分激发学生的学习兴趣和热情。而且通过数学建模竞赛,促进了我校教学内容、教学方法、教学手段的创新,参加过训练和竞赛的学生们普遍感到,以往学多门课程的知识不如参加一次竞赛集训学得全面和扎实。因为数学建模竞赛需要全面掌握本领域相关知识, 在深入理解、领会前人智能精髓的基础上, 敢于提出自己的想法和观点。只有善于进行创造性地学习和运用知识, 善于对已知知识进行融会贯通, 注意知识积累的同时更注重对知识的处理和运用, 才能取得成功。随着数学建模竞赛在我校影响的增加,同时参加竞赛过的学生能力的提高,要求选修数学建模课程的学生逐年增加?,使得开设数学建模必修课有了一定的群众基础,同时开设数学建模课程的目的也转向了竞赛与普及相结合,以提高大学生的综合素质和实践能力作为一个重要目标。目前,已在自动化、信息管理、统计、电子信息科学与技术、计算机、软件、通信等专业的学生开设不同层次的数学建模必修课与限选课,同时仍然在全校开设不同层次的数学建模选修课。对于不同层次,理论教学学时分别为34、50、66学时,并辅以上机实践训练,每年从当初几十名学生到目前每年近2000名学生修读此课。为了进一步提高实践动手能力,在软件工程、网络工程、信息与计算科学、应用数学专业开设数学建模课程设计,取得了比较明显的效果。
为了让信息与计算科学、应用数学专业的学生能更好的应用计算机工具和数学软件来解决各种实际问题,从2001年开始我们开设了数学实验课作为数学建模课程的补充和完善,并且目前面向全校开设数学实验选修课。为了进一步推广和普及数学建模,让更多的学生了解和参与数学建模,在原开设多种课程基础上,在学校以及教务部门的支持下,课程组于2000年起结合课程教学安排,在每年五月底举办全校大学生数学建模竞赛。该项活动得到了全校学生的积极响应,2009年有152个组,456人参赛。我校数学建模教学已经形成了多个品种、多种层次、多种方式的教学格局。
二、数学建模促进大学生能力的培养
数学建模活动包括数学建模课程、数学建模竞赛和数学实验课程等方面。建模活动本身就是一项创造性的思维活动,它既具有一定的理论性又具有较大的实践性;既要求思维的数量,还要求思维的深刻性和灵活性。著名数学家丁石孙副委员长对数学建模活动给予了很高的评价,他说:“我们教了几十年的数学,曾经花了很多力气想使大家能够认识到数学的重要性,但是我们没有找到一个合适的方法,数学建模活动是一个很好的方法,使很多的学生包括他们的朋友都能够认识到数学的真正用处”。李大潜院士也曾说过:“数学建模活动具有强大的生命力,并必将不断发展、日臻完善”。很多高校从当初为了竞赛的需要,但随着对数学建模对学生能力培养的认识,数学教学改革的深入发展,许多普通高校都在积极思考,大胆探索,取得了许多可喜的成果。特别是对数学教学改革以数学建模为突破口,在教学体系、方法和内容上都进行了实质性的改革,已取得了突破性的成果。如改革教学内容,教学与计算机结合,实行研讨式教学等,这也为数学建模网络教学奠定了很好的基础。我校从1997年开始,我校将数学建模的教育从面向少数优秀学生转变为面向更多的普遍学生。越来越多的学生从数学建模的学习中获得了进步,使数学建模教学在大学生素质培养中日益发挥着巨大的作用。
1.促进大学生逻辑思维能力与抽象思维能力的提高。建模是从实际问题到数学问题,从数学问题到数学解,从数学解到实际问题的解决,这一过程提高了大学生逻辑思维能力与抽象思维能力。
2. 促进大学生的适应能力增强的。通过数学建模的学习及竞赛训练,他们不仅受到了现代数学思维及方法的熏陶,更重要的是对于不同的实际问题,如何进行分析、推理、概括以及利用数学方法与计算机知识,还有各方面的知识综合起来解决它。因此,他们具有较高的素质,无论到什么行业,都能很快适应需要。
3. 促进学生自学能力。由于数学模型实际问题的广泛性,大学生在建模实践中要用到的很多知识是学生以前没有学过的,而且也没有时间再由老师作详细讲解来补课,只能由教师讲一讲主要的思想方法,同学们通过自学及相互讨论来进一步掌握。这就培养了学生的自学能力和分析综合能力。他们走上工作岗位之后正是靠这种能力来不断扩充和更新自己的知识。
4. 促进大学生相互协作能力。在数学建模学习过程中,有大量的数学模型不是单靠数学知识就能解决的,它需要跨学科、跨专业的知识综合在一起才能解决,当今科学的发展也使得一个人再也没有足够精力去通晓每一门学科,这就需要具有不同知识结构的人经常在一起相互讨论,从中受到启发。数学建模集训、竞赛提供了这一场所。三位同学在学习、集训、竞赛过程是彼此磋商、团结合作、互相交流思想、共同解决问题,使得知识结构互为补充,取长补短。这种能力、素质的培养对他们的科学研究打下了良好的基础。
5. 促进大学生分析、综合和解决实际问题能力的培养。这是由数学建模的任务,目的所决定的。建模过程大体都要经过分析与综合、抽象与概括、比较与类比、系统化与具体化的阶段,其中分析与综合是基础,抽象与概括是关键。而从数学解答与模型检验而言,要求大学生所学的数学知识与计算机知识还有其它方面知识综合起来,动手去解决, 根据计算结果作出合理的解释。通过实践,明白学以致用,提高了分析、综合与解决实际问题的能力。
6. 促进大学生的创造能力的提高。在数学建模实践中,大多问题没有现成的答案、没有现成的模式,要靠充分发挥自己(和队友)的创造性去解决。而面对一大堆资料、计算机软件等,如何用于解决问题,也要充分发挥自己的创造性。数学建模对大学生的创造性的培养是很有好处的。
三、开设数学建模课程取得的效应
数学建模活动十分有利于达到培养高素质创新人才的育人目标。我校开设的数学建模课程,在师资水平、普及程度、特色内容建设、校内竞赛以及全国竞赛等几个方面,在国内同类院校中处于领先地位,特别是每年全国大学生数学建模竞赛中,我校都取得了良好的成绩,而且在全国也有一定的影响,得到全国竞赛组委会专家的充分肯定。
在教学团队建设方面取得明显成效。从最初的4名教师,逐步扩大到涉及运筹与优化、微分方程、概率论与数理统计、计算科学、最优控制、计算机应用等在数学建模中常用的学科方向的十多名教师,不仅解决了课程教学的需要,也促进了教师教学科研水平的提高。
在课程设置研究方面。根据我们这样一类学校的实际情况,我们在不同专业的学生中开设了多种不同课时不同程度要求的数学建模课,满足了各种不同程度不同水平的学生的需要。并在个别专业开设数学实验必修课,同时面向全体开设了数学实验选修课,把数学理论教学与数学软件以及计算机实现进行了很好的结合,进一步丰富了数学建模教学的内涵。以及在几个不同专业中开设了数学建模课程设计环节,有效地解决了大量一般学生如何加强数学实践动手能力培养的问题。
在加强教学内容与方法的研究与实践方面,并取得明显成效。除了选用合适的优秀教材作为参考资料,更是投入精力编写了适合我校的教学用书(即将在高教出版社出版)以及学生自主学习材料。数学建模教学的目的是能够让学生知道到什么地方找什么工具来解决什么样的问题,我们坚持努力把研究式讨论式的教学方法应用到数学建模教学中去。2000年开始,每年结合春季的数学建模教学工作,在五月底进行校内大学生数学建模竞赛。该项活动推广普及了数学建模教学,使更多学生的研究能力和实践动手能力得到了锻炼,同时也有力促进了数学建模竞赛活动在地方性普通院校中的开展,促进了竞赛水平的提高。
在教学改革方面。将数学建模思想融入到其他工科数学课程中去,并且在教学中注意强调讨论式教学以及学生的自主学习。
在同类院校树范性方面。2003年,该课程被确定为浙江省首批省级精品课程。通过几年的建设,已初步建成较有特色的课程资源。充分提升了网络工具的辐射作用,一方面加强了我校数学建模教学和竞赛工作,以及数学建模课外活动的开展,另一方面对其他同类高校能起到较好辐射作用。另外,我校数学建模课程教师曾多次作为讲课教师参加浙江省数学建模教练培训工作,多次应邀到兄弟院校讲课,也曾有多所院校到我校参观调研。
通过几年努力,完成数学建模教改研究项目《数学建模提高大学生综合知识能力的探索与实践》、《在工科院校中开设数学建模必修课和选修课的实践》与《以学科竞赛促进学生创新能力培养的“四维互动”模式研究与实践》,三项成果皆获得浙江省教学成果二等奖。组织学生数学建模课外活动的开展,申报“新苗人才计划”、“创新杯”并取得成功。自1995 年组织学生参加全国大学生建模竞赛以来,共获全国一等奖25项,全国二等奖41项,浙江省奖一等奖42项,二等奖48项,三等奖41项。2006年至今共获国际一等奖8项,国际二等奖14项。取得了省参赛高校与全国高校中的优异成绩。
通过参加数学建模活动,很多学生的自主学习和科研能力得到了显著提高,在毕业设计、实习和研究生阶段的学习中表现出了明显的优势,得到用人单位和研究生导师的普遍认可。从2001年至今获得“计算机世界奖学金”十几位学生中,清一色在数学建模竞赛中取得优异成绩。而且随着数学建模活动的不断深入开展,各级领导和各行业的用人单位逐渐对数学建模在实际中的应用和人才培养中的地位和作用都有了新的认识。目前,数学建模活动在我校的开展,得到了越来越多同学的欢迎。数学建模活动不断走向深入,由阶段性转向日常教学活动。在教学方面,由初期的只在优秀学生与部分专业学生开设选修课,发展形成了多个品种、多种层次、教学格局;在竞赛方面,由初期的只参加全国竞赛,发展到既参加全国竞赛,又将参加国际竞赛,同时每年举办校内竞赛;在撰写论文方面,由初期的只研究如何撰写竞赛论文,发展到现在与教师做课题与一般学术论文写作,参加新苗人才计划与创新杯等。
参考文献
现代工程科技要求工科大学生应具备扎实的数学基础理论和数学应用能力,而目前工科大学生数学学习常常呈现“学而无趣”“学而无用”的现象,这种现象折射出的教学问题为:理论与实践脱节,缺少数学创新实践环节,缺乏数学人文素养培养。
为了将数学基础理论、数学创新实践和数学人文素养三者融合起来贯穿于工科大学生数学创新实践能力培养过程中,我们设计并实施了系统科学的解决方案:建设优质的实践平台(基础)构建科学的培养模式(构架)建立优秀的教学团队(实施)提高大学生数学创新实践能力(效果)。在实施方案指导下,经过近20年的探索与实践,成效显著。此成果荣获2014年高等教育类国家级教学成果一等奖。 一、创建优质的实践平台,完善教学资源结构,优化创新人才个性成长环境
1. 建立大学生数学创新实践基地和大学生数学实验室
为了培养工科大学生数学创新实践能力,我校在友谊校区和长安校区分别创建了多功能大学生数学创新实践基地。基地是集“个性化教学、自主学习、数学实验、创新研究、数学建模竞赛”等为一体的创新实践平台,为大学数学主干课程教学改革以及培养跨学科创新人才提供良好的条件与环境。大学生数学创新实践基地可以同时容纳300名学生上机实习,配备了一流的设施,制定了科学的管理制度,面向学生全天候开放。学生根据个人的学习、实践、创新、研究等需求,有效使用基地的所有资源,充分发挥学生自主学习的主观能动性,提升了教学资源利用率。
同时,我们又建立了两个数学实验室:数学建模与科学计算实验室,统计与数据模拟实验室。这两个实验室配备了高性能计算机和多种数学计算和优化的专业软件。实验室承担了高性能计算和仿真模拟等任务,为学生深化数学创新实践提供了保障。
2. 编写出版注重培养数学创新实践能力的系列教材
该系列教材坚持以问题驱动为主线,以大学生已有知识为基础,以培养实践能力为目标,内容简单有趣,非常适合学生学习。同时,该系列教材还能够满足多个层面学生需求。其中,《实用数学建模与软件应用》、《基于MATLAB和LINGO的数学实验》适用于数学建模和数学实验课程教学;《数学建模简明教程》适合数学建模专题讲座;《数学建模竞赛优秀论文精选与点评》以及《美国大学生数学建模竞赛赛题解析与研究》适合数学建模竞赛赛前培训使用;《线性代数》、《高等数学》、《概率论与数理统计》、《随机数学基础》等教材增加了数学建模与数学实验素材,架起了大学数学主干课程与数学实践的桥梁。
3. 构建优质网络教学资源,丰富大学生自主学习内容
为了满足学生的学习兴趣,我们建立了“数学建模”国家级精品课程网站,“高等数学”、“线性代数”、“概率论与数理统计”以及“概率论基础”等4门省级精品课程网站,同时创建了西北工业大学“数学建模竞赛”网站。这5个课程网站和1个竞赛网站为学生提供了丰富的学习资源,使之成为开展第二课堂学习的基地。 二、以“基础为本,实践为魂,素养为翼”为理念,构建“基础―实践―素养”融合发展的人才培养模式
我们在课堂教学中,以“深化知识理解,培养创新意识和创新思想”为本;在实践教学中,以“知识融于实践,实践检验知识”为魂;在文化熏陶方面,以“数学文化熏陶推动知识学习和实践应用”为翼,以实现“学而有趣,学而有用,学而会用”。
“基础―实践―素养”融合发展的“二三三”培养模式是由“两级课程”(大学数学主干课程和数学建模相关课程)、“三类实践”(数学实验、数模竞赛、创新项目)以及“三重熏陶”(数学讲坛、数学沙龙、数模讲座与论坛)构成,其培养过程概述为“加深数学基础理论?强化数学创新实践?提升数学人文素养”,三者之间相互融合、相互促进,为学生后续发展奠定良好基础。在践行“二三三”培养模式过程中,扎实的数学基础理论支撑大学生数学创新实践,数学创新实践深化大学生对基础知识的理解,提升学生的学习兴趣。基础理论学习涉及数学历史、文化和思想,以培育学生的数学人文素养;数学创新实践丰富学生数学人文素养内涵。数学人文素养提升学生参与创新实践的积极性;数学人文素养激发基础理论学习兴趣,扩充知识面。“基础―实践―素养”相互融合,在人才基础培养上具有科学性和系统性。
1. 将数学创新实践能力培养贯穿于“两级课程”教学全过程,提高教学质量
首先,开展问题驱动式的教学模式改革,将数学建模思想融入大学数学主干课程,提升学生的数学建模能力和数学应用能力。
问题驱动式的教学模式强调人本主义理念,发挥教师的主导作用和学生的主体作用。教学过程引导学生思维,激发学生主动学习的潜质,全面提升其抽象思维、逻辑推理、数学建模和数学应用等能力。
一是以建模的方法讲授数学定义和定理。通过直观分析、抽象思维、逻辑推导等过程,建立起数学定义、数学定理与自然现象和规律之间的桥梁,这个桥梁就是数学建模。通过数学建模的方法,可以讲授定义的形成过程以及定理的内在意义,既可以提高学生的建模能力,也将抽象概念形象化。
二是将往届的数学建模竞赛试题和课堂内容相结合。在教学过程中,根据讲授的课程内容,解答往届的数学建模竞赛试题,以提高学生数学建模能力和数学应用能力。
三是将科学研究中的问题与课堂教学相结合,教师将科学研究中的一些简单建模问题与课程内容相结合,提升学生创新实践能力。
四是开设分层次系列数学建模课程,对不同的教学对象选择不同的教学内容,实现授课内容与授课对象相统一。例如,为部分院系学生开设数学建模必修课,为其他院系学生开设数学建模选修课,为参加竞赛学生开设培训课,为参加创新项目的学生开设讨论课,邀请校内校外专家举办讲座,为有兴趣的学生提供网络资源,等等。通过分层次教学,满足了各个层面学生对数学建模知识的需求。
五是依据教学目的、效果、对象选择教学手段,广泛采用网络资源、多媒体课件、一对一讨论、集体讨论、网络答疑等教学手段,提高教学效果。同时,加强课堂教学与课外实践有机结合。在完成规定的课堂教学任务前提下,为了巩固和提高课堂效果,我们又设置了适量的课外实践,主要包括课外数学建模创新项目、各级各类竞赛、数学实验等内容。
2. 开展系列大学生数学建模竞赛与培训,为培养高素质、复合型、跨学科创新拔尖人才奠定基础
我们建立了完善的校级数学建模竞赛体制,保证80%以上的大学生在校期间至少参加一次数学建模竞赛。这不仅提高了大学生应用数学理论知识解决实际问题的能力,同时也是检验数学课程教学改革效果的良好手段。参赛学生从2000年的240余人增加到2014年的4800余人,累计参赛学生达30000余人,是全国校级数学建模竞赛参赛规模最大的学校之一。
我们建立了完善的全国大学生和美国(国际)大学生数学建模竞赛培训机制,包括队员选拔、课程培训、赛题培训、专项培训、专题讨论、强化训练、分组协作等手段。经过这样的培训,西北工业大学在各级各类数学建模竞赛中成绩斐然。
3. 开展数学实验和系列大学生自主创新项目,培养学生的科学研究能力
为了培养学生的科学研究能力,我们以培养知识理解、知识应用、数学计算、创新和实践为指导,设计了8个基础实验、4个选做实验。通过基础实验,调动了学生主动学习和应用数学分析解决问题的积极性,使其掌握常用的工程数学的应用方法。选做实验立足于对各知识点的理解和应用,让学生学会怎样运用所学知识,提取问题的数学结构,进行创造性思维,更好地掌握和应用所学各种数学工具、软件工具的能力。
近两年来,共开设系列大创项目113项,参与学生400余人。通过自选级、校级、国家级三个层次大学生数学创新项目,学生的科学研究能力得到了显著提升。
4. 举办“三重熏陶”,丰富教学内涵
我们通过延伸课堂教学,举办数学讲坛、数学沙龙、数学建模讲座和论坛,开阔学生视野,提升学生对数学思想、历史、文化、美学、应用的认识,实现了课堂教学与人文素养培养无缝链接,丰富了数学教学内涵。
例如,在数学论坛上,中国工程院院士崔俊芝做过“从科学计算到数字工程――漫谈数学与交叉科学”,“杰青”王瑞武做过“合作的演化――数学在生命科学中应用的一个问题”,美国密西根大学J. Liu做过“博弈论与诺贝尔经济学奖”等报告。另外,也举办过“几个著名的数学难题及钱学森的科学人生”、“科学巨匠――赫伯特・西蒙和冯・诺依曼”等数学沙龙。通过这些活动,营造了数学文化氛围,增强了学生数学文化修养,扩大了学生的数学知识面,提升了学生的数学建模兴趣和能力。 三、以“能站讲台,能教实践,能开论坛,能做科研”为标准,构建一支全能型专业化师资队伍
关键词:数学建模素质教育教学改革培养
实施素质教育的重点是培养学生具有创新精神和实践能力,造就合格的社会主义事业接班人。为此,广大教育工作者就如何向学生传授知识的同时,全面提高学生的综合素质进行着不断地探索与研究,并提出了许多解决问题的方法和思路。笔者结合多年的教学实践,认为数学建模是实施素质教育的一种有效途径。
一、数学建模的内涵及其发展过程
数学建模是通过对现实问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学问题;然后求解该数学问题,最后在现实问题中解释、验证所得到的解的创造过程。数学建模过程可用下图来表明:
因此,数学建模活动是一个多次循环反复验证的过程,是应用数学的语言和方法解决实际问题的过程,是一个创造性工作和培养创新能力的过程。而数学建模竞赛就是这样的一个设计数学模型的竞赛活动。
1989年我国大学生首次组队参加美国的数学建模竞赛(AMCM),1992年开始由中国工业与应用数学学会(CSTAM)举办我国自己的全国大学生数学建模竞赛(CMCM)。到1994年改由国家教委高教司和中国工业与应用数学学会共同举办,每年一次,数学建模教育实践相继开展。现已成为落实素质教育、数学教育改革的热点之一。1996年“全国大学生数学建模竞赛”工作会议后,全国高校掀起了数学建模热潮,参加院校逐年递增。到目前为止,数学建模竞赛己经成为全国大学生的四大竞赛之一。
数学建模教育及实践对密切教学与社会生活的联系、促进大学数学课程的更新具有十分重要的意义,特别是对大学生综合素质的提高有着不可低估的作用。本文拟就数学建模对学生素质能力的培养、以及对数学教学改革的启示谈一些拙见,供同行参考。
二、数学建模对大学生素质能力的培养作用
1.数学建模有利于培养学生的创造能力和创新意识
数学建模通常针对的是从生产、管理、社会、经济等领域中提出的原始实际问题,这类问题一般都未作加工处理,也未作任何假设简化,有些甚至看起来与数学毫无关系。因此,建模时首先要确定出哪些是问题的主要因素,哪些是次要因素,做出适当的、合理的假设,使问题得到简化;然后再利用适当的数学方法和知识来提炼和形成数学模型。一般地讲,由于所作假设不同,所使用的数学方法不同,可能会做出不同的数学模型,这些模型甚至可能都是正确的、合理的。例如,1996年全国大学生数学建模竞赛A题(可再生资源的持续开发和利用),就这一题而言,可以在合理、科学的假设前提下,利用微分方程建立鱼群演变规律模型;也可以建立可持续捕捞条件下的总产量最大的优化模型;还可以建立制约各种年龄的鱼的数量的微分方程和连结条件,然后采用迭代搜索法处理,它给学生留下了极大的发挥空间,任凭学生去创造和创新。评阅答卷时教师对具有创造性和创新意义的在评定等级上还可给予倾斜。因此,数学建模是一种培养学生创造能力和创新精神的极好方式,其作用是其他任何课堂教学无法替代的。
2.数学建模有利于培养学生的组织协调能力
在学校里学生通常是自己一个人念书、做题,几个人在一起活动的机会不多,特别是不同专业的学生在一起研究讨论问题的机会就更不多了,而建模比赛是以3人组成一队一起参加的,这样设置的初衷就是为了建立队员之间的相互信任,从而培养队员的协作能力。比赛要求参赛队在3天之内对所给的问题提出一个较为完整的解决方案,这么短的时间内仅仅依靠一两个人的“聪明才智”是很难完成的,只有合3人之力,才能顺利给出一个较好的结果来,而且要给出一份优秀的解决方案,创新与特色是必不可少的。因此3人在竞赛中既要合理分工,充分发挥个人的潜力,又要集思广益,密切协作,形成合力,也就是要做个“人力资源”的最优组合,使个人智慧与团队精神有机地结合在一起。因此数学建模可以培养同学的合作意识,相互协调、、取长补短。认识到团队精神和协调能力的重要性对于即将面临就业选择的莘莘学子来说无疑是有益的,以至对他们一生的发展都是非常重要的。
3.数学建模有利于培养和提高学生的自学能力和使用文献资料的能力
数学建模所需要的知识,除了与问题相关的专业知识外,还必须掌握诸如微分方程、数学规划、计算方法、计算机语言、应用软件及其它学科知识等,它是多学科知识、技能和能力的高度综合。宽泛的学科领域和广博的技能技巧是学生原来没有学过的,也不可能有过多的时间由老师来补课,所以只能通过学生自学和讨论来进一步掌握。教师只是启发式地介绍一些相关的数学知识和方法,然后学生围绕需要解决的实际问题广泛查阅相关的资料,从中吸取自己所需要的东西,这又大大锻炼和提高了学生自觉使用资料的能力。而这两种能力恰恰是学生今后在工作和科研中所永远需要的,他们可以靠这两种能力不断地扩充和提高自己。
4.数学建模有利于培养和提高培学生的计算机应用能力
应用计算机解决建模问题,是数学建模非常重要的环节。其一,可以应用计算机对复杂的实际问题和繁琐的数据进行技术处理,若用手工计算来完成其难度是可想而知的;同时也可用计算机来考察将要建立的模型的优劣。其二,一旦模型建立,还要利用计算机进行编程或利用现成的软件包来完成大量复杂的计算和图形处理。没有计算机的应用,想完成数学建模任务是不可能的。例如1999年全国大学生数学建模竞赛题B(矿井选址问题),它需要借助计算机进行全方位的搜索,以确定最佳钻井地址,从而节约钻井费用,提高经济效益。因此,数学建模活动对提高学生使用计算机及编程能力是不言而喻的。
5.可以增强大学生的适应能力
在知识经济时代,知识更新速度不断加快,如果思维模型和行为方式不能与信息革命的要求相适应,就会失掉与社会同步前进的机会。如今市场对人才的要求越来越高,人才流动、职业变化更加频繁,一个人在一生中可能有多次选择与被选择的经历。通过数学建模的学习及竞赛训练,他们不仅受到了现代数学思维及方法的熏陶,更重要的是对不同的实际问题,如何进行分析、推理、概括以及如何利用数学方法与计算机知识,还有各方面的知识综合起来解决它。因此,他们具有较高的素质,无论以后到哪个行业工作,都能很快适应需要。
如上所述,开展数学建模教学与实践这项活动,将有助于大学生创新能力、实践能力等能力的培养,从而有助于大学生综合素质能力的提高。此外,数学建模还可以帮助学生提高论文的写作能力、增加学生的集体荣誉感、以及提高大学生的分析、综合、解决实际问题的能力,在此我们不再一一论及。
三、数学建模对数学教学改革的一些启示
数学建模从教育观念、内容、形式和手段都有一定的创新,对数学教学改革有积极的启示意义。
1.突出了教与学的双主体性关系
数学建模竞赛以师生互动为基本特点,教师的主体性与学生的主体性同时存在、互相协同,最后形成一种最优的互动关系。教师的主体性表现在:①教师是组织者。整个竞赛训练过程中的人员选拔、教学安排、分析模拟等都离不开教师的策划和严密安排。②教师是教学过程中的主导者。教师要根据学生的学习兴趣、能力及特点,不断修正自己的教育内容和方法,在发挥自身主体性同时又要开发被教育者的主体性。学生的主体性表现在:①始终明确自身是竞赛的主体。学生必须在全过程集中自己的心向系统去接受教师发出的教学信息,与原有知识体系融合、内化为新的体系。②学习过程中的创造与超越。学生要对教师所给予的信息有批判性地、创造性地、发展性地能动反映,要在相互讨论、相互启发下寻求更多更好的解答方案。
因此,这种双主体的关系是对以往教师为中心、为主体的教学方式的根本突破,这种突破的条件首先是竞赛机制和教育观念的创新和变革,这对我们数学教学改革提供了积极的启示。
2.促进了课程体系和教学内容的改革
长期以来,我们的课程设置和教学内容都具有强烈的理科特点:重基础理论、轻实践应用;重传统的经典数学内容、轻离散的数值计算。然而,数学建模所要用到的主要数学方法和数学知识恰好正是被我们长期所忽视的那些内容。因此,这迫使我们调整课程体系和教学内容。比如可增加一些应用型、实践类课程:像“运筹学”、“数学模型”、“数学实验”、“数学软件介绍及应用”、“计算方法”这些课程等等;在其余各门课程的教学中,也要尽量注意到使数学理论与应用相结合,增加实际应用方面的内容和例题,从而使教学内容也得到了更新。
3.增加新兴科技知识的传授,拓宽知识面
数学建模所使用的材料涉及范围十分广泛,要求教学双方具有较广的知识面,同时并不要求掌握各个专业领域中比较艰深的部分。这些特点对于目前数学教材中存在的内容陈旧、知识面狭窄及形式呆板等问题,具有借鉴作用。数学建模的试题通常联系新兴的学科,在科学技术迅猛发展的今天,各种新兴学科、边缘学科、交叉学科不断涌现,广博的知识面和对新兴科学技术的追踪能力是获得成功的关键因素之一,也是当代大学生适应市场经济,毕业以后走向社会的必备条件。
全国大学生数学建模竞赛组委会主任李大潜院士曾经说过:“数学教育本质上就是一种素质教育,数学建模的教学及竞赛是实施素质教育的有效途径”。因此,如果我们能逐步地将数学建模活动和数学教学有机地结合起来,就能够在教学实践中更好地体现和完成素质教育。
参考文献:
[1]李同胜.数学素质教育教学新体系和实验报告[J].教育研究,1997(6):2-3.
[2]姜启源.数学模型[M].北京:高等教育出版社,1996.1-204.
[3]陈国华.数学建模与素质教育[J].数学的实践与认识,2003(2):110-113.
一、数学建模活动应该成为素质教育的一个探索和实践平台
随着我国大学教育的迅速发展,传统的教育模式已经逐渐凸显出许多弊端,引起教育界人士的广泛重视。在传统的教育模式下,更多的强调“传道、解惑”,因此是一种以教师为中心的知识灌输模式,而学生处于被动接受的状态,没有体现学生的主体地位,学生缺乏实际动手能力和创新能力。近年来,素质教育成了教育改革的热门话题。素质教育是指依据人的发展和社会发展的实际需要,以全面提高全体学生的基本素质为根本目的,以尊重学生主体性和主动精神,注重开发人的智慧潜能,注重形成人的健全个性为根本特征的教育。随着我国大学生数学建模竞赛地开展,越来越多的学生参与其中。在这个过程中,他们自己动手,独立思考,极大激发了学生的创新能力,动手能力也得到了很大提高。不难发现,大学生在建模活动中综合能力得到了充分地锻炼,而这正是素质教育所追求的。因此,数学建模活动为素质教育提供了一个实际可行的教育模式,通过这一活动,将理论知识、培养能力和提高素质三者有效地结合起来。教育改革应该借鉴数学建模活动,不断探索新的教育方法,改进传统教育模式的不足,稳步推进我国素质教育事业的发展。
二、数学建模活动应该成为数学与其它学科交叉融合、解决实际问题的平台,为促进学生的创新能力提供支持
在当前的教育状况下,数学知识的学习越来越受到重视,高等数学或工科数学已经成为绝大多数大学专业的必修课程。但是,学生主要限于理论知识的学习,很少有机会将数学和其它学科联系起来。因此,不可避免地将数学的理论知识和它的应用价值隔离开来,这一方面,是教师主要注重传授理论知识;另一方面,学生很少有机会通过解决实际问题将理论和应用联系起来。而实际上,当今的数学早已不再局限于纯理论的数学研究,它已经渗透到了自然科学和社会科学的各个领域,成为解决实际问题的有力工具。如何让学生有效地将数学知识和自己的专业知识结合起来、并用于解决实际问题是教育界一直在思考的问题。随着数学建模的引入并逐渐广泛开展,人们发现数学建模活动为促进这一问题的解决提供了有力的工具。数学建模是指把现实世界中的实际问题加以简化,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题的过程。它要求学生要通过调查、收集数据资料,观察和研究实际对象的本质特征和统计规律,并建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要学生具有深厚扎实的数学基础,敏锐的洞察力和想象力以及广泛的知识面。因此,数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是将学生的数学知识转化为解决实际问题能力的有效途径。学生在建模过程中,将数学知识融入自己已有的认知结构,使自己的创新能力和实际动手能力得到充分发挥。因此,我们应该借助数学建模这一平台,让更多的学生能够参与到其中来,享受应用数学工具解决实际问题所带来的乐趣,并使学生的综合能力在这一过程中得到充分锻炼。
三、竞赛的评阅工作不能仅凭一纸参考答案来一刀切地决定建模成绩,而应该采取更灵活的评价方式
首先,一刀切的评价方法完全抹杀了参赛学生的创造性。正如数学家、全国大学生数学建模竞赛组委会主任李大潜院士在数学建模骨干教师培训班上所指出的:“……在评奖过程中,固然要有一个供参考的“标准答案”,但不宜夸大“标准答案”的作用,更不能以此为准来判定一切。要特别重视并注意发现同学的创新精神、意识及能力,并且充分保护并肯定同学在这方面的表现、那怕是创造性思维的火花。数学建模竞赛重视的是让同学参与创造和发现的过程,而创新和发明是没有边界的,是不应该被什么框框死死框住的,是不应该受“标准答案”的束缚的……”从李院士的讲话可以看到,数学建模的一个重要目的就是培养学生的创新精神和创新能力,对于学生的所提供的解题方法,不是教条的东西和传统的方法去固化学生的思维,而应该去发现学生的创新性思想。如果我们在评卷工作中用参考答案这样一刀切的去做,势必会导致建模竞赛和数学建模的宗旨越走越远,培养出来的也只能是平庸、思想僵化的学生。而且,这种做法的弊端在近年已经有所体现。这些年来,许多学生不是把精力放到思考和探索解题方法上面,而是把它放在分析以往的考题及参考答案上,猜测参考答案所提供的方法,然后依葫芦画瓢,完全照搬过来。更为严重的,一些指导老师在竞赛过程中老师以种种方式介入,帮助学生了解参考答案可能提供的解题方法,从而为自己谋利。这种现象的出现已经使数学建模竞赛完全变味,其带来的后果是令人担心的。
关键词:数学建模;团队建设;教学方法
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)43-0206-02
《数学建模》课程教学体系是指《数学建模》及其相关实验课程的总称,它是自1994以来在全国普遍开展“大学生数学建模竞赛”的活动中而逐渐产生的一个新的课程教学体系,它的特点是理论联系实际特别是非数学领域,知识面较广,具有探索性。当今各高校非常重视数学建模这项竞赛活动,但是多数学校忠实的是成绩而不是让大多数的大学生受益,存在着普及度不够、受益面较小的问题。意识到《数学建模》课程教学体系在一般院校的教学现状,我们将来又应怎样做呢?又如何去成立和建设优秀的数学建模教学团队呢?本文从大连海洋大学学生参加大学生数学建模竞赛的实践过程探讨了农科院校数学建模课程及创新团队的建设。
一、我校的数学建模课程建设
1.我校数学建模课程实践教学过程中的问题。我校是以水产养殖、生物技术、海洋渔业等农科专业为特色专业的学校。学校于1996年开始参加全国大学生数学建模竞赛,1999年我校由李盛德教授首次开设数学建模公共选修课,课程学时48学时。2003年我校开设了信息与计算科学专业,在以前数学建模课程基础上,对信息计算科学专业设置数学建模、MATLAB课程。我校1996年~2003年每年有五六队参赛到2004年为10队,2006、2007年以来每年有15队参加全国大学生数学建模竞赛,2002年首获全国二等奖1队,这个成绩也使得数学建模课程选修的学生人数急剧增加。大学生通过选修数学建模课程和数学建模竞赛的实践,增强了在其专业知识的学习中的数学应用意识和创新能力。例如:数学建模课程教学中布置与实际问题相关的课题让学生在课外查找数据、参考文献讨论解决,一方面让学生时刻关注身边周围的生产、生活实际问题、自己本专业问题,考虑如何将这些实际问题转化为数学问题,并建立数学模型解决之。我们布置的这些和学生自己专业结合的问题,学生兴趣浓厚并且很快给出了解决问题的较有效方法,对学生以后进一步学习专业课程和实践具有重要的指导意义。在数学建模课程及数学建模竞赛取得成绩的同时,也存在着一些实践中期急需解决的问题,如:数学建模课程必修只有2个班级,另外我校对公共选修课程在2005年进行了改革学时由48降到了32,学校教学资源紧张数学建模选修课又不能进行实践只有理论的教学等诸多原因,造成选修学生人数逐年减少以至于课程选不上,这与数学建模竞赛的成绩、整体发展水平是不相称的。
2.数学建模课程建设的建议。(1)扩大必修面,增加选修课程的上机实践。建议学校在课程设置上应增加一些专业把数学建模课程设置为必选课或是必修课;进一步加强对数学建模课程及其竞赛的宣传,让学生充分认识到学习数学建模课的重要作用,鼓励学生参加数学建模选修课程。课题组准备申请选修课程设置的改革方案,使得更多的学生参加到课程学习中来,使得数学建模的教学更好地进行。(2)在教学中应改变传统教学模式,采用电子教案加黑板的教学方式,上课采用启发式和探讨式的教学方法。进行考核改革,考核中主要考核学生的应用能力和创新能力。(3)重视实践环节,提供合理的时间和物质条件。现在选修数学建模选修课程的学生只有理论教学没有上机课程,使得课程教学非常困难,亟待解决数学建模教学的上机课程。(4)数学建模BP网络教学平台的建立和完善。通过网络教学平台使学生更快更好地了解数学建模课程以及数学建模竞赛。
二、我校数学建模教学团队的建设
1.目前我校数学建模教学团队建设中的问题。(1)数学建模教学团队组建的方式存在问题,作者在2001年毕业开始从事数学建模竞赛的培训工作,由于我们数学教研室教学任务繁重,师资较少,所以在以前数学建模团队中主要由3名教师组成。(2)数学建模教学团队建设功利性较强,人员流动性较大,一些教师为了完成学校的各项考核或者是作者的邀请,临时加入到竞赛团队,数学建模知识和指导能力是比较缺乏的。另外在数学建模竞赛团队中,指导教师付出较多得到的较少,使得一些教师刚参加进来就退出了。(3)数学建模教学团队功能单一,数学建模竞赛团队中的教师不应该仅是竞赛的指导者,而更应该是科研的实践者。因为教学、竞赛与科研是互相补充、互相促进的,好的教学效果为竞赛培养了创新能力较强的科研工作者,因此这些较适合学生参加到科研工作中来。
2.我校数学建模教学团队建设中的实践做法。(1)竞赛团队人员的优化,确定团队的几个主攻方向,通过和数学教研室教师的沟通了解、教师的主动参与组建了一支数学建模教学团队。团队中教师的专业面较宽有运筹学的、计算数学的还有应用数学的;团队中1名教授,名(这里是多少名,请核实原文)副教授,3名具有博士学位或在读的博士;团队中教师以青年教师为主具有较强的工作能力。(2)开展一系列以数学建模为背景的创新实践,结合数学建模竞赛,团队查找若干各专业相关数学建模问题,培养学生的课堂理论学习转入课后实践的能力。另外在数学建模竞赛结束后,让学生继续进行题目的深入研究,鼓励学生、指导学生,在以后的挑战杯等科技竞赛中取得了一些成绩。(3)开展数学建模竞赛研究与数学建模教学研究活动,数学建模竞赛团队每年对教师开展数学建模竞赛的研究活动,主要由竞赛试题的分析、竞赛中论文写作注意事项等,全面提升教学建模教学团队指导教师的水平。在数学建模竞赛取得成绩的前提下,数学建模教学团队开展相关教学改革与研究,团队中的教师积极申报升级、消极与数学建模相关的教学改革项目,近五年我们团队中主持和参加的各类教学改革项目十余项。
经过几年的教学尝试,我们已经取得了一些成绩。选修课能够较好地开设出来,并且近五六年的数学建模竞赛也取得了不错的成绩,其中2006年我校数学建模竞赛的成绩取得了突破,获得国家一等奖1队、国家二等奖2队,2007年获得国家二等奖2队,2012年获得国家三等奖3队。我们进一步要加强数学建模课程及团队建设建设,进一步完善数学建模网络平台,争取将数学建模课程建设成为校级精品课程,五年内申请数学建模教学团队为省级优秀教学团队。
参考文献:
[1]武娇,何满喜.工科院校数学建模课程建设的探索与实践[J].技术监督教育学刊,2006,(2):26-28.
[2]张立峰.以竞赛推进农科院校数学建模课程开设的研究与实践[J].辽宁师范大学学报,2010.
数学建模是数学走向应用的必经之路,是利用数学方法解决实际问题的一种模式,数学建模是一种微型科研的过程,是进行研究性学习的一种有效组织形式。我国从1992年开始由教育部高教司和中国工业与应用数学学会举办的全国大学生数学建模竞赛已成为我国高校规模最大的课外科技活动。数学建模竞赛提供了学生接触现实问题的一个平台,这对学生把所学的数学、计算机和其他专业知识用于实践提供了舞台,培养了学生分析问题、解决问题的能力,锻炼了学生的创造力、想象力、思维发散能力和创新性思维能力。
将数学建模思想融入高等数学教学是经实践证明的必要且可行的教学方法,这对于推动高等数学教学方法的改革、提高高等数学的趣味性、应用性和教学效果具有深远的意义,全国数学建模竞赛组委会李大潜院士表示“我们要开展数学建模竞赛活动,努力将数学建模思想融入数学类主干课程,让学生在学习知识的同时,有发现和创造的过程”。将数学建模思想融入到数学主干课教学指的是在数学教学中突出数学思想的来龙去脉,揭示数学概念和公式的实际来源和应用,恢复并畅通数学与外部世界的血肉联系,它的意义在于打破了原有的高等数学课程只重视理论,忽视应用的教学内容安排,它在整个高等数学的教学过程中给学生展示了一个完整的数学,同时也训练了学生的思维推理能力。使学生不仅学到了数学知识,而且增长了应用数学知识解决实际问题的本领。这对于培养学生的创新思维和数学应用能力,提高数学建模竞赛的竞赛水平,提高高等数学的教学质量都具有重要的现实意义。
由于数学建模竞赛对学生的数学水平和科研能力提出了进一步要求,并且据竞赛组委会介绍,目前在全国大学生数学建模竞赛中数学专业的学生仅占10%,参赛的非专业学生占了多数,所以通常准备参加竞赛的学生都要参加学校组织的竞赛培训。那么,学生如何更有效地学习数学建模,教师如何对学生进行竞赛培训才能使数学建模竞赛在培养学生应用创新能力、促进大学数学课程教学改革等方面发挥更大的作用呢?本文将探讨如何使围绕数学建模竞赛开展的一些列教学活动在以下两方面都发挥更大的作用,一方面是将数学建模思想融入数学公共课程从而提高高等数学教学水平,另一方面是通过开展合适的教学培训活动提高数学建模竞赛水平。方法就是改革数学建模竞赛的培训模式,摒弃仅通过短期培训追求某次竞赛成绩的功利心理,制定长期的竞赛培训计划,使围绕竞赛开展的一系列教学活动在教学改革和数学建模竞赛活动中达到相互促进共同提高的作用,实现良性循环,这将是一个值得深入研究的问题。
黑龙江八一农垦大学围绕数学建模竞赛开展了大量的教学活动,经过多年的教学实践和不断地研究探索,在数学建模竞赛的培训策略和模式方面积累了不少经验,并且经过长期实践验证了这些方法不但有利于提高学生学习数学的效率和兴趣,同时对于提高竞赛成绩也是有效的。尤其是近几年学生参加数学建模竞赛的规模增长迅速,参赛学生几乎遍及全校各个专业,学生的学习程度、兴趣爱好等差异性增大;各类数学建模竞赛的试题类型都更趋向于专业性强、交叉性强、复杂性强的新特点。为解决数学建模竞赛所面临的新问题新挑战,需要对数学建模竞赛培训进行更深入的研究,制订数学建模竞赛培训的新模式,这种新方法充分考虑到在高等数学课程中潜移默化的融人数学建模思想这个策略,使学生可以更好地了解数学知识的来龙去脉,建立学数学用数学的思想,提高学生的数学综合素质,同时通过这样的教学活动让学生了解数学建模竞赛,再配合后期的竞赛培训活动从而达到通过数学建模竞赛提高学生综合素质的目的。
二数学建模竞赛培训的新模式
为了让学生通过围绕数学建模竞赛开展的教学活动增强解决实际问题的实践能力,提高数学课程的学习效果和兴趣,将数学建模的思想方法应用于专业课程的学习和专业问题的研究中去,也为了让学生更好地参加各类数学建模竞赛,对数学建模竞赛的培训体系和策略进行了深入研究,采取“三步走”的竞赛培训策略,在培训过程中抓住一条“时间线”,循序渐进的进行数学建模知识和方法的讲授和训练,从大一开始对学生的数学建模活动按照培训计划进行按部就班的培训,从而使数学建模竞赛真正的起到为教学服务的目的。本文介绍的竞赛培训新模式的具体结构框架如图1所示,具体步骤为:
第一步:“润物细无声”――将数学建模思想融入高等数学课程。在保持高等数学课程原有体系和教学学时基本不变的前提下把数学建模思想融人到高数教学中去,一方面可以激发学生的学习高等数学的兴趣,解决高等数学抽象性强、学生在学习过程中感到枯燥无味的问题。另一个方面也让学生感受到数学模型的无处不在和数学思想方法的无所不能,充分调动学生应用数学知识解决实际问题的主动性,从而激发学生对数学建模的兴趣和热情,提高学生学数学和用数学的能力,提高数学建模竞赛水平。
具体的做法是在高等数学课教学过程中有计划地适当渗透数学建模思想,在保持高等数学课程原有体系不变的情况下,在数学概念和定理的引入和应用中融入建模思想。首先,数学概念来源于实际需要是数学思维的细胞,在数学概念的教学中融人数学建模思想就是要讲清楚概念产生的来龙去脉以及数学思维过程,例如定积分的概念本身就是一个完整的数学建模过程,在讲解概念的过程中有意识的渗透数学建模的思想和方法,不仅能使学生记住概念,更重要的是使学生真正了解到问题的本质,培养了建立数学模型解决实际问题的思想。同样,定理的讲解在高等数学的教学中也占有非常重要的地位,在诸如微分中值定理的应用、最小二乘法的应用等内容中都非常适合融人数学建模思想。把这些数学建模思想融入高等数学教学作为数学建模竞赛培训的一部分,制定周密的培训方案,写出具体的培训计划,选用合适的培训教材,编写高等数学应用问题案例。通过这些教学方法和理念的改革可使学生的洞察力、想象力和创造力得到培养和提高,为学生架起一座从数学知识到实际问题的桥梁。
第二步:“更上一层楼”――根据一条“时间线”安排数学建模竞赛辅导。为了让学生了解和掌握更多的数学知识和方法,从而更好地参加各种数学建模竞赛,我们按竞赛的时间分别组织三次培训,每年4月针对东北三省数学建模联赛组织大二学生参加东北赛培训,每年暑假针对全国大学生数学建模竞赛组织全国赛培训,每年1月组织针对美国大学生数学建模竞赛的美国赛培训。采用这种阶段性培训方式,根据培训的时间,在每个培训阶段都制定不同的培训目的,设计不同的培训计划,选择逐渐深入的培训内容,并针对学生具体情况采用自编教材。真正做到因材施教,体现阶段性递进的培训模式。首先,在最开始的在东北赛培训阶段主要讲授数学建模的过程和建模基本方法,Matlnb软件的基本命令以及科技论文的写作等,在这一阶段的培训中各种建模方法不要求学生熟
练掌握它的过程和具体的求解方法,而是要了解这些方法是解决什么问题的?常用于哪些现有的模型中?这种方法对所求问题有哪些要求?它的输入和输出变量都有哪些?到真正用的时候可以在查阅资料现学现用,这一阶段培训的重点是要培养学生根据需要获取知识的兴趣和能力,以及对数学建模的思维和过程的了解和熟悉。在全国赛培训阶段主要补充数学建模的理论知识,继续介绍Lingo/Lindo软件、SASS软件等数学软件的使用,并进行模拟训练强化数学建模竞赛氛围和过程。这一阶段要求学生熟练掌握线性规划、多元统计、插值拟合、微分方程、图论等常用的数学方法,同时了解如排队论、系统模拟等方法,培养学生发现问题、分析问题、应用数学知识建立数学模型解决实际问题的实践能力和上机实验的动手能力。针对美国赛培训主要强化学生的科技英语的阅读、写作能力。训练学生对外文文献的检索和阅读能力,学习了解所学学科的国际前沿的研究动态,提高自己的科研能力和意识。
第三步:“反馈再提高”――赛后研讨,修正数学建模竞赛培训方案。注重赛后总结,是逐步提高竞赛成绩的有效方法。每次竞赛结束以后,首先由指导教师针对赛题进行分析与讲解,帮助学生深入理解问题,然后由各队根据所做结果查找论文工作中的不足,并展开对问题的深入探讨,以小组讨论的形式进行交流,使讨论班上不同的思想火花不断地进行碰撞、交融,所有小组都能够通过讨论而达到共同进步的目的。同时通过开会总结本年度的竞赛工作,参加竞赛学生交流竞赛经验、心得体会、开大会表彰、奖励获奖学生等系列活动,及时发现竞赛培训工作中的问题,总结经验,从而推动学校高等数学课程的教学改革,培养学生应用数学知识解决实际问题的能力,为逐步提高竞赛成绩打下良好的基础。
另外,结合数学建模竞赛培训的过程和参加竞赛中遇到的问题,对数学建模竞赛培训模式进行深入研究,探讨数学建模思想融入高等数学课程的实施方法,改进培训方案中的不足,增删培训内容,修正培训计划,完善数学建模竞赛培训体系。
总之,通过对数学建模竞赛培训模式的研究与实践,构建了新的数学建模教学体系,该教学体系融数学建模理论学习、计算机软件学习和竞赛过程于一体,通过对数学建模教学体系的实施,促进大学数学课程的教学改革,实现将数学建模思想融入高等数学课程的目的,并最终实现其他专业课程的教学改革。实践证明围绕数学建模竞赛开展的教学活动能够为学生更好地参加数学建模竞赛提供了平台,并且能够在促进大学数学课程的教学改革,实现将数学建模思想融入数学类课程方面发挥更大的作用。
参考文献
[1]刘振文,赵广宇,王崇阳.浅谈数学建模竞赛对大学生能力的培养与锻炼[J].才智,2011(32):232.
[2]李大潜,将数学建模思想融入数学类主干课程[J]中国大学数学,2006(1):4-8.
关键词 数学建模 独立学院 课程改革 实践能力
中图分类号:G424 文献标识码:A DOI:10.16400/ki.kjdks.2015.02.044
Independent College Mathematical Modeling Education Curriculum Reform
――Take College of Arts and Sciences, Yunnan Normal University as an example
LIU Ruijuan[1], YANG Bin[2]
( [1]College of Arts and Sciences, Yunnan Normal University, Kunming, Yunnan 650222;
[2]Yunnan Institute of Electronics Industry, Kunming, Yunnan 650031)
Abstract This article from the reality of Yunnan Normal University of Arts, discusses the characteristics of Mathematical Modeling Course and the creation of the significance of this course, and then analyzes the independent Institute of Mathematical Modeling Courses problems proposed curriculum reform and solve mathematical modeling ideas. By selecting the appropriate course materials and auxiliary teaching materials, teaching and the establishment of mathematical modeling contest guide the team to achieve classroom case discussions and presentations combine teaching mode, associated with the creation of mathematical modeling curriculum support programs, such as probability theory, mathematical analysis , operations research, graph theory and other courses, assessment methods diversified, respectively, classroom attendance, classroom discussion to answer the performance aspects of modeling large peacetime operations and final quality modeling work, modeling reply comprehensive assessment, in addition to organize students to participate actively in the network challenge and the National mathematical Contest in Modeling and other students, with remarkable results.
Key words mathematical modeling; independent college; curriculum reform; practical ability
数学建模课程是20世纪80年代初在我国理工科大学开设的一门重要的数学课程。由于数学建模过程几乎模拟了科学研究的全过程,因而对于培养大学生的科研能力与创新意识和应用数学能力具有特殊的作用。而数学建模的多媒体教学,作为一种现代化的教学手段,具有形象直观、信息量大、交互性强等优点,对于发挥学生的主体作用、促进学生主动学习和培养学生创新能力也非常有益。这些能力也正是我们大学数学素质教育所要努力追求的。
目前国内关于数学建模课程改革的研究论文虽然比较多,也有一定的成果,当时均处于探索阶段,并且从目前数学建模课程教学改革的相关文献可以看到,大部分这方面的研究都集中体现普通高校和研究型高校或者数学建模课程的改革方案和与能力培养方面的关系,然而,尽管不少普通大学和研究型大学都在大胆尝试建模课程体系改革,但针对独立学院实际的数学建模教学改革基本空白,对数学建模课程的具体化改革对象和成果展现等方面的研究更是少见。
云南师范大学文理学院建模课程开展时间较短,从内容到体系均有待完善,所以本文就云南师范大学文理学院的实际探讨数学建模课程的改革及其成效,从而达到促进建模的教学工作,提高教学质量,同时提高自身的素质水平。
1 在独立学院开设数学建模课程的意义
云南师范大学文理学院自办学以来,针对学生的缺点和不足,以新的视角,欣赏学生的特点,梳理学生的优势,客观评价学生,掌握学生的优势、优项,树立教学信心,以积极的态度开展教学工作。培养学生处理相关信息和大量数据的能力,在数学建模过程中,我们引导学生针对所研究问题进行收集、加工,处理和应用信息的能力。学会提炼有用信息,并恰当地运用信息,并学习使用计算机和相应的数学软件。
在建模过程中我们要求学生充分发挥想象力和动手能力,采用类比的方法把表面上完全不同的实际问题,用相似的数学模型去描述解决他们,逐步达到触类旁通的效果。
另外,因为数学建模课程主要涉及的都是现实生活中的实际问题,通过数学建模课程的学习和数学建模竞赛的参与,可以极好地锻炼学生的论文写作能力和创新能力,同时提升学生的参与意识,为以后的学习和工作打下良好的基础。所以在独立学院开设数学建模课程具有重要的意义。
2 云南师范大学文理学院数学建模课程的特点和存在的问题
2.1 云南师范大学文理学院数学建模课程的特点
(1)先修课程和应用课程较多。数学建模课程需要众多的先修基础数学课程和数学软件课程,如数学分析、运筹学、微分方程、概率论与数理统计、图论、计算方法、计算数学、解析几何,MATLAB,Mathematics,lingo等,我院信息工程学院在开设数学建模课程的前期或者同时开设上述相关课程,因为需要具备扎实的专业功底,才可能较好地学习数学建模课程。
(2)教学方式灵活多变。各大高校数学建模课程是基本是案例式教学,每个章节以例子来说明,如商人过河问题,交通流问题,减肥问题,旅游地的选择问题等等,均是和实际联系较为紧密的身边的问题,激发学生的学习兴趣。但是也有一些常见的建模方法可以类比推广,如层次分析法,灰色关联度分析法,时间序列法,排队论等,我们都是有针对性地选取教学内容以适应学生现有的知识结构和接受能力。教学方法上我们采用讲授法、探讨法、历年真题论文案例法(包括学生平时作业点评)等。
(3)教学设备手段先进。建模课程需要处理大量的数据,我院配备了先进的投影多媒体教室,并且开设了与建模相关的Matlab,Mathematica等数学软件。
(4)实用性强。数学建模课程的案例基本都来自实际问题,如人口、天气、干旱等的预测模型,优化模型,决策模型,控制模型等。这些模型的引入,让学生更加深刻地领会数学建模课程的实用性。
(5)课程较难学。数学建模课程涉及的领域广,知识面大。通的(交通流问题),医疗领域(看病排队问题)等,采用的各领域的知识较多,很多时候都是现学现用,需要很高的领会能力和接受能力,这对学生和教师要求都比较高。
2.2 云南师范大学文理学院数学建模课程存在的问题
本文作者从2011年开始讲授数学专业的数学建模课程,数学建模作为数学专业的专业基础课程,在教学过程中发现数学建模课程存在的问题。
(1)教材涉及面太广,如姜启源的《数学模型》教材是我国自开设建模课程以来比较权威的一本建模教材,很多高校都在使用,但是从初等模型、简单的优化模型、线性规划模型、微分方程模型到马氏链模型等共13章,而课程安排只有周4课时,教学时间上较为紧张;另外整本教材基本都是案例,内容多且涉及的数学建模方法很少,学生看着一本厚厚的教材,心里难免畏惧,而实际上并不能完全讲授;对于三本独立院校的学生来说,专业基础不是很扎实,教材一些内容较深,学习起来较为吃力。
(2)课堂教学基本以教师为中心,教师采用纯讲授的教学方法,学生很少参与,因而缺乏学习数学建模的兴趣与积极性,学生也怕学。
基于上述问题的存在,影响学生学习数学建模课程的积极性,并且我们要参与各类建模赛事,如果不及时进行教学改革,势必影响教学和学习效果,在建模竞赛中也难取得较好的成绩,虽然关于建模课程改革的课题和论文较多,但是紧扣我院实际的还基本空白,不利于应用型人才的培养,所以有必要对现有的数学建模课教学模式进行改革。
3 对云南师范大学文理学院数学建模课程改革尝试的思路
本文作者从2011年开始教授数学建模课程开始,就在实践中开始摸索适合云南师范大学文理学院的数学建模课程改革思路,经过几年的实际教学和竞赛指导,主要收获如下:
(1)主体教材辅助方法、软件教材进行教学。目前作者使用的姜启源编写的《数学模型》对于独立学院的学生来说这本教材内容太难、太多了。作者近年来除讲解教材的基本模型外,尝试对教材进行补充、重组和开发,具体方式有根据历年的全国建模竞赛的题目类型,有倾向性地进行教学安排,并插入历年建模真题和常用方法进行课堂讲授,同时插入一些实际问题让学生进行建模论文的写作,根据我院学生的数学基础和竞赛的实际(对历年的真题出现的题型和用到的方法出现的频率)对章节进行取舍。
(2)数学建模课程教学方法改革。由于数学建模课程要进行实战演练,在学期配备相应的建模大作业习题,如手机购买问题,地方人口问题,水资源短缺问题,气候干旱问题,网吧数量萎缩等实际问题,要求学生在指定的时间内进行数据收集,整理,分析处理并以论文形式展现研究成果,同时安排论文模拟答辩,锻炼学生的解决实际问题的能力。同时学院也积极聘请省级建模专家进行专题讲座,提高大家学习的积极性。
(3)数学建模课程教学竞赛团队。我院近年来连续积极组织学生参加各类官方、民间数学建模竞赛赛事。我院专门组建立了一支建模指导教师团队,除了学期必修外,在全国建模竞赛前的假期还专门组织学生进行赛前培训,教师负责制分专题讲授离散模型、连续模型、优化模型、微分模型、概率模型、统计回归模型和软件讲授、论文写作等,突出体现教师的专长,提高了课堂教学效率,增强了学生学习的积极性。
(4)开设与数学建模课程相关的软件课程。为了让学生更好地参与到数学建模中来,我们从大学一年级就有针对可开设数学软件和建模讲座。开设Mathematic,MATLAB,Lingo等软件选修课,进行数学的应用与建模能力的培养,提高学生数学建模能力,在运筹学等课程中,有意识地让学生进行作业的排版练习,如WORD,EXCEL等常用排版计算软件。
(5)通过积累建立数学建模课程学习资源。如本校学生历年的较优秀的参赛论文,平时作业
教师教案、课件等,数学建模优秀论文等学习环境和信息交互空间。另外,给学生身边实际的问题,如云南水资源短缺问题,干旱气候预测问题,地区人口预测问题,网吧问题等进行建模练习,让学生把数学建模课程与实际应用结合起来。
(6)课程考核形式多样化。本文作者通过课堂考勤,课堂回答问题,课堂讨论,平时作业,期末大作业,作业课堂答辩等多种方式结合的方法进行课程考核。根据问题的大小,由学生独立或组队完成实际问题,若完成得好在原有成绩的基础上获得“平时成绩加分” ,给出最后考核的分数,提高学生学习数学建模课程的积极性,从而提高学生的建模能力。
(7)积极组织学生参加全国大学生数学建模竞赛和各类网络建模赛事。截至目前为止,我们已经连续五年组织学生参加全国大学生数学建模竞赛,连续两年组织学生参加“认证杯”数学中国数学建模竞赛,成绩优良。并且由信息工程学院定期举办建模和软件讲座参与各类数学建模比赛,熟悉比赛流程,了解论文撰写过程,为每年九月的全国数学建模做准备。
4 建模课程改革初步成效体现
我校作为独立学院从2010年开始尝试开设数学建模课程,推动大学数学素质教育方面,进行了一些探索和实践,并同年开始组织学生参加全国数学建模竞赛和网络建模竞赛,成效显著。
首先,从竞赛获奖来看,2010年全国大学生数学建模竞赛中,4个参赛队分别荣获1个省级一等奖,占总奖项的25%;2个省级二等奖,占总奖项的50%;1个省级三等奖,占总奖项的25%,获奖率100%;
2011年全国大学生数学建模竞赛中,4个参赛队分别荣获1个省级一等奖,占总奖项的25%;2个省级二等奖,占总奖项的50%;1个省级三等奖,占总奖项的25%,获奖率100%;
由于从2012年开始,数学建模竞赛组委会对建模奖项做了限制调整,获奖比例仅为原来的50%,所以2012年全国数学建模竞赛指导的参赛队教练组15个参赛队其中荣获2个省级一等奖,1个省级二等奖,9个省级三等奖,获奖率为80%,其中省级一等奖占总奖项的16.7%,省级二等奖占总奖项的8.33%,省级三等奖占总奖项的75%。
2013年“认证杯”数学中国数学建模网络挑战赛2个队参赛,第一阶段两个参赛队均获云南最好成绩全国二等奖,第二阶段一个队荣获云南省唯一个全国一等奖,取得全球建模能力高级认证;另一个参赛队荣获全国三等奖,取得全球建模能力基础认证,获奖率100%。
2013年全国数学建模竞赛,26个参赛队参赛,其中荣获1个国家二等奖,2个省级一等奖,3个省级二等奖,4个省级三等奖的优异成绩,奖项水平首次冲入国家奖项,建模水平大幅度提高,其中全国二等奖占总奖项的10%,省级一等奖占总奖项的20%,省级二等奖占总奖项的30%,省级三等奖占总奖项的40%。
2014年全国数学建模竞赛,22个参赛队参赛,其中荣获2个国家二等奖,2个省级一等奖,4个省级二等奖,4个省级三等奖的优异成绩,奖项水平较上年建模水平大幅度提高,其中全国二等奖占总奖项的16.7%,省级一等奖占总奖项的16.7%,省级二等奖占总奖项的33.3%,省级三等奖占总奖项的33.3%。
可以看到从开设数学建模课程以来,我校的数学建模水平到目前稳步提升,很好地锻炼了学生的创新能力和动手能力,同时增强了学生学习的自信心和积极性,成效显著。其次,从综合能力来看,通过建模课程的改革,学生的应变能力和思维能力都获得了很大的提升。
参考文献
[1] 段璐灵.数学建模课程教学改革初探教育与职业,2013(5).
[2] 常青.数学建模教学的实践与思考.http://.cn/gzsxb/jszx/jxyj/201211/t20121113_1143732.htm.2014/06/13.
[3] 姜启源,谢金星,叶俊.数学模型(第三版)[M].北京:高等教育出版社,2003.
[4] 朱道元.从数学建模看新世纪的数学教改[D]新世纪数学学科发展与教学改革研讨会论文集.东南大学数学系,2000.
[5] 杨霞,倪科社,王学锋.积极开展数学实践教学活动培养学生创新意识与实践能力[J].大学数学,2010(A01).
[6] 张银龙,刘敏.创新人才的培养与数学建模意识的形成[J].长春金融高等专科学校学报,2008(2).
【关键词】数学建模;数学建模思维;试题类型
全国大学生数学建模竞赛创办于1992年,目前已成为全国高校规模最大的基础性学科竞赛,受到大学生的广泛关注.笔者在对比了近十多年来专科组大学生数学建模竞赛的试题变化特点,在竞赛对学生的综合数学素质要求不断变化的情况下,探讨了高职数学教学中所面临的困境与改革创新.
一、高职数学建模教学效果与参赛能力差距
(一)数学建模竞赛试题变化特点分析
1.试题类型涉及范围从单一学科向多知识学科转变.如1999年C题、2000年C题等只是单纯的数学或物理问题,试题涉及的学科范围窄,就像一个稍复杂的几何学或物理学习题,解题思路相对固定,没有要求学生有任何创造性地提出设计方案.近几年的试题逐步发展成为多学科、多知识背景的类型,甚至近年有部分试题出现了所属学科不明显的情况.
2.试题附带的数据量不断增大.在早期的试题中数据量不大,注重解决问题方法的选择,所以在早期的试题中有一种“非真实感”.而近年来的试题出现了大量的原始数据,如2005年C题等,这就要求必须借助工具软件进行处理,否则无法完成.
综合以上,试题会越来越“真实”,同时数据也会越来越大,这对于没有太多生活经验、专业性不够突出的大学生来说,是一种挑战,笔者和很多学生交流后,有学生提出感觉试题越来越难了.这同样对指导教师来说也是一种挑战,教师很难有针对性地给学生提前预备具体知识.
(二)高职学生的数学素质与竞赛要求素质差距
1.认知能力差.数学建模竞赛需要的是一种综合能力,如洞察力、创造力、数学语言翻译能力、文字表达能力、综合应用分析能力、联想能力、使用当代新科技新成果的能力.这些都与个人认知力有关,这就基本决定了高职类学生与本科生有一定的差距.
2.理论知识缺失.进入大学后很少高职院校会单独开设数学建模课程,更不用说要培养学生的数学建模思维.以我院学生为例,大部分学生(除少数理工科类外)只涉及两门课程与数学建模有关:数学与管理和统计学原理.仅仅只有这两门课程作为理论基础参加数学建模竞赛是远远不够的.
3.计算机工具应用能力弱.以我院学生为例,数学与管理中学习Mathematics软件,统计学原理中涉及SPSS和EXCEL.而最常见的建模工具,如MATLAB、LINGO,由于专业性质差别,几乎没有机会接触到,这是高职类学生的薄弱环节.
二、高职数学建模思维培养教育创新改革设想
(一) 改革的基本出发点
抛弃以竞赛为目的的功利思想,以提高学生的数学建模思维为出发点.在很多高职院校,由于学生的数学素质与竞赛素质相差太远,导致指导教师出现了消极心理,甚至有些教师认为到竞赛的时候主要是看指导老师的能力.这是绝对错误的思想,有这样思想的教学团队即使在某些年份可能会取得较好的成绩,但这绝对没有长久保持这种成绩的能力.因为教学团队就没有找到一种正确的培养模式,把这种胜利从偶然性变为必然性.而正确的培养模式的基本方针就是要培养学生的数学建模思维,这比给学生多设几门课程、多上几节培训课更为重要.
(二)改革的理念
由于高职院校性质特点,基本上都是应用型专业,给学生专门开设几门与数学建模有关的课程不太现实,而且即使开设了,教学效果也不会理想.所以笔者认为应该把数学建模思维的培养与具体专业相结合,在专业问题上如果碰到有关的建模问题,就相应在该部分增加数学建模内容.例如金融学专业在某些课程中可以加入最优化模型、投资组合模型等,把这些模型融入到具体的专业中,使得应用性更强,学生也更易接受,教学效果好.
(三)具体实践的几点经验
1.教学中注重引入数学模型.在各个学科中都有些问题涉及数学,或可以用数学的原理说明实际问题.例如统计学中最小二乘法在各领域都有广泛的应用,解最小二乘法的拉格朗日法是常见求极值的方法.可见数学模型结构也是有层次的,一个复杂的数学模型包含了几个简单的模型,教师可以根据学生特点和课程性质选择模型层次.
2.强调利用计算机工具处理数据过程.很多教师只强调了模型的原理讲解,并没有把模型理论与学生动手能力相结合,缺少实践环节.例如,时间序列分析中的线性回归模型,模型的原理复杂,但利用软件操作反而十分简单,教师可以多介绍几种软件工具,让学生加深理解该模型的使用范围及结果意义.
三、结束语
本文通过对专科组试题的总结分析,勾勒了数学建模对学生综合数学素质要求的发展趋势,提出要注重学生的数学建模思维培养,以实际应用为前提,与具体专业相结合,注重专业中真实数据处理的教学改革设想.
【参考文献】