前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的半导体材料论文主题范文,仅供参考,欢迎阅读并收藏。
关键词半导体材料量子线量子点材料光子晶体
1半导体材料的战略地位
上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。
2几种主要半导体材料的发展现状与趋势
2.1硅材料
从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。
从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。
理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。
2.2GaAs和InP单晶材料
GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。
目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。
GaAs和InP单晶的发展趋势是:
(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。
(2)。提高材料的电学和光学微区均匀性。
(3)。降低单晶的缺陷密度,特别是位错。
(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。
2.3半导体超晶格、量子阱材料
半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。
(1)Ⅲ-V族超晶格、量子阱材料。
GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。
虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。
为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。
目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。
(2)硅基应变异质结构材料。
硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。
另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。
尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。
2.4一维量子线、零维量子点半导体微结构材料
基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。
目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。
在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。
与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。
王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。
低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。
2.5宽带隙半导体材料
宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。
以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。
II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。
宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。
目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。
3光子晶体
光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。
4量子比特构建与材料
随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。
所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。
这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。
5发展我国半导体材料的几点建议
鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。
5.1硅单晶和外延材料硅材料作为微电子技术的主导地位
至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。
5.2GaAs及其有关化合物半导体单晶材料发展建议
GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。
5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议
(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。
宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。
(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。
论文关键词:双因素方差分析,霍尔效应,霍尔电压
一.引言
在测量半导体材料的霍尔效应实验和霍尔元件测量[1]中,我们经常需要判断不同的温度和不同的磁场强度对霍尔电压这一指标有无显著影响,以选取合适条件。为此,我们在不同温度和不同磁场强度下做实验,在某一段温度范围和某一段磁场范围内,实验数据总是呈现波动状态。引起波动的原因可以分为两类:一类是由实验条件不同引起的,这是可以控制的因素,因此由实验条件引起的波动是系统波动;另一类是由随机因素引起的,这是不可控制的因素,因此由随机因素引起的波动是偶然波动。这两类波动总是混杂在一起,使实验数据呈现总的波动状态。我们的目的是要对实验数据进行分析,把总的波动分为两部分:一部分是由实验条件引起的系统波动,另一部分是由随机因素引起的偶然波动,并对这俩部分加以比较,判断不同的实验条件对实验结果是否有显著影响。因此我们通过使用双因素方差分析来对数据进行分析。
二.霍尔效应[2]
如图1所示,样品通以电流I,如果在垂直于样品表面且与电流垂直的方向上加一磁场,如图所示样品就会产生一个与电流和磁场方向垂直的电势差,这个电势差就是霍尔电压
图1
与样品厚度d成反比,与磁感应强度和电流I成正比霍尔电压,比例系数叫做霍尔系数。
霍尔电势差是这样产生的:当电流通过样品(假设为P型半导体)时,空穴有一定的漂移速度
式中q为电子电荷。洛伦兹力使电荷产生横向偏转,由于样品存在边界,所以有些偏移的载流子将在边界积累起来,形成一个横向电场E,直到电场对载流子的作用力与磁场作用的洛伦兹力相抵消为止,即
这时电荷在样品中流动将不再发生偏转,霍尔电势差就是由这个电场建立起来的。如果样品是n型半导体,则横向电场与前者相反中国期刊全文数据库。
三.双因素方差分析模型的建立[3][4]
场强因素B
平均值
……
温
度
因
素
T
……
……
……
平均值
本书主要介绍了高丰度的28Si的超高分辨率的光致发光研究。这种高丰度的硅同位素独有的特性,大大提高了光谱分辨率。本书揭示了该同位素的独特特性及其掺杂的详细成分,并纠正了先前研究中有误的地方。书中还介绍了几类不同的掺杂混合物成分,这些成分包含锂、铜、银、金、铂等金属的四或五个原子,并详细介绍了这些成分的性质和特点,如非声子跃迁能量、非声子同位素移动、局域振动模式的能量、局域振动模式能量的同位素移动。本书提供的关于这些同位素及其成分的数据,对解释其形成、稳定性及所具有性能的理论是非常有帮助的。
本书主要分为5章:1.引言和背景,主要介绍本书涉及到的一些基本概念和知识,包含硅同位素和硅中掺杂的过渡金属的一些基本特性;2.在硅同位素中观察到过渡金属成分的研究发展历史;3.相关的实验方法;4-5.结果讨论和分析。
本书为迈克尔·斯蒂格于2011年完成的加拿大西蒙弗雷泽大学博士学位论文。作者还因为本研究而获得了“优秀研究生院长奖章”。迈克尔·斯蒂格已发表了备受同行好评的若干篇学术论文,并参加多次国际学术会议。
本书适合于从事硅材料及半导体器件的研究生和研究人员阅读。
杨盈莹,助理研究员
(中国科学院半导体研究所)
关键词:材料科学与工程专业 电子信息材料 教学改革
中图分类号:G4 文献标识码:A 文章编号:1674-098X(2013)01(a)-0-01
我国高等学校材料专业教学体系与教学内容沿袭前苏联模式近50年, 目前,需要对这门专业课程进行改革,才能跟上时代的步伐,适应经济建设的飞速发展。在专业培养目标达成共识后,该校调整了专业课程体系、增设多门专业课。其中《电子信息材料》(48学时)为其中之一。电子信息材料不仅应用于航空航天等国防尖端领域,还广泛用于民用工业和日常生活。作为材料学科与产业中一只蓬勃的生力军,电子信息材料在当今信息和知识的年代已成为世界诸多国家重要的经济增长点[1-2]。因此增设这门专业课旨在拓宽学生的知识面, 让学生了解一些材料科学的前沿领域和发展趋势,增加兴趣, 热爱专业, 为以后的学习和就业奠定基础[3]。
1 目前电子信息材料课程存在的问题
国内院校《电子信息材料》课程历来多是为材料专业学生而开设,已形成适合其专业特点的、较完备的教学内容体系;在教学研究方面业已取得许多具有鲜明专业特色的研究成果。但由于电子信息材料本身具有:(1)内容多,涉及面广。(2)内容更新快。(3)实践性强等特点,许多院校只把其作为选修课,课程内容大多只是具有普及知识的作用,学生学后并无多大印象。而且很多学校在课程教学上存在教材陈旧、教学方法和手段单一、没有实验课等这些不利于《电子信息材料》课程发展的弊端。
2 电子信息材料教学改革的内容
结合本校材料专业特点,并考虑天津市电子材料行业的工业特色,研究适用于材料专业的《电子信息材料》课程内容体系,希望在教学内容、教学手段和教学方法上有所突破。
2.1 整体设计教学内容
结合材料学院专业课程设置的具体特点,对国内外参考教材及课程体系进行系统的调查研究, 并广泛收集材料科学领域的参考文献及最新信息,选用合适的教材制定出新的《电子信息材料》教学内容,力争在教学内容上突出以下特色:根据材料科学发展的最新动态和材料专业课程设置的现实需求, 坚持简化理论、增加应用、拓宽知识面、更新内容的基本原则。充分考虑到本课程在专业培养目标中的地位, 在内容安排、表述手段等方面进行系统设计,同时充分考虑到本课程与其它相关课程之间的合理配置和支持, 对教学内容进行整体优化。兼顾各种电子材料共性与个性的结合, 实现多学科知识的交叉和渗透。在课程内容上,我们将对材料科学的五要素模型进行讨论, 试图在材料的组成、制备、结构、性能与应用之间建立一个整体和全貌的关系;对材料的组成、结构与性能、制造工艺与方法等内容进行深入讲解, 力求彰显材料的共性。然而材料是具体品种组成的, 不同的材料具有其鲜明的个性, 所以在材料的应用、材料的比较与选择等内容中又比较兼顾个性, 以利于学生在学习具体材料的基础上, 能做到举一反三, 更深刻地了解材料的共同之处。
2.2 更新教学手段
材料科学博大精深、变化无穷, 神奇而又充满魅力。电子信息材料这门课只是其中一个分支。为此在授课过程中切实做到动之以情, 导之以趣, 制作内容丰富、生动活泼的多媒体课件。在讲授中把传统的导电材料、电阻材料,磁性材料,神奇的超导材料、激光材料, 异军突起的集成电路半导体材料等材料科学发展的前沿领域的知识介绍给学生。另外,可以购置相关的电子音像资料,使学生能更直观地了解材料的制备及应用的一些情况。
2.3 改善教学方法
(1)互动教学。教学建设要注意提高学生学习的主观能动性,教学过程中,教师应多向同学提出问题,引导同学们思考和讨论。同时注意启发和鼓励学生发现问题、提出问题。在一些章节讲完之后还要提出后续和推广问题,为学生留下思考和研究的空间。通过这些方法,能够培养学生自主学习能力和创新能力,激发学生的创新意识和独立思考能力,提高课程的教学效果。
(2)实物教学。《电子信息材料》是一门实践性很强的课程。实践性如何体现,也是使学生对这门课感兴趣的关键之一。我们采用把科研、生产中的典型材料带到讲台上,如:导电材料中的导电银浆、半导体材料中的单晶硅片、介电材料中的钛酸钡电容器、光电材料中的荧光粉、敏感电子材料中的压电器件等。让学生观看实物,并参观实验室观看某些实验的制备过程,把一些抽象的理论通过实物展现出来,加深了学生的理解,也增加了学生的学习兴趣。
(3)撰写小论文。材料的发展日新月异,除了在课堂教学中不断更新材料领域的知识外,在课外还要求学生自己查阅国内国际专业期刊上发表的文献资料,了解有关材料的发展情况,并写出学习论文。这样不仅拓宽知识面,锻炼学生的自学能力、思考能力以及创新能力,还培养他们从多方面摄取知识营养的习惯,调动他们学习的主动性和积极性
(4)参与科研。介绍本专业教师正在从事的与教学内容相关的科研项目,如,半导体发光方面、铁电材料方面、铁磁体方面等。鼓励有兴趣的学生成立科研小组,参与到教师的课题研究中,撰写科研论文,以激发学生的学习热情,使课堂上学到的知识得到很快验证和应用。
2.4 加强实验教学
电子信息材料课程是和生产实践紧密联系的课程,应该合理安排实验教学和实习教学。这对于学生基本原理的掌握和工程实践能力的培养具有举足轻重的作用。
3 结语
《电子信息材料》是一门简化理论、侧重介绍材料特点及应用的专业课,其先修课程是在材料学专业中理论性较强的《材料科学基础》和《材料性能学》,因此如何将一些复杂的理论应用在课程中并与材料的实际应用紧密结合将是本课程的主要特色之一。根据专业要求开设实验课并采用实物教学是本项目的又一特色,体现了理论与实践相联系的宗旨。这要求教师有较宽的知识面和一定的电子材料的专业背景。采用这种教学方法,可以使教师在教学中实现学习、教学、实践、科学研究的良性循环,上课时能游刃有余,学生对于这样的教学方法也会增加
兴趣。
参考文献
[1] 李言荣,恽正中.电子信息材料导论[M].北京:清华大学出版社,2001.
这项成果引起了广泛的关注,有人拿它跟当年名噪一时的“人造叶片”比较,并认为其前途更加光明。这项成果也使以色列政府近年来倾力打造的“脑力回流”科研平台I-CORE格外引人注目。近日,笔者专访了以色列理工学院太阳能燃料集优研究中心该项目首席研究员阿夫纳·罗斯柴尔德教授。
纳米材料技术带来的革命
“用集成串联光伏电池实现光解水制氢完全可行,光伏发电的同时制氢、储氢,氢燃料再用于补充黑夜和阴天的发电需要。”罗斯柴尔德告诉笔者,“我们已找到一种方式来捕捉光,用超薄铁氧化物薄膜,也就是用比办公用纸还薄5000倍的铁锈,即三氧化二铁来储存光,这是实现高效率和低成本的关键。”他们的研究成果发表在《自然材料》上,论文题目是《用超薄材料捕获共振光实现水裂解》。
氧化铁是一种常见的半导体材料,生产成本低,在水里不易氧化、耐腐蚀、耐分解,比其他半导体材料表现更稳定。但它较低的导电性是研究人员面临的最大挑战。科研人员为此奋斗多年,努力找寻光吸收分离和光生载荷收集之间的折衷方案。
“我们的光捕获方案打破了这个瓶颈,氧化铁超薄薄膜能够有效地吸收光生电荷。”罗斯柴尔德说,“类似镜面的薄膜被置于反射基板上,光线中的四分之一波长或更深的子波长被薄膜捕获。同时向前和向后传播的光波之间增强了吸收表面,光生电荷载体的吸收效率更好。”
谈到这项发现的重大意义,罗斯柴尔德认为,这项科研成果使光伏发电和制氢同时进行成为可能。人们可以设计制造出相对廉价的结合有超薄氧化铁光电极的太阳能电池,这种太阳能电池完全可以采用基于硅材料或其他材料的传统产品,但能同时实现光伏发电和制氢。他称,这些电池实现了太阳能储存,让光伏发电不再受黑夜和阴天影响,这是传统的光伏发电无法比拟的。
这项发明还能减少第二代光伏电池对极稀有金属的用量,理论上讲,在不牺牲发电性能的基础上,这种太阳能电池能节约90%的碲和铟等稀有元素。
水的消耗也是这样的光伏电厂无法回避的问题,罗斯柴尔德称,目前他们使用淡水的试验测算结果,其水的用量以及经济性和传统发电相差无几。他们还将开展使用海水进行光解制氢的研究,并对此充满信心。他称,自去年底他们的科研成果以来,他们在提高制氢效率方面又取得了很大进步,理论上讲,基于这种技术的光伏电厂已经可以匹敌传统发电,其成本不相上下,如果考虑到绿色、环保、低碳等因素,这样的光伏电厂已经具备优势。
占用大量土地则是光伏电厂面临的另一个难题。罗斯柴尔德对此并不十分担心,他说,每个国家都有大量不能耕作但光照充分的土地,它们是建设光伏电厂的天然选择,而且相对于其他用途占地,全面解决能源问题的用地需要并不过分。他以以色列为例,以色列全国道路占用土地是国土面积的3%,而通过这种新型光伏电厂完全解决以色列电力需求只要国土面积的1%,就能彻底实现国家能源独立,并完全放弃石化能源。
实现清洁能源三步走
罗斯柴尔德分析了实现人类清洁能源梦想的各种可能性,他认为相比风能、地热能、核能、潮汐能等,太阳能光伏发电是迄今为止最为成功的清洁能源解决方案,这种20年前仅用于军事和太空的昂贵的能源技术,现在已经变得非常成熟和普及,产业化程度很高。虽然有人还在质疑它的发电成本,但就目前技术水平,在以色列光伏发电的单价已经与传统电厂的电价趋同。如果将运行周期放在30年的时间段进行对比,光伏电厂的发电成本将低于现行电价。这其中还不包括传统电厂存在的生产安全成本和付出的环境污染代价。罗斯柴尔德称,有一位以色列财政部前副总司长计算出的传统电厂的真实价格是现在光伏发电的两倍。
罗斯柴尔德并不看好生物燃料,他认为生物燃料的发电效率不高,自然界的光合作用需要很多土地。大规模发展生物燃料,人类会面临用有限土地生产食物或者生产燃料的两难选择,能源危机与粮食危机将交织在一起。
事实上,许多国家已经把发展可再生能源的目标大幅度提高,如以色列现在是7%,2020年要达到20%;德国的目标是到2050年将可再生能源提高到80%。相比较风能和氢能,光伏发电现在发展最快。但光伏的致命伤是黑夜和阴天不能发电,如果小规模的光伏电厂可以通过其他发电方式进行补偿和平衡,大规模光伏发电则必须解决太阳能燃料储存问题。
应运而生的纳米氧化铁超薄膜制氢技术是一种高效人造光合作用,制氢能力10倍于自然界,嫁接现在非常成熟的光伏技术,则可实现光解水制氢和光伏发电的完美结合。
生为化学
彭天右,1 969年生于湖北省麻城市,长期以来从事无机化学和材料化学的研究及教学工作,年纪尚青却成绩斐然。
“江城多山,珞珈独秀,山上有黉,武汉大学。”武汉大学是他的母校,在这个被誉为“中国最美丽的大学”里,彭天右停留最多的地方不是花香流溢的樱花大道,不是风光旖旎的东湖之畔,而是对于常人来说有些枯燥的化学实验室。学习,实验对他来说,发于乐趣,兴于责任。春华秋实1 998年6月,他博士毕业后留校任职,2004年破格晋升教授。对知识瀚海的探索让他甘之若饴,从不止步2001年10月至2003年5月在京都大学做博士后研究,其间兼任日本基础化学研究所外国人特别研究员:2003年3月访问美国罗切斯特大学和新泽西州立大学;2004年7月和2005年10月应邀访问京都大学福井谦一研究中心和香港浸会大学化学系2007年7月访问新加坡国立大学和南洋理工大学;2008年11月访问美国wisconsln--Madison大学和DeIaware大学。
无论走到哪里,他从未离开心爱的科研事业。在小小的实验室里,他苦炼神功,用“天眼”识别着自然界的万千物质,为祖国无机化学的发展燃烧着自己的青春与活力。工作几年,他曾先后主持国家“863"‘计划专题,国家自然科学基金,教育部新世纪优秀人才基金、留学回国人员基金,湖北省杰出人才基金,纳米重大专项、重点科技计划和自然科学基金等项目。
追探纳米前沿
纳米技术近几年来得到了飞速的发展。紧扣化学发展时代脉搏的彭天右,主要从事金属氧化物、硫化物及其复合纳米材料的合成及其光电转换、光催化性能研究工作。在组成,晶形、形貌、多孔性、空间结构的调控及其光电功能性研究方面积累了一些重要的经验。在纳米复合光催化材料的制备及其可见光分解水制氢、光催化降解有机污染物以及染料敏化太阳能电池等方面均取得了重要的研究进展。
他在国际上较早制备了微米/纳米Al203、Ti02、NlO,Si02管,CdS纳米管,竹结状Ti02纳米管以及分级有序T10:管中管结构等。在纳米材料的组成,形貌、多7L性、空间结构、能带调控等方面取得了一定的成果。从调节能带宽度和红移匹配入手+探索能可见光响应的复合光催化材料。经过不同的掺杂(包括有机/无机金属元素及稀土元素)以及不同能带半导体材料的复合,获得了不同的能隙、p/n特性的纳米介孔半导体复合氧化物。首次合成的介7LTi02(m-Ti02)纳米粉体具有较高的比表面积和高度晶化的介孔壁等结构特点。该类材料由于其独特的微观结构而表现出优异的光催化活性,对m-Ti02的微观结构与光催化制氢效率的相关性也进行了较为深入的研究。结果表明:m--Ti02纳米粉体在甲醇为牺牲试剂,紫外光照下的光催化产氢效率高达9,1mmoI/g h,高于商品催化剂(德国P25)的光催化产氢效率。使用m--Ti02制作的染料敏化太阳能电池的效率在光强为42mW/cm2时达到了10 1 2%,比使用P25粉体时提高了3 79%,这主要是因为m-Ti02纳米粉体制备膜电极的表面态的影响较小,且染料分子的负载量较大。
在“敏化剂设计,合成及其敏化纳米Ti02产氢性能”研究中,彭天右首次提出采用双核钌联吡啶为染料,利用其天线效应提高对可见光的吸收和光电子注入效率的新思路。与单核配合物相比,双核钉联吡啶敏化m-Tioz的产氢效率提高了3―5倍。他还提出了通过建立基态染料分子在半导体表面的化学键合和氧化态染料分子的离解之间的动态平衡,可实现电子的有效注入和通过氧化态染料分子的及时解离来阻塞电子回传通道,从而有效地提高染料敏化半导体体系的光催化产氢效率及其长效稳定性的新观点。
在“系光催化材料的可见光催化活性”研究中,他采用沉淀法制备的单斜BiV04纳米粒子为单晶颗粒,光谱带边值为520nm,其可见光催化活性较高。研究发现,Ag团簇的负载有利于释氧,但AgN03/BiV04再生困难。因此,彭天右提出采用铁盐代替银盐做牺牲试剂,具有更好的实际应用前景的新观点。此外,他还首次发现利用CTAB做模板剂时,通过调节水热温度可选择性地合成微球状或片层状BiV04,并可调节其晶相组成。
在“碳基一半导体氧化物复合材料系列的制备及其产氢性能”研究方面,他较早采用水热法原位合成了碳基(c60、SWNT,MWNT、石墨等) 半导体氧化物(ZnO、Ti02等)纳米复合材料。其中,C60/Ti02、MWNT/Ti02、C60/T102在400nm--800nm范围内有明显的吸收,并表现出明显的可见光催化制氢活性。随着复合比例的提高,产氢效率逐渐提高,但比例过高反而会导致产氢效率的降低。在全光谱条件下,纳米复合光催化剂均表现出了优于纯Ti02的产氢性能。该类复合材料突破了半导体氧化物只吸收紫外光而有机光敏剂的光降解和不稳定等难题,具有良好的稳定性和较高的可见光催化产氢效率,是一类新型的具有光明前途的可见光驱动催化剂。
在光电极及其集成器件的制备及其光电化学性能调控方面,彭教授也开展了一些研究。以自制的光催化材料为主要研究对象,采用刮涂和丝网印刷技术制备光电极膜或其多层复合膜器件。利用电化学测定,以及将制备膜电极与Pt化对电极组成染料敏化纳米晶太阳能电池(DSSCs)测定其光电流一光电压(1 V)曲线等手段,对膜电极的电子传输效率、光生载流子的界面复合、电子界面传输效率、光电子寿命、电化学和光电化学行为进行了较为深入的探讨,获得了一些膜电极制备及其光电转换效能方面的具有指导意义的规律与结论。
另外,彭天右还在湖北省重点和重大科技计划(纳米专项)的资助下,开展了纳米氧化物粉体的软化学合成及其产业化研究。采用独特而价廉的异相共沸蒸馏技术,有效地解决了制备过程中的粒子不正常长大,防止了纳米粉体在煅烧过程中硬团聚体的形成这一氧化铝制备过程中所普遍存在的难题。提出的高纯氧化铝纳米粉体的软化学制备技术,可缩短工期,降低能耗。通过优选添加剂,调控合成工艺控制晶核的形成和粒子的生长,根据不同需求,调节合成条件生产不同形态的粒体(如球形、准球形、片状,棒状及多孔型等)。粒径在5nm~5 u m之间局部可调,产品纯度达到99.95%以
上,粒度分布均匀且分布窄的高纯氧化铝超细粉体。该纳米氧化铝产品可替代进口,经有关企业使用测试证明其制备的纳米氧化铝具有较好的压制和烧结性能。上述相关研究成果通过湖北省科技厅组织的专家鉴定,鉴定结论为:该项研究成果属国内首创,整体技术达到国际先进水平。此外,以软化学方法廉价制备的介孔v Al z03具有高比表面积(600℃热处理后400m2/g)、高热稳定性(在1000℃下仍然为Y相,120m 2/g),可望在催化剂、汽车尾气三效催化转化中获得应用。锐钛矿Tioz通常在600~C就开始向金红石转化。为了利用锐钛矿的光催化,杀菌能力,需将其固化在玻璃或陶瓷表面,但其处理温度一般在800℃以上,因此要求在高温下稳定且保持锐钛矿相的Ti02。然而,以表面活性剂模板法制备的多孔Tio2通常为无活性的无定形结构,在其晶化过程中会导致孔结构的塌陷。为此,彭天右及其课题组较早制备了具有高热稳定性、高比表面积、高度晶化的锐钛矿孔壁的介孔材料。其在光催化降解污染物、光解水制氢和太阳能光电化学电池等方面具有广阔的应用前景。
也许这一个个简单的案例无法述清他的执著与努力,然,天道酬勤,那一项项奖项还是印证了一切。2000年9月,获湖北省优秀博士学位论文奖2000年9月,获武汉大学化学院本科生业余科研指导奖;2003年3月,获教育部自然科学二等奖:2004年4月,取得成果鉴定1项(国际先进水平):2004年1 2月获武汉大学蓝月亮优秀研究生指导教师奖:2004年1 2月,获武汉大学优秀研究生教学奖:2006年获优秀研究生指导教师奖和研究生教学奖:2008年11月获湖北省自然科学三等奖……100余篇(其中SCl收录论文62篇),论文他引250余次,获授权发明专利5项。
赋生命以质感
看今朝,硕果累累:忆往昔,峥嵘岁月。难忘2003年5月回国后,在只有半间实验室、5000元科研经费的情况下,他艰难地开始实验室的组建和科学研究工作。面对困难,他积极创造条件开展教学科研工作,甚至在科研经费紧缺时,自掏腰包垫付购买设备和试剂的费用(最高达7万余元)。经过6年的不断耕耘,由他主持的科研经费已达260余万元,新购买实验与办公设备等固定资产共计1 20余万元。
作为一名教授,彭天右不仅要积极争取研究经费,时刻关注本研究方向乃至本学科的发展动向与前沿,而且身体力行,言传身教,培养了学生严谨务实、勇于创新的作风。作为一名年轻教师,彭教授深知学生需要老师全方位的悉心指导,及时纠正研究过程中出现的偏差。长期以来主讲本科生基础课《无机及分析化学》,本科生及研究生选修课《生物无机化学》,研究生课程《现代合成化学》和《材料化学》的部分内容。几年来指导博士生8人、硕士生1 0人,指导本科生毕业论文1 6人(6人攻读硕士学位,2人被推荐到国外攻读博士学位),本科生业余科研1 6人。2004、2005连续两年,由他指导的杨焕平(三星奖)、赵德(曾昭抡奖)同学都获得了研究生专项奖学金。彭天右非常注重教书与育人相结合,以身作则树立良好的学风,以负责的态度关心、爱护与帮助学生,使学生在知识的殿堂里将学业和品质双向提升,将来更好地服务于社会。
Abstract: The experimental study of three high-quality monocrystal silicons have been carried, the resistivity, minority carrier lifetime,oxygen content, carbon content were tested. The results show that when the production process of Monocrystal furnace's pressure is 1300 Pa, the best quality monocrystalline silicon can be produced, the resistivity is 0.7, the minority carrier lifetime is 9.8, the carbon content is 3.3×1018 atoms/cm3, the oxygen content is 0.46×1018 atoms/cm3.
关键词: 单晶硅;电阻率;少子寿命;含碳量;含氧量
Key words: monocrystal silicon;resistivity;minority carrier lifetime;oxygen content;carbon content
中图分类号:TB321 文献标识码:A 文章编号:1006-4311(2016)21-0098-02
0 引言
随着电子工业和半导体工业的巨大发展,硅材料作为半导体工业的基础,也得到了迅速发展,成为当代信息技术产业的支柱,正引起越来越多的关注和重视,国内外学者对单晶硅也进行了大量的研究[1-4]。本论文分别对三根单晶硅棒样品进行了产率、消耗率的计算,并且对电阻率、氧含量、碳含量、少子寿命等进行了检测。
1 单晶棒初步检测及计算
初步对三种不同工艺参数下(炉内压力:1号炉1000 Pa,2号炉1300 Pa,3号炉1600 Pa)生产出的三根单晶棒的质量,直径,剩余料(埚底料)等进行检测,结果分别为:1号炉单晶棒质量为82.08kg,埚底质量为0.65kg,引晶长度为150mm,尾长度为156mm,晶棒的质量约170~173mm;2号炉单晶棒质量为82.62kg,埚底质量为1.45kg,引晶长度为150mm,尾长度为153mm,晶棒的质量约170~173mm;3号炉单晶棒质量为82.23kg,埚底质量为1.73kg,引晶长度为150mm,尾长度为160mm,晶棒的质量约171~174mm。
产率和消耗率都是衡量单晶硅生产效益最重要的标尺。产率越高,消耗率就会越低,经济效益也就越高。
产率的计算公式:
η=m1/m×100%(1)
消耗率的计算公式:
n =(m-m1-m2)/m×100% (2)
式中:η为产率;n为消耗率;m为装料量;m1为单晶棒质量;m2为埚底质量。
对三个单晶炉内单晶硅棒的产率和消耗率进行计算,结果分别为:1号炉,产率为96.56%,消耗率为2.67%;2号炉,产率为97.20%,消耗率为1.22%;3号炉,产率为96.74%,消耗率为1.32%。
由计算结果进行分析可知,在2号炉内生产出的单晶硅产量最高,消耗率最低,所以单晶硅压力为1300 Pa时,最适合单晶硅生产。
2 单晶硅性能检测及研究
单晶硅检测按照p型(100)方向质量标准进行检测,其标准为:电阻率0.5~3Ω・cm,少子寿命>5.0us,碳含量
2.1 电阻率
电阻率是用来表示各种物质电阻特性的物理量。用某种材料制成的长1m、横截面积是1mm2的,在常温下(20°C时)导线的电阻,叫做这种材料的电阻率。电阻率的单位是欧姆・米(Ω・m),常用单位是欧姆・毫米和欧姆・米。
对不同压力下的单晶硅棒的电阻率进行检测,结果分别为:1号炉为0.7Ω・cm;2号炉为0.7Ω・cm;3号炉为0.7Ω・cm。
由检测结果可知:生产出的单晶棒的电阻率符合p型(100)方向质量的检测标准,并且不同炉压下单晶棒的电阻率完全相同,说明单晶棒的电阻率不受生产压力的影响。
2.2 少子寿命
少子寿命是半导体材料和器件的重要参数,也是表征单晶硅质量的一个重要因素参数,它是与半导体中的重金属含量、晶体结构的完整性相关的物理量,直接反映了材料的质量和器件特性。能够准确的得到这个参数,对于半导体器件制造具有重要意义[5]。
对不同压力下的单晶炉的少子寿命进行检测,检测结果分别为:1号炉为6.62us;2号炉为9.8us;3号炉为7.86us。
由检测结果可知:不同炉压力下生产出的单晶棒的少子寿命完全符合p型(100)方向质量的检测标准。单晶炉压力为1000Pa时,生产出的单晶棒的少子寿命为6.62;压力为1300 Pa时,生产出的单晶棒的少子寿命为9.8;压力为1600 Pa时,生产出的单晶棒的少子寿命为7.86。可见,在压力为1300 Pa时,少子寿命最长。
2.3 碳含量
对不同压力下的单晶炉的碳含量进行检测,检测结果分别为:1号炉碳含量为4.5×1018atoms/cm3;2号炉碳含量为3.3×1018atoms/cm3;3号炉碳含量为3.4×1018atoms/cm3。
由检测结果可知:不同单晶炉压力下生产出的单晶棒的碳含量符合p型(100)方向质量的检测标准。当炉压力为1000 Pa时,生产出的单晶棒的碳含量为4.5×1018 atoms/cm3;炉压力为1300 Pa时,生产出的单晶棒的含碳量为3.3×1018atoms/cm3;单晶炉压力为1600 Pa时,生产出的单晶棒的含碳量为3.4×1018atoms/cm3。可见,在压力为1300 Pa时,碳含量最少。
2.4 氧含量
对不同压力下的单晶棒的氧含量进行检测,检测结果分别为:1号炉氧含量为0.45×1018atoms/cm3;2号氧含量为0.46×1018atoms/cm3;3号炉氧含量为0.64×1018atoms/cm3。
由检测结果可知:不同单晶炉压力下生产出的单晶棒的氧含量符合p型(100)方向质量的检测标准。在单晶炉压力为1000 Pa时,所生产出的单晶棒的含氧量为0.45×1018atoms/cm3;单晶炉压力为1300 Pa时,所生产出的单晶棒的含氧量为0.46×1018atoms/cm3;单晶炉压力为1600 Pa时,所生产出的单晶棒的含氧量为0.64×1018atoms/cm3。可见,在压力为1000 Pa时,氧含量最少。
通过对单晶硅的电阻率、少子寿命、碳含量、氧含量的检测结果分析比较,得出:不同压力下单晶硅的电阻率相同;在1300 Pa时,单晶棒的少子寿命最长,氧含量比1000 Pa时略大,碳含量最少。因此在压力为1300 Pa时生产出的单晶棒最佳。
3 结论
通过控制不同的工艺参数(炉内压力:1000 Pa,1300 Pa,1600 Pa),成功生产出了三根单晶硅棒,分别对这三种单晶硅样品进行了产率、消耗率计算,并对电阻率、氧含量、碳含量、少子寿命进行了检测。结果表明:三根单晶棒都符合生产要求。通过综合分析,当单晶炉内压强为1300 Pa时,所生产出的单晶硅质量最佳(产率:97.20%,消耗率:1.22%,电阻率:0.7 Ω・cm,氧含量:0.56×1018atoms/cm3,碳含量:3.8×1018atoms/cm3,少子寿命9.83 us)。
参考文献:
[1]王小月.单晶硅纳米压痕/划痕过程的有限元仿真分析与实验研究[D].长春:吉林大学,2012.
[2]于楠.单晶硅纳米加工仿真及实验研究[D].哈尔滨:哈尔滨工业大学,2013.
[3]王兴普,段良飞,廖承菌,等.单晶硅制绒的实验研究[J].太阳能学报,2014.
关键词:表面等离子体激元;SPP效应;应用现状
表面等离子体激元(SPP)具有近场增强、局域受限、短波长等比较独特的特性。在SPPs的表面局域特性方面,SPPs在垂直于金属表面电场方向的强度呈指数衰减,利用表面局域特性构造表面结构可以降低光学控制的维度,形成二维微纳光学应用。在SPPs的近场增强特性上,金属的介电常数、金属薄膜厚度、表面粗糙程度等决定了场增强的程度。尤其是人们在研究光与纳米材料相互作用时,研究金属微纳结构中局域表面等离子体的共振是一种重要方法,引起了人们的广泛关注。这些特性已在光学、化学传感和检测领域均获得了广泛应用。
1 表面等离子体激元的研究历程
1902年,Wood在实验中用连续光谱的偏振光照射金属光栅时观测到反常的衍射现象并公开进行了描述。1941年Fano根据表面电磁波在金属和空气界面上的激发对由入射波照射到金属光栅上引起的异常反射现象进行了解释。1957 年,Ritchie发现电子穿过金属薄片时存在“能量降低的”等离子体模式,第一次提出了 “金属等离子体”的概念,这种“金属等离子体”可用于描述金属内部电子密度纵向波动。从此,表面等离子体激元成为了一门表面科学,在相关领域得到越来越多的关注。随后,Powell 等人用实验证实了Ritchie 的理论,而Stem等人也研究了“表面等离子共振”的条件。1968年,Kretschmann和 Otto各自利用衰减全反射(ATR)的方法证实存在光激发表面等离子共振现象。1982 年,Nylander 和 Liedberg 在气体检测和生物传感领域中应用了SPR 原理。此后,SPR 传感技术迅速发展,基于表面等离子体激元的 SPR 传感结构设计元器件也不断呈现,各种SPP器件在化学-生物传感等领域得到了广泛应用。
1944 年Bethe曾研究了完美导体薄膜中圆孔(半径为 r)的光透射行为,得出亚波长小孔 的归一化透射效率应该很小。但是1998年,Ebbesen在实验上发现金属膜上的周期性小孔结构归一化的透射率大于1,即出现了远场透过增强效应,这被称为“Ebbesen 效应”。Ebbesen 指出,当金属膜上具备亚波长二维周期孔结构时,可以实现可见光与红外光的不正常透射,这种奇异现象(Ebbesen 效应)当时用衍射理论无法解释清楚,引起了众多研究者的关注,从此关于金属微纳结构的表面等离子体效应成为等离子体研究领域中的一个重要组成部分。在Ebbesen的论文中指出,在某一特定波长处的透射光能量是入射到圆孔上的光的能量的2倍,这种异常透过现象与入射光与二维圆孔阵列的表面等离子体激元的相互耦合存在着一定的关系。
目前普遍的观点认为,二维圆孔阵列的入射光透过增强现象是由表面等离子共振所导致的,光照射到金属薄膜的表面,激发金属表面SPP,一面的SPP沿着孔径隧穿到另一表面的 SPP 中耦合,最后经过金属-介质界面发生散射,形成远场增强透过现象。
单个孔径的透射增强效率非常有限。如果在孔径周围引入类似牛眼结构、金属狭缝-沟槽结构等周期性的沟槽结构,通过这些周期性的沟槽结构将入射光波有效耦合到SPP中,则光透射增强现象就十分显著。相对于金属孔径结构,金属颗粒结构表现出了局域的表面等离子体共振特性。当金属颗粒结构发生共振时,该结构可以有效地将入射光波集中到金属表面非常小的区域,实现较大局域场增强,同时增大了结构的散射截面,从而将局域场信息散射到远场。这是实现表面增强拉曼散射的一种有效途径。
2000年,Pendry提出银膜微结构可以实现亚波长成像。2002年,Lezec等提出了牛眼光栅结构,这种结构可以出现光束聚焦现象,并引发了新的关于这种现象机理及应用的研究。2008年,中科院半导体研究所的花磊等人研究了中红外下半导体掺杂调制成的表面等离子体透射增强效应,理论上研究了n型重掺GaAs薄膜上具备亚波长周期性沟槽结构时的红外波段的异常透射现象,这种红外波段的异常增强效应对红外波段的滤波器、发射器和探测器都具有巨大的应用价值。
2 SPP效应的应用现状
2.1 SPP效应当前在相关领域所取得的进展
1997年,有人研究了金属表面形貌缺陷对SPP散射作用的影响,提出纳米尺度的直线或曲线形状表面实现对SPP的反射和聚焦。2005年,日本东京大学某研究小组实验演示了这种情景,采用350nm直径的凸起作为纳米点缺陷,还有人采用直径为200nm的小孔作为纳米点缺陷,均实现了亚波长聚焦。他们在实验中将这些纳米点缺陷排成曲率半径为5tan的圆弧,得到了直径比激发光波长还小的聚焦光斑,即“亚波长聚焦”。
在亚波长结构中,由于SPP会引起电场强度的增强而产生非线性现象,利用这种非线性现象可以制作出纳米量级的光学开关,发展近场非线性光学。这种光学开关的原理是基于表面等离子体效应的一种新型光开关。当外部条件改变时,影响开关结构中SPP的激发或传输特性,以达到开关的作用。目前报道的SPP光开关类型主要有电光开关、热光开关及全光开关等。这些光开关可实现衍射极限尺度内的光控制功能,并能实现光子器件在纳米尺度上的集成。
在陈俊学的博士论文中提出了各种复杂结构中的模式耦合、非线性光学特性及SPP在一些基本结构中的色散关系,明确了在一维和二维周期性结构阵列中,波导模式在 SPP 辅助增强透射过程中所起的作用;研究了三阶非线性光学效应对于 SPP 激发和耦合的影响,并设计了基于共振元件的开关结构,通过改变入射光的偏振有效地实现了开关状态的调控。
还有,通过锥形波导方法可实现SPP聚焦。激发的SPP沿着锥形波导传播的过程中,由于锥形波导边界呈梯度变化,反射光与传播的SPP在再次传播的过程中形成干涉,电磁场越来越集中,最后在波导尖端形成的场增强十分显著。可见,这种锥形波导结构是可以实现电磁波的聚焦的,它能将电磁能量聚焦到更小范围,真正实现超衍射极限的纳米聚焦。
另外,在新型气体传感器应用方面,在传统 SAW 气体传感器基础之上,结合激光超声检测技术,用激光在覆有吸附性薄膜的金属表面激发出声表面波,利用反射式光束偏转法在薄膜处探测金属表面的声表面波情况,从而检测被测气体的浓度。这是一种新型气体监测方法。这种新型气体传感器采用了光学的方法来探测声脉冲,属于非接触式检测传感器。
2.2 SPP效应的应用局限
目前虽然SPR 技术已经成功的应用到生物的各个领域,但是从第一个 SPR 传感器诞生到现在仅20 多年,还是一种正处于发展初期的新技术,其方法还有很多不完善之处。基于SPP效应的表面等离子体共振技术还有待扩大其应用范围,最好还要简化操作,提高SPR 方法检测的灵敏度,这就是人们进行SPP效应研究的目的之一。
例如在实际应用中,将纳米粒子技术用于生物体系,极大的提高了SPR传感器的灵敏度。一般用金纳米粒子提高灵敏度有两种方法,将金纳米颗粒吸附在SPR传感器表面,改变SPR信号特征,从而提高灵敏度。另一种是将金纳米粒子与抗原耦合在一起,从而提高SPR 传感器的灵敏度。其他还有夹心法、脂质体、乳胶粒子增强法等也可以提高 SPR技术灵敏度。
3 SPP效应的应用前景
随着纳米材料及其制备科学的成熟,纳米器件的发展即将推动纳米电子和光电子器件等集成电路的发展。基于一维纳米材料的气体传感器也将在气体检测领域大有作为。例如目前采用金属氧化物半导体制作电子鼻传感器,而研发出基于纳米材料的新型气体传感器,必然会促使电子鼻传感器技术的发展。
光子晶体的研究也是光子学的一个热点问题,这类器件主要是由一些半导体材料或者绝缘材料制成,该波长级器件可以控制光与物质的作用。金属也可以用来制作光子带隙结构,其表面上的周期性结构可改变SPP性质:当周期性结构可以控制在SPW波长的一半时,SPP的散射将会产生SPP禁带,这种禁带的产生与金属的周期型结构有关,可以用来发展新型传感设备。
参考文献:
[1]花磊,宋国锋,郭宝山等,中红外下半导体掺杂调制的表面等离子体透射增强效应[J].物理学报,2008,57(11).
[2]陈俊学.金属微纳结构中模式耦合特性及其调控机理研究[G].中国科学技术大学,博士学位论文,2011.
[3]侯振雨,谷永庆,徐甲强等.纳米CuO 材料的甲醛气敏性研究[J].郑州轻工业学院学报:自然科学版,2006,20(02):42-43.
关键词:无机功能材料;教学;改革
中图分类号:G642.0;G642.3;TB34 文献标志码:A 文章编号:1674-9324(2013)05-0072-02 华南农业大学材料化学专业的培养目标是立足广东,面向珠江三角洲,培养掌握现代化学与材料学基础的基本理论和研究方法,具备新材料研究和技术开发能力,能在化学、材料科学与工程及其相关领域,从事新材料的设计、检测、研究、开发和管理等工作的高素质复合型人才。无机功能材料是具有特殊电、磁、光、声、热、化学以及生物功能的新型材料,既是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,又在农业、化工和建材等传统产业的改造方面起着重要作用。无机功能材料是华南农业大学材料化学专业的一门重要的专业课程。本文结合教学实际,从教学内容的更新、教学方法的探索和考核方式的改革等方面进行了有益的探索和实践,取得了较好的效果。
一、加强教学内容改革与优化,建立教学新体系
无机功能材料课程内容包括无机材料概论、晶态与非晶态结构、超导材料、压电材料、介电材料、半导体材料、红外材料、光导材料、变色材料、磁性材料、特种玻璃、生物功能材料、多孔材料等内容。在十多年教学中,通过精选教学内容,加强教学内容改革与优化,以“制备—结构—特性—应用”为主线,注重教学内容与学科发展前沿、现代生活和生产实际相结合,体现了授课内容的先进性、趣味性和实用性,提高了学生学习兴趣。
1.教学内容与学科发展前沿结合,体现先进性。紧跟学科发展前沿、瞄准研究热点是更新课堂教学内容的有效途径。在授课过程中,注重从国际和国内学术期刊中获得无机功能材料研究的相关信息,把研究热点与最具代表性的研究成果制成课件,展示给学生,使学生及时了解到最新的前沿知识,接触学术前沿领域,激发学生的求知欲望[1,2]。例如,在讲授压电陶瓷材料时,首先讲授传统的压电陶瓷,以PZT为基的二元系、三元系铅基压电陶瓷的制备、性能以及在国民经济和现代科学技术等方面应用;其次向学生介绍这类压电陶瓷中大量的铅在制备、使用和废弃处理过程中都会污染环境;最后介绍当前无铅压电陶瓷研究进展,包括BaTiO3基、BNT基和铌酸盐系等无铅压电陶瓷。讲授无机超导材料时,先介绍物质磁性的分类、磁性材料种类、特性和应用,再介绍当前磁性材料科学的研究热点——磁性半导体、分子基磁体以及同时具有铁电和铁磁双重性质的磁电复合材料。在讲授无机多孔材料时,介绍2012年发表在《Nature Materials》上的吸附二氧化碳的新材料NOTT-202a的结构、特性和应用前景[3]。通过学科研究前沿知识的讲授,体现了教学内容的先进性。
2.教学内容与现代生活实际结合,体现实用性。无机功能材料在日常生活中应用广泛。在课堂教学中,将教学内容与现代生活实际相结合,提高了学生的兴趣。例如热致变色材料是一种能对外界环境变化产生响应的新型智能材料,其中的无机低温热变色材料具有随温度变化颜色改变的特性,可将在商标、封签和票据上作特殊的标记进行化学防伪,用于冷冻食品、蔬菜和水果等各类食品适宜保存温度的指示,制作热变色家具、茶具和玩具,用于绘画、美术作品和广告中产生一些奇特的效果等[4]。变温磁性材料与家用电饭锅,压电材料与煤气灶和倒车报警器,变色玻璃与太阳镜,气敏陶瓷与煤气报警器,荧光材料与彩色电视机,红外材料与节水龙头,形状记忆合金与儿童矫牙,多孔材料与饮水机,无机纳米抗菌材料与保健鞋垫,超导材料与磁悬浮列车,吸波材料与隐身飞机,泡沫玻璃与新型节能建筑材料等知识的介绍,使学生感受到无机功能材料在生活中无处不在。这种理论联系生活实际的教学,增强理论课的实用性和趣味性。
二、加强教学方法和手段的更新,增强课堂教学效果
1.讲授与讨论相结合。在教师讲授的同时,开展课堂讨论式教学,既可以培养学生学习的主动性和分析问题的能力,又可以培养学生的创造性思维,从而有效地提高课堂教学质量[5,6]。本课程在教学过程中根据选课学生人数安排讨论课次数,采用方式为:首先教师提出若干个课题,如金刚砂的制备、结构和应用,无机超导体的种类、结构和应用,宝石中的化学以及气敏陶瓷的种类、特性和应用等;其次学生自由组合成2~3人小组,查阅文献和制作PPT;最后每个小组推荐一名成员上台讲授。从实施效果来看,这种课堂讨论教学改变了传统的以教师讲授为主和学生被动接受的教学模式,增强了学生学习的主动性,提高了学生查阅文献、PPT制作、语言表达和综合分析问题的能力,促进了教与学之间的互动,活跃了课堂教学气氛。
2.传统授课方式与现代教育手段相结合。将多媒体引入传统的课堂教学,是对传统的教学方式的继承、扬弃和补充,将抽象的知识直观化和形象化,激发了学生的学习兴趣,调动了学生学习的积极性[5]。例如在讲授超导材料时,先让学生观看磁悬浮现象的视频,通过提出问题“为什么磁性圆片在低温下会在金属圆片的上方悬浮起来?”引入讲授内容——超导材料,然后从超导现象,超导特性,超导材料的种类、结构及其在输电、电机、交通运输、微电子、电子计算机、生物工程、医疗和军事等领域应用进行讲授。在讲授发光材料时,先利用中山大学国家级精品课程《综合化学实验》网络资源,让学生观看“化学发光材料制备”视频,了解化学发光材料制备过程、结构表征的方法和手段,观察发光现象。在讲授激光材料和压电陶瓷前,播放一段激光雕刻机制作葫芦工艺品和压电陶瓷的有关应用的视频。在讲授激光产生的机理时,采用动画展现“三能级系统”、“四能级系统”、粒子数反转和激光形成的过程。这种讲授与动画和视频的有机结合,收到良好的教学效果。
3.理论教学与实践教学相结合。近几年来,通过以下四个方面的实现理论教学与实践教学的有机结合:(1)设置无机功能材料课程的实验。实验教学是学生创新意识和创新能力培养的重要手段与途径[7],利用华南农业大学省级化学实验教学示范中心的有利条件,开设了溶胶—凝胶法制备纳米BaTiO3陶瓷粉体,微波辐射法合成磷酸锌,稀土发光材料的制备与发光性能等实验项目,提高了学生的实验技能。(2)组织学生参观相关企业。与深圳宝嘉能源有限公司,中山东晨磁性电子制品有限公司,佛山安亿纳米材料有限公司、东莞长发光电科技有限公司和广州台实防水补强有限公司等10余家企业建立了长期的产学研合作关系,通过组织学生参观,了解镍锌软磁铁氧体材料及器件、锂离子电池等无机功能材料的生产工艺和过程,增加了感性认识,加深了对理论知识的理解。(3)鼓励学生参与教师研究课题。近几年来,学生参与教师主持的含氮共轭聚合物与无机半导体杂化光催化剂的设计、制备与催化机理研究,双功能光转换剂的制备及其在棚膜中的应用研究,一维二氧化钛纳米管装载恩诺沙星纳米囊研制及缓释特性研究,季鏻盐类复合抗菌材料的制备和性能等多项省、部级及以上科研项目。学生通过参与教师的科研,了解无机功能材料研究的发展动态,开阔知识视野,增强学习和研究的兴趣。(4)指导学生申报大学生科技创新项目。课外创新活动是培养大学生创新能力的有效途径[8],近几年来,材料化学专业的学生获得了碳纳米管/聚N-异丙基丙烯酰胺智能复合材料的制备与性能研究,橄榄石纳米LiFePO4正极材料的模板法制备及性能研究,稀性二氧化钛纳米管的制备及其对农药降解的研究,水热法制备钬掺杂二氧化钛纳米管及其光催化性能研究,GeS簇/MOFs复合多孔纳米材料可见光催化还原CO2和H2O合成甲醇的研究,金属氧化物改性多孔碳球的制备、表征及其用于直接甲醇燃料电池的研究和竹炭为模板制备纳米钛酸锂负极材料及其性能研究等科技创新项目,增强了学生的创新意识,提高了分析问题和解决问题的能力。
三、加强考核方式的改革,体现考核客观性和公正性
为了体现客观性和和公平性,无机功能材料课程考核采取平时考核和期末考试结合办法。平时成绩占总评成绩的40%,主要考查平时作业、课堂教学参与、小论文撰写、PPT制作和课堂讨论讲授效果等。期末考试成绩总评成60%,题型包括单项选择、不定项选择题、填空题、专业名词英汉互译和简答题。其中前三项主要考核学生对无机功能材料基本知识的掌握情况,后二者考核学生运用知识的能力。
综上所述,通过10多年的探索和实践,无机功能材料的课堂教学取得了良好的效果。从学生评教结果看,2008~2012年得分均92分以上,位居学院专业课前列。学生主持与课程相关的大学生科技创新项目24项,公开发表相关学术论文50余篇,其中SCI和EI收录32篇。在今后的工作中,将不断深化课堂教学改革,加强实践环节教学,使无机功能材料课程的教学在培养适应珠江三角洲经济发展的材料化学方面高素质复合型人才发挥更大作用。
参考文献:
[1]赵北君,朱世富,何知宇,等.“现代材料制备科学与技术”课程教学培养创新意识的尝试[J].高等理科教育,2008,(6):77-79.
[2]王艳荣.《无机材料科学基础》教学实践与改革探讨[J].高教论坛,2007,(2):128-129.
[3]YANG Sihai,LIN Xiang,L.William,et al.A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide[J].Nature Materials,2012,11(8):710-716.
[4]王海滨,刘树信,霍冀川.无机热致变色材料的研究及应用进展[J].中国陶瓷,2006,42(4):11-13.
[5]程顺有.实施启发式教学培养学生创新能力——以专业基础课程的“课堂讨论”为例[J].高等理科教育,2004,(3):87-90.
[6]王果.问题讨论式课堂教学法的探索与实践[J].高等农业教育,2008,(2):60-62.
[7]陈德碧,杨帆.应用型人才培养的实验教学改革实践[J].实验科学与技术,2010,8(4):42-43,133.
[8]黄朝晖,刘艳改,房明浩,等.基于大学生科技创新能力提高的材料专业教学优化实践[J].中国地质教育,2009,(1):124-126.