公务员期刊网 精选范文 脱硫工艺论文范文

脱硫工艺论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的脱硫工艺论文主题范文,仅供参考,欢迎阅读并收藏。

脱硫工艺论文

第1篇:脱硫工艺论文范文

关键词:脱硫,烟尘,石膏浆液密度,石膏

 

我国二氧化硫排放总量居世界首位,火电行业二氧化硫排放量占我国二氧化硫排放量的50%左右。我国能源结构的特点决定了燃煤生产的二氧化硫仍要增加。论文参考网。随着环境标准提高,石灰石-石膏法、喷雾干燥法、电子束法、循环流化床烟气脱硫法等必定会广泛应用于火电厂的烟气脱硫中,随着科技进步会有很多其它脱硫工艺应用于工业实践。

1.石灰/石灰石—石膏法脱硫方法的发展及应用原理

1.1 石灰/石灰石—石膏法脱硫方法的发展

自20世纪70年代初日本和美国率先实施控制SO2排放以来,许多国家相继制定了严格的SO2排放标准和中长期控制战略,加速了控制SO2排放的步伐。日本是应用烟气脱硫技术最早的国家,石灰/石灰石一石膏法烟气脱硫技术最早是由英国皇家化学工业公司提出的。迄今为止,国内外火电厂烟气脱硫技术主要采用石灰/石灰石—石膏法,此方法最为成熟、最为可靠且应用最为广泛,占世界上投入运行的烟气脱硫系统的85%以上,我国大型燃煤发电机组的脱硫方式以石灰/石灰石—石膏法工艺为主已成为必然的趋势。

1.2 石灰/石灰石—石膏法脱硫方法的该方法脱硫的基本原理是用石灰或石灰石浆液吸收烟气中的SO2,先生成亚硫酸钙,然后将亚硫酸钙氧化为硫酸钙。论文参考网。副产品石膏可抛弃也可以回收利用。

反应原理:用石灰石或石灰浆液吸收烟气中的二氧化硫分为吸收和氧化两个工序,先吸收生成亚硫酸钙,然后再氧化为硫酸钙,因而分为吸收和氧化两个过程。

(1)吸收过程在吸收塔内进行,主要反应如下

石灰浆液作吸收剂:Ca(OH)2+SO2一CaSO3·1/2H2O

石灰石浆液吸收剂:Ca(OH)2+1/2SO2一CaSO3·1/2H2O+CO2

CaSO3·1/2H2O+SO2+1/2H2O一Ca(HSO3)2

由于烟道气中含有氧,还会发生如下副反应。

2CaSO3·1/2H20+O2+3H2O一2CaSO4·2H20

(2)氧化过程在氧化塔内进行,主要反应如下。

2CaSO3·1/2H20+O2+3H2O一2CaSO4·2H20

传统的石灰/石灰石一石膏法的工艺流程是:将配好的石灰浆液用泵送人吸收塔顶部,经过冷却塔冷却并除去90%以上的烟尘的含Sq烟气从塔底进人吸收塔,在吸收塔内部烟气与来自循环槽的浆液逆向流动,经洗涤净化后的烟气经过再加热装置通过烟囱排空。石灰浆液在吸收SO2后,成为含有亚硫酸钙和亚硫酸氢钙的棍合液,将此混合液在母液槽中用硫酸调整pH值至4左右,送人氧化塔,并向塔内送人490kPa的压缩空气进行氧化,生成的石膏经稠厚器使其沉积,上层清液返回循环槽,石膏浆经离心机分离得成品石膏。论文参考网。

2.影响脱硫的主要因素及其主要对策

脱硫系统在运行过程中,影响系统脱硫效率的因素很多,如石灰石粉的粒度、浆液的浓度及吸收塔浆液活度/密度、PH值、浆液的流量、进入脱硫系统的烟气中 SO2的浓度等。这里只探讨烟气中粉尘及浆液浓度等对脱硫效率的影响及其主要对策。

2.1 烟尘对脱硫效率的影响及对策

(1)烟尘对脱硫效率的影响主要有:①烟尘对脱硫设备的磨损。在实际运行中由于脱硫系统前面的电除尘效果不好,使进入脱硫系统的烟尘含量远远超过起设计要求,对引风机、增压风机的通流部分严重磨损。②烟尘在脱硫系统烟道内存积致使烟气流速变小。③烟尘对脱硫系统设备GGH的灰堵影响,使得吸收塔部分起到了除尘的作用。④对吸收SO2反应的影响。由于烟尘被浆液截留,使得浆液的PH值不好控制,直接影响对 SO2的吸收效果;同时由于浆液中混有大量的烟尘,使得对浆液的密度控制也很不准确。⑤影响石膏品质。在进行脱硫石膏脱水时,这些烟尘转入到石膏中,从而影响着对脱硫石膏的有效利用。

(2)治理烟尘的对策主要有:①加强电除尘设备的运行维护或改造电除尘。由于煤种的变化较多,烟尘的比电阻特性变化也较大,因此应根据烟尘的比电阻特性来调整除尘电场的工作电压;同时加强对电除尘的设备的运行维护,确保其运行参数能在正常范围之内,尤其是真打除灰设备必须工作正常。③加强对GGH运行管理与冲洗。加强对GGH运行管理,正常情况下吹灰器能全部覆盖GGH,能有效地起到减少积灰对GGH运行效果的影响;对GGH的冲洗需要停运GGH,由于环保的要求,可能只有在停机时才可进行冲洗工作。

2.2循环浆液浓度对脱硫效率的影响及其主要对策

(1)循环浆液浓度对脱硫效率的影响主要有:浆液浓度的选择应控制合适,因为过高的浆液浓度易产生堵塞、磨损和结垢,但浆液浓度较低时,脱硫率较低且pH值不易控制。

(2)控制循环浆液浓度的主要对策:在磨机循环泵出口的循环管路上设有一段旁路管路,在这段旁路管路上安装有密度计,磨机系统就是通过这只密度计控制旋流器分配至成品浆液箱的浆液密度,循环管内的浆液密度与成品浆液密度有着对应关系,正常情况下成品浆液的密度控制在1220kg/m3左右,此时需将浆液循环管浆液的密度控制在1450 kg/m3左右,旋流器入口压力为120kpa。密度左右偏差不宜超过30kg/m3,浆液循环管的密度过大,成品浆液的颗粒度就会变大,还会造成管道堵塞,浆液循环管浆液的密度过小,又会影响成品浆液的浓度,降低磨机出力,因此需要控制循环箱补水流量来控制浆液循环管浆液密度在一个合理范围,保证成品浆液的品质。石灰浆液浓度一般为10%—15%。石灰石浆液浓度为20%—30%。

3.结论

石灰/石灰石—石膏法脱硫方法的影响因素的控制要依照客观需要和实际可能的原则,按照远期规划确定最终规模,以现状及生产需求为主要依据确定实施方法,既要满足要求,又要经济合理,经全面技术经济比较后优选确定。

第2篇:脱硫工艺论文范文

【Abstract】With the increasingly stringent environmental requirements, most of the domestic thermal power plants to complete the flue gas desulfurization, denitrification equipment installation and transformation, in the removal of flue gas pollutants (SOX, NOX and particulate matter) made a great contribution, but desulfurization and denitrification system will produce waste water or waste liquid. At present, this part of the waste water cannot be completely purified to achieve harmless emissions, based on this, paper began to study the thermal power plant flue gas desulfurization denitrification tail biological treatment technology, hoping to make a little contribution for improving the environment.

【关键词】火电厂;烟气脱硫、脱硝系统;生物处理技术

【Keywords】 thermal power plant; flue gas desulfurization and denitrification system; biological treatment technology

【中图分类号】X78 【文献标志码】A 【文章编号】1673-1069(2017)06-0183-02

1 引言

目前,社会经济的不断发展,人们对电力的需求逐渐增加。以煤炭为燃料的火电厂在进行发电的同时,还会排放出大量的SOX、NOX和颗粒物等污染物,严重污染了环境,影响着人们的生活质量。近年来,随着环保要求日益严苛,国内大部分电厂完成了脱硫、脱硝装置的改造,为减少火电厂烟气污染物排放做出了贡献。

通常情况下,火电厂烟气脱硫、脱硝尾液(简称废水)经过物理方法、化学方法去除废水中的固体悬浮物、重金属和部分有害物质后综合利用或排放至全厂废水处理系统;现有的尾液处理工艺过程,并不能处理掉全部的氮氧化合物和其他酸根离子。这部分废液不经过进一步处理进入水体,就会造成水体污染,从而产生新的环境问题。因此,开展火电厂烟气脱硫、脱硝废水的新的处理技术提上日程。

2 火电厂烟气脱硫脱硝废水处理工艺分析

2.1 废水的物理、化学处理工艺

在对火电厂废水进行物理处理时,主要采用的是过滤、混凝沉淀以及调节pH值等物理和化学相结合的方法完成废水处理过程的[1]。具体的工艺流程包括以下几点:①在废水处理站中建立一座废水调节池,尽量保证水力停留12小时以上,这样能够对废水水质和水量进行更好地调节。②脱硫系统或脱硝系统废水pH值一般偏酸性,要在废水沉淀池前面设置调节pH值的装置,pH值调节添加物质一般为生石灰或Ca(OH)2等碱性物质,可以调节废水pH值的同时去除废水中的重金属离子。③废水中含有大量的悬浮物、固含量和细微粉尘,在进行废水沉淀前要添加混凝剂,才能够保证沉淀的效果。④废水悬浮物沉淀和去除工艺对整个废水处理效果和废水后续处理工艺比较重要,根据目前运行经验,有澄清浓缩器+压滤机工艺和竖流式沉淀池+石英砂滤料2种处理工艺,前者一般用于只需进行物理化学处理的废水处理工,后者一般用于还有后续精处理工艺的流程。具体采取何种工艺需依据项目具体情况和废水水质条件确定。

经过上述物理和化学处理过程,能够基本上去除废水中悬浮物和大部分的重金属离子,但是对于废水中的酸根离子和氨氮没有去除作用。

2.2 废水生物处理工艺

为了更进一步去除废水中的有害物质和氨氮,可采用生物处理技术处理火电厂脱硫、脱硝的废水。

在火电厂烟气脱硫脱硝废水处理过程中,脱硫脱硝废水的进水温度以及初始氨氮的浓度都比较高,但是脱硫脱硝废水内的有机物浓度却相对较低。这种废水环境十分有利于厌氧氨氧化自养菌的生长。因此,一般采用厌氧氧化工艺对火电厂烟气脱硫脱硝废水进行处理。

但是在实际操作过程中,采用厌氧+好氧相结合的生物处理方法比单纯使用厌氧氧化工艺效果更好,各部分主要配置如下:

①厌氧池工艺,主要采用的是封闭钢制圆形反应器,同时在池顶设置了硫化氢收集装置,这个装置可以尽可能地收集硫化氢气体。

②兼氧池工艺。兼氧池工艺主要采用的是封闭钢制圆形反应器,同时在池顶设置一个搅拌器。

③好氧池工艺。好氧池工艺主要采用的也是封闭钢制圆形反应器,但是在池底设置了微孔曝气器,主要借助鼓风机完成供气需求。

通过物理化学处理工艺和生物处理工艺后,废水排放水质可达标排放。

3 工程案例分析

某火电厂的装机容量是1台350MW燃煤发电机组,采用石灰石-石膏法烟气脱硫工艺,脱硝工艺为选择性催化还原(SCR)工艺;该发电厂烟气脱硫、脱硝装置产生的尾液(废水)设计值是240m3/d;经过测量,该发电厂烟气脱硫、脱硝装置产生的废水水质指标如表1所示。

由上表可看出,该废水为酸性环境,废水中含有固体物、悬浮物、酸根离子、COD超标及氨氮超标;为了使得该电厂废水满足达标排放要求,拟采用物理化学处理工艺+生物处理工艺完成废水处理过程。先用物理、化学处理工艺提升pH值,去除固体物、悬浮物和部分酸根离子,使得废水水质满足生物处理工艺的相关要求,然后采用厌氧氧化+好氧相结合处理工艺,降低废水中氨氮和化学耗氧量及部分酸根离子,该发电厂脱硫、脱硝废水处理的具体流程如图1所示。

现场实测数据表明,经过上述处理工艺后,废水处理系统出口的水质指标分别是:pH值7.0左右,TSS的数值指标是100.0 mg・L-1,BOD5数值指标是50.0 mg・L-1,CODCr数值指标是100.0 mg・L-1,SO42- 数值指标是300.0 mg・L-1,T-N数值指标是125.0 mg・L-1,NH3-N数值指标是35 mg・L-1,基本满足工业废水排放标准要求。

4 结语

通过相关的实验和工程实例表明,火电厂烟气脱硫脱硝废水采用物理化学处理工艺+生物处理技术可满足工业废水达标排放要求[2],该组合工艺中最重要的部分就是厌氧工艺的使用,可以最大限度地处理掉废水中氨氮和化学耗氧量,这对于水质的清洁有相对较好的作用。实际运行工程表明,当火电厂脱硫脱硝尾液中的硫酸根含量过多时,通过厌氧工艺的处理无法产生很好的效果,甚至还可能产生制约的影响。因此,对于火电厂烟气脱硫脱硝尾液生物处理技术还要经过不断地研究和探索,以期完善处理方式,使得处理后的水能够达到相对比较干净的状态。

【参考文献】

第3篇:脱硫工艺论文范文

【关键词】 动力煤 重介质 选煤 干法分选 脱硫降灰

我国是世界上最大的煤炭开采国和消费国。随着采煤机械化程度的推进和开采深度的增加,原煤质量越来越差。提高原煤入洗率,可充分提高煤炭综合利用价值,使煤炭满足不同行业需求,减少对环境的污染,使企业获得更好的经济效益和社会效益。

1 选煤工业跨越发展

“十一五”以来,我国煤炭洗选工业发展迅速,已成为世界选煤大国。一大批关键技术研发和示范取得成功,很多技术接近或达到国际先进水平,有些技术达到国际领先水平。2012年,煤炭入洗量达到20.5亿吨,比2007年增长了86.4%;原煤入洗率提高到56.2%,比2007年提高了15.3个百分点。我国基本实现了炼焦煤的全部入洗。但是,动力煤的入选比例还不到40%。我国自行研制的大型三产品重介质旋流器、复合干法选煤技术、用于粗煤泥分选的干扰床分选机、大型分级破碎机、大型旋流微泡浮选柱、大型重介浅槽分选设备、大型磁选机、大型自动化快开压滤机、大型振动筛等关键洗选设备大多替代进口并开始出口。利用先进的选煤技术和装备建设成了一批大型、特大型现代化选煤厂,选煤厂设计和建设水平已经进入世界先进行列。

2 重介质选煤技术异军突起

近年来,重介质选煤技术由于具有工艺简化、运行成本低、分选效率高、技术可靠、处理能力大等优势,其分选比重日益加大,已达到54%。在重介质旋流器分选过程、数学模型和数值模拟方面取得了重要的理论成果,为旋流器参数优化和性能提升提供了坚实的技术基础。同时,在简化工艺系统、降低分选下限、提高入料上限、增强自动化程度等方面取得了突破性的成就。成功开发了大型多供介无压给料三产品重介质旋流器;研究开发成功以一套介质净化回收系统实现原煤分级分选,构建了重介质旋流器分选难选煤精煤最大产率化工艺系统;原煤按粗细粒级不同可选性采用不同分选密度分选,提高了精煤产率;降低了大型无压给料三产品重介质旋流器入料压力、功耗和磨损;实现了全部粗煤泥经小直径重介质旋流器分选。

3 分选工艺日趋合理高效

我国中小型选煤厂大多采用两段选煤工艺,设备和工艺简单,但分选效率较低,粗粒精煤损失严重。中型和大型选煤厂基本采用两段半分选工艺,其主要增加了粗煤泥回收环节,复杂程度介于两段和三段选煤模式之间,但造成浮选入料高灰细泥含量增加,精煤产率低。目前,很多新建选煤厂多采用增加了粗煤泥回收和分选的三段选煤工艺,虽然设备和工艺复杂,但实现了全粒级高精度分选,对大块粗粒分选效果和细粒煤泥浮选效率的提高均有利,总精煤产率高,是一种较有前途的分选工艺。

4 干法选煤技术得到加强

我国是缺水国家,西北部和中部等产煤省区更是缺水严重。我国煤炭有2/3以上分布在西部,采用湿法分选技术耗水量高、投资及生产费用高。干选以其污染小、不用水、投资少、建厂快等诸多特点,为煤炭降灰提质、易泥化煤种及干旱缺水地区的煤炭分选提供了有效技术途径。我国干法选煤整体技术处于国际领先水平。我国的干法分选理论揭示了流态化分选的错配效应,实现了气固流态化分选系统的协同优化;揭示了不同粒级煤炭在流化床中的分布规律,形成了物料在流化床中的三级分布理论。北京博后筛分工程公司独立研发的“大型重介质干法分选系统”已在徐州矿务集团张集煤矿进行了连续的50t/h工业试运行,分选效果达到了预期目标。该系统的分选精度接近湿法重介质选煤,但不用水,没有水污染,技术水平达到国际领先水平,具有广阔的应用前景。

5 深度脱硫降灰技术逐步深入

静电分选技术:依靠不同物料间的电性差异,借助于高压电场作用实现分选的一种选煤方法。

聚团浮选技术:利用煤和矿物质表面性质的差异,用油作粘结剂进行选择性粘附、团聚,使煤和黄铁矿分离。经过多年的研究,已成功开发出一套高效、低能耗、工艺简单、成本低的脱除煤中细粒嵌布黄铁矿硫的新工艺——高剪切疏水聚团浮选脱硫新工艺。

生物脱硫技术:它是利用微生物能够选择性氧化有机或无机硫的特点,去处煤炭中的硫元素,或者利用微生物的选择性吸附作用来改善煤和黄铁矿表面的疏水性,以达到脱硫的目的,是目前洁净煤技术的热门研究课题之一。它的优点是既能专一的脱除结构复杂、嵌布粒度很细的无机硫,同时又能脱除部分有机硫,而且反应条件温和,设备简单,成本低。

化学脱硫技术:化学浮选脱硫技术利用煤与黄铁矿的化学性质不同,用特定的方法或加入一定的药剂,使之发生化学反应而脱除煤中硫。目前,化学脱硫技术包括:碱法脱硫、气体脱硫、热解与氢化脱硫、超临界气体抽提脱硫和氧化法脱硫等。

第4篇:脱硫工艺论文范文

钢铁工业烧结烟气多污染物协同控制技术进行了详细的分析与探讨,以供参考。

关键词: 钢铁工业;多污染物; 协同控制技术;

中图分类号:C35文献标识码: A

一、概述

钢铁工业是高耗能、高污染、资源型产业,排放的典型大气污染物有S02、烟粉尘、N0X和二恶英等。按长流程钢铁企业各工序大气污染物排放分析,201 1 年中国钢铁工业烧结工序S02、烟粉尘和N0X排放量分别占总排放量的81.35%、39.82%和53.56%。(数据取自《2011年中国钢铁工业环境保护统计》,共统计84家钢铁企业,其粗钢产量占全国的65%,数据基本反映中国钢铁工业环保概况)。

自国家《“十一五”规划纲要》将S02污染物总量降低10%作为约束性指标以来,钢铁企业做了大量的减排工作,尤其是烧结工序中S02的排放量就占到钢铁企业总体S02排放量的70%以上,烧结烟气实施脱硫已经成为钢铁行业实现减排的重要目标,而这一目标在“十一五”期间已经实现了突破性的进展。

截止到2013年5月,全国钢铁工业配置脱硫系统372套(454台烧结机),面积为74 930m2,其中循环流化床32套,石灰石石膏法湿法l80套,氨法31 套,氧化镁法20套,旋转喷雾26套。重点大中型钢铁企业配置脱硫系统236套(291台烧结机),面积58 042 m2,其中循环流化床26套,石灰石石膏法湿法90套,氨法27套,氧化镁法l6套,旋转喷雾25套。此外,钢铁企业2013年在建的还有46台烧结机。由于烧结烟气脱硝的复杂性,各类脱硝技术尚未在烧结烟气中广泛应用,国内钢铁企业烧结机尚未有实施烟气脱硝的实例。

GB 28662―2012《钢铁烧结、球团工业大气污染物排放标准》对N0x和二恶英规定了排放限值要求,严格S02、颗粒物和氟化物的排放要求,并针对环境敏感地区规定了更严格的大气污染物特别排放限值,具体新旧标准值对比见表1。

面对新的排放标准,为实现烧结烟气多污染物减排目标,从污染物减排技术措施的协同效应出发,建立全过程、一体化的污染物协同减排和协同控制技术体系。

二、活性炭吸附工艺

活性炭吸附工艺在20世纪50年代从德国开始研发,20世纪60年代日本也开始研发,不同企业之间进行合作与技术转移以及自主开发,形成了日本住友、日本J-POWER和德国WKV等几种主流工艺。开发成功的活性焦(炭)脱硫与集成净化工艺在世界各地多个领域得到了日益广泛的应用。其中,在新日铁、JFE、浦项钢铁和太钢等大型钢铁企业烧结烟气净化方面的应用,取得了良好效果。

活性炭吸附工艺的原理是烧结机排出的烟气经除尘器除尘后,由主风机排出。烟气经升压鼓风机后送往移动床吸收塔,并在吸收塔入口处添加脱硝所需的氨气。烟气中的S02、N0x在吸收塔内进行反应,所生成的硫酸和铵盐被活性炭吸附除去,吸附了硫酸和铵盐的活性炭送入脱离塔,经加热至400 0C左右可解吸出高浓度S02。解吸出的高浓度S02可以用来生产高纯度硫磺(99.9%以上)或浓硫酸(98%以上):再生后的活性炭经冷却筛去除杂质后送回吸收塔进行循环使用。

存在问题:运行成本高,设备庞大且造价高,腐蚀问题突出,系统复杂,活性炭反复使用后吸附率降低消耗大,活性炭再生能耗较高等。

三、MEROS工艺

MEROS(MaximizedEmissionReducationof Sintering)工艺是欧洲西门子奥钢联针对烧结烟气中S02、二恶英类污染物等控制开发的,目前成功运用在多台烧结机烟气脱硫及其他有害物质气体的处理。

MEROS工艺原理是利用熟石灰作为脱硫剂,与烧结废气中的所有酸性组分发生反应,生成反应产物。产生的主要反应是:

2S02+2Ca(OH)2=2CaS03・l/2H2O+H2O

2CaS03・l/2H2O+03+3H2O=2CaS04・2H2O

S03+Ca(OH)2=CaS04・H20

2Ca(OH)2+2HCI=CaCl2・Ca(OH)2・2H20

2HF+2Ca(OH)2=CaF2・2H2O

工艺特点:工艺简单,运行稳定性好;入口温度要求低,温度变化适应范围广;可控性高,脱硫后的S02排放值稳定;脱除二恶英和重金属。

存在问题:年运行费较高;不能控制烧结烟气中N0x;在控制二恶英同时会产生混有二恶英的固体废弃物。

四、EFA曳流吸收塔工艺

白2006年以来,EFA半干法烧结烟气脱硫技术先后在德国迪林根钢铁公司2号180m2烧结机、萨尔茨吉特钢铁公司192m2烧结机和迪林根钢铁公司3 号258 m2烧结机脱硫项目得到成功应用。EFA烧结烟气脱硫技术在德国市场处于领先地位口剖。

EFA变速曳流式反应塔脱硫工艺,作为半干法脱硫工艺,集成了布袋除尘器和反应物循环系统,可以同步脱除S02、S03、HCl、HF、粉尘和二恶英等。EFA脱硫原理为:烟气中的酸性化合物在特定温度范围内遇水时与Ca(OH)2进行反应,活性炭主要用于吸附烟气中的二恶英等有害成分,最终的反应物为干性的CaS03、CaS04、CaCl2、CaF2、CaC03和烧结粉尘的混合物,干性反应物在布袋除尘器内进行分离。

工艺特点:总投资低:运行成本低(年运行费用约为总投资的l/12);加入干燥吸收剂,管道和罐仓不发生结块和板结;反应速度可调,不会出现结露现象;低温脱硫效果好;运动部件少,维护成本低。

存在问题:不能控制烧结烟气中N0x;在控制二恶英同时会产生混有二恶英的固体废弃物。

五、LJS-FGD多组分污染物协同净化工艺

福建龙净环保股份有限公司经过对引进技术的消化、吸收和再创新,开发出具有自主知识产权的LJS-FGD多组分污染物协同净化工艺以及相关的配套装置。目前LJS-FGD工艺已经在宝钢集团梅钢公司、三钢、昆钢等大型钢铁厂得到成功应用。

基本原理是:烟气从吸收塔底部进入,经吸收塔底的文丘里结构加速后与加入的吸收剂(消石灰)、循环灰及水发生反应,从而除去烟气中的S02、HCl、HF、C02等酸性气体,通过喷入活性炭等吸附剂,可以同步脱除烟气中的二恶英、重金属等,实现多组分污染物的协同净化。

工艺特点:对烧结机烟气S02浓度波动具有良好的适应性;对烧结机烟气量波动具有良好的适应性;整个吸收塔反应器为空塔结构,维护简单;烟气无需再热、整套装置及烟囱不需要防腐,可以利用老烟囱进行排烟;系统性能指针高,排烟透明,污染物排放浓度低;没有废水产生,无二次污染;副产物为干粉态,方便存储、运输和综合利用。

存在问题:为保证系统可靠性,采用了较多的进口工艺设备,造价相对较高:副产物的应用范围有待于进一步拓宽。

六、催化氧化法综合清洁技术

催化氧化法烟气综合清洁技术是一项能够同时进行脱硫、脱硝、脱汞的技术。

催化氧化法烟气综合清洁来源于以色列Lextran 公司,当烟气中S02、N0。(N0需被氧化)遇水形成的亚硫酸根及亚硝酸时,利用催化氧化剂对亚硫酸根及亚硝酸根的强力捕捉能力从而去除烟气中的S02、N0x。

烟气与含有催化剂的循环液在吸收塔内逆向流动接触时,亚硫酸根、亚硝酸根被催化剂捕捉,在氧气存在的条件下被氧化成为稀硫酸或稀硝酸。在加入中和剂(氨水)的情况下,最终反应生成硫酸铵或硝酸铵化肥。

在脱硫脱硝的同时,该催化氧化剂对汞等重金属也具有极强的物理溶解吸附效果,从而去除烟气中的汞等重金属。

技术特点:脱硫效果高,出口烟气S02可达到排放浓度≤50 mg/m3;对于烟气温度、S02浓度和烟气量适应性强;系统运行稳定、可靠,无管道堵塞、结垢现象;资源利用优势,利用焦化厂蒸氨后氨水,降低焦化厂废水处理负荷;脱硫剂(催化氧化剂)循环使用,并可生产高附加值的硫酸铵产品;对烧结机主系统无影响,与烧结机主系统同步率为98%以上。

存在问题:目前有机催化剂需进口,尚未国产化,价格较高。

技术经济及减排效果对比

表2分析比较了上述五种烧结烟气多污染物协同控制技术的技术经济及减排效果,结果如下:

1)MEROS工艺和EFA吸收塔工艺不能控制烧结烟气中N0x,催化氧化法不能控制二恶英。

2)活性炭吸附工艺的单位烧结面积投资最高,是LJS--FGD工艺的3倍多:MEROS工艺的单位烧结矿运行费最高,是LJS-FGD工艺的近3倍。

3)催化氧化法综合清洁技术属于湿法,脱硝效率高,单位烧结矿运行成本低,最终生成硫酸铵或硝酸铵化肥。

4)前四种技术均属于干法脱硫技术,投资高、运行成本高,活性炭再生能耗较高,脱硫渣的处理再利用是目前重点发展方向。

总之,在钢铁工业烧结烟气多污染物进行控制时,要针对我国的实际情况和设备设计出适合我国的污染物一体化协同技术,为促进我国钢铁行业的健康发展和改善生态环境做出贡献。

参考文献:

[1] 赵瑞壮; 叶猛; 王贞; 朱廷钰. 钢铁烧结机烟气多污染物协同控制技术评述[D]. 2012中国环境科学学会学术年会论文集(第三卷).2012(6).

第5篇:脱硫工艺论文范文

关键词:火电厂;大气污染排放;脱硫脱硝技术

中图分类号:TM62文献标识码: A

引言

火电厂燃煤量在我国工业煤炭消耗量中占了很大的比重,带来的污染非常严重。据统计,2010年,火电厂产生的SO2和NOx分别占我国SO2和NOx总排放量的52.8%和65.1%。国家环境保护“十二五”规划重点工业部门分工方案中指出,要继续推进电气行业污染减排,新建燃煤机组要同步建设脱硫脱硝设施。

目前最具有发展前景的脱硫脱硝技术是烟气同时脱硫脱硝技术,指在同一套设备内对烟气中的SO2和NOx同时去除,该方法不但节约用地而且投资较低。

一、我国燃煤火电厂大气污染排放现状

燃煤过程产生的废气污染物具体包括粉尘、SO2、NOx及CO与CO2气体,其中NOx与SO2的污染尤甚。据统计数据表明,2010年我国工业废气排放量达519168亿m3,较2009年上升19.1%,其中工业SO2排放量达1864.4万t,占全国SO2排放量的85.3%;“十二五”期间我国SO2排放总量及工业SO2排放量皆呈现出下降趋势。与2005年相比,2010年我国SO2排放总量下降14.3%,超额完成“十二五”减排的任务;2010年我国SO2及NOx排放量较2009年上升9.4%(1852.4万t),其中工业NOx排放量较2009年上升14.1%(1465.6万t),占全国NOx排放量的79.1%。总体而言,我国工业NOx排放量呈现出逐年增加的趋势,SO2属“十二五”期间的重点污染控制对象,因此超额完成既定减排任务。从2000年以来,我国便开始对SO2的排放进行严格控制,同时逐步加大排放控制力度,到2010年我国已有2386家电力企业被列入重点调查统计范围,其中1642家独立火电厂,744家自备电厂。独立火电厂共消耗16.6亿t燃料煤,占全国工业煤炭消耗量的49.2%。SO2排放量达835万t,较2009年下降4.8%,占全国工业SO2排放量的44.8%。

二、火电厂燃煤烟气脱硫脱硝技术

(一)、烟气脱硫技术

在我国,对于工业烟气脱硫,在燃煤电厂行业出现较早。现在大多的工业烟气脱硫技术都是源于最初的燃煤烟气脱硫技术。烟气脱硫工艺按脱硫剂是否含水可分为:湿法、干法、半干法。其中具代表性的有:湿法中的石灰石-石膏法,氨法;半干法中的循环流化床法;干法中活性碳(焦)干法。

1、烟气湿法脱硫技术

石灰石-石膏法以石灰石装液(5%-15%)为脱硫剂,除尘烟气中的SO2与石灰石浆液中的CaC03、Ca(0H)2以及鼓入的或使用喷淋技术时塔内空气中的O2发生化学反应,生成石膏(CaS(V2H20);烟气依次经过除雾器除去雾滴,最后经烟囱排入大气,工艺流程如图1。

图1石灰石-石膏法脱硫工艺流程图

2、烟气氨法脱硫技术

严格来讲,氨法始于20世纪70年代,日本与意大利等国始研制氨法脱硫工艺并相继获得成功。氨法以NH3为吸收剂,在吸收塔中与SO2反应生成亚硫酸氢铵(NH4HSO3)和亚硫酸铵((NH4)2S03)。含NH4HSO3的溶液进一步与NH3反应生成(NH4)2S03,然后再对(NH4)2S03氧化、结晶,制取质量好而且稳定的硫酸铵((NH4)2S04)。

3、烟气循环流化床脱硫技术

循环流化床法以消石灰(Ca(0H)2)为吸收剂,除尘烟气从吸收塔底部进入,经文丘里管加速后与加入的Ca(OH)2、循环灰及水发生反应,除去烟气中的SO2。携带大量吸收剂和反应产物的烟气从吸收塔顶部进入脱硫布袋除尘器,进行气固分离。净化气体通过烟囱排入大气,脱硫干灰大部分进入循环系统,多余部分通过二级输送系统排外,工艺流程如图2。

图2循环流化床脱硫工艺流程图

(二)、烟气脱硝技术

在20世纪70年代,日本就已经实现了选择性催化还原(SCR)的工业化运用。目前,烟气脱硝技术有选择性催化还原法(SCR)、选择性非催化还原法(SNCR)、电子束法、吸收法、吸附法等。由于SCR法脱硝效率高、技术相对成熟等优势,受到国际上的广泛关注。

1、选择性非催化还原法

选择性非催化还原法(又称热力脱硝)是把尿素或氨等还原剂均匀喷入炉膛高温区(900~1050℃),由此达到脱除NOx的目的。目前全球超过300套的选择性非催化还原法装置被应用到工业锅炉、电站锅炉、垃圾焚烧炉等领域。实践证实,选择性非催化还原法能够直接经现有锅炉改造而成,因此具有投资费用低等优点,但同时也具有脱硝效率低、氨逃逸率高、还原剂消耗量大等缺点,其中还原剂消耗量大的原因是还原剂与O2经氧化反应会生成H2O及CO2。目前选择性非催化还原法试图与再燃烧技术、选择性催化还原法、低NOx燃烧器等技术实现联合应用,此乃该项技术发展的重要方向。

2、选择性催化还原法

选择性催化还原法是以催化剂及一定温度为反应环境,以烃或氨为还原剂,同时把NOx选择性地还原成H2O及氮气。实践证实,采用选择性催化还原法能够使NOx的脱除率超过90%,而目前NH3-SCR已成为全球应用范围最广的脱硝技术。1999年我国首次投运SCR脱硝工程,但投运后却长期受到氨量控制误差等原因的影响,因此实际脱除效率仅能达到65~80%。总体而言,选择性催化还原法并不会影响到大气环境质量,因此目前已成为应用范围最广、脱硝工艺最成熟的脱硝技术。

(三)、烟气同时脱硫脱硝技术

烟气同时脱硫脱硝技术也称之为烟气脱硫脱硝一体化技术。该方法可以在同一反应塔内同时脱除两种甚至多种污染物,工艺流程简单,减小了反应装置的占地,同时也降低了一次性投资费用。烟气同时脱硫脱硝技术目前在全世界范围内都是研究的热点,但绝大部分还处于实验室研究阶段,还没有真正实现大规模工业化应用。

1、脉冲电晕法(PPCP法)

国外已有脉冲电晕法脱硫脱硝的中试装置,其中韩国建造的工业中试装置烟气处理量为2000m3/h,其脱硫脱硝效率分别为95%和85%。我国有研究者对处理量为12000~20000m3/h的中试装置进行试验后发现,在低能耗的条件下,SO2和NOx的脱除率可以达到85%和50%以上。

脉冲电晕法不需要电子加速器也不需要屏蔽辐射从而降低了能耗和成本。虽然该方法具有很多优点,但是由于其发展时间较短,还不是很成熟,所以还有很多问题需要解决。

2、络合物吸收法

该工艺一般先在碱性或者中性溶液中加入Fe2+形成络合物,这类络合物可以吸收NOx并且形成亚硝酰亚铁络合物,并进一步和溶解的SO2、O2反应生成其他形式的络全物。有研究者采用6%氧化镁增强石灰和Fe(Ⅱ)EDTA作为吸收液用于烟气脱硫脱硝,实验结果表明脱硫率和脱硝率分别可到99%和60%以上。该方法虽然可以获得很高的脱硫脱硝效率,但是由于吸收液的再生困难并且容易损失,使得成本大大提高,使进一步的推广收到了阻碍。

结束语

综上所述,火电厂必须深入落实烟气脱硫脱硝工作,此乃时展的必然趋势,同时也是实现社会经济可持续发展的必然要求。目前我国烟气脱硫脱硝技术尚处在研究阶段,而已经应用到工业领域的脱硫脱硝技术仍存有诸多问题亟待解决,其中以脱硝技术为甚,因此我国必须加大研究力度,切实提高对火电厂大气污染物的控制力度。

参考文献

第6篇:脱硫工艺论文范文

关键词:一体化厌氧消化反应器,污泥处理,厌氧消化,沼气

 

城市污水处理厂为减轻污水的污染做出了巨大贡献,但同时也产生的大量的污泥。如果污泥处理、处置不当仍然会造成环境污染。为防止污泥腐败造成二次污染,必须实现污泥的稳定化、减量化、无害化。污泥稳定化处理方法有污泥厌氧消化法、污泥好氧消化法和污泥焚烧法等,其中污泥好氧消化法和污泥焚烧法由于运行费用高、管理复杂,因而在实际工程中应用极少;相比较而言,污泥中温厌氧消化法较为经济,厌氧消化后的污泥更易于脱水,从而最终实现污泥的减量;同时,厌氧消化过程可杀灭污泥中大部分的病原体、寄生虫卵,使污泥卫生条件得以改善,实现污泥无害化1。

一体化厌氧消化反应器是青岛欧仁环境科技有限公司适应我国污水处理厂分散布置、污泥集中处理运输成本高的基本情况而开发的污泥厌氧消化反应器。该反应器建设规模可大可小,易于建设。

1工程概况

1.1工程现状

本工程建于某市,原来主要用于处理养殖场粪污,后改为处理临近污水处理厂产生的市政污泥,污泥有机物含量55%。原料污泥为经过带式压滤机压滤的含水率为80%左右的污泥,经调整,进料浓度为含水率95%的污泥,产生的沼气经净化后一部分用来发电,另一部分供应周围居民用气。设计每天可以处理含水率为80%左右的污泥2.5吨沼气,经调配每天的进料量为10吨/天。正常运转时每天的沼气产量为80m3,消化污泥用于还田处理,增加了土壤的有机质,提高了土地的肥力。

1.2工艺流程

污泥厌氧处理的工艺流程图如图1所示。

图1 污泥厌氧消化工艺流程图

从市政污水处理厂运来的压滤污泥排入污泥均质池,加入一定量的污水并在搅拌机的搅拌下调成含水率约95%的污泥,用污泥泵泵入一体化消化反应器。一体化反应器是集污泥消化、沼气贮存于一体的装置,下部为CSTR全混式污泥消化器,渣沼液混合物排入沼渣沼液池,罐车运至农田进行施肥。一体化反应器配有搅拌及加热设施,上部为柔性膜式贮气柜,有气柜压力平衡和保护设施。一体化消化反应器产生的沼气贮存于上部气柜中经脱水、脱硫、加压等一系列沼气净化设施后可用于发电、周围居民炊事、工程中沼气锅炉的气源。

1.3主要处理单元及设计参数

 

项目

主要构筑物参数

污泥均质池

钢砼结构,有效容积12m3配搅拌机

污水调节池

钢砼结构,有效容积10m3

一体化消化反应器

反应器为钢结构,有效容积200m3,配搅拌及加热设施

气柜为柔性模式结构,有效容积100m3,配备恒压及保护设施

沼渣沼液池

钢砼结构,有效容积30m3,

第7篇:脱硫工艺论文范文

关键词:城市污水;污水处理;技术发展

Abstract: With the development of industrialization, the acceleration of urbanization develops rapidly and sewage emissions becomes more as well.If it is not handled properly,it will seriously pollute the environment and affect the quality of living environment and sustainable development of the city. Therefore, the result of the development of city sewage treatment is very important.

Key words: city sewage; sewage treatment; technology development

中图分类号:[TU992.3]

一、城镇污水处理技术介绍及分析

目前在水污染治理技术上,只能提供下列技术的工艺参数:传统活性污泥法技术包括延时法、吸附再生法等各种新型活性污泥工艺和SBR、AB法、UNITANK和氧化沟技术等;A-O法和A2-O技术;多种类型的稳定塘技术;土地处理技术等等。这些工艺在原则上可以满足大多数城市污水治理的要求,对于传统活性污泥工艺和其变形工艺(除磷脱氮)论文不做全面的介绍,仅就这几年在我国较为常用的工艺进行论文介绍和分析。

传统SBR反应器在运行操作上形成了曝气和沉淀相结合的特点,这体现了SBR反应器最为本质的特点之一。同时,这要求SBR反应器必须充分利用了现代电子和自动化技术。SBR反应器的发展过程呈现了多样性,有CASS、CAST、ICEAS、MSBR等多种新型SBR反应器。各种SBR反应器的发展体现了与传统活性污泥相互融合的趋势。具体表现为从间歇进水、间歇出水的传统SBR反应器,发展到连续进水、间歇出水和连续进水、连续出水并带回流污泥的SBR反应器。以及出现了UNITANK这种融合氧化沟、SBR和活性污泥工艺新型的综合性工艺。这体现了间歇式的SBR和连续式活性污泥工艺相互融合的特点。

UNITANK从整个系统来看,它已经不属于SBR,与交替运转的三沟氧化沟非常相似,更接近于传统的活性污泥法,这是UNITANK工艺最为显著的一个特点。UNITANK在恒水位下交替运行,总有一个池子作为沉淀池,这是UNITANK第二个特点。对于大型污水处理厂沉淀功能的满足,是UNTANK工艺的制约因素。标准UNITANK系统三个方形池之间构成级串的形式,弥补了单个反应器完全混合的缺点,这是UNITANK系统第三个特点。

UNITANK最为根本的问题之一是中沟和边沟地位不一致,边沟有一段时间兼作沉淀池,而中沟总是曝气。造成中池污泥浓度过低而边池污泥浓度过高,池容利用率降低等一系列问题。UNITANK的发明人在离开SEGHERS公司之后,提出一新工艺——LUCAS工艺。LUCAS工艺最为显著的特点是四个反应器(也可用两个或三个反应器)作用完全对等,其采用轮换方式作为曝气池和沉淀池。由于每一个反应器的地位平等,所以LUCAS工艺既保留了UNITANK工艺的优点,又克服了其缺点。

二、从可持续性思考城镇污水处理工艺技术

目前我国城市污水处理厂普遍采用的工艺是国外在水污染控制过程中,被证明是行之有效的技术。并且是欧美等发达国家所采用的主导技术,我国与欧美等国家与工艺几乎处在同一水平上,但是我国的国民生产总值远远低于上述国家,采用以上技术是否能够完全适合我国的国情,是我们需要考虑的一个问题。这需要从技术的先进性和是否代表了可持续发展的方向两个方面来考虑。

目前政府往往简单认为一个城市有污水处理厂,就是经济和环境协调发展,符合了可持续发展的原则。对可持续发展全面理解应该根据世界环境与发展委员会在《我们共同的未来》的报告中对可持续发展的定义:“可持续发展是即满足当代人的需求,而又不损害后代人满足其需求的能力的发展”。从技术层面考虑需要判断污水处理工艺是否符合可持续发展原则,需要从可持续发展的公平性原则(是否体现资源和环境共享)、持续性(是否满足资源和环境的永续性利用)和共同性原则(是否有利于解决全球性环境问题)方面来考虑。

目前国内大多采用国外引进的延时曝气的氧化沟、SBR等工艺。首先这些工艺是上世纪六、七十年代开发的工艺,是根据西方,特别欧洲国家排放标准制订的工艺。例如采用延时曝气低负荷工艺特别适合北欧国家的气候条件(冬季低温),而延时曝气对污泥是采用好氧稳定的方法,采用耗能的方法进行污泥稳定化处理。适合了这些国家的国情和社会、经济发展情况。

事实上,低负荷曝气池的池容和设备是中、高负荷活性污泥工艺的几倍,在建筑材料和土地资源上是高消耗,相应的投资要高数倍;其次,延时曝气系统能耗比中、高负荷活性污泥要高40~50%左右。同时,能耗增加会带来了直接运行费的增加,能耗增加也会还要增加间接投资。据资料报道目前国内每kW发电能力除尘脱硫需要投资500~1000元,则每万吨污水增加的脱硫投资需要25~50万元。按脱硫投资为电站投资10%计,则增加的电厂投资为250~500万元,是污水处理投资的50%以上。对于我国这样一个资源不足、能源日益短缺、人口众多的发展中国家,是否适合推广这种低负荷的活性污泥工艺是值得推敲的问题。从可持续发展角度讲,采用延时曝气这种高资源占用和能源消耗的低负荷工艺,并以耗能的方式取得污泥的稳定工艺是不适合可持续发展的基本原则的,也是不适合中国国情的。我们应该开发科技含量高、经济效益好、资源消耗低、环境污染少反应器。

三、我国城镇污水处理问题的原因

相比于先进国家,我国的污水处理无论在数量、规模上,还是在自动化程度、机械化上,都存在着非常大的差距。究其原因,可以归结为以下3个方面:

1)资金不足,运行维护管理费用高

对于一个城市来说,防止水污染、改善城市水环境质量的重要手段就是有个好的城市污水处理系统。因此资金是个根本问题。改革开放后我国的经济水平有了长足的发展,但相对于发达国家还是比较落后,用于污水处理的资金还很紧缺。统计资料表明:2010年增加了约6 700多万吨的处理污水,约需1 300多亿元的环保资金投入。按照2009年及以前的日处理能力2 600多万吨,每立方米的运行费用0.5元计算,需运行费用49亿元/年,则2010年需171.7亿元,可以看出,资金不足的问题十分突出。

近几年来,国家对城市污水处理增加了不少投资,但与国外相比差距还是很大。据相关数据统计:发达国家包括美国、英国、法国、日本、德国在内的国家用于污水处理方面的国家投入约占国民经济总产值的0.53%~0.88%。而我国仅为0.02%~0.03%。因此,我国应该通过各种宏观调控措施,大力调整投资结构,加大投资力度。

2)技术落后,污水处理率低

据清华大学紫光顾问公司调查:目前我国污水处理设备运行状况是1/3运行正常、1/3处于闲置状态、1/3不正常,污水处理率只达到50%。这不仅是由于资金不足,还有技术的原因。因为污水处理技术是污水处理设施能否高效运转的关键点。很长一段时间以来,我国的污水处理技术都是引进欧美发达国家的,虽然在学习国外技术的同时也创新了一套自己的技术,在污水处理上有了很大的发展,但是我国目前采用的技术与同期国外的技术水平相比依然还很落后,一直存在能耗高、效率低、自动化程度低、维修率高等缺点。

3)操作人员技术素质及管理水平较低

污水处理效率低的重要因素还有操作人员的技术能力与管理水平。我国是发展中国家,工作重心一直是经济建设,而对污水处理的管理没有引起很高的重视,直到后面环境保护被提上议程,污水处理才慢慢发展起来,管理水平也一直处于缓慢发展的阶段。由于机械与技术大都引进自国外,处理技术较为复杂,我国目前很多操作人员的技术素质不能很好地适应,使得设备运行率不高,造成了资源的浪费,严重制约了已建污水厂的正常运行。

四、关于城镇污水处理厂污泥处理的思考

城市污水污泥处理和处置方面在我国还刚刚起步,与国外先进国家相比尚有较大差距。随着大量污水处理厂的投产,污泥产量将会有大幅度的增加。污泥厌氧消化的投资高,污泥处理费用约占污水处理厂投资和运行费用的20%~40%。在我国仅有的十几座污泥消化池中,能够正常运行的为数不多,有些池子根本就没有运行。这也是导致我国近年大量采用带有延时曝气功能的氧化沟等技术的原因。采用高效(高负荷)、低耗污水处理工艺的关键之一是解决城市污水厂污泥处理技术和问题,可以讲具有特点的解决我国城镇污水工艺的进步,在很大程度上取决于污泥处理和利用技术的进步。为了解决这一问题有必要加强污泥处理与利用的研究。

第8篇:脱硫工艺论文范文

关键词:LNG ESD 保护方案

一、概述

LNG(Liquefied Natural Gas),即液化天然气的英文缩写。天然气是在气田中自然开采出来的可燃气体,主要成分由甲烷组成。LNG是通过在常压下气态的天然气冷却至-162℃,使之凝结成液体。天然气液化后可以大大节约储运空间,而且具有热值大、性能高等特点。LNG是一种清洁、高效的能源。由于进口LNG有助于能源消费国实现能源供应多元化、保障能源安全,而出口LNG有助于天然气生产国有效开发天然气资源、增加外汇收入、促进国民经济发展,因而LNG贸易正成为全球能源市场的新热点。迄今为止,在天然气液化领域中成熟的液化工艺主要有以下三种:阶式制冷循环工艺、混合制冷循环工艺和膨胀机制冷循环工艺。本装置采用带预冷的氮膨胀制冷天然气液化流程,包括原料气预处理、脱碳、脱硫脱汞、脱水、冷箱、制冷压缩机、氮压机、预冷系统、制氮系统、导热油炉等工艺单元。

本论文主要针对ESD技术在LNG装置中的应用做简单的论述。

二、ESD技术的简介

ESD紧急停车系统是对石油化工中的生产装置可能发生的危险或不采取措施将继续恶化的状态进行响应和保护,使生产装置进入一个预定义的安全停车工况,从而使危险降低到可以接受的最低程度,以保证人员、设备、生产和装置或工厂周边社区的安全。当生产装置出现异常情况时,安全联锁装置能继续运行,但自动转入另一种运行模式。

三、ESD技术在本装置中的应用

在装置发生紧急状况时ESD 紧急停车系统开启,用于隔离和关断LNG或其它设备,并关闭那些如果继续运行可能维持或增加灾情、危险性的设备。以确保装置的人员安全、设备安全、环境安全,ESD系统的安全性和整体性符合以下原则:

单个组件故障不给整个系统造成损失。

单个组件故障不给整个系统造成直接风险或系统跳闸。

单个组件故障不造成整个系统完全瘫痪。

LNG装置属易燃易爆、高危险、连续生产的重要化工装置,必须配置先进的、高可靠的设备,ESD 系统采用冗余容错自诊断技术,整个系统及部件是故障安全型,ESD系统采用先进的、可靠的软件及硬件,保证工厂及装置有效、可靠的运行,防止发生人员伤害、环境污染以及经济损失,ESD系统符合IEC61508 SIL3、DIN V19250 TUV AK6 标准,ESD 系统及各类卡件、系统软件的安全等级取得IEC61508 SIL3或TUV AK6 级认证,ESD 系统控制器(CPU)、I/O设备和网络通讯部件应为二重冗余、容错或三重冗余结构。

本装置中LNG工厂紧急停车系统(以下简称ESD)的设计和制造遵循了IEC61508/61511,设计上采用西门子PLC完成对全装置的紧急停车安全联锁。控制器采用三重化(TMR)及以上技术进行冗余配置,不得采用备用形式,制造商应采用主流系统,不得采用扩展性能差的小系统。ESD系统设计满足SIL3的安全等级要求,并有TUV认证。某一冗余部件或冗余套件失效的情况,或者在单CPU运行的情况下,仍能满足SIL3的安全等级要求,并有TUV认证。采用TUV认证的冗余和容错的通讯系统,控制器与I/O卡件之间通讯1:1冗余。I/O卡件满足SIL3安全级别且1:1冗余,I/O卡件带电磁隔离或光电隔离且通道间相互隔离,所有I/O卡件均能带电插拔,而不影响系统的正常运行。本项目中控制单元与I/O卡件安装在同一机柜内,电缆从机柜下部引入,经柜内电缆槽板敷设。ESD系统设置了冗余的RS485 MODBUS通讯接口。本系统有顺序事件记录功能和过程历史报告,报警及停机事件的记录有毫秒级的时间标记,并按事件发生时间记录。本系统接受2路UPS电源供电。系统遵循故障安全型设计原则,在出现停电等严重事故时,能够保证生产设备和过程的安全。

四、ESD系统在本装置中的主要联锁保护方案

1.LNG 装置天然气门站入口切断阀、LNG 装置入口切断阀联锁切断,用于切断门站及LNG 装置原料气。

2.LNG 储罐入口及出口阀联锁切断,LNG 储罐出口装车泵联锁停泵。

3.BOG 压缩机安全联锁停机。

4.空压机、空气预冷机组安全联锁停机。

5.冷箱出口阀联锁切断。

6.原料气压缩机安全联锁停机。

触发以上联锁及停车的条件有以下几点:

①LNG 储罐液位高高报警。

②人工确认工厂有火警发生或发生火灾。

③人工确认工厂有可燃气体大量泄漏 (一般性可燃气体检测器检测的气体泄漏经报警工作站报警,采取人工措施处理)。

④原料气压缩机同时停机。

⑤循环氮气压缩机同时停机。

本项目共设置1面ESD机柜,1个工程师站(操作站),通过冗余的通讯方式接在各控制器的通讯接口上,用于控制器的组态、除错、修改、测试、软件装载及维护等。工程师站(操作站)具备打印组态数据和图形的能力,具有顺序事件记录功能。配置一个辅助操作台,设置报警灯屏及相应的操作开关和按钮。

五、结论

以上内容是我对采用带预冷氮膨胀制冷液化流程的LNG工厂的紧急停车系统ESD的设计方案,希望能为进行相关设计的工程人员以及设计方案提供有益的帮助。

参考文献

第9篇:脱硫工艺论文范文

关键词:大气污染控制工程;课程体系;实践教学;

中图分类号:G642.0 ? 文献标识码:A??文章编号:1672-3791(2015)08(b)-0000-00

“大气污染控制工程”是环境工程专业的主干课程、必修专业课之一。其主要内容包括大气污染的基础知识(燃烧于大气污染的关系、污染物在大气中的扩散)和各种污染控制技术(气态污染物和颗粒污染物的去除以及硫氧化物、氮氧化物、挥发性有机污染物的控制技术等)[1]。江苏科技大学环境工程专业在2005年设立,专业基础薄弱,课程建设和教学研究改革起步较晚。经过近几年的努力发展,在教学内容和方法,实践教学改革与创新等方面进行了一系列的探索。“大气污染控制工程”逐渐形成了包括课堂理论教学,实验教学,课程设计教学,其他辅助教学组成的课程体系。

1 课堂理论教学(44学时)

本课程安排在第七学期,即大四上学期开设,选用郝吉明院士主编的《大气污染控制工程》(第三版)作为教材。主要介绍大气污染和主要污染物及其来源和在大气中的稀释和扩散;主要污染物控制技术――除尘技术、脱硫脱硝技术、VOC净化技术;净化系统设计。

教学过程中,积极探索新的教学方法和技巧,充分调动学生的学习兴趣。授课形式以教师讲授和学生分组讨论相结合,注重师生间的互动交流,加强学生对课堂的参与度。充分利用现代化的多媒体电子课件,多媒体教学具有直观、省时、激趣等特征,是现代教育教学的重要手段,可有效解决教学内容繁多和课时严重不足的矛盾[2]。通过图片,视频等形式提高教学内容的生动性,形象性和直观性,提高学生的学习兴趣,加深对复杂工艺结构的理解。关注网络上丰富的信息和资料,增加课堂教学的信息量,密切跟踪国内外大气污染控制工程领域的最新进展情况,及时更新补充教材中没有的工艺技术。

注重教学效果调查,每学期进行至一半时均有中期检查,和多名学生代表进行面对面交流,了解学生的想法,听取学生的意见。学期结束时,每名学生均可在网上进行评教,打分,提出意见和建议,结果反馈到授课教师。

2 实验教学(12学时)

“大气污染控制工程”是一门实践性很强的课程,实验教学可以使学生更好的理解和掌握大气污染控制技术的基本原理和各种理论,是该课程教学的重要组成部分。因此,结合理论教学配套开设了针对性的实验教学课程,包含了演示、验证、研究和综合等多种类型实验。主要开设的实验项目有:粉尘粒径和粒径分布的测定,用光学显微镜测定粉尘样品的投影粒径,绘制粒径分布曲线,并求出众径、中位径和算术平均直径。两种高效除尘实验――线-板式高压静电除尘和机械振动布袋除尘,掌握测试除尘效率的方法;了解有效驱近速度与除尘效率,集尘极面积的关系特性,练尘器机械震动清灰方式。应用最广的脱硫方法――石灰石/石灰湿法脱硫实验,掌握脱硫系统的核心装置吸收塔;了解湿法脱硫的特点,影响洗涤塔长期可靠运行的关键因素。

实验教学过程中注重锻炼和培养学生的动手能力和创造能力,采用多种方式激发学生的兴趣,强化学生自主意识。另一方面结合科研工作,自行研制了电晕放电等离子体空气净化装置,用于实验教学演示,书上没有的最新的科研成果大大激发了学生的新鲜感,拓展了学生的眼界,唤起了学生自主研究学习的热情。

3 课程设计教学(16学时)

课程设计是“大气污染控制工程”的实践教学中又一重要环节。在完成理论教学和实验教学的基础上,为进一步提高学生工程设计能力和制图能力,在第八学期第一第二周安排了两周的“大气污染控制工程课程设计”的教学环节。通过课程设计,调阅大量文献资料,能进一步消化和巩固“大气污染控制工程”所学内容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力[3]。课程设计的内容重点是针对各种不同锅炉的除尘、脱硫脱销系统设计。具体内容有:流程设计;烟气各项数据计算,例如烟气量,烟尘和二氧化硫浓度等;除尘脱硫设备的选型、结构设计计算;烟囱、管道系统设计,阻力计算等;绘制工程图纸,撰写设计书。

课程设计开始时,将学生每3人分为一组,每组一个设计题目,并提供设计任务书和必要的参考资料。学生根据设计题目相应的任务书,查阅资料进行设计计算并绘制图纸、编制设计说明书,教师定期指导学生并答疑。培养学生利用所学的基本理论和专业知识,来分析和解决各种实际问题的能力,提高设计计算、工程制图和使用设计手册和有关资料的能力。

4 其他辅助教学

由于实验仪器设备数量和实验课时限制,每个学生获得的动手实践机会有限,为了增强学生的实践能力,开设了多项辅助教学活动,包括开放选修实验,优秀生培养,大学生创新计划等。

设立开放选修实验,由学生自由选择感兴趣的实验项目,每组6人,在组长的带领下分工合作,从实验的设计、准备到最终实验结果的小结,分析都由学生自主完成,培养学生利用所学知识解决大气污染问题的意识,增强实践、创新、动手和团结协作等综合能力。

在大三的学生中选拔优秀生,并将优秀生的培养和创新计划挂钩,申报学校和江苏省大学生创新计划项目。通过立项的形式培养学生,项目结题是除了提交研究总结报告,还要求发表科研论文。在撰写论文的过程中,对学生逻辑思维能力、数据处理能力、分析讨论概括的能力都能有很好的锻炼。优秀生的培养时间为两年,由中高级职称的教师一对一指导。培养期满由学院组织专家组进行考核,考核合格者颁发证书,并优先推荐免试攻读硕士研究生。

5 结语

经过多年的教学积累和探索,“大气污染控制工程”课程的教学内容,教学方法已取得长足的进步,教学效果良好,受到了学生的好评。2014年下半年,授课教师前往美国进行了英语培训,后续的教学过程中将尝试双语教学。努力构建实践教学体系,高度重视学生综合素质、实践动手能力和创新创造能力的培养。立足我校船舶特色,以柴油机尾气净化,船舶脱硫脱硝技术为重点,创建独具一格的“大气污染控制工程”精品课程。

参考文献

[1] 李章良,陈菁,张瑛.大气污染控制工程课程教学改革探究[J].中国电力教育,2013,34:96-97.