前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的三角中学主题范文,仅供参考,欢迎阅读并收藏。
关键词:化归思想;中学;三角形内角和定理;应用
中图分类号:G633.6
一、前言
数学思维方法是理解抽象数学概念的基本前提,而在数学思维方法中尤以化归思维较为常见。在问题转化过程中,其基本特征在于没有定势。学习者既可以变更问题的条件,也可以变更问题的结论,既可以变更问题的内部结构,可以变更问题的外部形势。总而言之,在化归思维方法的指导下,转化问题的过程无需遵循既定的模式,更强调依据学习者本身对知识的理解程度来化归待解决问题中的关键部分。
因此,教师如何在教学中培养学生的化归思维,使其领会渗透其中的内在思维过程便成为了中学数学教学中亟待解决的问题之一。
二、化归思想在“三角形内角和定理”教学中的应用
为更好的展现化归思维在数学教学中的应用,本文将以“三角形内角和定理”为例,详细阐述化归思维在数学学习中的作用。
(一)以平行线为索,初识三角形内角和定理
三、总结
通过前文分析可知,化归思维在中学数学教学中的作用是毋庸置疑的。作为中学数学教学中的重要数学思想之一,如何将其渗透到教学过程中去?在数学教学过程中实现化归需具备什么条件?笔者认为可以从学习者数学学习的主客观两个方面进行分析。学习者本身存在的客观因素主要指其自身的数学知识体系,而主观因素主要是指在中学数学学习过程中化归意识的存在,具体分析如下:
(一)知识结构完整与否是实现化归的前提
就客观影响因素而言,要在数学教学过程中实现化归思维,学习者其自身原有的知识结构体系是否完整是实现化归的前提条件。换言之,为更好的在数学教学中实现化归我们必须做到:
1、重视数学基本概念、公式、法则等数学模型的教学,为更好的形成化归思维奠定基础。如,在“三角形内角和”定理教学过程中,学生较好的掌握了平行线的基本定理,当教师将新知识“三角形内角和”与旧知识“平行线定理”相结合时,则学生能较快理解新旧知识之间的关系,并通过教师的引导进而形成化归思维,为进一步的学习做准备。鉴于此,教师在实际教学过程中应注意引导学生牢固掌握数学概念、公式和实际原型的关系;帮助学生提高利用数学模型解决问题的能力。
2、培养整理、总结数学方法的习惯,为化归方法的寻求奠定基础。在中学数学学习过程中,数学学习差者很多时候对非普通题毫无头绪,其根源在于没有系统的数学知识结构,不重视数学方法的总结与归纳。因此,在教学过程中,教师要有意识的引导学生形成整理、总结数学方法的习惯。
(二)增强化归意识,提高转化能力
就主观影响因素而言,学习者头脑中化归意识是否存在或意识存在的强弱,是实现化归的基础。教师在实施数学教学过程中需有意识的为增强学生化归意识创设情境。笔者认为可从以下方面考虑:
1、明确转化原理,把握转化策略。数学知识的根本特点在于其逻辑性较强,各部分知识之间存在着相互依存、相互渗透的关系。而化归思维的关键在于,充分利用各知识点之间存在的关系,运用正确的方法对问题进行转化。即让复杂的问题简单化、陌生的问题熟悉化。因此,对于化归思维的形成于运用学习者不仅需要完整的知识体系,还需以正确的转化原理为依托,并通过典型例题加以巩固。
2、强化学生联想思维,提高转化能力。联想是一种由此及彼的思维活动,是学习者在学习过程中对新旧知识所产生的特殊的想法,从而引发的思维上的迁移活动。从某种意义上来说,数学解题过程即可以理解为已知知识与未知知识的联想过程,通过联想寻找新旧知识之间的存在的关系,从而解决问题。如在“三角形内角和定理”教学过程中,教师引导学生将三角形内角和与平行线定理联系起来。通过此方法,学生不仅能快速理解 “三角形内角和”这一新知识,还掌握了学习数学的有效方法。
参考文献
[1] 陈琬琛.化归思想在初中数学教学中的渗透[J]. 海峡科学,2013(05)
[2] 韦银幕.数学化归思想方法及其教学探研[J]. 科技风,2010(19)
关键词:高中数学;三角函数
一、引言
作为高中数学教学的核心,三角函数教学显得尤为重要。在与其他数学知识的联系中,三角函数扮演着不可或缺的角色。各类解题方法中随处可见三角函数的身影。因而,怎样教会学生学习三角函数知识成为了高中数学教学成与败的关键所在。然而,由于三角函数的知识点较为零散,公式颇多,让学生在短时间内掌握其中的核心部分,灵活的运用是有难度的,这也是目前众多的高中数学教师所共同面临的困境。下面我将根据自身多年的教学实践,来对于高中数学中三角函数的教学策略进行分析,希望可以通过此研究来使得更多的教师获取三角函数教学的精髓。
二、高中数学中三角函数的教学策略
1.激发学生对于三角函数学习的兴趣
当前高中学生对于三角函数的学习兴趣普遍不高,这严重的阻碍了高效三角函数教学工作的顺利进行。为了激发学生的兴趣,将三角函数的学习与生活实际联系起来是必不可少的。三角函数知识作为整个数学知识的一部分,它与现实有着千丝万缕的联系。如体操运动员的体操动作,钟面时针转动的方向,测量风暴的运动轨迹等都有着三角函数知识的影子。在比如在教授有关任意角的三角函数知识时可举这样的生活实例。某个施工单位要为一个广场架设探照灯。该广场为圆形,半径约为40米左右。射向广场地面的光线呈现出圆锥形的图案,试问想要使得广场的每一个角落都被光源所覆盖,请问光源离探照灯的高度应该是多少?学生在经历过这样的问题情境后,便边该知识的学习产生了浓厚的兴趣,遍全身心的投入到该问题的学习活动中来。
2.突出三角函数的运用规律
在数学知识的解题过程中,一道题目通常有其特定的解法。尽管高中三角函数题型千变万化,但做去做来无非都是那些内容,只不过是题目中给出条件的形式发生了变化,内在的本质基本还是保持在原样。因而,在教学中我们要教给学生一种识别解答三角函数解题方法的技巧。要传授给学生慧眼识题的能力,让学生看到题目之后学会分析出题人的意图,知道该采用哪些三角函数的知识来解题,而不是一味的在那乱试,从而避免学生学习时间上的浪费。比如,在一般的求解中,我们要教会学生运用简单的公式,将未知角的求解转化为已知角的求解。在解答周期性三角函数或者求函数的最值问题时,在教学中要突出由三角函数进行表达的思想。
其次,为了做到又好又快的解题,提高学习的效率。单单教会学生怎样识题是远远不够的,我们还要培养其运用各种方法的熟练程度。比如数学思想中的数形结合法,待定系数法,排除法等,让学生在学习中不仅形成正确的思路,而且也可以以最快最好的速度完成学习中的任务。
3.系统的进行归纳总结
三角函数公式形式多变,种类繁多,如果要求学生一个个的加以记忆不仅不大现实,而且学生一下子也记不住那些公式。此时,我们要做的,就是要在教学中对于零散的三角函数知识进行整理归纳,将一份条理清晰,逻辑性强的三角函数相关知识点展现在学生的面前。这其中三角函数口诀是一种极好的教学方式。三角函数的教学口诀可以来自于网上,也可以源自于平日的教学实践,当然最终的表现形式还是要得到学生们的认可,毕竟这是为学生而服务的口诀。常见的三角函数口诀有“函数值正负,看终边象限;绝对值大小,见x轴夹角”,“两角和正切,余弦除正弦。二倍角正弦,两倍正余积”等,在这里我们不做一一的列举。口诀编号之后,我们还要教会学生识别口诀中各项语句的意义。在这里我们不强制性的要求学生进行背诵,而是辅助以习题的形式,在习题的设计中,都对于口诀中的每一句有针对性的突出。可能刚开始的时候,学生会边做习题,边看口诀表,可是只要假以时日的练习,学生便能够逐渐的摆脱口诀表而独立的完成三角函数的解析工作。另外,老师在平日的教学中也会不时的流露出该口诀,这样在教师外部和学生内部双重的作用之下,学生很快便能够熟练的掌握住三角函数学习的技巧。
4.比较剖析三角函数的不同
在三角函数的教学中,与单纯的进行三角函数知识的教学相比,进行比较型教学来的实效要好得多。所谓三角函数的对比式学习指的是利用函数内部的定义域,值域,周期性,曲线的对称性等特点与其他的函数之间的差异,进而形成对照,从而在学生的脑海中留下深刻的印象。比如在三角函数图像的对比式学习中,我们将三角函数的图像与抛物线,双曲线画在一个坐标轴内,同时改变三角函数基本公式y=Asin(ωx+?)中的参数,观察曲线的变化,同时也改变诸如y=ax+b中参数的值,看两个曲线之间的变化有什么差异性,这样便弄清楚控制三角函数图像各项字母的实际意义。
三、结语
总之,我们只有抓住三角函数自身的一些特点,不断的激发学生的学习兴趣,去归纳和总结,在认清其基本形式的前提下去探究三角函数与其他数学知识之间的不同,这样我们才可以最终获得教学的实效。
参考文献:
1.《三角函数》在中学数学中的地位
《三角函数》是中学数学的重要内容之一,它的基础主要是几何中的相似形和圆,研究的方法主要是代数的研究方法,因此,三角函数的学习已经初步把代数和几何联系起来了.《三角函数》知识是在幂函数、指数函数、对数函数之后进行研究学习的,而对于人教版数学必修一第一章的内容,学生因为没有适应高中的学习环境,对新的知识、新的学习方法掌握得不是很好,《三角函数》的学习有利于学生进一步理解研究函数的思想和方法.
2.《三角函数》的教材编排
中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段.在义务教育第三学段,主要研究《锐角三角函数》和《解直角三角形》的内容.在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程.
3三角函数重点知识的教学讨论
“三角函数”的内容,主要是任意角三角函数的概念、三角函数诱导公式以及三角函数图像与性质三方面的知识,掌握好这些基础知识,是三角函数应用的基础,是学习其它知识的奠基.
3.1“任意角的三角函数”的概念教学
任意角三角函数概念的重点是任意角的正弦、余弦、正切的定义.它是本节乃至本章的基本概念,是学习其它与三角函数有关内容的基础,具有根本的重要作用.解决这一重点的关键,是引导学生学会用平面直角坐标系中角的终边上的点的坐标来表示三角函数.
在本节课的教学过程中,最重要的是引导学生回顾初中时学习的锐角三角函数的定义,从原有的认知基础出发,来认识任意角的三角函数的定义.引导学生在直角坐标系中讨论,用坐标法研究锐角三角函数,进一步讨论改变终边上的点的位置是否改变其比值.在得出结果之后,再引导学生思考,逐步引入单位圆,利用单位圆定义任意角的三角函数,此时再结合"任意角和弧度制"中的相关知识.正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.在给出三角函数的定义之后,使学生明确sinα是一个整体,不是sin与α的乘积,它是“正弦函数”的一个记号,就如f(x)表示自变量为x的函数一样,离开自变量的“sin”“cos”“tan”等式是没有意义的.根据三角函数可以看成是自变量为实数的函数,进而引导学生讨论函数的定义域、函数值等问题,同时引导学生根据定义,利用数形结合的方法判断三种函数的值在各象限的符号.利用单位圆以及三角函数线知识,推导出同角三角函数的基本关系式:.
任意角三角函数概念是核心概念,它是解决一切三角函数问题的基点.无论是研究三角函数在各象限中的符号、特殊角的三角函数值,还是同角三角函数间的关系,以及三角函数的性质等,都具有重要的意义.
3.2“三角函数的诱导公式”的应用教学
3.3“三角函数的性质与图像”的重点教学
三角函数的图像和性质(定义域、值域、周期性、奇偶性和单调性)是三角函数的重点.教材中主要学习正弦函数、余弦函数、正切函数的图像与性质,要求学生熟练掌握三角函数图像的形状特征,并能在图像直观下研究函数的性质.教师在教学过程中利用信息技术工具(如几何画板),快捷地作出三角函数的图像,利用动态演示功能,帮助学生发现图像的特点,观察函数变化的过程,运用数形结合的方法研究三角函数的性质,反过来再根据性质进一步地认识函数的图像,使学生认识及运用三角函数的性质.
在讨论过正弦函数的图像之后,再结合图像总结正弦函数的性质.由于在这之前学生已经学习了指数函数、对数函数的性质,因此可以根据类似的思想讨论正弦函数的性质,得出正弦函数是周期函数,其最小正周期是2π,及其奇偶性、单调性.
其次是余弦函数图象与性质.如同正弦函数图像,利用余弦线作余弦函数图像比较复杂,因此根据教材的建议,在作出正弦曲线的基础上,利用诱导公式六,通过图像变换得出余弦曲线.使学生加强正弦函数与余弦函数的联系,为学生提供通过图像变换作出函数图像的机会,渗透数形结合思想.接下来的讨论可以根据研究正弦函数图像的方法,包括对余弦函数性质的探讨.
关键词:三角函数 高中 教学策略 分析
一、高中数学三角函数的主要难点
(一)学生对三角函数相关概念的掌握不到位,推理能力较弱
对数学公式进行推理,是数学能力的最基本要求和表现。而当前的高中生却往往未能良好地掌握三角函数的相关概念,这也直接影响了其推理能力的发挥与提高,同时又缺乏将三角函数方程式与几何意义良好结合的理解能力。
(二)未掌握三角函数的变形规律
三角函数的一个主要特点是:公式之间存在较多的关联,变形方式也较复杂,因此,要求学生必须对基本数学公式、恒等变形技巧等形成良好的把握,掌握去规律。只有这样,才能更好的学好三角函数知识。
(三)缺乏数形结合能力
这也是高中数学三角函数教学中的一个难点。高中阶段的三角函数具备一定的单调性、周期性与凹凸性,三角函数值也不容易计算,所以之通过有限的几点而获取三角函数的图形一般是不可能的。
(四)缺乏综合应用的能力
三角函数的复杂性,要求学生在学习的过程中整合单个知识点,将其联系以便理解;另一方面,三角函数有较多公式而且富于变化,学生很难完全理解或掌握,所以更要求教师采取科学合理的策略引导学生充分理解和掌握。
二、高中数学三角函数的教学策略分析
三角函数章节知识是高中数学学科知识体系中的一项重要的组成部分,也是高考的重要内容之一。所以,教师应依据考试大纲的要求和新课程标准,普遍结合学生学习与认知的特点等,制定教学计划,实施科学有效的教学策略,不断提高高中数学的教学效率与质量。
(一)灵活运用多媒体等科学技术,激发学生的学习兴趣
随着我国科技的不断发展与进步,科技产品给课堂教学也带来了更多的便捷。而数学的基本特征与本质就表现为基本概念,所以高中数学教师应灵活改变教学方法,提升学生对基本概念的理解能力,强化其对抽象内容的概括能力。
(二)有效进行情境创设,培养学生的探究能力
三角函数的相关知识内容,其实与我们的生活都有着密切而广泛的关联,因此高中数学教师在进行三角函数的教学时,可以充分应用三角函数生活性特点,在符合其知识内容的基础上,创设与实际生活密切关联的情境,引导学生主动参与课堂教学与学习之中,良好进行感知,产生强烈的探究与求职的欲望。
例如:为将三角函数的图像性质更好的传授于学生,引导学生主动参与学习过程,提升其探究能动性,教师就可以在新知识的教学之前,良好的将本节课的知识点内容和实际生活中的问题结合,创设一定的教学情境,设置如下问题:
假设其为半径2米的风车,每隔12秒旋转一周,其最低点O距离地面0.5米,风车圆周上的一点A从O开始,其运动t(s)后,与地面的距离设为h(m)。那么(1)函数h=f(t)关系式如何?(2)你能画出函数h=f(t)的图像么?
在这样的问题性教学情境的创设之下,加之教师的鼓励性语言,以及生活情境的感触,就会很容易激发学生的学习兴趣,充分发挥其内心想要学习的情感,探究欲望也得到了明显的加强。在充分调动学生学习的积极性、主动性及探究性的情况下,其内在能动性会促使学生积极参与进教师的整体教学活动之中,有利于其分析、解决问题能力的提高。
(三)教师应引导学生全面实现对三角函数知识的掌握
数学知识之间是彼此相联系的,因此三角函数的教学中,教师必须持有整体观念,将三角函数置于更宽阔的知识框架之中,灵活运用多样化的教学方法,结合新课标的要求和学生的学习特点进行创新教学方案的制定,引导学生充分认识三角函数与非三角函数的联系,以便更加全面、具体的对三角函数的概念与知识等形成良好的理解与掌握。
(四)以综合练习强化反省抽象能力
高中数学教师应重视通过综合练习强化学生的反省抽象能力引导学生对三角函数充分认识,了解三角函数如sin等并不只是一个简单的运算符号,而应将其作为一个整体的概念来掌握,也只有这样才能真正了解三角函数的内行,才能为三角函数之后的变形与公式推导奠定基础。高中数学教师应充分利用课堂教学的时间与空间,强化学生对三角函数概念的抽象概括及综合运用能力等。
此外,综合分析的方法也是解答三角函数问题的有效方法之一。因为,数形结合思想也是常用的一种基本数学思想,因此教师可引导学生在解答数学题时,综合分析并运用所学过的所有可以用到的数学知识,将其有机结合,有效解答三角函数问题。
三、结语
总而言之,三角函数知识作为高中数学知识体系的重要构成内容之一,其有效教学策略还需要进一步的思考与探究。在新课程改革与素质教育理念的指导下,高度重视学生在三角函数学习时遇到的问题与难点,切合实际的采取科学的三角函数教学策略,对提高高中数学的教学效率与质量都有十分重要的现实意义,值得引起广大教育工作者的关注与重视。
参考文献:
[1]葛长松.高中数学三角函数教学实例分析[J],数理化学习(高中版),2012(11):46-47.
一思新教材内容
新教材内容总体偏多,部分内容的编排不尽合理,新课程包括5个必修模块和4个选修系列,5个必修模块基本涵盖了以往课程的内容,而这4个选修系列中不仅涉及了以往课程内容,大部分都是以往课程中没有的。2009年,江苏省教育厅提出“五严规定”,严格执行国家课程计划,严格控制学生在校集中学习时间,在总的教学时间不增反减的情况下,教学内容偏多和教学时数之间的矛盾日益突出。笔者根据这六年的实验教学经验认为可以删除一些内容。
1.孤立的知识点。删除后不影响高中数学整体逻辑结构,对学生发展也不会产生太大的影响。如矩阵与变换、统计案例在高中阶段现有的知识与时间限制下,难以完成完整的内容,只能进行机械性操作。
2.重叠的内容。如三视图与初中阶段学习重叠,流程图与算法中的程序框图本质上是相通的,也与信息技术课程重叠。
3.蜻蜓点水式的内容。如定积分,高中阶段课时太少难以讲解清楚,大学将系统学习,属非主干的内容,删除后不影响整个高中数学的学习。
但是,另一方面考虑到规模日益扩大的高校自主招生考试与数学竞赛,在相关章节可以链接引申一些内容,如函数的凸凹性、反函数、函数及数列极限的定义(免得一些高校对大一新生单开江苏补习班)、复数的三角形式与指数形式、重要不等式(柯西不等式、排序不等式)、圆锥曲线的光学性质、随机变量的概率、均值与方差等。(这些内容对绝大多数学生是不作要求的。)
二思新教材的顺序、衔接与进度
1.新教材的顺序
(1)整体模块的顺序
新教材模块化设置及以螺旋上升的方式安排知识,不少章节内容和顺序被打乱,知识的逻辑链条被人为割断。如将“解三角形”与“数列”、“不等式”这些数学知识和思想方法没有内在联系的内容捆绑在一起,安排在必修5中,显然属典型的人为制造的知识割裂现象。在必修2《平面解析几何初步》中列出了有关空间直角坐标系的内容,不仅与章节名称不符,而且这里的空间直角坐标系与理科的选修2―1中“空间中的向量与立体几何”相关内容相隔太远,可调整到选修2―1。而文科后面压根就没有涉及空间直角坐标系的相关内容,因此文科这部分内容干脆删掉!新教材将解一元二次不等式与简单的线性规划、均值不等式集中在一起安排在必修5,使得重点与难点过于集中(一元二次不等式、数学5中的等差数列、等比数列、基本不等式等内容均属C级要求),而且还造成相关知识的割裂。
关于必修模块顺序设置,《普通高中数学课程标准(实验稿)》(下称《标准》)中指出:“数学1是数学2、数学3、数学4和数学5的基础,对其余4个模块的顺序未作原则上要求,在不影响相关联系和知识准备的条件下,学校可以根据具体实际情况进行安排。”(一般以地级市为单位统一安排,便于期中期末统考。)
笔者认为:数学2中综合了立体几何与解析几何两大块内容,高一学生难以接受,数学3中概念性的知识太多,算法等新增内容也比较陌生,所以考虑把这两个模块移后教学。而数学4中的三角函数,学生在学完数学1的函数后,比较容易接受三角函数的知识,因为三角函数也是一类特殊的函数,从一般到特殊,学生比较容易接受,而三角变换与三角函数又有密切的联系,所以先学数学4中的三角函数与三角变换,其中的平面向量置后到与数学2的直线与圆一起学习,因为它们同属平面几何,也便于用向量的观点研究平行与垂直这两种特殊而重要的位置关系。原来平面向量放在三角恒等变换之前不过是用平面向量证明两角差的余弦公式。
数学的内在联系以及六年两轮的教学经验,都证明了1、4、5、2顺序的相对合理性,而数学3算法语言相对独立,顺序放置有一定的自由度。但一般放在高二上学期,这样可以与信息技术课程及考试同步(高二上学期12月份的最后一个周末举行信息技术考试)。然而,目前流行的几种模块顺序,在教学中都有其可能产生困难的地方。例如,1、2、3、4、5的顺序会导致第一学期安排的内容偏多偏难;解析几何分在两处,距离时间太长;没有任意角的三角函数,讲解立体几何和直线方程有困难。1、4、5、2、3和1、4、5、3、2,1、3、4、5、2的顺序会导致:未学数学2中的线直程,学习数学5中的线性规划内容就有困难。上述讨论表明,无论怎样排列都会出现矛盾,我们要“挖根”,要从《标准》上解决问题,消除模块化结构的负面影响,重新调整模块的顺序和内容,使模块顺序与内容相对协调。另外文科与理科内容应保持相对的统一性、协调性。因此建议选修1-1、l-2与选修2-1、2-2内容上应完全一致,只是教学要求不同。
(2)个别教学内容的顺序调整
例如,在模块1中学习集合之后,我们把模块5中的一元二次不等式移到这里教学,但是并非全章照搬,只介绍几类简单的不等式的解法,目的是只有学了常用的几类不等式的解法之后,才可以解决许多集合问题及函数定义域的问题。不然有的学生初中没有学,在这时就会遇到困难.也有的学校组织编写了从初中到高中的衔接教材,对这方面的内容加以补充。再如为了分散数学5“数列与不等式”的难点,也考虑到线性规划与直线的关联性,可以将数学5不等式中线性规划穿插到数学2“直线与圆”中学。
2.新教材的衔接
高中课程内容与顺序的安排要考虑与初中和大学的衔接,要兼顾初中、大学的学习,更要关注学生自身的终身发展。
(1)初高中教学内容的衔接
在教材内容上,由于初中的课程标准与高中接轨不严密,导致有些知识脱节。如初中没有介绍一元二次方程根的判别式、根与系数的关系,乘法公式的学习仅局限于平方差公式与完全平方公式,减少了立方和差、三数和的平方、两数和与差的立方等公式。根式的学习中,也缺少了分母(子)有理化等研究,二元二次方程组的解法,十字相乘法分解因式等知识和方法没有学,平面几何中更是减少了许多内容,如平行线截线段成比例定理、三角形四“心”、圆中的垂径定理及切割线定理等等,而这些内容高中经常用到,内容出现脱节,衔接不上。有些相同内容称谓不一致,如三视图,初中称主视图、左视图,高中则称正视图、侧视图。
(2)初高中教学方式的衔接
初中由于内容较少,难度较低,一般学校大都采取“课前预习――课上展示――课后作业”的山东杜郎口教学模式,教学较为轻松愉快。但与初中相比,高中数学内容多、难度大、节奏快、注重逻辑思维和分析理解,一些学校教师很少用新课标倡导的教学方式,除非上级检查或是上各类公开课、评优课,初高中的教学方式不能很好地衔接,使得学生在刚进入高中阶段的学习显得比较吃力。
(3)高中与其他学科知识的衔接
部分高中数学内容与其他学科知识衔接不好。一方面,其他科目用到的数学知识,数学没有学到,例如,高一上学期物理(必修)力的分解问题,涉及到数学中的三角函数,而三角函数问题在高一下(必修4)才会学到。物体做匀加速直线运动的位移公式s=v0t+1/2at2中加速度a的数学意义a=v′(t)不理解,因为导数未学到。另一方面,数学用到其他科目的知识,其他科目还没有学到,例如数学4“三角函数”在讲函数y=Asin(?棕x+?渍)的图像时,提到物理中的简谐运动、交流电等都与物理课程不同步。
(4)高中与大学的衔接
大学与高中数学的衔接脱节更为严重,主要的表现有以下情况:(1)两头不管:对高中未学知识(函数与数列的极限),大学教材的编著者误以为是高中的必修内容,在自己的教材中未予补充,从而造成了大学和高中两头不管的结果。(2)前后不一致:对同一内容,高中和大学的表述、名称或符号等不一致。
3.新教材的进度
现在有些地方为了高三有更多的总复习时间,高一高二的教学进度太快,尤其是高一每学期要学两本书,学生刚刚从初中升入高中,进度、难度骤然大增,思维方式、学习方式骤然改变,学生很不适应,很难很好地衔接,“水过地皮湿”,造成很多“夹生饭”。还有的地方高二过早文理分科,造成文科“肤皮蹭痒磨洋工”,理科“紧锣密鼓赶进度”。个别学校或教师垂青于过程华丽泡沫,片面追求短期利益,高三一轮复习偏快,高三上学期就早早地结束了一轮复习,没有到边到沿、稳扎稳打、步步为营,为二三轮的复习埋下隐患。这些做法都给整个高中数学的学习造成很大的被动!这需要调整高中三年教学的整体进度,严格执行课程计划,不能提前分科!
三思新教材与“三考”
1.新教材与高考
高考的目的有两个:一是为高校选拔人才,二是对高中教学的导向与评价。高考的目的决定了其性质是一种常模参照性考试,即将个人考试分数与参考人员全体作比较,报告个人在全体中的相对位置。江苏高考现行的模式就是“大圆套小圆”,4C1合格是大圆,选修1B1C是小圆,语数外达线是更小的圆,而数学就是这个更小的圆的圆心!因为在这种高考模式下,“成也数学败也数学”,“得数学者得天下”已成广泛的共识!
那么作为一线的数学教育者我们首先只能适应高考,一方面我们要把握好教材进度,注意与初中的衔接,夯实基础,文理分科不宜过早,高三不要急功近利,要稳扎稳打、步步为营;另一方面在基础年级不要动辄搬上高考题,美其名曰“瞄准高考”,孰不知高考题是到高三毕业时学生才能达到的水平(较基础的题目除外),平时多加强定时训练,只有“平时高考化”的严格规范,才能获得“高考平时化”的淡然与从容。另一方面我们也要通过各种正常渠道向命题者反映中学教学的呼声,使他们的命题以纲为纲、以本为本,多多调研中学教学,一切从实际出发。
2.新教材与大学自主招生考试
一张高考试卷,重点大学、普通本科院校、专科学校都靠它招生,这样的试卷要具有各方面的兼容性,同时也有很大的局限性。大学自主招生便应运而生,然而大学自主招生,没有传统的考纲与模式,命题有很大“自由度”。这给学生带来很大的烦恼,无法作应试准备。
自主招生考试以中学教育中的知识板块为基础,但范围更为宽泛;自主招生考试注重考查学生综合运用知识的能力,通过这个层面来了解考生的学术潜力;因此,需要帮助学生对中学阶段的知识进行系统梳理,作合理、有效的深化和拓展,对特殊的技能和技巧加以总结、研究,从而对考生给予指导和点拨。可以在新教材相关章节链接引申一些内容,如函数的凸凹性、反函数、函数与数列极限定义、复数的三角形式与指数形式、重要不等式(柯西不等式、排序不等式)、圆锥曲线的光学性质、随机变量的概率均值与方差等。
指导学生参加高校自主招生考试要从高一开始,不能靠高三突击,还要注意以下问题:自主招生考试要高于高考,低于竞赛;以高考中档题为起点,避开竞赛的技巧性,关注自主招生命题的创新性;着力于思维的发展,通性通法的运用,数学本质的揭示;避免繁杂的计算训练,寻求简洁优化的解法;不求面面俱到,只求突出核心内容;既关注高中阶段基础内容,也关注与高等数学衔接内容。
3.新教材与数学竞赛
数学竞赛虽然在高考中不加分,但一流高校对获奖者很是情有独钟,可以参加其自主招生,或者干脆直接保送上大学,因此一些生源较好的中学对数学竞赛尤为重视,但大多学校存在一个误区,就是到高三才搞竞赛,事实上高一高二才是基础与关键。2010年我校数学竞赛获得了较好的成绩就得益于我们从高一就物色竞赛苗子,有针对性地辅导育苗,这是其一。其次,在新教材系统深入学习的基础上,学校要配备专职的奥数教练员,毕竟数学竞赛有其独立的竞赛大纲与竞赛教程。教练员可以创造性地开展工作,如组织“每周一题”、“有奖攻擂”活动,成立数学兴趣小组,自主学习、合作交流与教练指导相结合,鼓励学生研读与数学竞赛有关的专业报刊杂志,大胆撰写数学小论文等等;最后还要争取学生家长的支持,利用节假日积极参加省市官方组织的数学竞赛培训,如夏令营、冬令营,因为这需要一定的经济支出。
另外数学竞赛不要孤立于高中教材的教学与大学自主招生考试之外,数学竞赛的辅导最好做到高考、大学自主招生与数学竞赛“一石三鸟”。
综合考虑新教材的内容、顺序衔接与进度以及新教材与“三考”,高中数学课程内容与顺序可大致安排如上表。
说明:1.数学1―数学5是指重组后的必修模块,而不是原课标模块;2.A类课程为文科类、理科类参加高考的学生设置,B类课程为文科类、理科类参加高考、大学自主招生考试的学生设置,C类课程为文科类、理科类参加高考、大学自主招生考试、数学竞赛的学生设置。
没有破茧的阵痛,就没有化蝶的精彩!任何改革都有痛苦,数学新课程改革也不例外。痛定思痛,我们既要锐意改革,又要冷静“三思”,更要思而后行!使新教材更好地为数学教育教学服务,使我们的数学新课程改革尽快开花结果!
参考文献
[1] 中华人民共和国教育部.普通高中数学课程标准(实验).北京:人民教育出版社,2003.
关键词:初中数学;三角形;分类讨论思想
一、问题提出
分类讨论思想的基本要求首先是不重复、不遗漏,分类讨论思想可以培养学生思维的连贯性和有序性,培养学生完整细致地分析问题的习惯和探索问题的能力,提高学生严谨的思维。通过研究发现,学生碰到这类问题常常不知道如何切入,更不知道要分类讨论解答,还有一类学生清楚分类讨论,但是分类不完整,其次分类完整的学生在计算的过程中也会出现一些小问题,而能完整解答的微乎其微。因此,教师教学中对这种解题思路方法的渗透显得尤为重要,学生要从平时的教学中积累和提炼、总结归纳。最后达到运用非常熟练,这将是一个漫长的吸收内化的过程。几何中的三角形中涉及分类讨论思想的题型有等腰三角形、直角三角形、相似三角形等;等腰三角形经常按顶角和低角分类、按底边或腰进行分类。直角三角形一般情况是按直角顶点分类。相似三角形中,当出现“ABC与DEF相似”或“以点A、B、C为顶点的三角形相似于DEF ”时,由于点的对应关系不确定,通过分类讨论才能更清晰、更完整地解答。
二、核心概念
所谓数学分类讨论方法,就是将数学对象分成几类,分别进行讨论来解决问题的一种数学方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性。分类思想可不像一般的数学知识那样,通过几节课的教学就可让学生掌握应用。而是要根据学生的年龄特征,学生在学习各阶段的认知水平,逐步渗透,螺旋上升,不断地丰富自身的内涵,从而达到利用数学分类讨论方法来解决问题的目的。分类讨论思想的数学问题具有明显的逻辑性、综合性,对培养初中生全面、周密地分析问题和解决问题的能力起到了十分关键的作用。在初中数学教学中我们要时刻渗透分类思想,引导学生多利用分类讨论方法解决问题。
三、分类讨论思想解题的思维过程分析
在运用分类的思想进行解题时,其思维过程通常可以分为:(1)要明确是否需要分类讨论;(2)确定分类的对象;(3)确定分类的标准;(4)逐类逐级分类讨论;(5)综合、归纳结论。运用分类的思想解题首先需要明确分类讨论的原因,即哪些问题常常需要用到分类的思想来解决。大多数的学生在面对一个数学问题时,不易判断此问题是否需要用到分类的方法来解决该问题,即无法根据问题的条件和结论迅速辨认问题中与分类有关的数量关系或位置关系。因此,从所给的问题情境中,正确而迅速地辨认题目中与分类有关的数量关系或位置关系的,是解决问题的基础,一般的说,当我们研究的问题是下列几种的情形时,可以考虑使用分类的思想方法来解决问题。
在初中数学教学的过程中逐步恰当地渗透数学思想方法,培养学生的思维能力,让学生形成良好的数学思维习惯,既是符合新课程的标准,又是进行数学素质教育的一个极好的切入点。数学中的分类讨论思想不但是一种重要的数学思想,而且是一种重要的数学逻辑方法,分类思想不但在数学知识的探究和概念学习中十分重要,而且在解决数学问题过程中起着不可替代的作用。数学中的分类讨论思想,是根据数学对象本质属性的相同点与不同点,将其分成几个不同种类进行研究,从而解决问题的一种数学思想。它既是一种重要的数学思想,更是一种重要的数学逻辑方法。
四、实例分析
【分析】分CP=CO,PC=PO和OC=OP三种情况分别讨论即可。在每种情况下分别画出对应的图形,利用三角形相似的原理加以解决,本题对学生的能力要求较高,有的学生望而却步,有的学生可能只想到了其中的一种或两种情况。考虑到题目考查了分类讨论的思想,这样的学生已经是非常了不起了,接下来就要通过一些方法加以解决,笔者认为这道题只是常州中考题中涉及分类讨论思想的其中一例,还有很多就不一一列举。在今后的教学中还要加以提炼和总结,对不同层次的学生在渗透分类讨论思想的教学过程中还需要因人而异,不仅是分类讨论思想是这样,其他初中数学中涉及的思想方法应该加以研究落实。
参考文献:
三角形定则是指两个力(或者其他任何矢量)合成,其合力应当为将一个力的起始点移动到另一个力的终止点,合力为从第二个的起点到第一个的终点。
当物体受三力作用而处于平衡时,必有∑F=0,表示三力关系的矢量图呈闭合三角形,即三个力矢量(有向线段)依次恰好能首尾相接。当物体所受三力有所变化而又维系着平衡关系时,这闭合三角形总是存在而仅仅是形状发生改变。比较不同形状的力三角形各几何边、角情况,我们对相应的每个力大小、方向的变化及其相互间的制约关系将一目了然。所以,作出物体平衡时所受三力矢量可能构成的一簇闭合三角形,是力三角形法的关键操作。先分类如下:
一、三力中有一个力确定,即大小、方向不变,一个力方向确定,这个力的大小及第三个力的大小、方向变化情况待定
例如,如图1所示,小球用细绳系住,绳的另一端固定于O点。现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力FN以及绳对小球的拉力FT的变化情况是()
A.FN保持不变,FT不断增大
B.FN不断增大,FT不断减小
C.FN保持不变,FT先增大后减小
D.FN不断增大,FT先减小后增大
解析:由于缓慢地推动斜面体,小球处于动态平衡,小球受到大小方向不变的重力、方向不变的斜面的支持力,还有绳的拉力,三力构成封闭三角形,如图2所示。开始时绳的拉力与支持力的夹角为锐角,随着绳的拉力FT按顺时针转动,其大小先减小后增大,而支持力FN一直增大,所以D项正确。
二、三力中有一个力确定,即大小、方向不变,一个力大小确定,这个力的方向及第三个力的大小、方向变化情况待定
例如,如图3所示,质量为m的小球,用一细线悬挂在点O处。现用一大小恒定的外力F(Fmg)慢慢将小球拉起,在小球可能的平衡位置中,细线与竖直方向的最大偏角是多少?
分析与解:本题中研究对象――小球可在一系列不同位置处于静止,静止时小球所受重力、细线上拉力及大小恒定的外力的合力总是为0。三力关系由一系列闭合的矢量三角形来描述,这些三角形中表示重力的矢量边是公共边,有一条矢量边长度相同。现在来作出这样的三角形簇:
如图4所示,取点O为起始点,作确定不变的重力矢量①,以其箭头端点为圆心,表示外力F大小的线段长为半径作一圆,该圆上各条矢径②均可为已知大小的力矢量,该圆周上各点指向O点并封闭形成三角形的有向线段③便是第三个力即细线拉力矢量。这样我们得到了全面反映小球在可能的平衡位置时力三角形集。
由图4可知,表示线拉力矢量与重力矢量的线段③与线段①间的夹角最大为θ=arcsin(线段③作为圆的切线时),细线拉力总沿着线,故小球可能的平衡位置中,细线与竖直方向的偏角最大为θ=arcsin。
三、三力中有一个力大小方向确定,另二力方向变化有依据,判断二力大小变化情况
例如,如图5所示,一只小鸟沿着较粗的均匀树枝从右向左缓慢爬行,在小鸟从A运动到B的过程中()
A.树枝对小鸟的合作用力先减小后增大
B.树枝对小鸟的摩擦力先减小后增大
C.树枝对小鸟的弹力先减小后增大
D.树枝对小鸟的弹力保持不变
解析:
如图6所示,树枝对鸟的合作用力是支持力和摩擦力的合力,由二力平衡得,它与小鸟重力等大反向,因小鸟所受重力不变,所以树枝对小鸟的合作用力不变,A项错误。对小鸟受力分析,除最高点共受到三个力的作用:重力、支持力、摩擦力,并且支持力与摩擦力始终垂直。作矢量三角形可知,树枝对小鸟的摩擦力先减小后增大,对小鸟的弹力先增大后减小,所以B项对,C、D两项均错误。
关键词:教学思想;正玄定理;余弦定理
1.教学思想
数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。教学中在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系。我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形。我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。
2.正弦定理
教学目标。知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点。正弦定理的探索和证明及其基本应用。
教学难点。已知两边和其中一边的对角解三角形时判断解的个数。
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtΔABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有ac=sinA,bc=sinB,又sinC=1=cc,则asinA=bsinB=csinC=c
从而在直角三角形ABC中,asinA=bsinB=csinC
思考:那么对于任意的三角形,以上关系式是否仍然成立?
(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:
如图1.1-3,当ΔABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=asinB=bsinA,则asinA=bsinB,同理可得csinC=bsinB,从而asinA=bsinB=csinC。
思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
3.余弦定理
教学目标。知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。
过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。
教学重点。余弦定理的发现和证明过程及其基本应用;
教学难点。勾股定理在余弦定理的发现和证明过程中的作用。
例1.在ΔABC中,已知a=23,c=6+2,B=60°,求b及A
(1)解:b2=a2+c2-2accsoB=(23)2+(6+2)2-2・23・(6+2)cos45°=12+(6+2)2-43
(3+1)8
b=22.
求A可以利用余弦定理,也可以利用正弦定理:
cosA=b2+c2-a22bc=(22)2+(6+2)2-(23)22×22×(6+2)=12,,A=60°.
4.解三角形的进一步讨论
教学目标。知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。
情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。
教学重点。在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;
三角形各种类型的判定方法;三角形面积定理的应用。
教学难点。正、余弦定理与三角形的有关性质的综合运用。
教学过程。讲授新课
例.在ΔABC中,A=60°,b=1,面积为32,求a+b+csinA+sinB+sinC的值
分析:可利用三角形面积定理S=12absinC=12acsinB=12bcsinA以及正弦定理asinA=bsinB=csinC=a+b+csinA+sinB+sinC
一、利用三角函数知识的生活应用性,以景促情,增强高中生自主学习意识
数学学科是一门基础性的应用学科,它与现实生活中的方方面面都存在密切而又复杂的联系,在现实生活中都能找寻到数学学科知识点的“踪迹”.生活性成为数学学科的显著特性之一.三角函数章节作为数学学科知识体系构建的一个“分支”,自身就具有了生活应用性的内在特性.而高中生与其他阶段学生一样,对贴近身边的现实问题充满浓厚的学习和探知欲望.因此,在三角函数章节教学中,教师发挥教学情境的情感激励作用,设置具有生活性的教学情境,让学生在浓厚教学氛围中主动开展学习探知活动.
如,在“三角函数”复习课教学活动中,教师为触发高中生自主学习探知该节课知识内容的主动性和积极性,在认真研析该节知识内容及目标要求的基础上,利用高中生在该阶段学习认知上的特性,利用数学教学情境的情感激励功效,设置“如图为一半径为3米的水轮,
水轮圆心O距水面2米,已知水轮每分钟转4圈,水轮上的点P到水面距离y(米)与时间x(秒)满足关系式y=Asin(ωx+φ)+2,求ω和A的值”具有生活应用特性的教学情境,这样,学生的情感“发展区”得到了“激活”,内在学习潜能得到了“释放”,主动探知新知内涵成为内在要求和自觉行动.
二、抓住三角函数问题的解题策略性,以题引探,培养高中生探究实践能力