公务员期刊网 精选范文 控制系统设计论文范文

控制系统设计论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的控制系统设计论文主题范文,仅供参考,欢迎阅读并收藏。

控制系统设计论文

第1篇:控制系统设计论文范文

1国内外成功应用案例研究

1.1国内应用

(1)上海截至2011年底,上海中心城快速路路网里程数稳定在141.0km,基本采用高架形式。至2009年,上海浦西地区快速路88个入口匝道中有70多个实施了匝道控制,除了武宁路实施了匝道调节控制,其他都为匝道开关控制,其中部分入口预留了汇入控制功能。浦东中环8个匝道及A1的11个匝道实施匝道控制,其中17个入口匝道为开关控制,并预留远期汇入控制功能,1个入口匝道实施自适应汇入控制,1个出口匝道实施可变车道控制。近期,在杨高路上匝道,汇入南浦大桥的入口处,浦东张扬路上匝道与进入杨浦大桥的主线,设置了挑杆信号灯控制。上述匝道控制在关联道路上布设“固定文字+可变文字”可变信息标志,在匝道入口及高架路段上设置了交通流情报信息板,目前系统运行良好。上海市快速路出入口控制系统开关控制较多,有交通引导信息/交通监控设备,电子警察设备。2005年上海快速路匝道实施控制系统后,交通量和平均车速均有一定程度的提升,特别是在内环高架内圈武夷路入口匝道实施自适应汇入控制后,更是取得了很好的控制效果,充分体现了汇入控制的优越性。试验区域主线流量提高了1.1%~23.2%;主线平均车速提高了11.1%~84.6%,主线拥堵时间减小了22.8%~76.5%,缩短了主线车辆排队长度,改善了快速路主线的交通状态。上海快速路出入口控制系统改善了快速路主线的交通状态,同时,快速路控制系统的交通信息和诱导设施均衡了交通需求,提高了快速路系统和区域路网的服务水平。(2)北京北京快速路由二、三、四、五环和11条联络线组成,长达360km,承担着全市50%以上的交通流,快速路出入口密集,平均间距仅为318m,是世界上最复杂、控制难度最大的快速路。北京快速路与呼市类似,即为地面快速路,两侧设置地面辅路,快速路出入口加减速车道较短,从辅路汇入分流。针对这一结构和特点,北京市公安交管局自主研发了快速路出入通流特性分析、快速路多节点OD建模技术和给予主辅路占有率映射算法的交通控制策略,以及城市快速路交通控制技术。基于上述技术建成的快速路交通控制系统,利用设置在快速路主要出入口的信号灯,依据对快速路主辅路流量信息的检测实施占有率控制,智能控制快速路出入口的开启和关闭。北京的地面快速路+辅路形式使得其匝道控制与上海有很大的不同。出入口控制方式包括入口开关控制、入口汇入控制、出口辅路信号控制,配有交通监控系统。北京快速路出入口控制系统有效提高了北京快速路网的承载能力、交通管控能力和城市抗风险能力,快速路网日均时速提高6.92%。

1.2国外应用

(1)美国美国采用“stop-and-go”(停-走)交通信号,控制进入高速公路主线车辆的频率。华盛顿大多数的快速路出入口匝道调节允许每次绿灯通过1辆车,最多不超过3辆,调节率大概在4~15s之间,这样的间隔可以保障进口匝道的汇入交通受到一定的阻滞,减少高速汇入时容易产生的刮擦、碰撞等事故。美国亚特兰实行固定周期式匝道调节,但是如果排队检测器检测到预设的排队长度极限值,匝道调节的速度将会被提高,周期缩短,以尽快地减少排队。在美国快速路控制系统采用需求-容量控制策略较为广泛。需求-容量控制策略是以交通量为控制参量,通过调节进入快速路的交通量,使得进入快速路的交通量与上游交通量之和不超过匝道下游的通行能力,保证主路下游交通量维持在其通行能力之内,最大限度利用快速路。华盛顿实施匝道调节后,该地区高速公路全范围内事故发生率降低30%,在Renton的I405高速公路,匝道调节使得平均行程时间减少了3~16min,匝道调节是一种比较有效地缓解交通拥挤的控制手段。(2)欧洲欧洲的高快速路出入口匝道控制一般是车队放行,每次绿灯信号放行匝道车辆数不确定,但每次最多放行的车辆数有限制,一般不超过9辆,控制策略中的红灯时长和绿灯时长都是变化的。欧洲的快速路系统大部分采用ALINEA控制算法。ALINEA控制算法属于线性状态调节,由Papageorgiou在1991年提出。它通过调整匝道调节率使得其下游主线的占有率尽量维持在理想状态,是经典控制理论的应用,现在欧洲很多国家在该算法的基础之上进行了许多不同的改进,在实际应用中也得到了很好的效果。

1.3应用小结

通过国内外的快速路出入口控制系统,可以看到出入口匝道控制是比较常用的控制方法。它通过限制入口匝道汇入主线的车流量,达到减少主线交通拥堵的目的,通过控制出口汇出辅路的交通流,使主线的交通流可以更快地离开主线。快速路匝道控制主要采用在入口匝道处及出口匝道相连辅路上设置信号灯的方式,调节进出快速路的交通流,使匝道交通流进出有度、有序,避免快速路上形成交通瓶颈。为达到此目的,在进行匝道信号控制时应从城市快速路的交通特性、控制策略、配时方法及协调效果几方面加以考虑。在出入口控制算法方面,对于在美国得到广泛应用的需求-容量差额控制方法,还存在着一些不足。由于该方法仅仅检测交通量的值,所以不能够判断快速路主线是拥挤还是自由流的状态,并且算法采用开环控制,不能把控制后的微小变化再反馈给系统进行优化,因此,往往无法达到理想的控制效果。欧洲采用的ALINEA算法研究表明,即使算法中的值在很大范围内变动,系统也能保持一个良好的性能,说明ALINEA算法的稳健性较好。此外,ALINEA算法的可移植性强,如果外部交通条件变化,只需要调整目标占有率的值,而且控制算法简单,易于实现。目前它成为实际应用中非常成功的一种单点动态控制方法,在实际中还有许多的应用对该方法进行了改进。

总之,快速路出入口控制方法的效果取决于多种因素,交通特性、道路条件、匝道分布等多种因素都会影响到控制算法的适用性。即使是同样的控制算法,其控制参数的取值往往也会在很大程度上影响控制的效果。从本质上讲,入口匝道控制是对主线交通与入口匝道交通进行调节,方案的可行性与当地道路交通条件紧密相关。呼市快速路系统和国内外其他城市的快速路相比,有自身的特点和情况,主要表现为:(1)以主辅路布置形式为主,部分路段采用高架、地下隧道、半地下路堑形式;(2)快速路网少,承载的交通流量大,主线交通流量、匝道需求将常处于饱和运行状态;(3)匝道布置间距较小,主辅路之间的合流、分流成为影响主线运行状况的一个重要因素;(4)周边路网发达,匝道车辆的可行替代路径较多。所以应该在总结国内外其他城市快速路出入口控制系统的前提下,结合呼市自身的实际情况,选择符合需求的快速路出入口的控制系统。

2快速路出入通管理控制系统设计

2.1系统目标

目前呼市快速路正在建设,出入口的现状道路基础条件、线形较好,存在着出入口控制系统实施可行性较好的地点。通过综合考虑各方面因素(科学性及实用性),应用比较成熟的技术,吸取北京上海经验,可以在呼市快速路出入口实现出入口控制,体现出入口控制的效果、优势。经过对呼市快速路网的布局和交通控制系统现状的深入分析,建立呼市快速路出入口控制系统,可实现以下目标:(1)保证主路基本畅通、辅路不至于产生严重的交通拥堵;(2)改善出入口匝道车辆的行驶秩序,确保车辆行驶安全;(3)对快速路及其关联区域进行协调控制,有效使用地面道路的容量;(4)保证大型活动、紧急事件等非常态的快速路骨架路网作用;(5)与其他系统协同,提高对道路交通的诱导能力和综合调控水平。

2.2系统功能需求

目前呼市二环线以内路网密度较大,但高峰时间交通拥堵严重,其中一个重要原因是呼市交通信息管理系统不完善,出行者无法及时查询或获取路况信息,导致交通需求分布失衡。因此,呼市快速路出入口管理与控制系统功能主要集中在几个方面:中心控制、出入口多级调控、出入口信号协调、快速路交通信息采集、快速路信息、系统关联、快速路信息查询。呼市快速路出入通管理控制系统可分为三个层次:策略层、管控层、执行层。三个层次相互协调,实现系统信息采集、多级调控、日常管理和系统关联的功能[3]。

2.3控制管理中心

管理控制中心分为硬件设备和软件设备两大部分。其中,硬件部分按功能分为数据库服务器、管理端设备、以太网传输网络设备和不间断电源(UPS)等几个部分;软件部分分为系统软件、数据库软件、数据处理软件、管理平台软件等[4]。快速路出入口控制中心局域网系统是系统集成和管理协调系统的基础平台,是一个分布式计算机平台,包括基础平台服务、分布式计算和对象服务、公共设施、共享领域服务以及应用,可以让不同的软件对象跨网络、跨操作系统进行互操作,满通信息的与查询、访问。

2.4系统控制方法和算法

根据以往研究,快速路控制系统匝道进出口的主要控制方法包括单点信号灯控制、单点开关控制、多匝道协调控制、快速路干线控制、区域控制、路由控制和不同控制方式的协调控制等[3]。目前呼市二环线快速路匝道相距较近,主线为双向六车道,沿线相交道路高峰时间交通流量大,拥堵严重。因此,针对呼市快速路交通瓶颈形成原因,快速路出、入口匝道控制主要采用在入口匝道处及出口匝道相连辅路上设置信号灯的方式,平峰时间采用单点控制,高峰时间采用整体协调控制方法,调节进出快速路的交通流,使匝道交通流进出有度、有序,避免快速路上形成交通瓶颈,并有效利用辅路容量。建议呼市快速路与常规道路信号控制综合考虑,形成快速路、区域信号控制协调控制系统,提高快速路的抗风险能力和消散阻塞的能力。进一步确保快速路系统的高速、高效、安全和舒适性。根据呼市快速路道路网设计和出入口布置形式,建议呼市快速路出入口控制算法可以结合采用改进型的ALINEA控制算法、需求-容量差额控制算法、占有率控制算法和定时控制算法。针对呼市快速路道路网不同的道路条件、交通状况,采用不同的快速路出入口控制算法,将几种控制算法相互结合,针对不同的适用条件和系统实际运行状况选择合适的快速路出入口控制算法策略[5]。

2.5出入口信号协调控制

由于快速路出入口的控制有很多的限制条件,对于不同的路段和车流量,出入口控制的效果也会有很大差异。其中对出入口控制影响最大的还是出入口是否有较多的道路空间资源可以储存出入口控制造成的排队。对于呼市部分快速路出入口间距较小的路段,将快速路出入口控制和快速路上下游交叉口控制结合起来,实行协调控制。快速路出入口协调控制从区域路网的角度上,将快速路和普通道路进行衔接和整合,制定协调控制的策略和方法,将快速路出入口和上下游交叉口控制作为一个整体控制系统,从整体路网的角度出发,制定统一的协调控制目标。从而更好地提高整个道路系统的运输效率[6]。

2.6诱导信息系统

用于快速路出入通信息,对交通流进行有效地引导分流。入口控制信息情报板能够接受匝道控制器的指令,在可变文字显示部分以不同颜色显示“匝道开放”、“匝道关闭”、“汇入调节”等匝道控制内容,以及“主线畅通”、“主线拥挤”、“主线堵塞”等交通状态信息[7]。目前呼市尚缺少交通诱导信息系统,导致交通高峰期间部分路段和区域非常拥挤,而有些道路上车流量很少,道路资源未得到有效利用。

3结语

第2篇:控制系统设计论文范文

PMM8713功能介绍

PMM8713是专用的步进电机的步进脉冲产生芯片,它适用于三相和四相步进电机。如图1所示PMM8713的引脚,Cu为加脉冲输入端,它使步进电机正转,Cp为减脉冲输入端,它使步进电机反转,Ck

为脉冲输入端,当脉冲加入此引脚时,Cu和Cp应接地,正反转由U/D的电平控制,EA和EB用来选择励磁方式的,可以选择的方式有一相励磁、二相励磁和一二相励磁,ΦC用来选择三、四相步进电机,Vss为芯片工作地,R为芯片复位端,Φ4~Φ1为四相步进

脉冲输出端,Φ3~Φ1为三相步进脉冲输出端,Em为励磁监视端,Co为输入脉冲监视端,VDD为芯片的工作电源(+4~+18V).其具体的原理框图如4-3-4所示:

4.4显示电路与键盘的选择

显示电路的用8279芯片来驱动,8279芯片分别接两排显示器,每排为4位显示,分别用来显示步进电机的实际转速与给定转速。

8279与CPU的连接框图如4-11所示:

8279芯片的具体介绍如下;

1)DB0~DB7:双向数据总线。在CPU于827数据与命令的传送。

2)CLK:8279的系统时钟,100KHZ为最佳选择。

3)RESET:复位输入线,高电平有效。当RESET输入端出现高电平时,8279被初始复位。

4)/CS:片选信号。低电平使能,使能时可将命令写入8279或读取8279的数据。

5)A0:用于区分信息的特性。当A0=1时,CPU向8279写入命令或读取8279的状态;当A0为0时,读写一数据。

6)/RD:读取控制线。/RD=0,8279会送数据至外部总线。

7)/WR:写入控制线。/WR=0,8279会从外部总线捕捉数据。

8)IRQ:中断请求输出线,高电平有效。当FIFORAM缓冲器中存有键盘上闭合键的键码时,IRQ线升高,向CPU请求中断,当CPU将缓冲器中的输入键数的数据全部读取时,中断请求线下降为低电平。

9)L0~SL3:扫描输出线,用于对键盘显示器扫描。可以是编码模式(16对1)或译码模式(4对1)。

10)~RL7:反馈输入线,由内部拉高电阻拉成高电平,也可由键盘上按键拉成低电平。

11)FT、CNTL/STB:控制键输入线,由内部拉高电阻拉成高电平,也可由外部控制按键拉成低电平。

12)TB0~3、OUTA0~3:显示段数据输出线,可分别作为两个半字节输出,也可作为8位段数据输出口,此时OUTB0为最低位,OUTA3位最高位。

13)消隐输出线,低电平有效。当显示器切换时或使用消隐命令时,将显示消隐。具体芯片理框图如4-4-1所示:

键盘的连接一般有两种方式,一种是独立式键盘;一种是行列式键盘。独立式键盘就是各个键相互独立,每个键盘接一根输入线,通过检测输入线的电平状态来确定那个键按下。这种键盘的输入线较多,结构复杂,一般适用于按键较少操作速度较高的场合。而行列式键盘是由行和列线交义组成,一般用于按键较多的场合。本次设计一共用9个键因此采用行列式键盘。具体的原理图如4-4-2所示:

图4-4-2键盘连接图

显示电路的选择

显示电路选用两排LED显示,每排分别为四位。能满足设计的要求,转速范围为0至1000。LED显示电路有两种接法,一种为共阴极,一种为共阳极。原理图如4-14所示:

4.5反馈电路的选择

应选用光电编码器作为反馈元件,光电编码器与步进电机是同轴的输出经过放大送到计算机。并通过显示器显示出步进电机的实际转速。关于光电编码器的说明如下;

4.5.1光电编码器原理

光电编码器,是一种通过光电转换将位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

图4-5-1光电编码器的原理图

根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

本次设计用绝对式编码器其原理如下:

绝对编码器是直接输出数字量的传感器,它的圆形码盘上沿径向有若干同心磁道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。目前国内已有16位的绝对编码器产品。绝对式编码器是利用自然二进制或循环二进制(格雷码)方式进行光电转换的。绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。编码的设计可采用二进制码、循环码、二进制补码等。它的特点如下:

1)可以直接读出角度坐标的绝对值;

2)没有累积误差;

3)电源切除后位置信息不会丢失。但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。

4.6电源电路设计

本次设计用了+5V、+12V电源,采用的是78系列的集成固定三端稳压管。78系列集成稳压器输出稳定,漂移小,精度也比较高。其内部也有完善的保护电路。它有风部过流保护,保证输出电流部会超出最大允许值;它有内部热保护电路,如果输出管的结温达到允许的最大值,它会知道减小输出电流;它内部还有工作区限制电路。使稳压器的工作台不进入不安全区。因此,它的可靠性高。另外,它只有三条引脚,移位输入,移位输出,移位公共端,使用起来很简单。

1.变压

电源变压器将220V的交流电压变为所需的交流电压值。因为在整流、滤波和稳压电路中有一定的压降,所以要使输出电压比所需电压高2V~3V。

2.整流

整流电路将交流电压变为脉冲的直流电压,常用的整流电路有单相半波,全波,桥式和倍压整流电路。这里采用单相桥式不可控整流电路。

3.滤波

滤波电路用于滤去整流输出电压中的波纹,一般由电抗元件组成。如要负载两端并联电容或与负载串联电感L。以及C和L组合而成的各种复式滤波电路。因为电容滤波电路简单,负载直流电压较高,波纹较小,所以我们采用的是电容式滤波。

4.稳压

稳压的作用电当电网电压波动,负载和温度变化时,维持输出直流电压的稳定。本设计采用三端集成稳压器,常用的是7800系列和7900系列。前者是三端固定正输出集成稳压器,后者是三端固定负输出极集成稳压器,整流后的输出波形与纯直流相差甚远,须经滤波才能作直流电源用。最常用的元件是电容。整流输出的电压升高时,输出的电流一面供给负载应用,一面给滤波电容充电。当整流输出电压开始下降时,电容向负载放电以维持输出电压,总的输出电压波形就平滑得多。

下面以电源+12V为例介绍一下电路的工作原理:

图4.6+12电源电路图

220V,50HZ的交流电压变压后,输出+15V左右的交流电压其频率仍为50HZ,交流信号经桥式整流电路进行全波整流,然后,经电解电容滤波。最后,经CW7805(三端固定稳压器)输出的便是一个平稳的+12V的直流电压信号。电容C4和C5的作用是滤高频波和抑制自激振荡。

4.7抗干扰设计

由于系统中不可避免会从外界引入干扰,影响系统的控制精度,使系统的稳定性变差,故采用了硬件和软件抗干扰措施。

1.干扰对微机的作用可分为四部分:

①输入系统:它使模拟信号失真,输入数据信号出错。

②输出系统:使各输出信号混乱,不能反映微机系统的真实输出量。从而导致一系列严重的后果,同时,还把现场的高电压设备与主机隔离,防止出现高频干扰现象。

③微机控制的内核,使三总线上的数据信号混乱,CPU得到错误的数据信息,使运算操作数失真。

④电源系统:我们设计所采用的芯片都由直流稳压电源供电。这些直流稳压电源都是由220伏转化而来,有可能产生波动现象。使电源的压降上升或下降,对主机运行产生干扰。

2.本次设计采用的硬件抗干扰措施有:

①在电路排列方面,模拟电路和数字电路之间集中在一起,器件之间尽量缩短距离减小寄生电容。

②在线路设计中,将所有器件的模拟地线和数字地线都区分开,两者的地线不要混乱,分别与电源地线相连。

③电源系统的干扰大部分是高次谐波,然后接稳压器件,以保持电源稳定。

④采用分散独立功能模块供电,在每块系统功能模块上用集成三端固定稳压器如7805、7812、7815、7915等稳压源,而且也减少了公共阻抗的相互耦合,大大提高了供电的可靠性。

3.程序监视系统中的抗干扰(电源部分)

WATCHDOG本身能独立工作,基本上不依赖于CPU,当电源受干扰而掉电时,WATCHDOG自动产生中断。使CPU备用电源起作用,对CPU正在执行的数据进行保护。

4.8看门狗电路

工业环境中的干扰大多是以窄脉冲的形式出现,而最终造成系统故障的多数现象为“死机”。究其原因是CPU在执行某条指令时受干扰的冲击,使它的操作码或地址码发生改变,致使该条指令出错。这时,CPU执行随机拼写的指令,甚至将操作数作为操作码执行,导致程序“跑飞”或进入“死循环”。为使这种“跑飞”或进入“死循环”的程序自动恢复,重新正常工作,就是看门狗。若程序发生“死机”,则看门狗电路产生复位信号,引导单片机程序重新进入正常运行。

此外,工业现场由于诸多大型用电设备的投入或撤出电网运行,往往造成系统的电源电压不稳定,当电源电压降低或掉电时,会造成重要的数据丢失,系统不能正常运行。若设法在电源电压降至一定的限值之前,单片机快速的保存重要数据,将会最大限度地减少损失。在掉电方式下单片机内所有运行状态均被停止,只有片内RAM和SFR中的数据被保存起来。在单片机系统可借助于一定的外部附加电路监测电源电压,并在电源发生故障时及时通知单片机(本次设计是通过引发INT0中断来实现的)快速保存重要数据,使电源恢复正常,取消掉电方式,通过复位单片机,使系统重新正常。

4.8.1MAX813L功能简介

MAX813L是美国MAXIM公司推出的微处理机系统监控集成芯片,该芯片的价格低,减少了器件个数,所构成的电路性能更可靠,MAX813L提供如下四种功能:

1.上电、掉电以及供电电压下降情况下的复位输出,复位脉冲宽度典型值为200MS。

2.独立的看门狗输出。如果看门狗在1.6S内未被触发,其输出将变为低电平。

3.1.25V门限值检测器,用于电源故障报警、电池低电压检测或+5V以外的电源的监控间[6]。

4.低电平有效的手动复位输入。

4.8.2看门狗电路各引脚功能

1.手动复位输入端(MR):当该端输入低电压保持140ms以上,MAX813L就输出复位信号。输入端的最小输入脉冲宽要求可以有效的消除开关的抖动。

2.工作电源端(VCC):接+5V电源。

3.电源接地端(GND):接0V参考电平。

4.电源故障输入端(PFI):当该端输入电压低于1.25V时,5号引脚输出端的信号有高电平变为低电平。

5.电源故障输出端(PFO):电源正常时,保持高电平,电源电压变低或掉电时,输出由高电平变为低电平。

6.看门狗信号输入端(WDI):程序正常运行时,必须在小于1.6s的时间间隔内向该输入端发送一个脉冲信号,以清除芯片内部的看门狗定时器。若超过1.6s该输入端收不到脉冲信号,则内部定时器溢出,8号引脚由高电平变为低电平。

7.复位信号输出端(RST):上电时,自动产生200ms的复位脉冲:手动复位端输入低电平时,该端也产生复位脉冲。

8.看门狗信号输出端(WDO):正常工作使输出保持高电平,当WDI端在1.6S接收不到信号时,该端输出信号由高电平变为低电平。

如图5-6给出了MAX813L在单片机系统中的应用电路图。此电路可以实现上电,瞬时掉电以及程序运行实现“死机”时的自动复位和随时的手动复位;并且可以实时的监视电源故障,以便及时地保存数据[6]。

本电路巧妙的利用了MAX813L的手动复位输入端。只要程序一旦跑飞引起程序“死机”,WDO端电平由高到低,当/WDO变低超过140ms,将引起MAX813L产生一个200ms的复位脉冲(本次设计中将MAX813L的RET端同时8031、8155的复位端RESET相连,使之同时复位)。同时使看门狗定时器清0和使引脚变成高电平。也可以随时使用手动复位按钮使MAX813L产生复位脉冲,由于为了产生复位脉冲端要求低电平至少保持140ms以上,故可以有效的消除开关抖动。

该电路可以实时的监控电源故障(如掉电、电压降低)。图5-6中R1的一端接未经稳定的直流电源。电源正常时,确保R2上的电压高于1.6V。当电源发生故障,PFI输入端的电平低于1.25V时,电源故障输出端电平由高变低,引起单片机中断,CPU中断相应服务程序,保护数据,断开外部用电电路等。

第5章算法的设计:

算法对于步进电机调速系统设计是一个相当重在的环节,因为只有确定了算法之后才能对步进电机的速度进行准确的控制,并时也能达到精确的调速目的。同时算法也是编写软件的前提与基础。控制算法有多种,常用的两种算法是PID和模糊控制算法。

PID控制与模糊控制是两种常用的控制方法,但它们还存在一些不足,如一般PID控制容易产生超调、模糊控制的稳态精度不高,在这两种控制方法基础上进行改进,可产生多种更好的控制方法。本文采用的复合PID控制算法和带动态补偿的模糊控制算法克服了以上缺陷,取得了较好的实验效果。

5.1PID控制算法

PID调节的实质就是根据输入的偏差值,按比例、积分、微分的函数关系,进行运算,将其运算结果用以输出控制,将基本PID算式离散化可得到位置型PID控制算法,对位置型PID进行变换可得到增量型PID控制算法。对控制精度要求较高的系统一般采用位置型算法,而在以步进电机或多圈电位器做执行器件的系统中,则采用增量型算法。

PID是一种工业控制过程中应用较为广泛的一种控制算法,它具有原理简单,易于实现,稳定性好,适用范围广,控制参数易于整定等优点。PID控制不需了解被控对象的数学模型,只要根据经验调整控制器参数,便可获得满意的结果。其不足之处是对被控参数的变化比较敏感。但是通过软件编程方法实现PID控制,可以灵活地调整参数。,尽管近年来出现了很多先进的控制算法,但PID控制仍然以其独有的特点在工业控制过程中具有相当大的比重,且控制效果相当令人满意。

连续PID控制器也称比例-积分-微分控制器,即过程控制是按误差的比例(P-ProportionAl)、积分(I-IntegrAl)和微分(D-DerivAtive)对系统进行控制,其系统原理框图如图5-1所示:

它的控制规律的数学模型如下:

\*MERGEFORMAT\*MERGEFORMAT(5-1)

或写成传递函数形式:

\*MERGEFORMAT(5-2)

式中,e(t):调节器输入函数,即给定量与输出量的偏u(t):调节器输出函数。

Kp:比例系数;

T:积分时间常数;

T:微分时间常数。

将式(2-1)展开,调节器输出函数可分成比例部分、积分部分和微分部分,它们分别是:

⑴比例部分比例部分的数学表达式是\*MERGEFORMAT,p在比例部分中,Kp是比例系数,Kp越大,可以使系统的过渡过程越快,迅速消除静误差;但Kp过大,易使系统超调,产生振荡,导致不稳定。因此,此比例系数应选择合适,才能达到使系统的过渡过程时间短而稳定的效果。

图为比例调节器

(5-3)

比例调节器

其中:U控制器的输出

\*MERGEFORMAT比例系数

E调节器输入偏差

第3篇:控制系统设计论文范文

PAS200控制系统由控制网络、控制器模块和I/O模块构成,如图1系统结构图所示。工程师站软件组态后通过控制网络将组态的相关信息下载到控制器,控制器运行时加载组态内容。操作站通过控制网络获取连接在各个I/O模块上装置的运行情况,实时监测并进行现场报警【5】。PAS200控制系统冗余的核心部件是控制器模块。控制器采用模块化架构,由电源、控制器、通信卡等构成。对下,通过两路冗余的RS485总线和I/O模块进行数据通信;对上,通过两路冗余的高速以太网实现数据传输。控制器之间通过背板总线进行冗余数据的交换。正常情况下,主控制器和从控制器同步刷新输入数据、执行程序。但只有主控制器进行输出I/O设备的控制。从控制器不断地监测主控制器状态。如果主控制器出现故障,从控制器立即接管对输出I/O的控制,从而实现对系统的冗余控制【6】。

2、系统硬件设计

PAS200冗余控制系统中控制器硬件由电源卡件、控制器卡件、通信卡件、底座等4部分组成。其中,控制器卡件架构如图2所示,其采用AMDGeodeLXProcessor高性能、低功耗嵌入式专用处理器,主频500MHz,在板包含DMA控制器、中断控制器、定时器、实时时钟、256MDDR内存。外部接口有2个串口、3个10/100M自适应网口。其设计充分考虑了恶劣环境下的应用,采取了多种措施,确保系统在各种应用环境中均能稳定、可靠、高效的运行。它采用工业级器件,高智能布线系统,运用防静电及抗干扰电路,尽可能的降低了功耗,提高了可靠性及宽温操作能力。

3、控制器冗余

3.1主从冗余分配

PAS200冗余控制系统中的冗余控制器包括一个主控制器和一个从控制器。主从控制器角色的分配按控制器冗余上电启动两种可能出现的情况进行。一种是两个系统同时上电;在上电后,两个系统将通过同步通道发送信息来相互检测。在一个可配置的时间内一个系统检测到另一个系统,另一个系统回复并且在各自的日期和IEC程序的有效性的基础上,两个系统将协商他们的角色(主或从)。协商首先是根据操作站的联机信息进行主从分配,失败之后再根据自定义条件进行分配。如果必要会建立一个从主系统到从系统的IEC程序同步。然后,两个系统将运行此IEC程序。另一种是一个系统正在运行且另一个系统上电,此情况出现在一个系统掉电并重启的时候。当前,一个系统运行在独立模式且另一个系统上电。已经在运行中的系统成为主系统,上电系统将与主系统程序同步并成为从系统。主系统将在两个任务执行间隙短暂停止,与从系统同步数据。然后,两个系统都执行IEC程序同步。

3.2主从冗余实时通道

PAS200冗余控制系统中的两个控制器都基于Linux+RTAI+RTnet软件平台运行实时系统,并且通过一个实时同步通道同步。实时同步通道基于RTnet实时以太网实现。RTnet是一个基于RTAI的实时网络子系统,其利用标准以太网的硬件设备,支持常用的网络接口控制芯片组,实现了时间确定性的UDP/IP、ICMP和ARP协议,为实时系统的开发提供了一个稳定、实时性高的软件开发平台。这样,通过RTAI及其之上的RTnet就构建了一个实时通道在主从进行数据传输。两个完全相同的控制器并行运行,假设一个系统出现故障,那么另一个系统可以接管,接管使得两个系统紧密的同步在一起。另一个通信通道用于同步实时系统间的时钟源,使两个系统上的调度程序可以选择相同的任务来运行。

3.3主从冗余同步

冗余控制器同步按内容主要划分为任务同步、IEC程序同步、数据同步、时钟同步、RS485通信同步几大部分。其中,任务同步是由主系统的调度程序开始,任务号和全局变量数据发送到从系统;从系统响应一条回复信息;当一个任务完成后,第二个任务同步开始执行。而在RS485通信同步点主系统和从系统都需等待他们的触发信息,此触发信息来自在达到同步点后的主系统。当从系统达到RS485通信同步点后,如果不能收到来自主系统的同步信息,从系统将检测系统状态是否发生变化,如果系统状态未发生变化则报错。当主系统达到RS485通信同步点后,如果不能收到来自从系统的同步信息,主系统记录错误并正常通信。

4、RS485通信冗余

控制器通信扩展卡上有两路RS485通信,系统启动阶段通过诊断获取两路RS485通信状态。如果主控制器上两路RS485均能正常通信。主控制器则选择其中一路RS485作为通信链路,另一路RS485作为诊断链路;从控制器两路RS485都进行监听。如果主控制器上一路RS485能正常通信,另一路RS485不能正常通信。主控制器以能正常通信的那路RS485作为通信链路;从控制器两路RS485都进行监听。如果主控制器上两路RS485均不能正常通信,且从控制器上RS485能正常通信,则主从控制器进行切换。运行阶段,如果主控制器两路RS485通信正常工作,从控制器两路RS485通信就监听。如果主控制器通信链路失败且另一路诊断成功,则切换诊断为通信链路。如果主控制器通信链路失败,另一路诊断失败,且从控制器监听成功,则主从切换。

5、结束语

第4篇:控制系统设计论文范文

燃气发电机组的空燃比控制系统主要由控制器、传感器、燃气阀、空气阀、混合器等部分组成。

1.1传感器系统过程数据的采集

通过氧传感器、转速传感器、进气压力传感器等传感器实现。氧传感器是系统中重要的传感器之一。在空燃比控制系统中,最常见的反馈参数是排气中氧的含量,它直接反映出燃气燃烧之后留下了多少氧气。因为燃烧室内大部分的氧气,或者说所有的氧气均来自于空气,所以排气氧含量是空燃比的直接反映。发动机转速的稳定性对发电机组输出交流电的频率稳定性影响较大,而频率的稳定性又是衡量发电机组输出电能质量的主要指标之一。转速传感器多为磁电式传感器,安装在凸轮轴上,由转速传感器内的永磁体、线圈和发动机飞轮齿轮共同作用产生一个交流电压信号,该信号经采样电阻和放大器处理后,输入到控制器CPU内。

1.2燃气阀及空气阀

燃气阀及空气阀是带步进电机的电动调节阀,也是系统的执行器。控制器利用PWM驱动步进电机,进而调节阀门开度。

1.3空燃比控制器空燃比控制器是空燃比控制的“大脑”。在本系统设计中,空燃比控制器基于DSP处理器设计,由检测电路、空燃比控制电路和通讯接口电路等部分构成。

2空燃比控制策略

在空燃比控制系统中,系统的控制目标是要使稳态下空燃比的平均值在理想值附近,而且在突加突卸负载造成空燃比偏离理想值时,系统能迅速响应,将空燃比控制在理想值附近。

2.1RBF神经网络

整定PID控制策略在工业控制中,PID控制器应用广泛。由于发动机的空燃比受进入气缸的空气量转速、负荷、温度、气体燃料喷射器的响应速度和喷度等多种因素的影响,所以采用PID控制,根据反馈实时调整进气量,使之达到精确控制。人工神经网络是一种在生物神经网络的启示下建立的数据处理模型。其中径向基函数(RBF)模拟了人脑中局部调整相互覆盖接受域的神经网络结构,能以任意精度逼近任意非连续函数,是一种局部逼近网络,收敛速度快。本设计采用并行控制策略来实现发动机空燃比的控制,前馈控制采用RBF神经网络控制器,反馈控制则采用PID控制器。前馈控制及时快速响应,实现发动机的逆动态模型;反馈控制则保证系统的稳定性,抑制干扰信号对系统的扰动。

2.2仿真实验

本文采用MATLAB软件Simulink工具箱进行燃气发电机组空燃比控制系统仿真。燃气发电机组空燃比控制系统采用常规PID控制的仿真,通过对比可以发现:在稳态时,与常规PID相比,并行控制的稳态误差小,空燃比基本能稳定在理论空燃比附近;在动态时,与常规PID相比,并行控制的超调量小,即使在加入干扰的情况下,超调量δp也可控制在20%以内。

3结语

第5篇:控制系统设计论文范文

本文对温度、湿度两个显著影响温室作物生长的参数进行深入分析研究,构建的温湿度模糊控制系统方案如图2所示。图2中,T和H分别为模糊控制系统输出的温室环境温度和湿度值;T1、H1分别为根据专家经验给出的农作物生长最佳的温度和湿度值;eT1、eH1分别为给定值与温室环境的实际测量值的偏差;ecT1、ecH1分别为温湿度偏差随时间的变化率。

2温湿度模糊控制器设计

2.1输入与输出变量的模糊化

根据温室大棚的实际状况,以温湿度偏差及其偏差变化率为输入变量,各输入变量的模糊化信息如表1所示。结合研究对象实际情况,既考虑控制规则的灵活性又兼顾简单易行。表1中,4个输入变量模糊集均取为A,A为{NB,NS,ZE,PS,PB};模糊论域均取为B,B为{-4,-3,-2,-1,0,1,2,3,4}。模糊控制器的输出控制变量为前窗、天窗、后窗、遮阳帘、通风机、加湿器和加热器。这7个变量均为开关量,只有开和关(0/1)两种状态,分别用符号u1、u2、u3、u4、u5、u6、u7表示这7个变量。

2.2隶属函数的确定

由于三角形隶属度函数在输入值变化时比正态分布或高斯型具有更高的灵活性[6],因此本研究中温湿度偏差与偏差变化率均选取三角形隶属度函数。图4为各输入变量的隶属度函数,选择的模糊集宽度为4。因为宽度过小会造成部分区间空缺,可能找不到相应的控制规则,收敛性不好;宽度过大会造成控制规则的重叠部分过多,相互间影响加大并且响应速度也变慢[7]。根据隶属度函数对输入变量量化为9个等级,其相应的隶属度赋值如表2所示。

2.3模糊控制规则的制定

模糊控制规则的形成实质上是把操作者的经验或专家的知识和经验进行凝练得到的若干条模糊控制规则[8]。经对实际温室控制系统的研究,发现温湿度间存在一定的耦合性,即当通过某一执行机构改变温度(湿度)时湿度(温度)也会发生变化,因此在制定模糊控制规则时就要渗透解耦的思想。基于此,对7种执行机构的开关状态做如下考虑:u1、u2和u3每打开一个设备降温和降湿效果增强一点,但速度较慢;u5开通后其降温和降湿速度明显比u1、u2、u3快;u4降温作用明显,对湿度基本无影响;u6主要起加湿作用,降温为次要作用;u7主要为增温作用,降湿为次要作用。研究中制定了温度与湿度之间、温度变化率与湿度变化率之间的两个模糊控制规则表,在此仅列出温度与湿度之间的模糊控制规则,如表3所示。表3中,U为u1到u7这7个变量的开关状态,开用“1”表示,关用“0”表示。

2.4反模糊化

模糊控制器输出的是模糊语言不同取值的一种组合,由于被控对象只接受一个精确的控制量,因此需要从组合中判决出一个精确的控制量,这也就是反模糊化的过程[9]。常用的判决方法有重心法、最大隶属度法和中位数法等,本研究采用重心法计算模糊控制输出的精确控制量。其具体表达式为u'=∑nj=1ωjμ(ωj)/∑nj=1μ(ωj)(1)其中,n为模糊变量个数,ωj为模糊变量,μ(ωj)是对应模糊变量的隶属度。本系统反模糊化的具体过程:首先温湿度误差或其误差变化率经量化后得到相应的量化等级,根据量化等级查询各个执行机构在控制规则表中对应的控制规则并使其激活。然后,由式(1)计算各个执行机构的输出值,计算结果等于0.5时,执行机构保持原来状态;计算结果大于0.5时,执行机构开;计算结果小于0.5时,执行机构关。基于这种思想,可建立各执行机构的模糊控制查询表,放在内存中,编写相应的PLC程序即可实现模糊控制器对执行机构的实时控制。

3温湿度模糊控制PLC程序设计

温湿度模糊控制PLC程序包括输入量的采样与模糊化程序、量化等级程序、模糊控制查询程序、执行机构控制程序和预警程序等[10],在此仅介绍有关输入采样、误差的计算和模糊控制查询的部分程序。本研究是在STEP7编程环境下完成的模糊控制程序。

3.1输入量采样和ET/EH计算程序

研究中应用的温湿度传感器的变送单元分别取0~50℃、0~100%RH,线性对应电流均为4~20mA,因此在编写PLC程序前需把温湿度的值与PLC中的数字量关系建立起来。具体过程如下:以温度为例,用I表示电流值,T表示温度值,X表示实时温度转换为PLC中的数字量值。由于0~50℃与4~20mA对应,4~20mA又与PLC中的数字量为6400~32000对应,因此可得曲线方程如式(2)与式(3)所示。根据式(4)即可计算0~50℃对应PLC内部的数字量值。如22℃对应数字量值为17664。同理,可求得湿度值与PLC中数字量的对应关系如式(5)所示。其中,H表示湿度。下面以温度为22℃和湿度为70%RH的情况编写相应的PLC程序,70%RH对应的数字量为24320。

3.2模糊控制查询程序

由反模糊化得到的模糊控制查询表实质上是一个9×9的二维数组,存在以VW200开始的81个字单元中。在此把数组的首地址指针设定为VD48,根据(VW20×9+WV18)×2即可计算偏移值,在查询表中定位并把相应值赋予WV28。

4系统实际运行测试

控制系统投入运行后,任选某一天对控制效果进行实际测试。测试时的起始温度和湿度分别为32℃和52%RH,控制设定值分别为22℃和70%RH。对温湿度采样时间间隔均为5min,根据采集数据绘制的曲线如图5所示。由图5可知30min左右时温湿度值均达到设定值,再经10min左右温湿值即达到预设的稳定状态值,达到了较满意的控制效果。控制系统达到稳态的时间可通过增减有关设备进行调节。

5结束语

第6篇:控制系统设计论文范文

关键词:大型空分;后备系统;工程设计优化

1后备系统低温管道常规设计概述

随着国民经济的快速发展,空分装置的建设规模越来越大,特别是目前煤化工装置配套的空分装置,这些装置一般都要求空分装置在事故状态下其后备系统能连续稳定的提供气体。所以该类空分装置后备系统的液体贮槽和后备低温泵也配备的越来越大,贮存在贮槽中的低温液体产品通过贮槽下部的送液管经低温后备泵加压汽化后送至后续化工装置,其流程图见图1。低温液体贮槽的送液管道常规设计为不锈钢管道由贮槽内槽底部穿出内槽,在外槽外壁开孔后水平送出,贮槽外露部分送液管道用焊接有膨胀节的不锈钢保冷套筒内部充填珠光砂保冷,图2为液体贮槽常规的外接管道形式(管道未保冷)。通常贮槽供货商与用户的设计供货分工界限为贮槽外送液体管道上的送出截止阀,外露的低温液体管道通常用泡沫玻璃或聚异氰尿酸脂(PIR)等耐低温的绝热材料进行保冷后接至后备低温泵,图3为液体贮槽外接管道保冷后与低温后备泵的常规连接形式,贮槽至低温泵间阀门的保冷随管道同时进行。

2大型低温液体贮槽送液管道常规设计的问题和不足

大型特大型煤化工空分装置往往设置大型低温液体贮槽,一般容积都在1000m3以上,2000m3、3000m3已不鲜见,低温液体贮槽的送液总管的直径往往都在DN150以上,国内某项目60000等级的空分项目配套的1500m3液氧贮槽的外送液氧总管直径为DN200,新疆某煤制油项目100000等级的空分项目配套的两台2500m3液氮贮槽的外送液氮管也是DN200,并且全部都设置为双路送出,充分考虑了供液系统的安全性。如此大规格的低温液体管道若采用常规布置设计和保冷,即出贮槽后的低温管道到后备泵全部采用泡沫玻璃保冷,由于其密度为180kg/m3,施工后管道附加荷载大,且泡沫玻璃的导热系数为0.06W.m-1.C-1,为珠光砂的两倍,其保冷受现场施工质量的影响,并且管道上的阀门及仪表和排液管线接口在保冷施工中如处理不好,其保冷材料对接的缝隙部位往往会成为薄弱环节,在设备实际运行过程中经常会产生跑冷现象(有些用户现场用PU硬质聚氨酯泡沫发泡保冷,虽然聚氨酯泡沫导热系数低,通常≤0.027W.m-1.C-1,但由于长期在低温场合下使用宜冷脆,现场发泡的施工工艺受北方冬季寒冷气温的影响较大,并且石油化工设备和管道隔热技术规范(SH/T3010-2013)明确规定其使用温度为-65℃-80℃,所以该工况应避免使用。如果工程布置中后备泵距离贮槽较远,其中间管道的跑冷损失更大,严重时会导致后备泵汽蚀,所以用户往往要求贮槽至后备泵的低温管道采用真空管道,但真空管道价格高,使用若干年后还会存在真空度下降,导致用户现场重新保冷。

3大型低温液体贮槽外部管道的优化设计思路

为了避免上述问题,设计时应将贮槽外的低温管道与后备泵的保冷整体考虑,工程设计时应将上述管道、阀门等都设计在后备泵的保冷结构内,即低温贮槽外部需保冷的低温工艺管道和后备泵整体设计在一个小冷箱内,则上述管道和低温泵的保冷可整体采用珠光砂,其后备系统冷量损失可减小到最低程度,此设计特别适用于后备低温泵兼作空分冷箱备用泵的大型煤化工空分装置。

4后备系统保冷工程设计优化实施案例

我公司在内蒙某煤化工项目工程设计中将后备低温泵的工艺管道与贮槽送液管道整体设计在一个保冷箱内,管道既整体美观,冷量损失又小,此外泵后的回液和回气管道也可利用冷箱内空间布置。此项目液氮、液氧贮槽均为500m3,内筒直径φ8000mm,外筒直径φ10300mm,为了预留出泵与贮槽间管道的安装空间,贮槽基础净空设计为2.5米,基础顶标高3.15米。低温后备泵的流量为52000m3/h,泵进液管道口径为DN150,泵后液体回流管道口径为DN100,回气管道口径为DN40。此外,设计时在泵前进液水平管段上设置了DN15的虹吸管线,此管线可利用管道中液体与气体的密度差将汽化后的气体虹吸至内槽气相,使泵前液体处于动态,便于泵体更快地冷却,除后备泵进液管道是向泵入口上坡外,其余管道水平方向上均有向贮槽上坡的布管设计要求,且泵后回气管路的坡度最佳为45°。上述几个管道在贮槽内槽上的开孔部位不同,但其出贮槽的位置均设计在泡沫玻璃砖绝热层外缘与外槽内壁之间的基础部位(此空间长度有840mm),管道在此夹层利用自身走向的改变增加柔性,来减小管道的二次应力,可取消贮槽原有设计中管道上的膨胀节。管道需下穿贮槽基础至后备泵冷箱,管道下穿时需设计在保冷套筒内,此设计方案需土建专业配合基础开孔设计。贮槽基础设计时其开孔顶面需预埋钢板来焊接固定保冷套筒,并起到封闭保冷套筒与基础之间缝隙的作用,套筒顶面稍高出基础上的细砂混凝土层,并注意施工时防止细砂混凝土等杂物落入套筒内部,影响套筒保冷效果,保冷套筒设计为腰形,截面尺寸长度为1550mm,圆弧半径为R550mm,高度为1350mm,保冷套筒考虑安全因素宜全部采用不锈钢材料,筒底板采用不锈钢板与上穿工艺管道焊接后将筒体封闭,与贮槽同时充填低密度、低导热系数的干燥珠光砂,与贮槽外筒构成一个整体保冷结构,套筒下面的工艺管道及后备泵单独制作保冷箱并充填珠光砂保冷,图4为该项目中的贮槽基础开孔方位和尺寸,结构梁的设计应避开开孔位置。需要特别注意的是此设计方案要求管道布置专业与土建专业密切配合,开孔方位及尺寸条件要做到准确无误,土建施工图经管道布置专业确认无误后方可现场施工。

5空分装置后备系统工程设计的发展方向

第7篇:控制系统设计论文范文

论文关键词:控制,干扰

 

“控制包括三个基本步骤:1)确立标准;2)衡量成效;3)纠正偏差。为了实施控制,均需在事先确立控制标准,然后将输出的结果与标准进行比较;若现有偏差,则采取必要的纠正措施,使偏差保持在容许的范围内。【1】”造成这种偏差的主要原因就是干扰,所以,要设计一个优良的控制系统,设计者首先要能够对实现该控制系统可能受到的干扰因素进行全面而准确的判断,然后才能想办法“采取必要的纠正措施”。如何全面而准确的判断出一个控制系统可能受到的干扰因素就尤为重要。实际上,“什么才是干扰因素”这一问题在通用技术课程教学中老师们还存在着很多疑惑,例如,在一次公开课上,授课教师让学生把一张纸折叠后,用吸管吹向天花板,课堂上有的学生吹的高,有的学生吹的低。老师在总结时说,“叠纸的形状、吹力的大小和方向、空气的阻力等都是影响叠纸吹高要考虑的主要因素,这些就是干扰因素”。这一说法在听课老师中引起了很大的反响,大家都在议论纷纷。这一说法是对是错呢?再如教材中出现的:电冰箱、空调等电器在使用过程中的干扰因素有那些;热水器水温控制系统中的干扰因素有哪些;干扰因素都是有害的吗等问题初中物理论文,对于我们这些非本专业的老师来说,解释起来都具有一定的困难。要从根本上解决这一问题,就得先要来了解什么是“干扰”的问题。

关于什么是控制系统中的干扰因素的问题的界定有多种说法:如:在控制系统中,除输入量(给定值)以外,引起被控量发生变化的各种因素称为干扰因素【2】;在实际的控制系统中,常常会有一些变化不定的因素对系统的行为造成不利的影响,这种有害的因素我们称其为干扰【3】;对于一般的控制系统来说,多余的、不需要的、强制的“输入”便称为系统的干扰。另一方面,如果削减系统生存所必需的输入也是干扰;对系统来说,不仅输入端有干扰,输出端同样有干扰,如制约输出或强制作过量的输出等都是干扰,制约输出,如企业的产品受市场制约而减少了销量,强制过量输出如“竭泽而渔”,系统的输入和输出的“过与不及”都是干扰;对于复杂控制系统而言,干扰是不可避免的,因为复杂系统由多层次、多品种的诸多子系统构成,各子系统都有其自由度和相对独立性,各子系统间的输入和输出不可能配合得尽善尽美,必有多余和不足的输入和输出,这些多余和不足的输入和输出就成了系统的干扰;对于社会系统来说,其输入是自然界给予的一切,人们从自然界获取空气、阳光、雨露,及生产生活所需要的一切资源,这是社会系统“输入”的需要,但自然界会“发威”,各种自然灾害是社会系统所不需要的,但生活在地球上的人们不得不接受自然灾害的干扰,而社会系统对自然界的“输出”,一方面是人们对自然界的“改造”,另一方面是废物的排放,废气、废水、废渣、垃圾排向自然界,这是自然界所不需要的,但人类强迫自然界接受这些废物,就是对自然界生态平衡的干扰【4】。

由以上的论述可知,判断什么是干扰要从两方面来看,一方面初中物理论文,对于控制系统的整体而言,属于系统之外的,是多余的、不需要的、强制的“输入”便称为系统的干扰;另一方面,对于控制系统的部分而言,如果前一子系统的输出与下一子系统所需要的输入不匹配,就会造成下一子系统的输入的多余和不足,这种多余和不足的输入和输出就成了系统的干扰中国期刊全文数据库。由此可见,叠纸的形状是物体的结构设计问题,通过改变叠纸的形状可以减少叠纸飞行时的阻力,吹力的大小和方向是控制的输入问题,这两个因素虽然是影响叠纸飞行高度的主要因素,但不属于我们的干扰的界定范围。所以不是干扰因素,把系统的设计问题和对系统所产生的干扰混淆的案例还很多,如:。对于电冰箱、空调等电器在使用过程中的干扰因素分析,门的开启、环境温度的变化、电压的变化等都是属于系统之外的可能引起被控量发生变化的因素,所以这些因素就是这两个控制系统的干扰因素。一般情况下,对于简单控制系统较为规范和严谨的判断方法是:先要确定所要设计的控制系统,然后对所设计控制系统本身的各个环节进行具体分析,找出各环节可能受到的干扰因素(属于系统之外的,是多余的、不需要的、强制的“输入”),再分析这些干扰可能会对系统的输出造成什么样的影响,哪些是必须考虑的,那些是可以忽略的,那些是要综合考虑的,那些事要独立考虑的,最后整理出系统设计所要考虑的主要的干扰因素,这样的分析才会针对性更强,对控制系统如何克服这些干扰的设计帮助更大。以下对热水器水温控制系统的干扰因素的分析过程为例进行说明,第一、根据设计目的画出控制分析方框图(图一),分析方框图并不是最终的控制方框图,控制方框图是控制系统设计的结果,控制分析方框图是控制系统设计的过程,就像设计草图一样,是用来进行设计分析用的。

第二,对控制系统的各环节进行分析。在这个控制系统中,可能受到的干扰因素有,在输入端,电源电压的波动、由于开关灯元件的原因输入电压可能降低;在控制器和执行器部分初中物理论文,随着使用时间的变化,控制装置的不稳定、各种元件、加热装置的老化等;热水箱的大小、保温性能的好坏、热水箱深浅、水的散热面大小、水箱装水的多少等;在输出部分,周围空气的流动、气温的高低、用水量的快慢等。以上这些因素都是影响温度的干扰因素。第三,根据对干扰因素的分析,选择合适的控制方法来克服这些干扰对输出的影响(比如最简单的方法就是采取终端反馈的方式,当然,如果对水加温的时间有要求的话,这种控制方法就不能完全克服所有的干扰了,如图二)。

对于“在有些情况下,却可以[i]利用干扰因素实现某种目的【1】”这一说法也没有错,因为这种“干扰”是我们所要设计的控制系统的输出量,这一输出的最终目的是想使另一控制系统的目标不能实现,这种“干扰”对于第一个控制系统来说不是干扰而是输出,对于第二个控制系统来说这是系统需要克服的干扰。通过分析可以看出,就控制系统而言,干扰一定是有害的,它是控制系统要实现控制的最终目标需要考虑和克服的

分析和判断控制系统可能存在的干扰因素的最终目的,是为了使我们设计的控制系统“在干扰影响控制之前就进行必要的防范和修正,”使得控制系统能够“对控制对象进行有效控制以减小乃至消除偏差。”【5】所以要准确判断一个控制系统所存在的干扰因素,还要结合系统所要实现的最终目标进行综合考量,搞清楚这种干扰产生的原因、可能对控制系统所造成的后果和它将对控制系统的哪个环节产生影响等,这种干扰因素的分析才对我们进行控制系统的设计有所帮助。

参考文献:

【1】《控制论》(美)维纳著;赫季仁译;北京;北京大学出版社,2007.12

【2】《技术与设计2》主编:顾建军江苏教育出版社2008.12

【3】《技术与设计2》主编:刘琼发广东科技出版社2007.7

【4】《系统论信息论控制论》马丽扬河北:河北人民出版社,1987.2

【5】《机械控制入门》雨宫好文(日)著王献平译科学出版社2001.4

第8篇:控制系统设计论文范文

【关键字】屏蔽门控制系统功能设计技术

中图分类号:TM921.5文献标识码: A 文章编号:

一、地铁屏蔽门控制系统、基本构成以及运行模式

1、地铁控制门系统

地铁屏蔽门系统是一个典型的机电一体化产品,包块机械和电气控制部分,其沿站台边缘布置,将车站站台与行车隧道区域隔离开,降低车站空调通风系统的运行能耗。同时减少了列车运行噪音和活塞风对车站的影响,防止人员跌落轨道产生意外事故,为乘客提供了舒适、安全的候车环境,提高了地铁的服务水平。

2、地铁屏蔽门控制系统的基本构成

地铁屏蔽门控制系统的基本组成包括硬件组成和软件组成。其硬件组成主要包括就地控制盘LCB、中央接口盘PSC、车站紧急控制盘PEC、配电屏、驱动ups、控制ups、蓄电池屏、、屏蔽门状态报警盘、屏蔽门操作控制开关等。软件组成主要包括电机控制、门宽参数自学习系统、障碍物检测系统、防挤压系统、开门程序控制系统、关门程序控制系统、总线控制系统等。如图:

3、屏蔽门控制系统运行模式

正常运行模式分为两种:

(1)在列车配备自动驾驶系统的情况下,来自系统级(列车信号系统)的控制。

(2)在列车无自动驾驶系统的情况下,信号系统发出“列车占位”信号,由授权的操作人员在站台控制面板(PSL)上控制屏蔽门的操作为站台级控制的正常运行模式。

3.2非正常运行模式

(1)故障运行模式

在以下故障情况发生时,进入故障运行模式:

a.滑动门关闭时探测到障碍物。

b.列车超过允许停车精度,列车门与滑动门错位。

c.个别滑动门不能打开。

d.控制系统发生故障。

(2)紧急工作模式

在以下故障情况发生时,进入紧急工作模式:

a.列车在隧道罩发生火灾。

b.车站内发生火灾。

c.其它以外突况。

(3)测试工作模式

当系统安装或维修时采用的工作模式。

二、地铁屏蔽门控制系统功能及其作用

电气设计中采用控制部分和监视部分分开,其中控制部分采用硬线连接,监视部分采用总线连接。

1、控制功能。在任何运行模式中,接收上级发来的各种命令,上报信息以及对各屏蔽门单元进行自动控制,完成相应的动作。

2、监视功能。具有监视功能的设备包括两部分:中央接口盘(PSC)和远方报警盘(PSA)。主要完成站台每侧屏蔽门单元相关信息的集成,主要有以下功能:(1)收集系统测试(PST)、手动解锁、就地控制(LCB)、车站紧急操作装置(PEC)、站台控制PSL的状态信息;(2)通过现场总线通信收集全部门控单元(DCU)信息;(3)允许对DCU参数进行修改;(4)存储屏蔽门故障诊断信息以及正常系统运行记录;(5)收集驱动电源信息。

3、屏蔽门控制系统作用

从屏蔽门控制系统的作用的角度来讲,屏蔽门系统的控制分就地级控制、站台级控制、列车信号系统级控制、火灾模式级控制。就地级控制是每个活动门模块可以独自机械,电气操作;站台级控制,列车信号系统级控制,火灾模式级控制都是通过PSC里的继电器控制活动门模块的运行,PSC是根据各级控制发出的命令对活动门模块进行操作、监视,是各级控制的集合体。优先级是就地级,其次是火灾模式级,然后是站台级,最后是列车信号系统级。火灾模式级是在车控室操作屏蔽门系统,支链打开屏蔽门。

现在有两种PSC设计方法,一种是把电气系统(主要是处理硬线命令的继电器组)和监控通讯系统组合在一个模块里,成为一个黑盒子。黑盒子的输出输入接口有电源,现场总线网络(监视网络),各级控制的命令、状态的硬线端口,门单元的命令、状态的硬线端口。可以既控制屏蔽门运行,也监控屏蔽门状态、故障,并把相关信息存贮起来。一种是电气系统和监控通讯系统各自独立,把电源,各级控制的命令、状态的硬线端口,门单元的命令、状态的硬线端口集合一起,把现场总线网络(监视网络)独自成一体,与各门单元,PSC里各重要继电器组有接口,从而全面监控系统,电气系统和监视网络收集的若干重要状态如“开门”状态,若干重要故障如“系统故障”通过PSC的指示灯面板反映。首先这样电气和监控通讯两个系统不会相互影响,独立开来以后维修、改造方便。其次减低维修成本,一个部件损坏不必整个PSC更换。

三、制系统的关键技术

1、伺服驱动系统

门机是屏蔽门系统的核心设备之一,门控单元(DCU)是门机的重要组成部分,向.门控单元的丰要部分是服伺驱动系统,包括电机和伺服驱动器。从成本来考虑,伺服驱动系统约占门机的l/2,约占屏蔽门系统每单元的1/6。目前,屏蔽门行业国内的生产厂商所采用的是大都是外购通用件,功能齐全,性能很好,相成地价格很高;有的还需要另外配置控制器,使得系统累赘和不可靠。相比之下,国外的屏蔽门厂商就有很大的优势,因为他们掌握了伺服驱动的核心技术,拥有他们自己的电机和驱动器,他们以最少的硬件投资成本,获得了最大化的利润,他们卖的是技术。冈此,如果能够自己研制伺服驱动系统,节省的成本将相当可观。

2、监控软件

运行于中央接口盘(PSC)上的MMS和远方报警盘(PSA)上的监视软件系统,它能够实时临测系统运行状态。编程语言的选择多为VB(Visual Basic),从软件的功能实现和系统的大小来说,VB也完全能够胜任,不过,已经有不少客户为了追求更好的性能,要求采用VC(Visual C++)。

3、现场总线

DCU的状态信息是通过通信网络传递到PSC的,对于通信网络的选择有多种,常见的有RS485、CAN总线、Profibus以及LonWorks等。由于地铁站台的距离一般较长,有的将近200米,为了通信的实时、稳定,现在多采用现场总线。每个DCU单元作为一个从设备(节点)挂在总线上,总线丰设备放在屏蔽门系统设备室,上设备收集到DCU的状态信息后发到PSC,完成通信。

四、控制系统设计特点

所有控制线路通过硬线连接,保证了控制系统的高可靠性,成本较低. 监控系统采用标准的国际工业网络数据总线进行链接,传输大量信息. 采用这种方式保证了系统操作的高可靠性、良好的功能和设备扩展,除门控器需要进口外,其他控制部件和软件都能由国内的专业公司提供。

总结

地铁屏蔽门是地铁环控系统的重要部件,其活动门数量多,运营中平均每2 min 就须开关门一次,其控制系统必须十分安全可靠. 地铁屏蔽门是一复杂的分布参数控制系统,它集建筑、机械、电子和控制等科学于一体,其信息传递速率、同步性、系统可靠性和电磁兼容性等要求十分严格. 本文在经过2 年多屏蔽门样品研制,参照国外屏蔽门工程实例,结合国内研究的基础上,较深入地研究了屏蔽门的控制原理。.

【参考文献】

[1] 张杰.地铁屏蔽门驱动系统的研究与探讨[期刊论文]-机电产品开发与创新2009,22(4)

[2] 饶美婉.地铁屏蔽门直法流系统设计[期刊论文]-都市快轨交通2009,22(4)

[3] 赵成光 广州地铁屏蔽门系统与现场总线技术[期刊论文]-工业控制计算机2001(4)

第9篇:控制系统设计论文范文

摘 要

柔性机械臂作为柔性多体系统动力学分析与控制理论研究最直接的应用对象,由于其具有简明的物理模型以及易于计算机和实物模型试验实现的特点,已成为发展新1代机器人和航空航天技术的关键性课题。

本文主要讨论了旋转运动柔性梁实验平台机械系统和控制系统的设计。对于机械部分,组建了实验平台总体结构,进行了支架的设计,并将旋转轴和安装盘设计成1体。在控制部分,简略介绍了振动控制系统的硬件构成,详细介绍了运动控制系统的硬件和软件设计。在运动控制系统硬件部分,主控机采用PC机,选用交流伺服电机,并用DSP运动控制卡将其与计算机连接。运动控制卡采用PID控制原理、面向控制轴的命令并使柔性梁运行于T曲线模式。在运动控制系统软件部分采用Microsoft公司的Microsoft Visual C++ 6.0应用程序作为开发工具。并绘制了运动控制程序流程图,阐明了程序的原理。最后通过机械和控制系统集成,实现运动控制信号和振动控制信号的共享,完成柔性梁的精确定位和振动控制。

关键词:柔性多体动力学;柔性梁;运动控制;PID控制; DSP

The motion control system design of experiment platform

for the rotating flexible beam

Abstract:Flexible manipulator has been the most direct application for flexible multi-body system dynamics analysis and control theory.Because of it had simple physical model and easy to computer models and physical tests to achieve the characteristics, it has become a key subject of the development of the next generation robot, and aviation and aerospace technology.

This paper discusses the machinery and the control system design of the flexible beam experiment platform. In mechanical parts, formed a platform structure.The stent designed, rotation axis and installation disk designed into one. In Control part, briefly introduces the vibration control system hardware, introduces the movement of the control system hardware and software design carefully . In hardware part of the control system, using PC 、AC servo motor and DSP Motion Control Card to connect the two. Using PID control principles, the axis-oriented control orders enable flexible beam running on the T-curve model. In part of system software using Microsoft software companies Microsoft Visual C + + 6.0 application as development tool. And then painted the main computer control procedures frame, clarifying the principles of the program. At last, through machinery and control systems integration, the signal of motion control and vibration control shared each other. And then the flexible beam got precision position and vibration controlled in time.

Keywords: Flexible multi-body dynamics Flexible beam Motion control;