公务员期刊网 精选范文 混凝土结构论文范文

混凝土结构论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的混凝土结构论文主题范文,仅供参考,欢迎阅读并收藏。

混凝土结构论文

第1篇:混凝土结构论文范文

1.1加强原材料的质量控制

(1)粗细骨料的选用。

在满足泵送要求及钢筋间距的基础上,为降低水及水泥的使用量,应尽量选择大粒径的碎石。除此之外,还应该采用干净、强度高、针片状少的粗细骨料,且将其含泥量控制在l%以内,同时确保粗细骨料不含有有机物质和有毒有害物质。

(2)粉煤灰的选用。

粉煤灰是一种非常重要的掺合料,不仅可以将混凝土的和易性大大提高,而且对混凝土的泵送施工十分有利;同时粉煤灰还能代替部分水泥来降低水泥的使用量,从而使水泥的水化热得到有效降低。在进行粉煤灰的选择时必须对其细度及粒度引起注意,对粉煤灰进行磨细加工必须要达到I级标准。但是如地下室混凝土类有较高抗渗要求的,需要在满足必混凝土的抗渗性能的基础上,通过严格的计算及试验来确定是否能够将粉煤灰掺入。粉煤灰的选用需结合实际情况进行。

(3)外加剂的选用。

为保证大体积混凝土的优质浇筑效果,应对外加剂种类进行合理选择。可适当采用减水剂、膨胀剂、缓凝剂等来降低水的用量,进而达到降低水泥的水化热的目的。应通过配合比试验来确定外加剂的使用量,同时注意外加剂比例的搭配,保证达到浇筑效果。

1.2加强对施工过程的控制

(1)混凝土的浇筑

①混凝土的摊铺厚度的确定,需结合混凝土的和易性及所用振捣器的作用深度两个方面。如采用泵送混凝土,则摊铺厚度应不大于600毫米;如采用非泵送混凝土,则摊铺厚度应不大于400毫米。如采用推移式连续浇筑或分层连续浇筑的方式,应尽可能地将层间的间隔时间缩短,根据试验确定混凝土的初凝时间,并在前层混凝土初凝之前将其次层混凝土浇筑完毕;②目前在大体积混凝土结构施工中,采用较为普遍的浇筑方法是分层连续浇筑法,其具有振捣方便、能保证浇筑质量及可通过混凝土层散热,降低混凝土温升幅度等诸多优点。而对于浇筑能力不够、浇筑面积和浇筑工程量较大且一次连续浇筑层厚度通常不超过3m的混凝土工程,可以选择采用推移式连续浇筑法;③在分层进行大体积混凝土结构的浇筑时,应对其表面进行及时清理,将骨料均匀露出;在浇筑上层混凝土前应及时清理混凝土的表面污物,冲洗完毕后不能留有积水,对非泵送混凝土和较低流动度的混凝土可进行适当接浆处理;④在浇筑大体积混凝土时,应及时将混凝土表面的泌水清除。由于泵送混凝土一般具有较大的水灰比,因而普遍存在较为严重的泌水现象,需及时清除泌水,避免影响大体积混凝土的浇筑质量。

(2)混凝土的温测

混凝土的温测技术对保证大体积混凝土结构的施工质量也有着直接影响。对大体积混凝土结构的温度有效控制混可以防止产生底板裂缝。在进行混凝土温测时,必须测量所有土层的温度,并深入分析各土层的温度特性。目前普遍使用的温度传输器是电阻型温度计,在进行温度测量时,应将测温度位置选定,完成记号的编订和定位后,再进行土层温度的测量工作。控制温度应力可以通过以下两种方法进行:一种是降温法,可以事先按照设计要求将冷却水管在大体积混凝土内部安装好,并在浇筑前试水,避免由于漏水而影响混凝土的浇筑质量。通过循环冷却水降低混凝土内部温度,减小内外温度差异,防止大体积混凝土裂缝的产生;另一种是保温法,即在浇筑完混凝土之后,通过使用人工手段提高砼表面及四周散热面的温度,进而有效控制混凝土的温度,保障大体积混凝土结构的施工质量。

(3)混凝土的养护

大体积混凝土的养护工作对保障混凝土结构质量安全有着不可忽视的作用,必须得到重视。而在大体积混凝土的具体施工过程中,很多施工人员恰巧会忽略对混凝土的养护工作,只注重对混凝土的浇筑施工,致使大体积混凝土产生裂缝,从而给建筑结构的日后使用埋下安全隐患。并且如果没有及时处理裂缝问题,使裂缝继续扩大,就会对建筑结构的使用性能和安全性能造成恶劣影响。因此结束大体积混凝土的浇筑工作后,必须及时对混凝土进行养护。施工季节不同,养护手段也不尽相同。夏季施工时,由于温度较高,因此应该可通过洒水湿润来养护混凝土;冬季施工时,由于温度很低,因此可通过保温保湿措施来养护混凝土,另外,当环境温度低于5℃时应暂停大体积混凝土的浇筑工作,待温度达到5℃之后,在继续进行浇筑工作。在对混凝土进行养护期间,应时刻关注混凝土的内外温差情况,可通过循环水流量及进口的水温的调节来对内外温差进行控制,将其控制在25℃范围内。大体积混凝土的养护时间应在十四天以上,如情况特殊,则应结合实际情况将养护时间适当延长。

2结束语

第2篇:混凝土结构论文范文

摘要:沿海地区混凝土氯离子钢筋锈蚀防护

1工程概况及特征

中石化股份有限公司金陵分公司160万吨/年延迟焦化装置是目前亚洲最大的焦化生产装置。该装置的主要反应部分是两台焦炭塔,焦炭塔塔高约42m,直径9.4m,由厚25~40mm15CrMo合金钢板焊接而成。由中石化洛阳工程公司设计。

焦炭塔坐落在两层钢筋混凝土框架上,六根框架柱柱高19.3m,柱截面为1.8m×1.8m、每层框架的面积为13.2m×24.6m,二层框架平台板厚2.4m,板中开有两个直径为7.8m的孔洞,每个孔洞旁设置24个M56螺栓用于固定焦炭塔裙座。

焦炭塔框架顶层钢筋混凝土板厚2.4m,混凝土方量大约为450m3,属于大体积钢筋混凝土结构。每个焦炭塔自重约300t,生产时最大垂直荷载约2000t。焦炭塔安装就位后须对复合钢板进行热处理,热处理时温度高达690%26ordm;C,正常生产时塔内最高温度高达500%26ordm;C。焦炭塔外壁虽有保温层,但在裙座底部及塔底盖四周保温层很难覆盖严密,使得焦炭塔底座四周混凝土的辐射温度高达95%26ordm;C。

据有关资料,山东某石化公司延迟焦化装置焦炭塔框架混凝土板共出现160多条裂缝,其中裂缝宽度0.3~0.32mm有4条,0.15~0.25mm有23条,0.15mm以下的133条。这些裂缝主要沿孔内侧周边分布,并由板孔下角向外发展,裂缝在最小断面处最多,板的外侧裂缝均在板的中部,裂缝宽度呈中间大两头小。此种裂缝的出现会引起钢筋锈蚀,混凝土碳化,降低混凝土的抗冻融、抗疲惫及抗渗能力等。湖北某炼油厂延迟焦化装置焦炭塔框架顶层钢

筋混凝土大厚板也出现类似情况。

2厚板温度裂缝成因及纤维抗裂机理

混凝土温度裂缝多发生在大体积混凝土表面或温差变化较大的结构中。焦炭塔框架顶层钢筋混凝土板为大体积混凝土结构,此类结构混凝土浇筑后,硬化过程中水泥水化产生大量水化热。当水泥用量在350~550kg/m3,每m3混凝土将释放出17500~27500kJ的热量,从而使混凝土内部温度升达70%26ordm;C左右甚至更高。由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升,而混凝土表面散热较快,这样就形成内外的较大温差,较大的温差造成内部和外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力。实践表明当混凝土本身温差达到25%26ordm;C~26%26ordm;C时,混凝土内便会产生大致在10MPa左右的拉应力。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝。此外,根据金陵分公司160万吨/年延迟焦化装置的生产工艺要求,每个焦炭塔每24h完成一炉焦炭的生产,两个焦炭塔交替生产,也就是说焦炭塔底座四周混凝土每24h就会由正常的室外温度迅速上升到95%26ordm;C左右。这样也会在混凝土内外产生较大温差。

由此可见,假如不采取非凡办法,混凝土内外温差会引起焦炭塔框架顶层钢筋混凝土大厚板开裂。为此采用在混凝土中加入纤维的方法来解决厚板开裂的新问题。

当在水泥基材料中掺入纤维后,由于此时表层材料中存在纤维材料,使得其失水面积有所减少,水分迁移较为困难,从而使毛细管失水收缩形成的毛细管张力有所减少。同时,依靠纤维材料和水泥基之间的界面吸附粘结力、机械啮合力等,增加了材料反抗开裂的塑性抗拉强度,从而使材料表层的开裂状况得以减轻,甚至消失。

有关试验表明当纤维加入量为混凝土体积的0.1%左右时,混凝土抗拉强度不会提高很多,但掺入少量的聚丙烯纤维可以促进混凝土抗拉性能后期强度的持续增长,这是一种纤维的补强效应而非增强效应,纤维抑制混凝土裂缝产生是由于纤维的阻裂效应。对于混凝土这类内部原来有缺陷的材料,其开裂强度可因混凝土内加入纤维后,混凝土的韧性增大、裂缝尺寸减少或裂缝尖端应力集中系数降低而得到提高。

3杜拉纤维混凝土在厚板中的应用

中石化股份有限公司金陵分公司160万吨/年延迟焦化装置焦炭塔框架二层混凝土大厚板采用了杜拉纤维混凝土的工艺,目的是阻止或减少混凝土大厚板中裂缝的出现。杜拉纤维(DURAFIBER)是一种经过非凡生产工艺处理的高强聚丙烯单丝纤维。它的表面处理技术确保纤维在水泥浆中具有极佳的分散性,在搅拌过程中不结团;纤维和水泥基体有良好的粘结强度。杜拉纤维的长度为19mm,纤度19D,比重为0.91,抗拉强度为276MPa(和1#钢相近),弹性模量为3793MPa,拉伸极限为15%,对酸、碱都有极强的抵御能力。杜拉纤维经过非凡的抗紫外线处理,具有一定的抗紫外线老化能力。杜拉纤维加入混凝土中采用常规搅拌设备搅拌,只要略延长搅拌时间即可均匀分布于混凝土中。

3.1混凝土原材料选择

(1)水泥。采用南京江南粉磨有限公司生产的P.O42.5水泥,细度为0.60%,3d抗折强度为5.8MPa,3d抗压强度为24.4MPa,初凝时间为2h30min,终凝时间为3h35min。

(2)粗集料。采用汤山采石场的5~25mm碎石,泥含量为0.5%,泥块含量0.1%,针片状颗粒8.0%,压碎值7.2%,密度2530kg/m3,松散体积密度1593kg/m3,空隙率37.2%。

(3)细集料。采用无为砂场的中粗砂,泥含量为0.5%,泥块含量为0.3%,细度模数为2.5,级配区为п级,密度2630kg/m3,松散体积密度1550kg/m3,空隙率41%。

(4)外加剂。采用南京江南粉磨有限公司生产的NF-15混凝土外加剂。

(5)活性拌和物。采用南京热电厂的粉煤炭。

(6)合成纤维。采用美国希尔兄弟化工公司生产的杜拉纤维。

3.2混凝土配合比

强度等级为C40,混凝土坍落度为160~180mm。配合比见表1。

表1纤维混凝土配合比

原材料名称

水泥

黄砂

石子

外加剂

粉煤灰

杜拉纤维

规格

P.O42.5

中粗砂

5~25mm

NF-15

饮用水

Ⅱ级

19mm

配合比(kg/m3)

394

739

1063

7.56

178

26

0.8

3.3混凝土搅拌和浇捣

浇筑大厚板所用的杜拉纤维混凝土由南京长江二桥混凝土有限公司供给。两台2m3的搅拌台负责搅拌杜拉纤维混凝土,搅拌时间为180s,杜拉纤维事先经过分装(每袋1.6kg)由搅拌台加料口直接加入搅拌机搅拌。

采用两台混凝土泵车从焦炭塔框架两对角位置同时进行浇注。由于钢筋数量太密,混凝土振捣困难,故采用四台混凝土振动泵同时振捣,振捣时间不少于40s。杜拉纤维在混凝土中分散均匀,和易性比普通混凝土有很大提高,但混凝土的坍落度有所下降。这是因为杜拉纤维的总表面积很大,表面吸附水,因此纤维的加入会增加拌和料的粘稠度,降低坍落度。

金陵分公司160万吨/年延迟焦化装置已于2004年12月20日交付使用,12月30日出合格产品,连续生产三个多月后通过对大厚板的多次检查,未发现明显裂缝,达到了预期效果。

4杜拉纤维混凝土施工要点

(1)杜拉纤维的加入会增加拌和料的粘稠度,降低混凝土坍落度。如发现浇筑困难,一般不应通过增加用水量来改善混凝土性能,而应采用加入塑化剂或减水剂的方法。

(2)界面效应对杜拉纤维混凝土的性能有不利影响。虽然纤维-基材界面尺寸很小,但杜拉纤维细度高、比表面积大,即使纤维的掺量较低,也能在混凝土中获得很大的纤维-基材界面。由于杜拉纤维不亲水,纤维—基材界面往往具有比基材更高的水灰比,这将造成纤维-基材呈弱界面效应,对混凝土强度不利。应在混凝土中加入粉煤灰等活性混合材料改善纤维混凝土的界面性能。

(3)杜拉纤维在使用前应按照纤维的加入量和混凝土搅拌机的容量,事先进行分装,以保证纤维加入量的准确。在砂、石、水泥和水等混凝土材料搅拌均匀后,从搅拌台加料口直接加入杜拉纤维,并适当延长搅拌时间(1~2min)。切不可将杜拉纤维直接放入混凝土运输车内,以免影响纤维在混凝土中的分散。

(4)应派专人对杜拉纤维的加入及混凝土的搅拌过程进行全过程监督。一般商品混凝土厂的搅拌台粉尘污染较为严重,工作环境恶劣,加入纤维的操作工人多为临时雇用的临时工,人员素质不高,少加、漏加、多加的现象时有发生。因此必须对整个纤维混凝土的生产过程进行有效监督,从而保证杜拉纤维混凝土按设计要求和规范标准生产。

第3篇:混凝土结构论文范文

关键词:特大桥海工混凝土耐久性浅谈应用

引言

由于陈家贡湾特大桥处于海水环境,海水环境对于桥梁混凝土结构具有强腐蚀性,按照一级公路桥梁结构100年设计基准期和本工程使用年限的要求进行结构耐久性设计,为保证陈家贡湾特大桥混凝土结构的耐久性,本工程采取了以高性能混凝土技术为核心的综合耐久性技术方案。然而我国目前尚没有大型海洋工程超长寿命服役的相关技术规范,高性能混凝土的设计、生产、施工技术在工程中的应用尚为空白,因此结合陈家贡湾特大桥工程的具体要求,研究跨海大桥混凝土结构耐久性策略和高性能混凝土的应用技术极为迫切和重要。

1陈家贡湾特大桥混凝土结构布置和耐久性设计

1.1陈家贡湾特大桥混凝土结构布置陈家贡湾特大桥孔数—孔径(孔—米)为60—30m,为装配式预应力混凝土连续T梁桥,桥梁上部结构:六孔一联、全桥共十联,行车道板与桥面铺装采用剪力钢筋连接;桥梁下部结构:桥墩采用双悬臂预应力薄壁墩,墩柱为主截面3×1.5米的带竖肋矩形截面,基础采用柱式台、桩基础或重力台、扩大基础。混凝土设计强度根据不同部位在C35~C50之间。

1.2陈家贡湾特大桥附近海域气象环境陈家贡湾特大桥地处东亚季风比较发达的黄海之滨,受季风和海洋气候的影响,四季变化比较明显,属南温带湿润季风气候类型:夏季空气湿润,雨量充沛;冬季气候干燥,时长稍寒。多年年平均最低气温为9.1℃、最高气温为15.9℃。最热出现在八月,月平均气温为25℃,最冷出现在一月,月平均气温为-4.5℃。年平均相对湿度为72%,累年全年蒸发量平均为1462.2毫米,其中全年以五月份为最高,累年平均达到180.1毫米,一月最小,仅为54.8毫米,海区全年盐度一般在15.00~34.00‰之间变化,属强混合型海区,海洋环境特征明显。

1.3陈家贡湾特大桥面临的耐久性问题在海洋环境下结构混凝土的腐蚀荷载主要由气候和环境介质侵蚀引起,主要表现形式有钢筋锈蚀、盐类侵蚀、冻融循环、溶蚀、碱-集料反应和冲击磨损等。陈家贡湾特大桥位于东亚季风比较发达的黄海之滨,因为天气较暖,严重的冻融破环和浮冰的冲击磨损可不予考虑;镁盐、硫酸盐等盐类侵蚀和碱骨料反应破坏则可以通过控制混凝土组分来避免;这样钢筋锈蚀破坏就成为最主要的腐蚀荷载。混凝土中钢筋锈蚀可由两种因素诱发:一是海水中Cl-侵蚀,二是大气中的CO2使混凝土碳化。国内外大量工程调查和科学研究结果表明:海洋环境下导致混凝土结构中钢筋锈蚀破坏的主要因素是Cl-进入混凝土中,并在钢筋表面集聚,促使钢筋产生电化学腐蚀。在陈家贡湾特大桥周边沿海地区调查中亦证实,海洋环境中混凝土的碳化速度远远低于Cl-渗透速度,混凝土自然碳化速度平均为3mm/10年。因此,影响陈家贡湾特大桥结构混凝土耐久性的首要因素是混凝土的Cl-渗透速度。

2提高海工混凝土耐久性的技术措施

提高海工耐久性混凝土的主要技术措施有:

2.1海工耐久性混凝土其技术途径是采用优质混凝土矿物掺和料和聚羧酸高效减水剂复合,配以与之相适应的水泥和级配良好的粗细骨料,形成低水胶比,高密实、高耐久的混凝土材料。

2.2提高混凝土保护层厚度这是提高海洋工程钢筋混凝土使用寿命的最为直接、简单而且经济有效的方法。但是保护层厚度并不能不受限制的任意增加,当混凝土保护层过薄时,易形成裂缝等缺陷使保护层失去作用,钢筋过早锈蚀,降低结构强度和延性;当保护层厚度过厚时,由于混凝土材料本身的脆性和收缩会导致混凝土保护层出现裂缝反而削弱其对钢筋的保护作用。

2.3混凝土保护涂层完好的混凝土保护涂层具有阻绝腐蚀性介质与混凝土接触粘结的特点,其于砼粘结力不小于1.5Mpa,并且与砼表面的强碱性相适应,延长混凝土和钢筋混凝土的使用寿命。然而大部分涂层本身会在环境的作用下老化,逐渐丧失其功效,一般寿命在5~10年,只能作辅助措施。

2.4阻锈剂阻锈剂通过提高氯离子促使钢筋腐蚀的临界浓度来稳定钢筋表面的氧化物保护膜,其品质对混凝土的主要物理性能、力学性能无不利影响,从而延长钢筋混凝土的使用寿命。但由于其有效用量较大,作为辅助措施较为适宜。

3加强陈家贡湾特大桥结构混凝土耐久性措施

改善混凝土和钢筋混凝土结构耐久性需采取的措施:①从材质本身的性能出发,提高混凝土材料本身的耐久性能,例如采用高效减水剂和高效活性矿物掺合料。②找出破坏混凝土耐久性作用的内在因素和外在因素,对主因和次因对症施治,并根据具体情况采取除高性能混凝土以外的补充措施,例如综合防腐措施。采用高性能混凝土是在恶劣的海洋环境下提高结构耐久性的基本措施,然后根据不同构件和部位,尽可能提高钢筋保护层厚度(一般不小于50mm),某些部位还可复合采用保护涂层或阻锈剂等辅助措施,形成以高性能海工混凝土为基础的综合防护策略,有效提高陈家贡湾特大桥混凝土结构的使用寿命。

因此,陈家贡湾特大桥混凝土结构的耐久性基本方案是:首先,混凝土结构耐久性基本措施是采用高性能混凝土,同时依据混凝土构件所处结构部位及使用环境条件,采用必要的补充防腐措施,如掺加钢筋阻锈剂、混凝土外涂保护层等。在保证施工质量和原材料品质的前提下,混凝土结构的耐久性将可以达到设计要求。

对于具体工程而言,耐久性方案的设计必须考虑当地的实际情况,如原材料的耐久性指标、工艺设备的可行性等,以及混凝土配合比经济上的合理性。也就是说应该采取有针对性的,因地制宜的制定防腐方案。

根据设计院提出的陈家贡湾特大桥主要部位构件的强度等级要求、构件的施工工艺和环境条件,对各部位混凝土结构提出具体的耐久性方案。

4陈家贡湾特大桥高性能混凝土原材料耐久性

4.1试验用原材料及其物理化学性能

4.1.1水泥试验中采用了P.Ⅱ52.5,有关性能参数见下表。

4.1.2高炉磨细矿渣(S95)

高炉磨细矿渣(S95)的有关性能参数见表

4.1.3硅粉

硅粉的有关性能参数见表

4.1.4粗骨料

混凝土配制试验用石为5~25mm连续级配碎石。

4.1.5细骨料

混凝土配制试验用砂检验结果如表

4.1.6减水剂

试验采用HSN-A聚羧酸高性能混凝土减水剂。

4.1.7拌和用水饮用水。

4.2试验方案和主要试验方法从高性能海工混凝土的基本要求出发,在原材料的优选试验中,以混凝土的坍落度和扩展度评价混凝土的工作性,以抗压强度等评价混凝土的物理力学性能,以混凝土的电通量和氯离子扩散系数(自然扩散法)试验结果评价混凝土的抗氯离子渗透性能,并以耐久性能为首要要求。

试验中所采用的主要试验方法有:

4.2.1坍落度、扩展度混凝土的坍落度、扩展度按《新拌混凝土性能试验方法》GBJ80-85测定。

4.2.2抗压强度混凝土的抗压强度按《普通混凝土力学性能试验方法》GBJ81-85测定。

4.2.3混凝土的抗冻性能试验参照《普通混凝土长期性能和耐久性能试验方法》(GBJ82-85)进行。

4.2.4混凝土的电通量和氯离子扩散系数快速试验NEL-PER型混凝土电通量测定仪来评价混凝土抵抗氯离子渗透能力的标准。试验仪器采用北京耐尔NEL-PER型混凝土电通量测定仪。通过在¢95×50mm的混凝土试样两端施加60V的直流电压,通过检测6hrs内流过的电量大小来评价混凝土的渗透性。

用RCM-DH型氯离子扩散系数测定仪测定混凝土氯离子扩散系数的试验方法,RCM法参照DuraCrete非静态电迁移原理制定,定量评价混凝土抵抗氯离子扩散的能力,本方法适用于骨料最大粒径不大于25mm的试验室制作的或者从实体结构取芯获得的混凝土试件。将标准养护28天的混凝土试件浸泡于质量浓度为3.0%的NaCl溶液中至指定龄期后,用混凝土切割机将混凝土试件切割成直径=100±1mm,高=50±2mm的试件。将试件放入电解槽的夹具中,注入1L0.2mol/LKOH正极溶液与1L含5%NaCl的0.2mol/LKOH负极溶液,用测试机主机电源进行电迁移过程,劈开试件,用0.1mol/LAgNo3溶液测定显色深度,最后用软件计算混凝土试件的氯离子扩散系数。

4.3混凝土配合比设计试验主要研究C40和C50高性能海工混凝土的性能

4.4高性能混凝土性能试验结果及分析混凝土的物理力学性能试验结果,常规耐久性能试验结果

高性能海工混凝土的氯离子扩散系数和抗冻性能

高性能海工混凝土与普通混凝土相比较,具有优良的工作性能、相近的物理力学性能和优异的耐久性能,尤其是其耐海水腐蚀性能,混凝土氯离子扩散系数可小于3.0~1.0E-12m2/s

5海工耐久性混凝土的质量保证措施

5.1影响海工耐久性混凝土质量的因素高性能海工耐久性混凝土一般通常具有较高的胶凝材料用量、低水胶比与掺入大量活性掺合料等配制特点,致使高性能混凝土的硬化特点与内部结构同传统的普通混凝土相比具有很大的差异,随之带来了它的早期体积稳定性差、容易开裂等问题。而混凝土的裂缝正是在使用阶段环境侵蚀性介质侵入的通道,进而削弱其耐久性。

5.2提高海工耐久性混凝土质量措施在试验过程中发现,浇筑的混凝土由于阳光直射温度较高产生温差过大的现象,同时由于海湾地区海风比较强烈也容易造成混凝土表面失水过快,混凝土表面收缩较大而导致混凝土开裂。因此,在实际浇筑混凝土过程中,T梁或其它结构的混凝土浇注完毕后应立即在顶面和四周采取保温保湿措施。对于T梁等大型预制构件,由于预制场地的限制和施工进度要求,采用低温蒸养的方式。

对于现浇混凝土,混凝土成型抹面结硬后立即覆盖土工布,砼初凝后立即进行浇水养护,养护用水为外运淡水,记录每天的温度和风向,避免混凝土干湿交替,拆模前12小时拧松加固螺栓,让水从侧面自然流下养护,侧面拆模不小于48小时。

第4篇:混凝土结构论文范文

根据建筑物投入使用中的需求进行设计,这种理念称为概念设计。先对场地进行考察,得出一个宏观的设计方案,再将方案中的各结构进行探讨,得出优化方案,这种设计方法具有科学合理、节省时间的优点,在现代建筑中得到了广泛使用。高层建筑结构特殊,对抗震性能的要求高于其他建筑,概念设计通过对设计结构中的承载力进行分析计算,对不符合规范的主要承重部位进行加固。混凝土结构在高强度的压力作用下很容易出现裂缝,内部钢筋材料也会出现弯曲情况,促成这种质量问题的因素一方面是材料选取不合理,更重要的是设计方案不够科学,高层结构概念设计中容易出现的问题主要分为以下几方面:

1.1结构不合理、性能缺少验证。在高层建筑设计中同时要考虑多种因素,保证结构承载力的前提下尽量减少造价成本,需要将建筑结构从总体至细节进行优化。优化工作多数是将设计图纸中的一些参数进行计算分析,适当的加固墙体厚度,常出现缺少对地基承载力的实际考察情况。高层建筑的抗震能力规定在中等强度地震时建筑物不会产生高危裂缝,并可通过修补达到预期效果,在发生高强度的地震时建筑物保证结构不出现坍塌。地震发生的几率很小,一旦发生具有极大的毁灭性,高层建筑抗震性能只停留在设计层面,从数据上分析已经达到了国家要求,但各施工地点基层土壤矿物质组成存在差异,松软程度也就不同,缺少验证,真正发生危险时其稳定性很难保证。

1.2结构设计缺少创新。高层建筑结构复杂,设计过程中受多种因素限制,为同时满足多种需求,工程设计师都施行保守方案,缺少创新精神。钢筋混凝土材质的墙体承载能力与结构有很大联系,在剪力墙设计方案中,应充分借鉴国外先进技术,基于传统结构进行创新,解决承载力不足的问题,同时使高层建筑整体结构更符合大众审美,减少造价支出。概念设计在结构优化上的运用还受很多施工技术以及设备使用方面的限制,阻碍建筑工程行业进步。

1.3受力分布不均匀。高层建筑上下层的结构是不同的,为保证自身重力不会对建筑物造成破坏,基层修筑中会应用到大量的钢筋混凝土材料,加固底层的同时削弱上层,可减轻对地基的压力,同时建筑物承受风力和地震破坏的能力更强。进行概念设计过程中,没有充分考虑转换层占据的空间和对受力平衡的影响,承重柱满足了承载上层压力的要求,但墙体产生的剪力不能与内部的应力平衡,作用在水平方向时形成了破坏力。概念设计中缺少优化环节导致这一现象的产生,很难保障整体结构的稳定性。

1.4概念设计中常见问题的解决方案。设计过程中不可脱离实际情况,在前期准备工作中对建筑场地进行详细的测量,将地区可能出现的自然灾害进行模拟实验,根据测试结果对设计结构进行优化。充分考虑建筑物的自重,满足对抗震性能的要求,同时在结构上进行改进,应用力学知识,节省建筑过程中的原材料使用。合理修筑剪力墙,结构在成体建筑中起到承重作用,但不能破坏空间整体性,注重格局的设计,将各单元的楼梯间进行分别设计,根据不同区域的需求,可将方案进行更改,保证整体结构统一又各有特点。在楼体外观的设计中加入符合当地人文特色的元素,使建筑物更具有中国特色。应用概念设计法时加强后期的优化工作,注重从宏观到细致的过渡,设计方案要具有灵动性,应对施工进展过程中的突况工程师要及时进行探讨,对原有结构做出更改,保障施工连续进展。设计测量工作中会涉及到很多变量,对这些数据进行反复测量,确定合理的浮动范围,作为施工开展的有力依据。

2结构选型的问题

2.1结构的超高。在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A级高度的建筑外,增加了B级高度的建筑。因此,必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚至超过了B级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。

2.2控制柱的轴压比与短柱问题。在钢筋混凝土高层建筑结构中,往往为了控制柱轴压比而使柱的截面很大,而柱的纵向钢筋却为构造配筋。即使采用高强混凝土,柱断面尺寸也不能明显减小。限制柱的轴压比是为了使柱子处于大偏压状态,防止受拉钢筋未达屈服而混凝土被压碎。柱的塑性变形能力小,则结构延性就差,当遭遇地震时,耗散和吸收地震能量少,结构容易被破坏。但是在结构中若能保证强柱弱梁设计,且梁具有良好延性,则柱子进入屈服的可能性就大大减少,此时可放松轴压比限值。

3结构计算与分析

3.1计算模型的选取。对于常规结构,可采用楼板整体平面内无限刚假定模型;对于多塔或错层结构,可采用楼板分块平面内无限刚模型;对于楼板局部开大洞、塔与塔之间上部相连的多塔结构等可采用楼板分块平面内无限刚,并带弹性连接板带模型;而对于楼板开大洞有中庭等共享空间的特殊楼板结构或要求分析精度高的高层结构则可采用弹性楼板模型。在使用中可根据工程经验和工程实际情况灵活应用,以最少的计算工作量达到预期的分析精度要求,既不能不分情况一概采用刚性楼板模型,造成小墙肢计算值偏小,不安全;也没必要都采用弹性楼板模型,无谓地增大计算工作量。

3.2抗震等级的确定。对常规高层建筑,可按《高层建筑混凝土结构技术规程》(JGJ3-2002,J186-2002)第4.8节规定确定抗震等级,与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级;对于复杂高层建筑还应符合第10章的规定;对于地下室部分,当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可根据具体情况采用三级或更低等级。

3.3非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑地震作用和风荷载较大,必须严格按照新规范中增加的非结构构件的处理措施进行设计。

4结论

第5篇:混凝土结构论文范文

1.1气泡问题

公路工程结构物混凝土外观存在的常见质量问题为气泡。现今的公路工程施工技术无法做到对此问题完全避免。气泡外观问题产生的主要原因为:在混凝土的振捣中,施工力度偏弱,浇筑厚度缺乏科学合理性或是在进行拌合操作时,未对相应的坍落度进行有效控制。气泡外观问题作为混凝土外观问题中最为主要且常见的一大问题,对其实行必要有效的控制措施,极为重要且关键。

1.2粘膜问题

有部分公路工程在施工中,混凝土表面在完成粘膜施工后悔簇拥那种缺损问题。粘膜问题的产生对整个混凝土的外观质量造成了极为不利的影响,还可能会对整个结构物的内部结构质量产生不利影响。粘膜问题的产生原因为:在对公路工程进行浇筑操作时,整个混凝土的下落距离未控制在科学范围内,存在过大的问题。从而致使混凝土在掉落至地面后,又反溅于模板之上。或是施工中机械设备存在故障,无法及时进行浇筑操作,或是中间暂停时间偏长,致使混凝土材料出现逐渐硬化的问题,最终导致粘膜问题产生。另外,公路工程施工作业时,整个气候环境较为恶劣,温度偏高,致使脱模在经过阳光直射后,在较短的时间内发散,继而出现粘膜问题。粘膜问题的产生因素多种多样,模板的表面光滑度问题也是一大影响因素。

1.3露筋问题

露筋问题主要是指混凝土结构物内部的受力筋未完全被混凝土所覆盖,出现外露问题,严重影响了钢筋与混凝土的握裹,无法将应力进行充分传递。极易导致钢筋因缺乏必要的混凝土保护而出现锈蚀问题,影响整个结构物的安全性及使用寿命。露筋问题产生的主要原因为:在进行混凝土浇筑施工时,振捣工具与钢筋相接触发生碰撞,整个钢筋垫受到影响而发生移位,在拆模后便出现露筋问题。结构物的断面太小,而钢筋的密集性又较高,一些石子卡于钢筋之上,混凝土泥浆无法充分覆盖整个钢筋周边,暴露区域便产生露筋问题。材料配合比失常致使混凝土内部发生离析显效,模板出现严重漏浆问题。

1.4表面裂纹

在结构物混凝土的表面出现一些成网状,较为浅细的裂缝,其花纹表现为六角形,具体深度范围为5~10mm。裂纹外观质量问题产生的主要原因为:在对混凝土实施灌注操作时,受到温度、阳光照射、湿度等气候环境变化因素的影响。或是整个公路工程地基出现不均匀的沉降问题,拆模操作实施时间过早等也会知识混凝土出现裂纹问题。这些外观质量问题都是在公路工程施工中较为常见的问题,对其采取必要科学的控制措施,具有极为重要的意义。

2公路工程结构物混凝土外观质量控制措施

2.1气泡问题的控制措施

在选取相关拌合设备时应尽可能地选取具有自动计量装置的设备。在拌合操作前,对设备的计量装置进行实验认证,确保其计量准确性。对外加剂进行计量时,应选取小台秤,并提前进行称重操作。对混凝土的坍落度进行严格控制。如在进行拌制施工时,需依照砂料的含水量对水灰比进行调整,从而有效减少气泡产生。在拌制及浇筑施工地点进行坍落度的检查,及时运用拌合物,避免延长其停放时间,从容有效减少坍落度损失。

2.2模板问题的控制措施

在进行模板选择时,选取一些富有丰富经验及较强实力的厂家进行加工操作。在模板进场前对其进行严格检验,对钢板的尺寸、焊缝平整度拼缝精度等进行严格控制。依照结构物的尺寸大小进行模板设计,运用钢模替代木模。在装模操作前,可运用小砂轮对其进行除锈处理,擦净后涂抹机油。整个模板内部应保证不存在杂物或是污点。确保模板的牢固性,对其接缝的拼装严密性进行严格检查,接缝应保持在2mm上下,运用双面型泡膜胶完全密封操作,避免出现漏浆问题。新模板还需对其进行打磨处理。对于模板材料的运用应尽遵循随立随用原则,避免其产生不必要的砂线、锈斑。

2.3露筋问题的控制措施

对垫块进行稳固处理,在水泥砂浆垫上放入铁丝,将其绑于钢筋之上,从而有效避免位移现象出现。在振捣操作中避免振捣棒与钢筋发生碰撞。对于石子的选择,应确保其粒径大小应保持在整个结构物截面最小尺寸的四分之一以内及钢筋净距的四分之三以内。对于一些存在严重露筋问题的部位,需指定专业方案对其进行修补。通常所采取的修补方法为:将露筋上的混凝土残留物及锈迹清除,运用水对其实行冲润操作,之后再运用1∶2或是1∶2.5的泥浆进行平抹操作,对其进行养护。

2.4裂纹问题的控制措施

针对裂纹问题采取的措施主要为加强混凝土的养护。对于已浇灌完的混凝土进行早期完善的养护,避免出现干缩问题。在冬季进行施工时,加强养护操作避免冷缩型裂缝的产生。进一步加强施工管理工作力度,结合实际施工条件采取科学的施工措施。针对一些细小裂缝,可在冲洗后,采用泥浆进行平抹修补;如为大面积裂缝,可在将其薄弱区域凿除之后,在进行冲洗及泥浆平抹操作。

2.5施工材料及相关配合比的质量控制

在进行混凝土施工操作时,需对其原材料的质量及骨料的粗细量进行科学严格的控制。在进行原材料的选取时,需选取一些完全符合科学配合比标准的材料,对不符合相关标准的材料进行筛除处理。依规范进行混凝土的材料配合比实验,尽可能地选取出完全符合规范的合理级配,从而为骨料的粗细度合理配比提供保障。在进行水灰比的明确时,应将多次实验的结果作为基础依据。在进行了反复对比研究之后,选取其中最为优质的比例方案。如果在一些气候环境恶劣条件下进行工程的施工作业,还需对气候因素给予混凝土外观质量的影响进行全面充分的考量,尽可能地将不利影响降到最低。较为科学的配合比选择是:采用施工现场实际运用的材料进行混凝土的配合比设计。而所选取的混凝土材料,在保证其质量的前提下,尽可能地选取一些色泽度较为同等的砂、石、水泥。

3结语

第6篇:混凝土结构论文范文

关键词:建筑工程;混凝土;结构设计

近年来,随着我国城镇化发展的深入推进,建筑需求量越来越多。在现代建筑工程施工过程中,混凝土结构是普遍使用的一种结构形式。这种结构具有承载力强、耐久性好、刚度大、耐火性高、安全性高等特点,同时在施工过程中施工成本较低,得到了广泛的应用。在实际中,为了确保建筑混凝土结构的施工质量,实现建筑工程的各项功能,必须对混凝土结构设计中可能存在的问题进行严格的管控,合理分析,并制定相应的解决对策,为建筑工程施工质量的提高打下良好基础。

1建筑工程混凝土结构设计中的不足

1.1地基与基础设计中的问题

在混凝土结构设计中,天然地基独立基础有时因为持力层土层分布不均匀,使基础坐落在软硬不均的土层上,相邻基础沉降差过大,导致基础变形过大;由于地下室在提高建筑稳定性、地基承载力、减少地震破坏以及解决建筑埋深等方面有十分重要的作用。因此,在很多建筑工程中,经常会设置地下室。当建筑选址在山地上时,由于原始地貌水位较低,设计过程中往往会忽视建筑工程竣工后由于回填土体毛细现象,导致地下室底板及外墙承载力不足,出现墙体裂缝和底板涌水现象,给工程项目带来难以解决的问题和损失。

1.2混凝土上部结构设计中的问题

在混凝土结构上部设计时,还存在一些问题,框架结构中抗震设防防线较少;因梁跨度大,梁截面高度就大,而框架柱截面较小,导致强梁弱柱情况出现;框架—剪力墙和剪力墙结构中,剪力墙布置不均匀,出现单肢剪力墙刚度过大,应力集中,连梁刚度过强等;高层结构中忽视零应力区等现象。这样类似问题出现,会给建筑结构的安全带来隐患。

2混凝土结构设计不足的应对策略

2.1混凝土结构地基与基础设计

在实际工程中,采用天然地基基础形式时,要么基础情况非常好,地基承载力非常高;要么上部荷载较小,楼层数较低,对地基承载力要求也较低,采用天然地基可以使工期短、造价低。但无论如何都要满足地基的强度和变形要求。根据地基基础设计规范的规定,地基承载力特征值低于130kPa、相邻建筑物距离过近可能导致发生倾斜、建筑物附近堆载过大等都应进行变形验算。当基础处于软硬不均的持力层土层上时,要采用褥垫层以调整不均匀沉降。根据具体情况,进行厚度约为500~600mm的换填,并进行分层碾压夯实。采用锥形独立基础时,斜面坡度小于1:3,混凝土能够振捣密实,保证基础强度和高度的要求。在对基础间拉梁设计时,要充分考虑梁上土的重量和柱底荷载拉力的作用,适当的增加配筋,从而保证基础的整体刚度。对于地下室工程,宜建造在密实、均匀、稳定的地基上。当处于不利地段时,应采取相应措施。充分考虑各个构件所承受的荷载,尤其是水浮力,回填土后水的压力会升高。底板的浮力会加大,墙体的水平压力也会增高。针对这样的问题,在建筑使用功能允许的情况下,应将底板和地下室外墙尽量分隔成小跨,以减小压力对底板和外墙的影响,减少开裂情况的发生。同时,可以提高垫层混凝土强度等级,厚度也不小于100mm。

2.2混凝土结构上部设计

上部设计中,宜设置多道防线。(1)对整体建筑的抗震要求进行全面考虑,也就是重视概念设计。抗震设计宜采用平面布置基本均匀,竖向刚度无明显变形、承载力无明显突变的结构体系,不应采用严重不规则结构。因此应选择合理的抗震结构体系和构件截面尺寸以及合适的配筋方式,确保竖向构件有足够的延性,增大构件的塑性变形能力。框剪结构和剪力墙结构设计时,剪力墙应沿着纵横两个方向,布置在建筑周边、电梯间、楼梯间及荷载较大的位置,墙体间距满足规范,同时单片剪力墙的水平剪力不能高于结构底部总水平剪力的30%。在设计第二道防线时,要对剪力墙连梁的跨高比进行严格控制。实践表明,剪力墙连梁跨高比为5时,各项性能是最好的。(2)在进行剪力墙梁、柱设计时,应该坚持强柱弱梁、强剪弱弯、强节点强锚固的原则。此外,对于中震程度建筑混凝土结构,需要考虑第一级别剪力墙,墙肢数量最少要保持4肢。当第一级别的剪力墙进入塑性阶段后,需要在级别较小的剪力墙进行多道设防,避免建筑在震动下过度变形,从而对级别小的剪力墙造成危害。在上部结构设计中,设计者应有选择的将纵横两片剪力墙连接在一起,在遇到中震或者大震时,剪力墙开裂会达到耗能的作用,这样就保持了建筑延性破坏,确保了建筑整体性能不损坏,真正做到小震不坏、中震可修、大震不倒,以保证人民生命财产的安全。

3结束语

在新时期下,不管是业主,还是建设单位都对建筑工程的整体质量有很高的要求,即使是墙体开裂都会对人的心理带来不好的影响。因此结构设计时必须根据具体情况,认真、仔细的对混凝土结构进行设计,并反复审查,发现问题后及时解决,不断优化混凝土结构设计方案,从而促进建筑工程施工质量的提升,为整个建筑工程各项功能的实现提供保障。

作者:毛亚凤 单位:昆明理工大学

参考文献:

[1]张立军.论房屋建筑混凝土施工技术[J].工程技术研究,2017,(2):73+75.

[2]仇文法.建筑工程混凝土施工技术与质量管理[J].住宅与房地产,2015,(28):53+57.

第7篇:混凝土结构论文范文

Abstract:Article the concept of durability design of concrete structures, grade, in principle, the influencing factors in the design to do some detailed analysis, and effective measures to enhance the durability of concrete structures

关键词:混凝土结构;耐久性;设计

Keywords: concrete structures; durability; design

中图分类号:TU377 文献标识码: A 文章编号:

一、混凝土耐久性的概念、等级、原则

(一)混凝土耐久性的概念

混凝土耐久性是指结构在规定的使用年限内,在任何一种环境作用下,都不用额外的费用加固处理直接就能保持其安全性、正常使用和可接受的外观能力。混凝土耐久性主要包括:抗冻性、抗渗性、碳化。

(二)混凝土耐久性的等级

1、一级耐久性

主要是针对室内干燥环境下的住宅、办公楼等室内构件来说的,用简单的粉刷或油漆防护就可以,也就是能够满足在规定的使用年限内所要求的年限。 

2、二级耐久性

主要是针对露天环境或高温环境下的构件,在规定的使用年限内也存在着个别需要维修的状况,维修采用的方法可能是修补或更替个别构件。

3、三级耐久性

在沿海地带或受冻融作用的环境以及使用除冰盐的结构,在规定的使用年限内需要经常维修的情况。

(三)混凝土的耐久性设计应该遵循的原则

在进行混凝土耐久性设计的过程中,相关的设计人员必须要先明确出这一结构的耐久性目标是什么,也就是设定的使用期限;还要确定出耐久性失效标准是什么。一般情况下,使用期限可以分成四类。对于耐久性失效标准,有多种说法。大多数观点认为:一是以结构性能退化导致结构承载能力降低到承载能力极限状态,称为承载能力耐久性失效标准;另一种说法是由于耐久性能退化使结构产生了变形,从而不能够满足正常使用的基本需求,我们主要是以钢筋锈蚀发展到出现混凝土沿顺筋开裂作为正常使用耐久性失效标准。

二、混凝土结构耐久性的影响因素

(一)混凝土的碱――集料反应

碱――集料反应主要是指混凝土中的碱与集料中活性组分发生的化学反应,进而引起混凝土的膨胀、开裂、甚至破坏。目前,因碱――集料反应不得不拆除大坝、海堤、桥梁的事件并不在少数。混凝土的碱――集料反应必须要具备三个条件:有相当数量的碱、相应的活性集料、水分。避免混凝土的碱――集料反应可以采取以下方法:一是限制混凝土的碱含量;二是避免采用活性集料;三是掺用混合材。(二)混凝土的冻融破坏

当混凝土结构在冰点以下环境中时,混凝土内孔隙中的水将结冰,随之会产生体积膨胀进而形成各种压力。一旦压力达到一定程度时,就会导致混凝土破坏。混凝土的冻融破坏最显著的特征就是表面剥落,甚至在严重时还会露出石子。此外,混凝土的抗冻性能与混凝土内部的孔结构和气泡含量多少有着直接相关,孔小破坏作用就小,封闭的气泡多了,坑冻性也好。影响混凝土抗冻性的因素还有:孔结构、含气量、水灰比、集料的孔隙率、混凝土的饱和度等。

(三)化学侵蚀

一般情况下,可以将化学侵蚀分成淡水腐蚀、碳酸腐蚀、一般酸性水腐蚀、硫酸盐腐蚀等几类。当混凝土结构处于有侵蚀性介质作用的环境中时,就会引起化学反应和物理反应,从而受到侵蚀,引起一系列破坏。当水中溶有一些酸类时,水泥石就受到溶淅和化学溶解双重作用,加速腐蚀;淡水的冲刷,不仅能溶解水泥石中的组分,也可以使水泥石孔隙增加,密实度也随之降低了,造成了对水泥石的严重破坏;碳酸在溶淅水泥石的同时,也影响了水泥石的致密度,同时也降低了水泥水化产物的稳定性。

(四)钢筋的锈蚀

钢筋的锈蚀主要表现为钢筋在外部介质作用下产生的电化反应,生产了铁锈,也造成了混凝土顺筋裂缝,整体的混凝土结构受到了破坏。一方面,混凝土碳化和中性化主要是因混凝土的密实度不足,酸性气体渗入混凝土内与氢氧化钙作用;另一方面,钢筋会在拉应力和腐蚀性介质的共同作用下而形成脆性断裂,当钢筋内部存在缺陷,钢筋在腐蚀过程中能够产生少量氢气,会导致钢筋脆化。

三、设计使用年限

普通的混凝土主要是以水泥为胶结材料,并用天然砂石做骨料,在里面加上水进行拌和,最后形成固体材料。在受到施工、环境因素的影响时,加上化学作用和物理作用,混凝土就是带着裂缝工作的。

当混凝土所出现的裂缝很大时,侵蚀的物质就会从裂缝中渗入到混凝土内部,再到达钢筋表面引起锈蚀。钢筋在被锈蚀后,有效面积就减少了,使结构承载力的强度下降了。一旦出现承载力方面的问题,有时可能是脆性破坏。总之,对混凝土的结构不仅要进行承载能力极限状态和正常使用极限状态的计算,还要确保在相当长的时期内达到设计规定的具体要求,这个时期就被称为了“设计使用年限”。我国的《建筑结构可靠度设计统一标准》中已经明确规定了:设计使用年限对临时结构是5年;易于替换的结构构件为25年;普通房屋和构筑物为50年;记念性建筑和特别重要的建筑结构为100年。因此,在混凝土结构耐久性设计中,应该以此为依据,进行重点考虑。

四、加强混凝土结构耐久性的有效措施

(一)控制施工质量

控制施工质量可以从以下几个方面着手:混凝土结构保护层的厚度控制、混凝土结构各种孔隙的控制以及水灰比控制。选择保护层厚度应该根据腐蚀环境的不同来设定,在正常的室内环境下,要设计使用年限为100年的结构混凝土应该确保保护层的厚度是按规范的规定增加到40%为宜,混凝土结构及构件不能留有施工缝。此外,为了保证混凝土拌和物所需流动性,减小水灰比,可以使混凝土的总孔隙率大幅度降低。

(二)原材料的选择

水泥类材料的强度和工程性能,主要是通过水泥砂浆的凝结,硬化形成的,在选择水泥时,要注意水泥品种的具体性能,可以选择水化热低,碱含量小,耐热性,抗冻性能好的水泥来使用。此外,在选择集料时,也要考虑其碱活性,耐蚀性和吸水性,还要改善混凝土拌合物的和易性,以便提高混凝土的耐久性。

(三)结构的日常维护

混凝土结构在使用阶段,必须注意其检测和维护。例如,建立检测和评估体系,这样对于恶劣环境下的工程建设便于检查,发现问题及时修理,保证混凝土结构能够正常的使用。此外,在使用的过程中,还应该避免结构接触腐蚀性物质、也不要承受超重荷载,一旦出现结构破坏超过一定界限的情况,就必须查找原因进行维修。

五、结语

对于混凝土结构耐久性设计的问题还有很多方面需要我们研究,因此,需要施工和设计人员在已有的经验和工程的实践基础上做好结构耐久性设计工作。

六、参考文献

【1】徐晓华、张东影《试论混凝土试验研究及实践》,《建筑技术》2005年06期。

第8篇:混凝土结构论文范文

关键词:建筑工程;混凝土结构;问题;对策

中图分类号:TU198文献标识码: A

前言

近年来在我国建筑行业的发展过程中,混凝土结构设计作为其中重要的内容,它的质量问题不仅对建筑结构的稳定性和可靠性有着严重的影响,还使得建筑物的功能无法得到充分的发挥。因此我们在对建筑混凝土结构设计时,就要对设计技术进行严格要求,只有这样才能使得工程施工的质量得到进一步的保障。但从当前我国建筑工程混凝土结构设计的实际情况来看,其中还存在着许多的问题,这就对建筑结构的稳定性有着严重的影响,因此我们就需要采用相应的技术手段,来对其进行处理,从而保障建筑工程的施工质量。

1、关于结构计算与分析阶段中的常见问题及处理对策

混凝土结构设计中计算与分析阶段的常见问题。目前的工程建设中,大都是通过计算机软件进行结构设计等工作,这样不仅使得建筑混凝土结构设计的准确性和可靠性得到进一步的保障,还满足了现代化建筑结构设计的相关要求。但在不同的建筑工程施工项目中,其软件系统的应用效果也就存在着一定的差异,因此我们在建筑设计阶段中,就需要根据工程施工的实际情况,对混凝土结构设计计算和分析方式进行相应的分析,从而保障建筑工程的施工质量。

设计师们在对建筑混凝土结构进行设计的过程中,除了要对计算软件的特点进行相应的比较研究以外,还要对建筑设计的相关内容进行全面了解,从而根据工程施工的实际情况,采用相应的技术手段对其进行处理,以确保工程的施工质量。而且在施工的过程中,设计人员也要根据工程施工的相关要求,对混凝土结构的尺寸大小进行严格的控制,并采用相应的设计技术方法对其进行处理,以确保建筑混凝土结构的质量和强度得到有效的控制。

我们还要对施工材料的质量进行有效的控制,以避免在建筑混凝土结构设计的过程中,其质量无法满足工程设计的相关要求。高层建筑结构设计原则。是高层建筑结构设计过程中需要注意的重要标准和准则。也是高层建筑设计单位提高高层建筑结构设计质量与效益的重要保障。只有在一定的高层建筑结构设计原则支持下。才可以进行建筑结构设计,总体来讲。高层建筑结构设计原则主要包括以下几点。

建筑结构基础方案需要配置完善的施工地质调查报告。最大程度的发挥建筑物地基的潜力。必要的情况下设计人员还需要对地基的变形做好相应的演算。另一方面。设计单位还需要对建筑物进行综合性分析。尤其是对于建筑物负荷以及上部结构类型。通过对这些综合性分析。最终选定最适合的基础方案。从而可以在提高设计质量的基础上提高设计单位经济效益。一条基本原则是设计单位经常忽略的。那就是结构措施完善原则。设计单位在进行建筑物结构的设计时。 需要注意结构组件的延展性。例如建筑物中钢筋的锚固长度等。同时。设计单位还需要注意建筑物薄弱环节以及建筑物本身温度对于建筑物组件的影响。对于这两方面的问题。在实际的设计过程中。需要遵循$强柱弱梁%强剪弱弯以及强压弱拉&的基本原则。只有这样才可以提高高层建筑结构设计的安全性以及牢靠性。

2、关于混凝土结构设计中,地基与基础设计中常见问题及处理对策

在建筑工程施工中,基础结构的设计有着十分重要的意义,这也是保障混凝土结构施工质量的主要内容。但是我们在对其地基基础结构进行施工的过程中。其建筑物时常会出现沉降的现象,这就对建筑结构的稳定性和可靠性有着一定的影响。而且如果其基础结构的稳定性存在着一定的问题,还可能会破坏了建筑基础底板的质量,为此我们就需要采用相应的技术手段来对其进行处理,从而保障建筑结构的稳定性。

针对不同程度的沉降量的工程,地基与基础设计所采取的处理措施也是不同的。对于沉降量相对较小的工程,可以采用褥垫的方法处理,也就是说在地下室与持力层之间建筑一层保护带,在沉降作用发生时,保护层会承受一部分的附加应力,防止地下室地板因受力过度而开裂或沉降。同时,对天然地基也起到了养护的作用。这样,地基保养便从根本上达到了解决。对于有地下室的建筑,地下水的季节性变化也是影响地下室底板的重要因素。当降水期来临,地下水位升高。底板的防水设计得尤为重要。一般的地下室建筑,由于柱下承台的形式比较复杂,其基槽地膜形状也是较为繁复的,建筑复杂的外在轮廓一方面加大了防水设计的难度,另一方面,增加了工程造价。很多设计工程师仅仅考虑到建筑物当时当地的地理状况,忽视对降水这一因素的考虑,而导致在地下室底板设计时对防水工程的不全面。不科学。在室外地坪之下的结构部分,外轮廓形状设计应尽量简洁,这样有利于建筑防水的施工。另外,在具体的设计方略上,采用统一地下室底板和柱下承台的下标高的反承台法。这一方法的具体做法:在地下室内部做滤水层和覆土,同时对柱下承台进行加厚工程的设计。这样一来,基槽地膜形状变得简单,方便施工,缩短了施工时间,从而施工质量也可以得到保证。.

3、关于混凝土上部结构设计中常见问题及处理对策

混凝土上部结构设计中常见的问题解决混凝土上部结构设计中常见问题的对策。由于建筑结构设计过程中难免会需要反复的修改。所以在设计之前很有必要将相应的准备工作做好。进行设计更改的时候。也能有一个调整的余地。一般常用的方法是对结构设计进行建模计算。通过计算机将结构设计中容易出现了问题进行一个周密的预测和估算。在上部结构设计阶段,要考虑建筑物的抗震功能,当遇到中震时,我们应考虑第一级别的剪力墙。在建筑结构设计中。要保障建筑工程的质量。要使得工程造价控制在可接受范围内)这就需要在建筑结构设计上充分考虑投资商的经济效益。

权衡建筑质量和投资回报之间的重要性)所以在设计时。应该尽量的优化结构设计。要始终牢记强柱弱梁强剪弱弯强压弱拉原则。具体来说。设计时要注意测试地基的抗压性%检查支撑架的稳定性%控制钢筋的锚固氏度等方面。只有这样才能使得建筑结构设计的最终效果令人满意。在进行建筑结构的设计之前。必须要和承包商投资商有一个全面和谐的沟通过程。主要是来讨论建筑结构的类型以及施工的具体要求。 这样将会有利于设计人员充分了解本次建筑工程的施工基调。对整个建筑工程的结构设计思路有一个明确的方向。 对于不同的基础形式,所出现的问题和解决办法也各不相同。常见问题如下:对于地下车库中的柱下独立基础,基础埋深的计算方法因各地方基础规范有不同的规定,对基础底面积大小影响较大。当地库底板厚度满足一定要求的情况下,独立基础的埋深可取自室外地面及室内地面计算埋深的平均值。对于平板筏板基础,上部结构刚度、板底地基土的基床系数等都对筏板的计算有一定影响。设计时应将上部结构刚度传给基础,考虑基础与上部结构的共同作用,并合理选取基床系数,有效降低基础工程量。另外,基础底板及地下室的外轮廓应尽量简洁,有利于防水工程的施工和降低造价。

结束语

总而言之,在当前我国建筑混凝土结构设计中存在的问题还有很多,这不仅对混凝土结构的稳定性和可靠性有着严重的影响,还降低了建筑工程的效益,因此我们就需要的采用相应的技术手段来对其进行处理,从而保障建筑工程的施工质量。

参考文献:

[1]混凝土结构设计规范(GB500010-2002北京.中国建筑工业出版社.

第9篇:混凝土结构论文范文

(1.青岛理工大学蓝色经济区工程建设与安全协同创新中心山东青岛266000;

2.青岛理工大学土木工程学院山东青岛2660330)

【摘要】疲劳对士木工程结构,特别是被广泛应用的钢结构和混凝土结构具有严重危害,一直以来受到广泛关注。研究钢筋混凝结构的疲劳效应问题,预测其剩余寿命,对于保障在役结构的安全使用具有重要意义。本文介绍了混凝土材料的疲劳性能、钢筋混凝土结构的受弯疲劳性能和损伤钢筋混凝土梁疲劳性能的研究现状,并通过总结分析了目前已有研究中的不足,并针对当前研究中亟待解决的问题提出了看法。

关键词 疲劳性能;混凝土;强度

【中图分类号】TU375; TU528.0

【文献标志码】A

1. 前言

(1)在实际工程应用中,像桥梁、吊车梁和海洋平台等结构承受着反复荷载的作用,这些特殊而重要的结构在正常使用的情况下将承受反复变化的应力和应变作用,促使这些结构的力学损伤不断累积,当损伤累积超过一定量后将会使这些承载结构发生低于静载强度的脆性破坏或破损,即结构发生疲劳破坏。但疲劳问题长期以来一直未得到足够的重视,使得混凝土结构的疲劳变成不可忽视的问题。

(2)本文从混凝土材料的疲劳性能、钢筋混凝土结构的受弯疲劳性能和损伤钢筋混凝土梁疲劳性能等三个方面介绍了钢筋混凝土结构的疲劳性能的研究现状。

2. 混凝土材料疲劳性能研究

2.1混凝土抗拉疲劳性能研究现状。

从评定在循环荷载作用下结构对开裂的敏感性的角度来看,混凝土在纯拉状态下的疲劳性能非常重要。

Tepfers[2]采用数字模拟的方法对立方体劈裂试验结果进行处理,得出在受拉应力状态下可采用与受压应力状态下较为相似的方程来表示:

式中 fcsplm -混凝土静力劈拉强度平均值;

β -材料常数,可取为0.0685。

Saito和Imai等[3]进行了纯拉疲劳试验,采用4Hz的加载频率,试验中最小应力和静载抗拉强度 fctm的比值约为0.08,得出破坏概率p=0.5的S-N关系线的试验结果可用下式表示:

2.2混凝土抗压疲劳性能研究现状。

抗压性能是混凝土材料性能的重要指标,因此成为科研工作者的研究重点。关于这一方面的研究较多,研究成果也较多。

(1) 混凝土单轴受压疲劳性能研究现状。

Graf和Brenne等[4]通过混凝土的疲劳试验研究了最小应力和应力范围对其的疲劳强度的影响,同时给出了Goodman图;Brenne和Muir等[5]利用立方体高强混凝土构件研究了高强混凝土的疲劳强度以及其退化规律;Holmen等[6]通过大量的试验研究得出混凝土的疲劳特性和其疲劳寿命的概率分布。

Matsushita[7]利用混凝土圆柱构件进行了大量的疲劳试验,得出了混凝土疲劳寿命的概率分布,并通过线性回归的方法分析出了考虑最小应力水平的S-N曲线关系式:

lgN=17[(1-Smax)/(1-Smin)]+0.23

(2)混凝土双轴受压疲劳性能研究现状。

Lan等[8]通疲劳试验研究了板式混凝土构件在不同应力比下完全卸载和部分卸载两种情况的疲劳双轴受压疲劳性能,得出两种卸载方式下混凝土的疲劳性能相似,且与应力大小无关。

大连理工大学[9]进行定侧压双轴受压疲劳试验,定侧压比分别为0.25和0.50,试验结果表明:定侧压的约束提高了混凝土的抗压疲劳强度,纵向最大应变和最小应变的发展和单轴受压情况下相似,也符合三阶段规律,并综合分析(考虑了侧压影响)出了统一的疲劳破坏准则方程:

Smax=α-β(1-R)lgN

其中:

α=1+0.8304(δ2/fc) ,β=0.0638+0.115(δ2/fc) ; (0?δ2?fc?0.5)

(3)混凝土三轴受压疲劳性能研究现状。

关于混凝土三轴受压疲劳试验国内外研究资料较少,曹伟等[10]进行了定向侧压约束下三轴受压疲劳试验,试验中试件的静载破坏现象与疲劳破坏形态一样,都是沿着纵向加载方向出现数条裂纹,符合三阶段规律,但变形模量逐渐减小,得出了混凝土多轴受压疲劳S-N统一方程,然而混凝土的三轴疲劳试验操作复杂,试验结果很难得出,结果的有效性难以得到确认,故现有的数据与资料只能作为参考。

2.3混凝土压-拉疲劳性能研究现状。

由于在压拉循环应力状态下的混凝土疲劳试验对试验仪器等要求较高等原因,因此目前对压拉反复状态下混凝土的疲劳试验研究较少。

Cornelissen[11]对混凝土试件进行了疲劳试验,频率为6Hz,结果表明最小压应力的水平高时,疲劳寿命明显降低,同时分别给出了引起受拉和受压破坏的拉压应力状态下的S-N方程:

(1) 受拉破坏:

(2) 受压破坏:

大连理工大学的吕培印等[12]也进行了一些压-拉疲劳试验,在综合考虑了最小、最大应力水平对疲劳的影响下,通过多元回归线性分析法得到压-拉情况下的S-N方程:

lgN=12.02-10.64Smax-4.39Smin(Smin=0.1-0.2)

其中:

复相关系数为0.932,Smax 、 Smin对 lgN的偏相关系数分别为0.998和0.839,回归误差为0.046。

3. 钢筋混凝土梁受弯疲劳性能研究

3.1钢筋混凝土是一种复合材料,同时离散性又很大,所以对钢筋混凝土梁受弯疲劳性能的研究是一项比较复杂的课题,但一直以来还是有许多学者对钢筋混凝土梁受弯疲劳性能进行了一系列的研究。

3.2目前国内外的研究重点主要都放在了等幅疲劳荷载作用下钢筋混凝土梁的裂缝宽度、挠度、疲劳刚度的变化规律以及疲劳寿命的预测上。

3.3H.A.马达洛夫在文献[13]中详细介绍了在重复荷载作用下钢筋混凝土受弯构件的疲劳性能的两类问题:(1)钢筋构造对钢筋混凝土受弯构件的强度、裂缝形成和刚度的影响;(2)钢筋混凝土结构疲劳计算理论的若干问题。

3.4沈忠斌[14]和朱晓东[15]通过对11根钢筋混凝土受弯构件在疲劳荷载作用下的试验结果分析,得出了其裂缝宽度和挠度的变化规律和机理,建立了疲劳荷载作用下裂缝宽度和挠度的计算模式,同时给出了钢筋混凝土受弯构件在疲劳荷载作用下裂缝宽度和挠度的计算公式。

3.51990年,石小平等[16]进行了混凝土梁弯曲疲劳试验,通过对所得的试验数据进行分析得出混凝土弯曲疲劳寿命的概率分布基本符合两参数Weibull分布,并同时分析了应力比对疲劳性能的影响,并建立了相应的疲劳方程;

3.61991年,Byung[17]通过混凝土梁的弯曲疲劳试验得出S-N曲线并得出疲劳强度方程,并验证了在给定的应力水平下疲劳寿命分布符合Weibull分布,同时研究了混凝土在变幅疲劳荷载作用下的损伤累积理论。

4. 损伤钢筋混凝土梁疲劳性能研究

(1)目前我国的大部分钢筋混凝土梁桥都已服役相当长的时间,主要承重构件均有着各种各样的损伤(锈蚀、腐蚀)情况,所以对损伤钢筋混凝土梁的疲劳性能进行研究具有十分重要的实际意义,国内外对此也进行了一系列研究。

(2)同济大学的李士彬[18]利用13根锈蚀钢筋混凝土梁进行了等幅疲劳试验研究,通过分析认为在等幅荷载作用下,锈蚀梁的疲劳寿命比未锈蚀梁的疲劳寿命有明显降低,同时在相同的荷载的水平下,锈蚀梁的疲劳寿命随锈蚀率呈指数函数下降。锈蚀钢筋混凝土梁锈蚀率越高,刚度随荷载循环次数的增加衰减的速率越大。

(3)华侨大学的宋小雷[19]利用18根锈蚀程度不同的钢筋混凝土梁进行了静力和疲劳性能试验研究,研究结果表明,钢筋混凝土梁的锈蚀率越高,钢筋混凝土梁的疲劳寿命就越短,同时还得出了促使钢筋混凝土梁的疲劳性能降低的重要原因是钢筋与混凝土之间的粘结力下降和因锈蚀而导致钢筋表面形成的锈坑和疲劳应力之间的耦合作用。

(4)桂林理工大学的虞爱平[20]利用9根锈蚀程度不同的钢筋混凝土梁进行了疲劳性能以及疲劳后剩余承载力的试验研究,试验结果表明,锈蚀率越高的钢筋混凝土梁的耐久性越差、疲劳性能越低。

(5)浙江大学的徐冲[21]利用四组不同(正常构件、正常加固、锈蚀损伤加固和超载损伤加固)的钢筋混凝土梁进行了静力和疲劳性能试验研究,试验结果表明,在循环荷载作用下说明钢筋混凝土梁的整体刚度的重要指标是动挠度,且影响这一指标的两个重要因素是加固形式和加固前的损伤情况。

(6)大连理工大学的王海超等[22]利用8根腐蚀钢筋混凝土梁进行了腐蚀后钢筋混凝土梁的静力和疲劳性能试验研究,试验结果表明,较低水平的腐蚀对钢筋混凝土梁的静力性能影响很小,但对钢筋混凝土梁的疲劳寿命影响较大。

(7)中南大学的赵亚敏[23]利用ANSYS等软件,以钢筋混凝土简支梁桥和拱桥为模型研究了其在超载情况下的疲劳性能,研究结果表明,超载对钢筋混凝土简支梁桥和拱桥的疲劳性能影响非常大,在一般情况下,超载的荷载增加一倍,钢筋混凝土梁的疲劳损伤增加将近10倍。

5. 结束语

目前虽然对钢筋混凝土结构的疲劳性能进行了大量的研究,但是仍然存在着许多问题:

(1)疲劳试验影响因素多,离散性较大,而试验构件数量往往有限,无法从不同截面尺寸、不同配筋率、不同应力水平、不同应力比等方面对的钢筋混凝土结构进行疲劳分析和试验研究;

(2)由于在实际结构中,构件承受的都是变幅荷载和随机荷载,因此还需要研究钢筋混凝土梁在变幅疲劳荷载和随机荷载作用下的性能研究,疲劳破坏机理,疲劳累积损伤发展规律;

(3)钢筋混凝土疲劳寿命预测的研究工作都是基于各种理论的基础上,千差万别无法统一,还没有形成一个符合实际且易于操作的框架体系;

(4)钢筋混凝土结构发生锈蚀后的疲劳问题对钢筋混凝土结构的安全使用也尤为重要,目前对锈蚀钢筋混凝十结构的疲劳承载力、粘结滑移退化等方面的研究还不够深入,有待加强。

参考文献

[1]陈肇元.土建结构工程的安全性与耐久性[M].北京:中国建筑工业出版社,2003.

[2]Tepfers R,and Kutti T. Fatigue strength of plain,ordinary and lightweight concrete. ACI

J.,May 1979:635-652.

[3]Satio M,and Imai S. Direct tensile fatigue of concrete by the use of friction grips. Journal of

the ACI,Proc,1983,80(5):431-438.

[4]Graf O.,and Brenner. Experiments for investigating the resistance of concrete under often

repeated compression loads.1.Bulletin,Deutscher Ausschuss fur Stahlbeton,Berlin,1934,

1(76):17-25.

[5]Bennett E.W.,and Muir S. E. J.,Some fatigue tests on high-strength concrete in axial

Compression. Magazine of Concrete Research,1967,19(59):113-117.

[6]Jan Ove Holmen.Fatigue of Concrete by Constant and Variable Amplitude Loading[C].In:

Fatigue of Concrete Structure,SP-75,ACI,1982:71-110.

[7]Matsushita H,Tokumitsu Y. A Study on Compressive Fatigue Strength of Concrete

Considered Survival Probability[J]. Proceeding of JSCE,1972,198(2):127-138.

[8]Lan Shengrui,Guo Zhenhai. Biaxial Compression Behavior of Concrete Under Repeated

Loading[J].Journal of Materials in Civil Engineering,1999,11(2):105-114.

[9]朱劲松. 混凝土双轴疲劳试验与破坏预测理论研究[D]. 大连:大连理工大学,2003,9.

[10]曹伟,胡建周. 混凝土多轴受压疲劳强度分析[J]. 土木工程学报,2005,38(8):31~35.

[11]Cornelissen H A W.Constant amplitude tests on plain concrete in uniaxial tension and tension

compression.Stevion report SR-50,Delft University of Technology,Jan.1984:79.

[12]吕培印. 混凝土单轴、双轴动态强度和变形试验研究[J]. 大连:大连理工大学,2001,

11.

[13]H.A.马达洛夫著,谢君斐译. 钢筋混凝土受弯构件在重复荷载下的性能研究[M]. 北京:

科学出版社,1964.

[14]沈忠斌. 疲劳荷载作用下钢筋混凝土受弯构件使用性能的试验研究[D]. 东南大学硕士

研究生学位论文,1989.

[15]朱晓东. 重复荷载作用下钢筋混凝土梁正截面刚度的试验研究[D]. 东南大学硕士研究

生学位论文,1989.

[16]石小平,姚祖康,李华等. 水泥混凝土的弯曲疲劳特性[J]. 土木工程学报.1990,23(3):

11-22.

[17]Byung Hwan Oh.Fatigue Analysis of Plain Concrete in Flexure [J]. Journal of Structural

Engneering,1986,112(2):273-288.

[18]李士彬. 锈蚀钢筋混凝土梁的弯曲疲劳性能和寿命预测[D]. 同济大学博士研究生学位

论文,2007.

[19]宋小雷. 锈蚀钢筋混凝土梁静力及疲劳性能试验研究[D]. 华侨大学硕士研究生学位论

文,2008.

[20]虞爱平. 不同锈蚀程度钢筋混凝土梁疲劳性能及疲劳后承载力研究[D]. 桂林理工大学

硕士研究生学位论文,2010.

[21]徐冲. 超载下既有桥梁加固后疲劳性能试验研究[D]. 浙江大学硕士研究生学位论文,

2011.

[22]王海超,贡金鑫,曲秀华. 钢筋混凝土梁腐蚀后疲劳性能的试验研究[J]. 土木工程学报,

2005,38(11):32~38.

[23]赵亚敏. 超载运输对钢筋混凝土桥梁疲劳性能的影响研究[D]. 中南大学硕士研究生学

相关热门标签