公务员期刊网 精选范文 变频器论文范文

变频器论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的变频器论文主题范文,仅供参考,欢迎阅读并收藏。

变频器论文

第1篇:变频器论文范文

Abstract:Thecharacteristicoftheenergybrakeandfeedbackbrakeisbrieflyintroduced,and

detailedintroductionontheoperationprinciple,characteristicandapplicationofthe

electrolytecapacitancebrakeisgiven.

关键词:变频器能量回馈电容反馈制动

Keywords:InverterEnergyfeedbackEectro-capacitancefeedbackbrake

[中图分类号]TP273[文献标识码]B文章编号1561-0330(2003)06-00

1引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

2能耗制动

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动,如图1所示。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

3回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动如图2所示。

回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。

4新型制动方式(电容反馈制动)

4.1主回路原理

主回路原理图如图4所示。

整流部分采用普通的不可控整流桥进行整流(如图中的VD1——VD6组成),滤波回路采用通用的电解电容(图中C1、C2),延时回路采用接触器或可控硅都行(图中T1)。充电、反馈回路由功率模块IGBT(图中VT1、VT2)、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成(如图VT5—VT10)。保护回路,由IGBT、功率电阻组成。

(1)电动机发电运行状态

CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。

(2)电动机电动运行状态

当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。

4.4系统难点

(1)电抗器的选取

(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,

再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。

(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。

所以笔者建议充电、反馈回路各采用一个电抗器。

(2)控制上的难点

(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。

(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。

4.5主要应用场合及应用实例

正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列,到目前为止,这种电容反馈制动的变频器正长期正常运行在山东宁阳保安煤矿及山西太原等地,填补了国内这一空白。

随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。

第2篇:变频器论文范文

【论文摘要】:文章对变频器常见干扰故障进行了分析总结,并提出了相应的解决对策。

1.引言

变频器作为一种高效节能的电机调速装置,因其较高的性能价格比,在工厂得到了越来越广泛的应用。众所周知,变频器是由整流电路、滤波电路、逆变电路组成。其中整流电路和逆变电路中均使用了半导体开关元件,在控制上则采用的是PWM控制方式,这就决定了变频器的输入、输出电压和电流除了基波之外,还含有许多的高次谐波成分。这些高次谐波成分将会引起电网电压波形的畸变,产生无线电干扰电波,它们对周边的设备、包括变频器的驱动对象--电动机带来不良的影响。同时由于变频器的使用,电网电源电压中会产生高次谐波的成分,电网电源内有晶闸管整流设备工作时,会引导电源波形产生畸形。另外,由于遭受雷击或电源变压器的开闭,电功率用电器的开闭等,产生的浪涌电压,也将使电源波形畸变,这种波形畸变的电网电源给变频器供电时,又将对变频器产生不良影响。文章对于上述现象进行了分析并提出了降低这些不良影响的措施。

2.外界对变频器的干扰

供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。变频器的供电电源受到来自被污染的交流电网的谐波干扰后若不加处理,电网噪声就会通过电网的电源电路干扰变频器。变频器的输入电路侧,是将交流电压变成直流电压。这就是常称为"电网污染"的整流电路。由于这个直流电压是在被滤波电容平滑之后输出给后续电路的,电源供给变频器的实际上是滤波电容的充电电流,这就使输入电压波形产生畸变。

(1)电网中存在各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等大量谐波源

电源网络内有这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生危害的干扰。例如:当供电网络内有较大容量的晶闸管换流设备时,因晶闸管总是在每相半周期内的部分时间内导通,故容易使网络电压出现凹口,波形严重失真。它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。

(2)电力补偿电容对变频器的干扰

电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。

(3)电源辐射传播的干扰信号

电磁干扰(EMI),是外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的[2]即以电磁波方式向空中幅射,其辐射场强取决于干扰源的电流强度、装置的等效辐射阻抗以及干扰源的发射频率。

对于(1)、(2)两项产生的干扰抑制可以在变频器输入电路中,串入交流电抗器,它对于基波频率下的阻抗是微不足道的。但对于频率较高的高频干扰信号来说,呈现很高的阻抗,能有效地抑制干扰的作用。对于(3)项的干扰信号主要通过吸收方式来削弱。变频器电源输入端,通常都加有吸收电容。也可以再加上专用的"无线电干扰滤器",来进一步削弱干扰信号。

3.变频器对周边设备的干扰及对策

上面已经讲过变频器能使输入电源电压产生高次谐波。同时,变频器的输出电压和电流除了基波之外,还含有许多高次谐波的成分,它们将以各种方式把自己的能量传播出去,这些高次谐波对周围设备带来不良的影响。其中,供电电源的畸变,使处于同一供电电源的其他设备出现误动作,过热、噪声和振动;产生的无线干扰电波给变频器周围的电视机、收音机、手机等无线电接收装置带来干扰,严重时不能正常工作;对变频器的外部控制信号产生干扰,这些控制信号受干扰后,就不能准确、正常地控制变频器运行,使被变频器驱动的电动机产生噪音,振动和发热现象。

(1)对接在同一电源设备带来的干扰

当变频器的容量较大时,将使网络电压产生畸变,通过阻抗耦合或接地回路耦合将干扰传入其它电路。消除或削弱对接在同一电源的设备带来的干扰,可以将变频器的输入端串入交流电抗器,在变频器的整流侧插入直流电抗器。也可以在变频器电源输入端插入滤波器,如下图1所示:

LC滤波器是被动滤波器,它由电抗和电容组成对高次谐波的共振回路,从而达到吸收高次谐波的目的。有源滤波器的工作原理是:通过对电流中高次谐波进行检测,并根据检测结果,输入与高次谐波成分相位相反的电流来削弱高次谐波的目的。

(2)对于产生的无线电干扰波

目前,变频器绝大部分是采用PWM控制方法。变频器输出信号是高频的开关信号,在变频器的输出电压、输出电流中含有高次谐波,通过静电感应和电磁感应,产生无线电干扰波。这些干扰波有的通过电线传导,有些辐射至空中的电磁波和电场直接辐射。而辐射场中的金属物体还可能形成二次辐射。同样,变频器外部的辐射也会干扰变频器的正常工作。

电线传导的无线电干扰波的抑制,可以采用噪声滤波变压器,对高次谐波形成绝缘;插入电抗器,以提高对高次谐波成分的阻抗,在变频器的输入端插入滤波器。

辐射无线电干扰波的抑制,较传导无线电干扰波要困难一些。这种无线电干扰的大小,决定于安装变频器设备本身的结构,和电动机电缆线长短等许多因素有关。可以尽量缩短电动机电线,电线采用双绞措施,减少阻抗;变频器输入、输出线装入铁管屏蔽;将变频器机壳良好地接;变频器输入、输出端串接电抗器,插入滤波器。

(3)对于产生的噪声干扰

由于变频器采用了PWM控制方式,变频器的输出电压波形不是正弦波,通过电动机的电流也难免含有许多谐波。变频器输出的谐波频率与转子固有频率的共振,在转子固有频率附近的噪声增大,变频器输出的谐波分量使铁心、机壳、轴架等谐波在其固有频率附近的噪声增大。因此,利用变频器对电动机进行调速控制时,电动机绕组和铁芯由于谐波的成分而产生噪声。

下图2是电动机采用变频器驱动和采用电网电源直接驱动时的噪音比较。通常,采用变频器对电动机进行驱动时,电动机产生的噪音要比电网电源直接驱动产生的噪音高出5~10dB。对于噪音的抑制可以采取的措施为:

①选用以IGBT等为逆变模块的载波频率较高的低噪音变频器。选用变频器专用电动机,在变频器与电动机之间串入电抗器,以减少PWM控制方式产生的高次谐波。

②在变频器与电动机之间插入可以将输出波形转换成正弦波的滤波器。

③选用低噪音的电抗器。

(4)对于产生的振动干扰

采用变频器对电动机进行调速控制时,同噪音相同的原因,会使电动机产生振动。特别是较低阶的高次谐波所产生的脉动转矩,给电动机的转矩输出带来较大的振动。若机械系统与这种振动发生共振时,其振动就更为严重。

通常可以采取以下措施减小振动:

①强化机械结构的刚性,将刚性连接改为强性连接。

②在变频器与电动机之间串入电抗器

③降低变频器的输出压频比。

④改变变频器的载波频率。

在变频器对电动机进行调速过程中,如果调速范围较大时,应先测到机械系统的共振频率,然后利用变频器的频率跳跃功能,避开这些共振频率。如果转距有余量,可以将U/f给定小些。

(5)对于导致控制部件电动机过热的干扰

采用变频器对电动机进行调速控制,由于高次谐波的原因,即使是对同一电动机,在同一频率下运行,电动机也将增加5%~10%的电流。电动机温度自然会提高。此外,普通电动机的冷却风扇安装在电动机轴上的,在连续进行低速运行时,由于自身的冷却风扇的冷却能力不足,而出现电动机过热现象。

电动机过热的对策有以下几种:

①为电动机另配冷却风扇,改自冷式为他冷式。增加低速运行时的冷却能力。

②选用较大容量的电动机。

③改用变频器专用电动机。

④改变调速方案,避免电动机连续低速运行。

随着工厂电气自动化程度的提高,各种干扰也日益增多,只有对变频器的干扰问题有深入的认识,并采取相应的处理措施,才能够减少彼此之间的相互危害,更大程度的确保生产的正常进行和设备的稳定。

参考文献

第3篇:变频器论文范文

通用变频器的主电路形式一般由三部分组成:整流部分、逆变部分和滤波部分。整流部分为三相桥式不可控整流器,逆变器部分为IGBT三相桥式逆变器,且输出为PWM波形。对于双极性调制的变频器,其输出电压波形展开式为:

(1)

式中:n—谐波的次数n=1,3,5……;

a1—开关角,i=1,2,3……N/2;

Ed—变频器直流侧电压;

N—载波比。

由(1)式可见,各项谐波的幅值为

(2)

令n=1,则得出变频器输出电压的基波幅值为:

(3)

从(1)、(2)、(3)式可以看出,通用变频器的输出电压中确实含有除基波以外的其他谐波。较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。

如前所述,由于通用变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较为陡峻的脉冲波,其谐波分量较大。为了消除谐波,可采用以下对策:

①增加变频器供电电源内阻抗

通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。这种内阻抗就是变压器的短路阻抗。当电源容量相对变频器容量越小时,则内阻抗值相对越大,谐波含量越小;电源容量相对变频器容量越大时,则内阻抗值相对越大,谐波含量越大。对于三菱FR-F540系列变频器,当电源内阻为4%时,可以起到很好的谐波抑制作用。所以选择变频器供电电源变压器时,最好选择短路阻抗大的变压器。

②安装电抗器

安装电抗器实际上从外部增加变频器供电电源的内阻抗。在变频器的交流侧安装交流电抗器或在变频器的直流侧安装直流电抗器,或同时安装,抑制谐波电流。表一列出了三菱FR-A540变频器安装电抗器和不安装电抗器的含量对照表。

③变压器多相运行

通用变频器的整流部分是六脉波整流器,所以产生的谐波较大。如果应用变压器的多相运行,使相位角互差30°如Y-、-组合的两个变压器构成相当于12脉波的效果则可减小低次谐波电流28%,起到了很好的谐波抑制作用。

④调节变频器的载波比

从(1)、(2)、(3)式可以看出,只要载波比足够大,较低次谐波就可以被有效地抑制,特别是参考波幅值与载波幅值小于1时,13次以下的奇数谐波不再出现。

⑤专用滤波器

该专用滤波器用于检测变频器谐波电流的幅值和相位,并产生一个与谐波电流幅值相同且相位正好相反的电流,通到变频器中,从而可以非常有效地吸收谐波电流。

2负载匹配问题及其对策

生产机械的种类繁多,性能和工艺要求各异,其转矩特性是复杂的,大体分为三种类型:恒转矩负载、风机泵类负载和恒功率负载。针对不同的负载类型,应选择不同类型的变频器。

①恒转矩负载

恒转矩负载是指负载转矩与转速无关,任何转速下,转矩均保持恒定。恒转矩负载又分为摩擦类负载和位能式负载。

摩擦类负载的起动转矩一般要求额定转矩的150%左右,制动转矩一般要求额定转矩的100%左右,所以变频器应选择那些具有恒定转矩特性,并且起动和制动转矩都比较大,过载时间长和过载能力大的变频器。如三菱变频器FR-A540系列。

位能式负载一般要求大的起动转矩和能量回馈功能,能够快速实现正反转,变频器应选择具有四象限运行能力的变频器。如三菱变频器FR-A241系列。

②风机泵类负载

风机泵类负载是目前工业现场应用最多的设备,虽然泵和风机的特性多种多样,但是主要以离心泵和离心风机应用为主,通用变频器在这类负载上的应用最多。风机泵类负载是一种平方转矩负载,其转速n与流量Q,转矩T与泵的轴功率N有如下关系式:

(4)

这类负载对变频器的性能要求不高,只要求经济性和可靠性,所以选择具有U/f=const控制模式的变频器即可。如三菱变频器FR-F540(L)系列。风机负载在实际运行过程中,由于转动惯量比较大,所以变频器的加速时间和减速时间是一个非常重要的问题,可按下列公式进行计算:

(5)

(6)

式中:tACC—加速时间(s);

tDEC—减速时间(s);

GD2—折算到电机轴上的转动惯量(N·m2);

g—重力加速度,g=9.81(m/s2);

TM—电动机的电磁转矩(N.m);

TL—负载转矩(N.m);

nAS—系统加速时的初始速度(r/min);

nAE—系统加速时的终止速度(r/min);

nDS—系统减速时的初始速度(r/min);

nDE—系统减速时的终止速度(r/min)。

从上式可以看出,风机负载的系统转动惯量计算是非常重要的。变频器具体设计时,按上式计算结果,进行适当修正,在变频器起动时不发生过流跳闸和变频器减速时不发生过电压跳闸的情况下,选择最短时间。

泵类负载在实际运行过程中,容易发生喘振、憋压和水垂效应,所以变频器选型时,要选择适于泵类负载的变频器且变频器在功能设定时要针对上述问题进行单独设定:

喘振:测量易发生喘振的频率点,通过设定跳跃频率点和宽度,避免系统发生共振现象。

憋压:泵类负载在低速运行时,由于系统憋压而导致流量为零,从而造成泵烧坏。在变频器功能设定时,通过限定变频器的最低频率,而限定了泵流量的临界点处的系统最低转速,这就避免了此类现象的发生。

水垂效应:泵类负载在突然断电时,由于泵管道中的液体重力而倒流。若逆止阀不严或没有逆止阀,将导致电机反转,因电机发电而使变频器发生故障报警烧坏。在变频器系统设计时,应使变频器按减速曲线停止,在电机完全停止后再断开主电路电,或者设定“断电减速停止”功能,这样就避免了该现象的发生。

③恒功率负载

恒功率负载是指转矩大体与转速成反比的负载,如卷取机、开卷机等。利用变频器驱动恒功率负载时,应该是就一定的速度变化范围而言的,通常考虑在某个转速点以下采用恒转矩调速方式,而在高于该转速点时才采用恒功率调速方式。我们通常将该转速点称为基频,该点对应的电压为变频器输出额定电压。从理论上讲,要想实现真正意义上的恒功率控制,变频器的输出频率f和输出电压U必须遵循U2/f=const协调控制,但这在实际变频器运行过程中是不允许的,因为在基频以上,变频器的输出电压不能随着其输出频率增加,只能保持额定电压,所以只能是一种近似意义上的恒功率控制。

3发热问题及其对策

变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热,通常采用以下方法:

①采用风扇散热:变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行。

②降低安装环境温度:由于变频器是电子装置,内含电子元、电解电容等,所以温度对其寿命影响比较大。通用变频器的环境运行温度一般要求-10℃~-50℃,如果能够采取措施尽可能降低变频器运行温度,那么变频器的使用寿命就延长,性能也比较稳定。

我们采取两种方法:一种方法是建造单独的变频器低压间,内部安装空调,保持低压间温度在+15℃~+20℃之间。另一种方法是变频器的安装空间要满足变频器使用说明书的要求。

以上所谈到的变频器发热是指变频器在额定范围之内正常运行的损耗。当变频器发生非正常运行(如过流,过压,过载等)产生的损耗必须通过正常的选型来避免此类现象的发生。

对于风机泵类负载,当我们选择三菱变频器FR-F540时,其过载能为120%/60秒,其过载周期为300秒,也就是说,当变频器相对于其额定负载的120%过载时,其持续时间为60秒,并且在300秒之内不允许出现第二次过载。当变频器出现过载时,功率单元因其流过的过载电流而升温,导致变频器过热,这时必须尽快使其降温以使变频器的过热保护动作消除,这个冷却过程就是变频器的过载周期。不同的变频器,其过载倍数、过载时间和过载周期均不相同,并且其过载倍数越大,过载时间越短,请见表2所示:

对于变频器所驱动的电机,按其工作情况可分为两类:长期工作制和重复短时工作制。长期工作制的电机可以按其名牌规定的数据长期运行。针对该类负载,变频器可根据电机铭牌数据进行选型,如连续运行的油泵,若其电机功率为22kW时,可选择FR-F540-22k变频器即可。重复短时工作制电机,其特点是重复性和短时性,即电机的工作时间和停歇时间交替进行,而且都比较短,二者之和,按国家规定不得超过60秒。重复短时工作制电机允许其过载且有一定的温升。此时,若根据电机铭牌数据来选择变频器,势必造成变频器的损坏。针对该类负载,变频器在参考电机铭牌数据的情况下要根据电机负载图和变频器的过载倍数、过载时间、过载周期来选型。如重复短时运行的升降机,其电机功率为18.5kW,可选择FR-A540-22k变频器。

4结论

本文通过对通用变频器运行过程中存在问题的分析,提出了解决这些问题的实际对策,随着新技术和新理论不断在变频器上的应用,变频器存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器也会不久面世。

5参考文献

(1)韩安荣.通用变频器及其应用.北京:机械工业出版社,2000

(2)三菱变频调速器FR-A500使用手册.

(3)三菱变频调速器FR-F500使用手册.

第4篇:变频器论文范文

关键词:变频器容量选择校验

引言:

随着电力电子学、微电子学、计算机技术和控制理论的迅速发展,交流传动系统,在宽调速范围高稳速精度、快速响应和四象限运行等性能方面也达到了与直流调速媲美的效果。尤其是让变频器为核心的变频调速因其优异的调速性能而被公认为最有发展前途的调速方式。目前,变频器已迈进了高性能、多功能、小型化和廉价化阶段。为便于变频器的合理使用,本文将对变频器容量选择过程作简略探讨。

1、变频器容量的选择

变频器容量的选择是一个重要且复杂的问题,要考虑变频器容量与电动机容量的匹配,容易偏小会影响电动机有效力矩的输出,影响系统的正常运行,甚至损坏装置,而容量偏大则电流的谐波分量会增大,也增加了设备投资。

1.1变频器容量选择的步骤:

变频器容量选择可分三步:

(1)了解负载性质和变化规律,计算出负载电流的大小或作出负载电流图I=f(t)。

(2)预选变频器容量及其他

(3)校验预选变频器。必要时进行过载能力和起动能力的校验。若都通过,则预选的变频器容量便选定了;否则从(2)开始重新进行,直到通过为止。

在满足生产机械要求的前提下,变频器容量越小越经济。

1.2基于不用电动机负载电流下变频器容量的选择

一般地说,变频器的容量有三种表示方法:①额定电流;②适配电动机的额定功率。③额定视在功率。不管是哪一种表示方法,归根到底还是对变频器额定电流的选择,应结合实际情况根据电动机有可能向变频器吸收的电流来决定。通常变频器的过载能力有两种:①1.2倍的额定电流,可持续1分钟;②1.5倍的额定电流,可持续1分钟;而且变频器的允许电流与过程时间呈反时限的关系。如1.2(1.5)倍的额定电流可持续1min;而1.8(2.0)倍的额定电流,可持续0.5min。这就意味着:①不论任何时候向电动机提供在1min(或0.5min)以上的电流都必须在某些范围内。②过载能力这个指标,对电动机来说,只有在起动(加速)过程中才有意义,在运行过程中,实际上等同于不允许过载。

下面讨论如何根据电动机负载电流的情况来选择变频器的容量。

1.2.1一台变频器只供一台电动使用,即一拖一。

在计算出负载电流后,还应考虑三个方面的因素:①用变频器供电时,电动机电流的脉动相对工频供电时要大些;②电动机的起动要求。即是由低频低压起动,还是额定电压、额定频率直接起动。③变频器使用说明书中的相关数据是用该公司的标准电机测试出来的。要注意按常规设计生产的电机在性能上可能有一定差异,故计算变频器的容量时要留适当余量。

(1)恒定负载连续运行时变频器容量的计算。

由低频低压起动或由软起动器起动,而变频器只用来完成变频调速时,要求变频器的额定电流稍大于电动机的额定电流即可:IFN≥1.1IMN,其中,IFN—变频器额定电流,IMN——电动机额定电流。

额定电压、额定频率直接起动时,对三相电动机而言,由电动机的额定数据可知,起动电流是额定电流的5—7倍。因而得用下式来计算变频器的频定电流。

IFN≥Imst/KFg

式中Imst—电动机在额定电压,额定频率时的起动电流。

KFg—变频器的过载倍数

(2)周期性变化负载连续运行时变频器容量的计算。

很多情况下电动机的负载具有周期性变化的特点。显然,在此情况下,按最小负载选择变频器的容量,将出现过载,而按最大负载选择,将是不经济的。由此推知,变频器的容量可在最大负载与最小负载之间适当选择,以便变频器得到充分利用而又不到过载。

首先作出电动机负载电流图n=Φt)及I=f(t),然后求出平均负载电流Iav再预选变频器的容量,关于Iav的计算采用如下公式:

Iav=(I1t1+I2t2+…+Ijtj+…)÷(t1+t2+…+tj+…)

考虑到过渡过程中,电动机从变频器吸收的电流要比稳定运行时大,而上述Iav没有反映过渡过程中的情况。因此,变频器的容量按IFN≥(1.1—1.2)Iav修正后预选(式中,Ij为第j段运行状态下的平均电流,tj为第j段运行状态下对应的时间,同时若过渡过程在整个工作过程中占较大比重,则系数(1.1—1.2)选偏大的值。

(3)非周期性变化负载连续运行时变频器容量的计算。

这种情形一般难以作出负载电流图,可按电动机在输出最大转矩时的电流计算变频器的额定电流,可用该式IFN≥IM(max)/KFg(式中IM(max))为电动机在输出最大转矩时的电流,确定。

1.2.2一台变频器同时供多台电动机使用,即一拖多

除了要考虑一拖一的几种情形外,还可以根据以下三种情况区别对待。

(1)各台电动机均由低频低压起动,在正常运行后不要求其中某台因故障停机的电动机重新直接起动,这时变频器容量按IFN≥IM(max)+ΣIMN,(式中ΣIMN,为其余各台电动机的额定电流之和。IMst(max)为最大电动机的起动电流?

(2)一部分电动机直接起动,另一部分电动机由低频低压起动。

除了使电动机运行的总电流不超过变频器的额定输出电流之外,还要考虑所有直接起动电动机的起动电流,即IFN≥(ΣIMst’+ΣIMN’)/KFg,(式中,ΣMisty为所有直接起动电动机在额定电压,额定频率下的起动电流总和,ΣIMN为全部电动机额定电流的总和)。

上述是变频器容量选择的一般原则和步骤。生产实际中,还需要针对具体生产机制的特殊要求,灵活处理,很多情况下,也可根据经验或供应商提供的建议,采用一些比较实用的方法。

2、变频器起动加速为能力的校验

在电动机起动(加速)的过程中电动机不仅要负担稳速运行的负载转矩,还要负担加速转矩,如果生产机械对起动(加速)时间无特殊要求,可适当延长起动(加速为)时间来避让峰值电流。若生产机械对起动(加速)时间有一定要求,就要慎重考虑。如前所述,变频器的允许电流与过程时间呈反时限关系。如果电动机起动(加速)时,其电流小于变频器的过载能力,则预选容量通过,如果电动机起动(加速)时,其电流已达到变频器的过载能力,而要求的加速时间又与变频器过载能力规定的时限发生冲突,这时,变频器的容量应在预选容量的基础上增容。

第5篇:变频器论文范文

关键词:变频器谐波负载发热

Abstract:Thispaperanalyzedtheproblemofharmonicwave,matchingofloadand

calorificationforinvertersinrunning,andmadetherelativelythemeasure.

Keywords:inverterharmonicwaveloadingcalorification

1前言

自80年代通用变频器进入中国市场以来,在短短的十几年时间里得到了非常广泛的应用。目前,通用变频器以其智能化、数字化、网络化等优点越来越受到人们的青睐。随着通用变频器应用范围的扩大,暴露出来的问题也越来越多,主要有以下几方面:

①谐波问题

②变频器负载匹配问题

③发热问题

以上这些问题已经引起了有关管理部门和厂矿的注意并制定了相关的技术标准。如谐波问题,我国于1984年和1993年通过了“电力系统谐波管理暂行规定”及GB/T-14549-93标准,用以限制供电系统及用电设备的谐波污染。针对上述问题,本文进行了分析并提出了解决方案及对策。

2谐波问题及其对策

通用变频器的主电路形式一般由三部分组成:整流部分、逆变部分和滤波部分。整流部分为三相桥式不可控整流器,逆变器部分为IGBT三相桥式逆变器,且输出为PWM波形。对于双极性调制的变频器,其输出电压波形展开式为:

(1)

式中:n—谐波的次数n=1,3,5……;

a1—开关角,i=1,2,3……N/2;

Ed—变频器直流侧电压;

N—载波比。

由(1)式可见,各项谐波的幅值为

(2)

令n=1,则得出变频器输出电压的基波幅值为:

(3)

从(1)、(2)、(3)式可以看出,通用变频器的输出电压中确实含有除基波以外的其他谐波。较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。

如前所述,由于通用变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较为陡峻的脉冲波,其谐波分量较大。为了消除谐波,可采用以下对策:

①增加变频器供电电源内阻抗

通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。这种内阻抗就是变压器的短路阻抗。当电源容量相对变频器容量越小时,则内阻抗值相对越大,谐波含量越小;电源容量相对变频器容量越大时,则内阻抗值相对越大,谐波含量越大。对于三菱FR-F540系列变频器,当电源内阻为4%时,可以起到很好的谐波抑制作用。所以选择变频器供电电源变压器时,最好选择短路阻抗大的变压器。

②安装电抗器

安装电抗器实际上从外部增加变频器供电电源的内阻抗。在变频器的交流侧安装交流电抗器或在变频器的直流侧安装直流电抗器,或同时安装,抑制谐波电流。表一列出了三菱FR-A540变频器安装电抗器和不安装电抗器的含量对照表。

③变压器多相运行

通用变频器的整流部分是六脉波整流器,所以产生的谐波较大。如果应用变压器的多相运行,使相位角互差30°如Y-、-组合的两个变压器构成相当于12脉波的效果则可减小低次谐波电流28%,起到了很好的谐波抑制作用。

④调节变频器的载波比

从(1)、(2)、(3)式可以看出,只要载波比足够大,较低次谐波就可以被有效地抑制,特别是参考波幅值与载波幅值小于1时,13次以下的奇数谐波不再出现。

⑤专用滤波器

该专用滤波器用于检测变频器谐波电流的幅值和相位,并产生一个与谐波电流幅值相同且相位正好相反的电流,通到变频器中,从而可以非常有效地吸收谐波电流。

3负载匹配问题及其对策

生产机械的种类繁多,性能和工艺要求各异,其转矩特性是复杂的,大体分为三种类型:恒转矩负载、风机泵类负载和恒功率负载。针对不同的负载类型,应选择不同类型的变频器。

①恒转矩负载

恒转矩负载是指负载转矩与转速无关,任何转速下,转矩均保持恒定。恒转矩负载又分为摩擦类负载和位能式负载。

摩擦类负载的起动转矩一般要求额定转矩的150%左右,制动转矩一般要求额定转矩的100%左右,所以变频器应选择那些具有恒定转矩特性,并且起动和制动转矩都比较大,过载时间长和过载能力大的变频器。如三菱变频器FR-A540系列。

位能式负载一般要求大的起动转矩和能量回馈功能,能够快速实现正反转,变频器应选择具有四象限运行能力的变频器。如三菱变频器FR-A241系列。

②风机泵类负载

风机泵类负载是目前工业现场应用最多的设备,虽然泵和风机的特性多种多样,但是主要以离心泵和离心风机应用为主,通用变频器在这类负载上的应用最多。风机泵类负载是一种平方转矩负载,其转速n与流量Q,转矩T与泵的轴功率N有如下关系式:

(4)

这类负载对变频器的性能要求不高,只要求经济性和可靠性,所以选择具有U/f=const控制模式的变频器即可。如三菱变频器FR-F540(L)系列。风机负载在实际运行过程中,由于转动惯量比较大,所以变频器的加速时间和减速时间是一个非常重要的问题,可按下列公式进行计算:

(5)

(6)

式中:tACC—加速时间(s);

tDEC—减速时间(s);

GD2—折算到电机轴上的转动惯量(N·m2);

g—重力加速度,g=9.81(m/s2);

TM—电动机的电磁转矩(N.m);

TL—负载转矩(N.m);

nAS—系统加速时的初始速度(r/min);

nAE—系统加速时的终止速度(r/min);

nDS—系统减速时的初始速度(r/min);

nDE—系统减速时的终止速度(r/min)。

从上式可以看出,风机负载的系统转动惯量计算是非常重要的。变频器具体设计时,按上式计算结果,进行适当修正,在变频器起动时不发生过流跳闸和变频器减速时不发生过电压跳闸的情况下,选择最短时间。

泵类负载在实际运行过程中,容易发生喘振、憋压和水垂效应,所以变频器选型时,要选择适于泵类负载的变频器且变频器在功能设定时要针对上述问题进行单独设定:

喘振:测量易发生喘振的频率点,通过设定跳跃频率点和宽度,避免系统发生共振现象。

憋压:泵类负载在低速运行时,由于系统憋压而导致流量为零,从而造成泵烧坏。在变频器功能设定时,通过限定变频器的最低频率,而限定了泵流量的临界点处的系统最低转速,这就避免了此类现象的发生。

水垂效应:泵类负载在突然断电时,由于泵管道中的液体重力而倒流。若逆止阀不严或没有逆止阀,将导致电机反转,因电机发电而使变频器发生故障报警烧坏。在变频器系统设计时,应使变频器按减速曲线停止,在电机完全停止后再断开主电路电,或者设定“断电减速停止”功能,这样就避免了该现象的发生。

③恒功率负载

恒功率负载是指转矩大体与转速成反比的负载,如卷取机、开卷机等。利用变频器驱动恒功率负载时,应该是就一定的速度变化范围而言的,通常考虑在某个转速点以下采用恒转矩调速方式,而在高于该转速点时才采用恒功率调速方式。我们通常将该转速点称为基频,该点对应的电压为变频器输出额定电压。从理论上讲,要想实现真正意义上的恒功率控制,变频器的输出频率f和输出电压U必须遵循U2/f=const协调控制,但这在实际变频器运行过程中是不允许的,因为在基频以上,变频器的输出电压不能随着其输出频率增加,只能保持额定电压,所以只能是一种近似意义上的恒功率控制。

4发热问题及其对策

变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热,通常采用以下方法:

①采用风扇散热:变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行。

②降低安装环境温度:由于变频器是电子装置,内含电子元、电解电容等,所以温度对其寿命影响比较大。通用变频器的环境运行温度一般要求-10℃~-50℃,如果能够采取措施尽可能降低变频器运行温度,那么变频器的使用寿命就延长,性能也比较稳定。

我们采取两种方法:一种方法是建造单独的变频器低压间,内部安装空调,保持低压间温度在+15℃~+20℃之间。另一种方法是变频器的安装空间要满足变频器使用说明书的要求。

以上所谈到的变频器发热是指变频器在额定范围之内正常运行的损耗。当变频器发生非正常运行(如过流,过压,过载等)产生的损耗必须通过正常的选型来避免此类现象的发生。

对于风机泵类负载,当我们选择三菱变频器FR-F540时,其过载能为120%/60秒,其过载周期为300秒,也就是说,当变频器相对于其额定负载的120%过载时,其持续时间为60秒,并且在300秒之内不允许出现第二次过载。当变频器出现过载时,功率单元因其流过的过载电流而升温,导致变频器过热,这时必须尽快使其降温以使变频器的过热保护动作消除,这个冷却过程就是变频器的过载周期。不同的变频器,其过载倍数、过载时间和过载周期均不相同,并且其过载倍数越大,过载时间越短,请见表2所示:

对于变频器所驱动的电机,按其工作情况可分为两类:长期工作制和重复短时工作制。长期工作制的电机可以按其名牌规定的数据长期运行。针对该类负载,变频器可根据电机铭牌数据进行选型,如连续运行的油泵,若其电机功率为22kW时,可选择FR-F540-22k变频器即可。重复短时工作制电机,其特点是重复性和短时性,即电机的工作时间和停歇时间交替进行,而且都比较短,二者之和,按国家规定不得超过60秒。重复短时工作制电机允许其过载且有一定的温升。此时,若根据电机铭牌数据来选择变频器,势必造成变频器的损坏。针对该类负载,变频器在参考电机铭牌数据的情况下要根据电机负载图和变频器的过载倍数、过载时间、过载周期来选型。如重复短时运行的升降机,其电机功率为18.5kW,可选择FR-A540-22k变频器。

5结论

本文通过对通用变频器运行过程中存在问题的分析,提出了解决这些问题的实际对策,随着新技术和新理论不断在变频器上的应用,变频器存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器也会不久面世。

6参考文献

(1)韩安荣.通用变频器及其应用.北京:机械工业出版社,2000

第6篇:变频器论文范文

山东风光电子有限公司是在多年研制中低压变频器的基础上,综合了国内外高压大功率变频器的多种方案的优缺点,采用最优方案研制成功的,并于2002年12月通过了省级科技成果及产品鉴定,成为国内生产高压大功率变频器的为数较少的几个企业之一。

2国内现生产的高压大功率变频器的方案及优缺点

目前,国内生产的高压大功率变频器中,以2种方案占主流:一种是功率单元串联形成高压的多重化技术;另一种是采用高压模块的三电平结构。而其他的采用高-低-高方案的,由于输出升压变压器技术难度高,成本高,占地面积大,都已基本被淘汰。因此采用高-高方案是高压大功率变频器的主要发展方向。

而高-高方案又分为多重化技术(简称CSML)和三电平(简称NPC)方案,目前有的厂家生产的高压大功率变频器是采用的三电平方案,而大多数厂家则是采用低压模块、多单元串联的多重化技术。这2种方案比较,各有优缺点,主要表现在:

(1)器件

采用CSML方式,器件数量较多,但都是低压器件,不但价格低,而且易购置,更换方便。低压器件的技术也较成熟。而NPC方案,采用器件少,但成本高,且购置困难,维修不方便。

(2)均压问题(包括静态均压和动态均压)

均压是影响高压变频器的重要因素。采用NPC方式,当输出电压较高时(如6kV),单用单个器件不能满足耐压要求,必须采用器件直接串联,这必然带来均压问题,失去三电平结构在均压方面的优势,系统的可靠性也将受到影响。而采用CSML方案则不存在均压问题。唯一存在的是当变频器处于快速制动时,电动机处于发电制动状态,导致单元内直流母线电压上升,各单元的直流母线电压上升程度可能存在差异,通过检测功率单元直流母线电压,当任何单元的直流母线电压超过某一阈值时,自动延长减速时间,以防止直流母线电压上升,即所谓的过压失速防止功能。这种技术在低压变频器中被广泛采用,非常成功。

(3)对电网的谐波污染和功率因数

由于CSML方式输入整流电路的脉波数超过NPC方式,前者在输入谐波方面的优势很明显,因此在综合功率因数方面也有一定的优势

(4)输出波形

NPC方式输出相电压是三电平,线电压是五电平。而CSML方式输出相电压为11电平,线电压为21电平(对五单元串联而言),而且后者的等效开关频率大大高于前者,所以后者在输出波形的质量方面也高于前者。

(5)dv/dt

NPC方式的输出电压跳变台阶为高压直流母线电压的一半,对于6kV输出变频器而言,为4kV左右。CSML方式输出电压跳变台阶为单元的直流母线电压,不会超过1kV,所以前者比后者的差距也是很明显的。

(6)系统效率

就变压器与逆变电路而言,NPC方式与CSML方式效率非常接近。但由于输出波形质量差异,若采用普通电机,前者必须设置输出滤波器,后者不必。而滤波器的存在大约会影响效率的0.5%左右。

(7)四象限运行

NPC方式当输入采用对称的PWM整流电路时,可以实现四象限运行,可用于轧机、卷扬机等设备;而CSML方式则无法实现四象限运行。只能用于风机、水泵类负载。

(8)冗余设计

NPC方式的冗余设计很难实现,而CSML方式可以方便的采用功率单元旁路技术和冗余功率单元设计方案,大大的有利于提高系统的可靠性。

(9)可维护性

除了可靠性之外,可维护性也是衡量高压大功率变频器的优劣的一个重要因素,CSML方式采用模块化设计,更换功率单元时只要拆除3个交流输入端子和2个交流输出端子,以及1个光纤插头,就可以抽出整个单元,十分方便。而NPC方式就不那么方便了。

总之,三电平电压形变频器结构简单,且可作成四象限运行的变频器,应用范围宽。如电压等级较高时,采用器件直接串联,带来均压问题,且存在输出谐波和dv/dt等问题,一般要设置输出滤波器,在电网对谐波失真要求较高时,还要设置输入滤波器。而多重化PWM电压型变频器不存在均压问题,且在输入谐波及dv/dt等方面有明显优势。对于普通的风机、水泵类一般不要求四象限运行的场合,CSML变频器有较广阔的应用前景。这类变频器又被国内外设计者称之为完美无谐波变频器。

我公司的设计人员经过多方探讨,综合各种方案的优缺点,最后选定了完美无谐波变频器的CSML方案作为我们的最佳选择,这就是我们向市场推出的JD-BP37和JD-BP38系列的高压大功率变频器。

3变频器的性能特点

(1)变频器采用多功率单元串联方案,输出波形失真小,可配接普通交流电机,无须输出滤波器。

(2)输入侧采用多重化移相整流技术,电流谐波小,功率因数高。

(3)控制器与功率单元之间的通信用多路并行光纤实现,提高了抗干扰性及可靠性。

(4)控制器中采用一套独立于高压源的电源供电系统,有利于整机调试和操作人员的培训。

(5)采用全中文的Windows彩色液晶显示触摸界面。

(6)主电路模块化设计,安装、调试、维护方便。

(7)完整的故障监测和报警保护功能。

(8)可选择现场控制、远程控制。

(9)内置PID调节器,可开环或闭环运行。

(10)可根据需要打印输出运行报表。

4工作原理

4.1基本原理

本变频器为交-直-交型单元串联多电平电压源变频调速器,原理框图如图1所示。单元数的多少视电压高低而定,本处以每相为8单元,共24单元为例。每个功率单元承受全部的电机电流、1/8的相电压、1/24的输出功率。24个单元在变压器上都有自立独立的三相输入绕组。功率单元之间及变压器二次绕组之间相互绝缘。二次绕组采用延边三角形接法,目的是实现多重化,降低输入电流的谐波成分。24个二次绕组分成三相位组,互差为20°,以B相为基准,A相8个单元对应的8个二次绕组超前B相20°,C相8个单元对应的8个二次绕组落后B相20°,形成18脉冲整流电路结构。整机原理图如图2所示。

4.2功率单元电路

所有单元都有6支二极管实现三相全波整流,有4个IGBT管构成单相逆变电路。功率单元的主电路如图3所示,4个IGBT管分别用T1、T2、T3、T4表示,它们的门极电压分别是UG1、UG2、UG3、UG4、

每个功率单元的输出都是一样的PWM波。功率单元输出波形如图4所示。逆变器采用多电平移相PWM技术。同一相的功率单元输出完全相同的基准电压(同幅度、同频率、同相位)。多个单元迭加后的输出波形如图5所示。

4.3系统结构与控制

(1)系统结构

整个系统有隔离变压器、3个变频柜和1个控制柜组成,参见图6。

a)隔离变压器

原边为星形接法,副边共有24个独立的三相绕组,为了适应现场的电网情况,变压器原边留有抽头

b)变频柜

A、B、C三相分装在3个柜内,可分别称为A柜、B柜、C柜

c)控制柜

柜内装有控制系统,柜前板上装有控制面板、控制接线排等。由于电压等级和容量的不同,不同机型的单元的数量不同,面板的布置也会有些不同。

4.4系统控制

整机控制系统有16位单片机担任主控,24个功率单元都有一个自己的辅助CPU,由8位单片机担任,此外还有一个CPU,也是8位单片机,负责管理键盘和显示屏。

(1)利用三次谐波补偿技术提高了电源电压利用率。

(2)控制器有一套独立于高压电源的供电体系,在不加高压的情况下,设备各点的波形与加高压情况相同,这给整机可靠性、调试带来了很大方便。

(3)系统采用了先进的载波移相技术,它的特点是单元输出的基波相迭加、谐波彼此相抵消。所以串联后的总输出波形失真特别小。

5现场应用

本公司分别于2002年8月、10月和2003年3月、4月分别在山东莱芜钢铁股份有限公司炼铁厂、辽河油田锦州采油厂、浙江永盛化纤有限公司应用了本公司生产的高压大功率变频器JD-BP37-630F2台、JD-BP38-355、JD-BP37-550F各1台。从运行情况看:

(1)变频器结构紧凑,安装简单

由于变频器所有部分都装在柜里,不需要另外的电抗器、滤波器、补偿电容、启动设备等一系列其他装置,所以体积小,结构紧凑,安装简单,现场配线少,调试方便。

(2)电机及机组运行平稳,各项指标满足工艺要求。

由变频器拖动的电机均为三相普通的异步电动机,在整个运行范围内,电机始终运行平稳,温升正常。风机启动时的噪音及启动电流很小,无任何异常震动和噪音。在调速范围内,轴瓦的最高温升均在允许的范围内。

(3)变频器三相输出波形完美,非常接近正弦波。

经现场测试,变频器的三相输出电压波形、电流波形非常标准,说明变频器完全可以控制一般的普通电动机运行,对电机无特殊要求。

(4)变频器运行情况稳定,性能良好。

该设备投运以来,变频器运行一直十分稳定。设备运行过程中,我公司技术人员对变频器输入变压器的温升,功率单元温升定期巡检,完全正常。输出电压及电流波形正弦度很好,谐波含量极少,效率均高于97%,优于同类进口设备。

(5)运行工况改善,工人劳动强度降低。

变频器可随着生产的需要自动调节电动机的转速,达到最佳效果,工人工作强度大大降低。

(6)变频器操作简单,易于掌握及维护。

变频器的起停,改变运行频率等操作简便,操作人员经过半个小时培训就可以全面掌握。另外,变频器各种功能齐全,十分完善,提高了设备可靠性,而且节电效果明显。以山东莱钢股份有限公司应用的JD-BP37-630F变频器为例,该系统生产周期大约为1h,出铁时间为20min,间隔约40min,系统配置电机的额定电流为80A,根据运行情况,及其它生产线的实际运行情况,预计该电机运行电流应在60A,以变频器上限运行频率45HZ时,电流为45A,间隔时间运行频率20HZ时,电流为20A。根据公式测算节能效果达到42.7%。

6结束语

从这几台这几个月的运行情况看,我公司自行研制生产的高压大功率变频器,运行稳定可靠,节能效果显著,改善了工作人员的工作环境,降低了值班人员的劳动强度。变频器对电机保护功能齐全,减少了维修费用,延长了电机及风机的使用寿命,给用户带来了显著的经济效益,深得用户好评。据专家估计我们国家6kV以上的高压大功率电机约有3万多台,约合650万kW,因此,高压大功率变频器的市场是极其广阔的。

第7篇:变频器论文范文

厂输煤系统使用的是5T龙门式装卸桥,跨度为40.5m,抓斗的提升、开闭机构由二台45KW绕线式异步电动机驱动,小车行走机构分别由二台22KW绕线式异步电动机驱动,大车行走机构分别由二台11KW绕线式异步电动机驱动。在抓斗的提升、开闭,大车及小车前进、后退的传动控制过程中,为了确保机械设备运行的平稳性,采用了绕线式异步电动机转子串接电阻的调速方式。在多年的使用过程中发现该控制方式中存在着很多难以解决的问题,比如调速性能差、接触器动作频繁致使经常更换接触器、串接电阻故障多、操作不规范造成电气回路及机械部件损坏等。

一、问题的提出

经现场实地查看,发现,该5T龙门式装卸桥的抓斗的提升、开闭以及小车的前进后退的调速性能均较差,而且使用按扭控制起停、主令开关设定速度段,这样就会有两种情况:1.绕线式异步电动机一起动很快达到设定的电机最大转速,速度太高以及变化太快容易造成电器、机械部件的损坏;2.如设定速度低则会延长等待时间,使生产效率降低。另外,针对抓斗的提升及下放也存在一些潜在的问题,即:当抓斗提升,但在空中停车再起动时,有可能致使抓斗出现“溜车”现象(轻微下滑),这时电机工作在反接制动状态,但是制动转矩小于负载转矩,电机电流非常大。当下放抓斗时,电机在重力与电动转矩的作用下以极快的速度运行在第四象限,电机工作在回馈制动状态,转速大于同步转速,停车时(抱闸),由于抓斗的惯性及下降速度太快停车效果差,非常危险。针对上述问题,现要采用变频调速技术予以解决。

二、抓斗的提升、开闭变频控制

抓斗有两台电机控制即抓斗开合电机、抓斗提升电机。抓斗抓煤时,仅有开合电机运转,抓满煤开始提升时,提升和开合两台电机均要工作,相互间需要有速度配合才可使系统稳定可靠运行。根据以往制作类似提升、下放重物变频控制装置的经验及查阅ABB公司起重专用变频器的相关技术资料,变频器采用制动单元和制动电阻后能够提供100%的制动转矩,使抓斗下放时,电机工作在制动状态,变频器的制动单元能够完全吸收掉这部分能量使电机稳定工作在第四象限,且转速连续可调。这些通过调整开合电机变频器及提升电机变频器的频率、

加速时间,使之相互配合,调整方便。

抓斗的提升、开闭机构采用SIEMENSS7-200系列PLC控制,其输入、输出均由继电器进行隔离。采用PLC控制后使系统的维护量大大减少,修改或调整控制关系灵活、方便。

三、大车、小车运行机构变频控制

该系统的大车、小车运行机构基本象似,都是由两台电机控制,只是电机的功率不一样,对两台电机分别采用两台相同的西门子MASTERDRIVES系列矢量控制型变频器进行起动及速度控制。由于两台电机是驱动的同一负载,为保证两台电机的同步运行,每台变频器均配置一块TSY型同步板来实现同步控制。每台变频器还需要加装直流母线上的制动单元实现四象限运行。

采用变频器调速时,每台变频器分别单独供电。设定一台变频器为启动变频器,另一台为工作变频器,两台变频器设置参数完全一致,在SIEMENSPLC(S7-200系列)的控制下,绕线电机的转子短接接触器吸合。在接受到起动按扭发出的起动命令及速度信号后,两台变频器同步工作,当需要快速停车或反向运转时,两台电机的能量回馈通过制动单元释放,达到快速起停的目的。

四、其它

原转子串接电阻调速方式的控制装置的电源和控制部分回路保持不变,变频控制与原控制系统可通过转换开关相互切换。四台变频器均采用矢量型变频器并配以制动单元、制动电阻以确保在机械失灵的情况下人身及设备的安全。由于变频器调速属高效调速系统,运行效率高,调速灵活、方便,系统反应速度快,所以采用变频器控制并没有影响龙门抓的抓煤量。

五、小结

该系统经改造后运行近一年来,未出现电器或机械部件损坏,操作简便,减少了操作人员操作强度,为我公司带来了可观的经济效益。需要补充的是如果有条件的话可在抓斗控制机械制动回路增加变频器故障跳闸联锁,变频器一旦故障机械制动立即动作,使之停车,这样龙门抓的运行可靠性将会得到大大提高。

参考文献:

[1].ABB公司.《ABB变频器操作手册(提升宏)》2001年

第8篇:变频器论文范文

如何利用先进技术解决空压机组运行中存在的不足,成为亟待解决的问题。具体改造思路如下:(1)将空压机的人工操作改为计算机操作。(2)利用当前成功的电控技术开发研制螺杆式空气压缩机组联锁控制系统,实现空压机组的集中控制;各台空压机的运行参数24h实时在线监测,实现空压机异常即报警。(3)利用变频技术实现压力稳定、恒压供风,达到节约电能的目的。(4)1台变频器经过切换可拖动4台空压机,节约投资。(5)在完善空气压缩机组电控的基础上,实现空压机房车间无人值守,安全管理上做到“无人则安、少人则安”。(6)应用集中控制与变频控制技术,消除空压机卸荷状态的空载运行时间、减少空压机启动次数,达到节能、降低对设备冲击的目的。

2技术改造实施方案

空压机组控制系统如图1所示,包括工控机(上位机)系统、微机控制系统(集控柜)、压力、温度传感器、高压变频控制系统、高压切换系统等。(1)新建集中控制系统,在空压机房安装集中控制柜、监视操作用工控计算机(上位机)。其主要完成空气压缩机组远程参数的监视、控制、运行参数设置、实时曲线、历史报表查询及其他数据的处理等功能。选用ACS4000型集控柜:由电源开关及熔断器、触摸显示屏、PLC控制器、输出继电器、24V直流电源、通讯转换模块、指示及报警装置等组成。高压变频器、高压启动柜、空气压缩机与集控柜通讯模块通过通讯电缆进行通讯,将空压机运行、变频器运行参数、高压启动柜电压、电流、储气罐温度传输到集控柜进行数据处理、显示。根据运算数据控制空压机与变频器运行。运行状况及各种参数、数据在上位机上显示。(2)在主供风管路上安装压力变送器。主要是检测供风出口压力并把压力信号传输给集控柜PLC,PLC运算后根据总管压力和空压机运行状态智能地控制变频器的运行频率,从而达到根据设定压力范围来控制空压机的运行状态的目的。(3)增设高压变频器,控制空压机在需要的工况下运行。(4)增设高压切换柜,如图2所示,内装4台高压真空接触器,与空气压缩机高压启动柜一一对应,并相互闭锁,达到有选择性地控制空压机在变频状态下运行的目的。(5)空压机组控制。1)每台空压机启动、停止、变频状态下运行均由PLC控制,PLC内设空压机运行程序。2)工作方式设定为5种:就地启动/停止、远程启动/停止、紧急停机、联机控制、单台控制。3)风压设定:5.5~6.2kg/cm2;空压机转速调节范围:电机额定转速的60%~100%。4)空压机启动停止全部由PLC程序控制。空压机运行规定,连续运行不得超过72h,按照空压机编号设定主机1、主机2、主机3、主机4,程序控制每72h更换一次主机,辅机每24h更换一次。主机、辅机分别在工频、变频状态下运行。变频频率达到50Hz、10min内风压达不到设定值,该台空压机自动转为工频运行,同时启动第3台空压机变频运行,以控制风压稳定。空压机变频方式运行频率30Hz及以下达10min以上时,该台空压机自动停止运行,同时原辅机或主机自动转为变频方式运行。

3技术关键及创新点

(1)工频、变频状态下空压机运行曲线的智能拟合。(2)ACS400集控系统、高压变频的配合控制。(3)变频方式与工频方式转换控制。(4)主机、辅机按时切换控制。

4经济效益、社会效益分析

2011年1月系统改造完成并投入工业性运行,实现了多台空压机组联动控制,运行状况良好。(1)节能降耗效果显著:通过实际测定,技术改造后比原运行方式节能13%~15%,年节电耗43.2万kW•h,约21.6万元,节能效果明显。(2)实现了大型设备车间真正无人值守。机组自动24h稳定高效运行,减少操作人员9人,年可节约人工费用54万元。(3)稳定的压力输出,减少了对生产的影响,为矿井安全生产奠定基础。(4)维护量小,运行效率高。集控系统及变频的投入运行减少了空压机配件的磨损,延长了电机及空压机的使用寿命,年可维修及配件费用可减少10余万元。(5)实时设备运行状况,便于人员观察和及时掌握,发生异常及时处理,避免机械事故的发生。(6)采用变频控制,实测减少噪声15dB,减少噪声污染。

5结语

第9篇:变频器论文范文

关键词:西门子变频器,保养维护,电容充电

 

1.外观检查

对长期存放的变频器,检查时要注意变频器的外观是否有变化,如:外观有无变形,有无磕碰痕迹;有无液体渗出和物件脱落;有无动物、昆虫、浮游物等人驻,以及其他异常的变化。论文参考网。

2.检查风机的灵活性

用细的木棍或其他较软的物体拨动风叶,手感应该流畅,风机转动应灵活,不能有卡涩的现象,观察风机是否有液体渗出或油的痕迹。

3.电气性能检查

长期存放的变频器,由于环境的影响和变频器器件的使用期限,必须定期对变频器进行电气性能的检查及保养。具体方法如下:

使用万用表检测整流部分的整流桥特性,使用万用表的欧姆挡X100,红表笔接变频器的“P”端,用黑表笔分别接输人“R”“S”“T”,表针摆动应在2/3处,超过2/3或低于l/2均视异常,将黑红表笔交换重新测量,表针不能摆动,如出现摆动则为异常。使用万用表的欧姆挡X100,红表笔接变频器的“N”端,用黑表笔分别接输入“R”“S”“T”,表针摆动应在2/3处,超过2/3或低于1/2均视异常,将黑红表笔交换重新测量,表针不能摆动,否则为异常。论文参考网。

用同样的方法检查逆变部分,将“R”“S”“T”换为“U”“V”“W”,因为逆变的IGBT的源极和漏极之间在关闭状态下同样有整流桥特性。

绝缘测试。对于输人输出端和地(外壳)进行高压绝缘检测,使用500v摇表的黑表端接变频器的接地标识。红端分别接“R”“S”“T”“U”“V”“W”,均速摇动摇表,测量绝缘电阻应在SM以上。

电容器的检测。主回路主要由三相或单相整流桥、平滑电容、滤波电容、IPM逆变桥、限流电阻、接触器等元器件组成。论文参考网。其中对变频器寿命最有影响的是平滑铝电解电容器,它的寿命主要由加在其两端的直流电压和内部温度所决定。在主回路设计时已经根据电源电压选定了电容器的型号,所以内部的温度对电解电容器的寿命起决定作用。

电解电容器相对温度的劣化特性直接影响到变频器的寿命。

一般每上升10℃变频器的寿命减半,这是因为电解电容器内部的化学反应随着温度的升高导致劣化速度加快。劣化速度与材料温度的关系遵循阿列里乌斯理论(电解液理论)。电解电容器的内部温度实际上是电容器周围环境温度与脉动电流造成的温度之和。因此,我们应该在安装时考虑适合的环境温度,在电容器劣化过程中,会出现静电容量减小,漏电流增大,等价电阻值增大,tgδ值增大等现象。维护保养时通常以比较容易测量的静电容量来判断电解电容器的劣化情况,当静电容量低于初期值的80%,绝缘阻抗在5MΩ以下时应考虑更换电解电容器。对于储存不超过5年的电容器我们应该定期充电以进行维护,每隔半年到一年充电一次,方法具体如下:

首先准备功率不小于5KW的三相调压器将调压器的输人端接人有短路过流保护的三相电源,三相电源每相必须有10A的交流电流表作为指示。将输出端通过快熔接入变频器的“R”“S”“T”。将变频器调至10伏以下,送电,观察电流表是否异常,如无异常,将电压缓缓调到30伏,观察5分钟,如无异常,每十分钟将电压升高20伏,加压过程中,随时观察电流的变化,当电压超过200伏时,振风机等开始工作。这时可将电压缓缓升到350伏,观察有无电流波动,维持1小时后,将电压升到额定电压,再维持2小时,继续观察电流。无异常即可。上电过程中,如果遇见变频器的面板显示有故障代码,先查明原因,是否与低压有关,否则应引起重视。电源断开后应等到充电灯完全熄灭方可拆除电源线,待机器完全冷却后装机。

除日常的检查外,推荐检查周期为半年。在众多的检查项目中,重点要检查的是主回路的平滑电容器、逻辑控制回路、电源回路、逆变驱动保护回路中的电解电容器、冷却系统中的风扇等。除主回路的电容器外,其他电容器的测定比较困难,因此主要以外观变化和运行时间为判断的基准。

参考文献

[1]白玉辉.西门子变频器在冶金起重机中的应用[J].科技资讯,2007,(22).

[2]范照勇.西门子中压变频器几例实际故障的分析处理与预防[J].科技创新导报,2007,(36).

[3]侯灵.西门子变频器在数控铣切机多电动机切换控制改造中的应用[J].制造技术与机床,2008,(11).

[4]刘景霞,郝建忠.SIEMENS 6SE70系列变频调速系统的应用[J].自动化与仪表, 2002,(01).