公务员期刊网 精选范文 数学课程论文范文

数学课程论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学课程论文主题范文,仅供参考,欢迎阅读并收藏。

数学课程论文

第1篇:数学课程论文范文

问题解决产生的背景是什么?它的意义是什么?它对我国中学数学课程建设有何重要性?怎样在中学数学课程中体现问题解决的思想?本文拟对此作初步探讨。

一、背景和意义

19世纪末,20世纪初,一些心理学家首先对问题解决进行了研究,并对“问题解决”作了诸多的阐释。在国际数学教育界,从美国的波利亚首先对怎样解题作了详尽的探讨开始,逐渐对这个问题展开了研究。尤其是在美国,从60年代“新数运动”过分强调数学的抽象结构,忽视数学与实际的联系,脱离教学实际,到70年代“回到基幢走向另一个极端,片面强调掌握低标准的基础知识,数学教学水平普遍下降。在对于数学教育发展方向作了长期探索以后,“问题解决”和“大众数学(mathematicsforal)”已经成为美国数学教育的响亮口号,并产生国际影响。

什么是问题解决,由于观察的角度不同,至今仍然没有完全统一的认识。

有的认为,问题解决指的是人们在日常生活和社会实践中,面临新情景、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理问题办法的一种心理活动。有的把学习分成八种类型:信号学习、……概念学习、法则学习和问题解决。问题解决是其中最高级和复杂的一种类型,意味着以独特的方式选择多组法则,并且把它们综合起来运用,它将导致建立起学习者先前不知道的更高级的一组法则。英国学校数学教育调查委员会报告《数学算数》则认为:把数学应用于各种情形的能力就是“问题解决”。全美数学教师理事会《行动的议程》对问题解决的意义作了如下说明:第一,问题解决包括将数学应用于现实世界,包括为现时和将来出现的科学理论与实际服务,也包括解决拓广数学科学本身前沿的问题;第二,问题解决从本质上说是一种创造性的活动;第三,问题解决能力的发展,其基础是虚心、好奇和探索的态度,是进行试验和猜测的意向;等等。

从上述对问题解决意义的阐述中,我们可以看到一些共性和相通之处。从数学教育的角度来看,问题解决中所指的问题来自两个方面:现实社会生活和生产实际,数学学科本身。问题的一个重要特征是其对于解决问题者的新颖性,使得问题解决者没有现成的对策,因而需要进行创造性的工作。要顺利地进行问题解决,其前提是已经了解、掌握所需要的基础知识、基本技能和能力,在问题解决中要综合地运用这些基础知识、基本技能和能力。在问题解决中,问题解决者的态度是积极的。此外,在学校数学教学中,所谓创造性地解决问题,有别于数学家的创造性工作,主要指学习中的再创造。因而,笔者认为,从数学教育的角度看,问题解决的意义是:以积极探索的态度,综合运用已具有的数学基础知识、基本技能和能力,创造性地解决来自数学课或实际生活和生产实际中的新问题的学习活动。

简言之,就数学教育而言,问题解决就是创造性地应用数学以解决问题的学习活动。

问题解决中,问题本身常具有非常规性、开放性和应用性,问题解决过程具有探索性和创造性,有时需要合作完成。

二、“问题解决”的重要性

问题解决已引起国内外数学教育界的广泛重视,把它和数学课程紧密联系起来,已是国际数学教育的一个趋势。究其原因,笔者认为主要有以下几方面:

(一)时代呼唤创新

在国际竞争日益激烈的当今世界,各国政府乃至普通老百姓都越来越清楚认识到,国家的富强,乃至企业的兴衰,无不取决于对科学技术知识的学习、掌握及其创造性的开拓和应用。但创造能力并非与生俱有,必须通过有意识的学习和训练才能形成。学校教育必须重视培养学生应用所学知识进行创造性工作的能力。问题解决正反映了这种社会需要。

(二)我国数学教育的成功和不足

我国的中学数学教学与国际上其它一些国家的中学数学教学比较,具有重视基础知识教学,基本技能训练,数学计算、推理和空间想象能力的培养等显著特点,因而我国中学生的数学基本功比较扎实,学生的整体数学水平较高。然而,改革开放也使我国数学教育界看到了我国中学数学教学的一些不足。其中比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多;学生机械地模仿一些常见数学问题解法的能力较强,而当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。面对这种情况,我国数学教育界采取了一些相应措施。例如,北京、上海等地分别开展了中学生数学应用竞赛,在近年高校招生数学考试中,也加强了对学生应用数学意识和创造性思维方法与能力的考查等。虽然这些措施收到了一定的成效,然而要从根本上改变现状,还应在中学数学课程设计上有所突破。一些学者认为,在中学数学课程中体现问题解决的思想,是解决上述问题的有效途径。

(三)数学观的发展

数学发展至今,人们对数学的总的看法由相对静态的观点转向静态和动态相结合的观点。对于数学是什么,经典的是恩格斯的定义:数学是研究现实世界空间形式和数量关系的科学。恩格斯对数学的观点是相对静止的,它主要指出了数学的客观真理性,然而,当今的社会实践告诉人们还应该用动态的观点去认识数学,即从数学与人类实践的关系去认识数学。就数学教育而言,学生之所以要学习数学,除了数学的客观真理性,更在于数学是改造客观世界的重要工具。学数学,首先是为了应用。应用数学是学数学的出发点和归宿。所以,数学教学的主要任务是教给学生在实际生活和生产实践中最有用的数学基础知识,并在教学过程中有意识地培养学生应用这些知识分析和解决实际问题的能力。

(四)问题解决过程和方法的一般性

在解决来自实际和数学内部的数学问题中,问题解决的过程和方法是基本相同的。不仅如此,这种过程和方法与解决一般的、其它学科中问题的过程和方法有很多共同之处。在数学问题解决中学习的过程和方法可以迁移到其它学科的问题解决过程中。此外,相对于其它学科的问题来学,解决数学问题所需要的工具和材料要少得多,有时只需要一支笔,一张纸。因而通过数学问题解决,可以较快地教给学生一般的问题解决的过程和思想方法,具有较高的效率。

三、“问题解决”和中学数学课程

问题解决在各国的中学数学课程中的引入方式各不相同,英国SMP数学课程专门设置了一种问题解决课,我国人民教育出版社出版的义务教育初中数学课程中设立了实习作业、应用题、想一想、做一做等,在高中数学试验课本中也增加了研究题等,这些和问题解决思想是一致的。笔者认为,从目前中国的实际情况出发,重要的是在中学数学课程中去体现问题解决的思想精髓,这就是它所强调的创造能力和应用意识。就是说,在中学数学课程中应强调以下几点:

(一)鼓励学生去探索、猜想、发现

要培养学生的创造能力,首先是要让学生具有积极探索的态度,猜想、发现的欲望。教材要设法鼓励学生去探索、猜想和发现,培养学生的问题意识,经常地启发学生去思考,提出问题。

学生学习的过程本身就是一个问题解决的过程。当学生学习一门崭新的课程、一章新的知识、乃至一个新的定理和公式时,对学生来说,就是面临一个新问题。例如,高中数学课是在学生学习了初中代数、几何课以后开设的,学生对数学已经有比较丰富的感性认识,教科书中是否可以提出,或者说应该教学生提出以下的一些问题:高中数学课是怎样的一门课?高中数学课和小学数学、初中代数、初中几何课有什么关系?数学是怎样的一门科学?这门科学是怎样产生和发展起来的?高中数学将要学习哪些知识?这些知识在实际中有什么用?这些知识和以后将要学习的数学知识、高中其它学科知识有些什么关系,有怎样的地位作用?要学好高中数学应注意些什么问题?当然,对这些问题,即使是学完整个高中数学课程以后,也不一定能完全回答好,但在学这门课之前还是要引导学生去思考这些问题,这也正是教科书编者所要考虑并应该尽可能在教科书中回答的。笔者认为,在高中数学课中可以安排一个引言课。同样,在每一章,乃至每一单元都应该考虑类似的问题。在这一点,初中《几何》的引言值得参考。在教科书中经常提一些启发性的问题,就会让学生逐步养成求知、好问的习惯和独立思考、勇于探索的精神。

无论是教科书的编写还是实际教学,在讲到探索、猜想、发现方面的问题时要侧重于“教”:有时候可以直接教给学生完整的猜想过程,有时候则要较多地启发、诱导、点拨学生。不要在任何时候都让学生亲自去猜想、发现,那样要花费太多的教学时间,降低教学效率。此外,在探索、猜想、发现的方向上,要把好舵,不要让学生在任意方向上去费劲。

(二)打好基础

这里的基础有两重含义:首先,中学教育是基础教育,许多知识将在学生进一步学习中得到应用,有为学生进一步深造打基础的任务,因而不能要求所学的知识立即在实际中都能得到应用。其次,要解决任何一个问题,必须有相关的知识和基本的技能。当人们面临新情景、新问题,试图去解决它时,必须把它与自己已有知识联系起来,当发现已有知识不足以解决面临的新问题时,就必须进一步学习相关的知识,训练相关的技能。应看到,知识和技能是培养问题解决能力的必要条件。在提倡问题解决的时候,不能削弱而要更加重视数学基础知识的教学和基本技能的训练。

教给学生哪些最重要的数学基础知识和基本技能,是问题的关系。目前,《全日制普通高级中学数学教学大纲(供试验用)》中关于课程内容的确定,已为更好地培养我国高中学生运用数学分析和解决实际问题的能力提供了良好的条件。我们要继承高中数学教材编写中重视数学基础知识和基本技能的优良传统和丰富经验,编出一套高质量的高中数学教材,以下仅对数学概念的处理谈点看法。

数学概念是数学研究对象的高度抽象和概括,它反映了数学对象的本质属性,是最重要的数学知识之一。概念教学是数学教学的重要组成部分,正确理解概念是学好数学的基矗概念教学的基本要求是对概念阐述的科学性和学生对概念的可接受性。目前,对中学数学概念教学,有两种不同的观点:一种观点是要“淡化概念,注重实质”,另一种观点是要保持概念阐述的科学性和严谨性。高中数学课程的建设也面临着同样的问题。笔者认为,对这一问题的处理应该“轻其所轻,重其所重”,不能一概而论。提出“淡化概念,注重实质”是有针对性的,它指出了教材和教学中的一些弊端。一些次要和学生一时难以深刻理解但又必须引入的概念,在教学中必须对其定义作淡化(或者说浅化)的处理,有的可以用白体字印刷,来表明概念被淡化。但一些重要概念的定义还是应以比较严格的形式给出为妥,否则,虽然老师容易判定这些概念的定义是被淡化的,但是学生容易对概念产生误解和歧义,关键在于教师在教学中把握好度,突出教学的重点。还有一些概念,在数学学科体系中有重要的地位和作用,对这类概念,不但不能作淡化处理,反之,还要花大力处理好,让学生对概念能较好地理解和掌握。例如,初中几何的点概念、高中数学的集合等概念,是人们从现实世界广泛对象中抽象而得,在教材处理中要让学生认识到概念所涉及的对象的广泛性,从而认识到概念应用的广泛性,另外学生也在这里学到了数学的抽象方法。对于数学概念,应该注意到不同数学概念的重要性具有层次性。总之,对于数学概念的处理,要取慎重的态度,继承和改革都不能偏废。

(三)重视应用意识的培养

用数学是学数学的出发点和归宿。教科书必须重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。可以考虑把与现实生活密切相关的银行事务、利率、投资、税务中的常识写进课本。

当然,并不是所有的数学课题都要从实际引入,数学体系有其内在的逻辑结构和规律,许多数学概念是从前面的概念中通过演绎而得,又返回到数学的逻辑结构。

此外,理论联系实际的目的是为了使学生更好地掌握基础知识,能初步运用数学解决一些简单的实际问题,不宜于把实际问题搞得过于繁复费解,以致于耗费学生宝贵的学习时间。

(四)教一般过程和方法

在一些典型的数学问题教学中,教给学生比较完整的解决实际问题的过程和常用方法,以提高学生解决实际问题的能力。

由于实际问题常常是错综复杂的,解决问题的手段和方法也多种多样,不可能也不必要寻找一种固定不变的,非常精细的模式。笔者认为,问题解决的基本过程是:1.首先对与问题有关的实际情况作尽可能全面深入的调查,从中去粗取精,去伪存真,对问题有一个比较准确、清楚的认识;2.拟定解决问题的计划,计划往往是粗线条的;3.实施计划,在实施计划的过程中要对计划作适时的调整和补充;4.回顾和总结,对自己的工作进行及时的评价。

问题解决的常用方法有:1.画图,引入符号,列表分析数据;2.分类,分析特殊情况,一般化;3.转化;4.类比,联想;5.建模;6.讨论,分头工作;7.证明,举反例;8.简化以寻找规律(结论和方法);9.估计和猜测;10.寻找不同的解法;11.检验;12.推广。

(五)创设问题情景

1.一个好问题或者说一个精彩的问题应该有如下的某些特征:(1)有意义,或有实际意义,或对学习、理解、掌握、应用前后数学知识有很好的作用;(2)有趣味,有挑战性,能够激发学生的兴趣,吸引学生投入进来;(3)易理解,问题是简明的,问题情景是学生熟悉的;(4)时机上的适当;(5)难度的适中。

2.应该对现有习题形式作些改革,适当充实一些应用题,配备一些非常规题、开放性题和合作讨论题。

(1)应用题的编制要真正反映实际情景,具有时代气息,同时考虑教学实际可能。

(2)非常规题是相对于学生的已学知识和解题方法而言的。它与常见的练习题不同,非常规题不能通过简单模仿加以解决,需要独特的思维方法,解非常规题能培养学生的创造能力。

(3)开放性问题是相对于“条件完备、结论确定”的封闭性练习题而言的。开放性问题中提供的条件可能不完备,从而结论常常是丰富多彩的,在思维深度和广度上因人而异具有较大的弹性。

第2篇:数学课程论文范文

1、根据教学改革的新思路,围绕核心目标,讨论初步提出数学

课程改革的方案按照“重实用、轻理论”的原则,结合多年的数学实际教学经验。首先,明确当前数学教学过程中所面对的主要困难和问题。然后,根据教学新思路,以“实用为主,够用为度”为目标,初步提出数学课程改革新方案。

2、对各专业进行调研,明确各专业所需要的数学具体需要

通过调研,了解我校各专业的基本情况及各专业对数学知识的需要。围绕实用性,够用性对教学改革方案进行进一步的修改补充。

3、确定各专业公共需要的模块

根据我校各专业对数学教学的需要,先将各专业公共需要的模块制定下来。通过调研,数学教学中函数模块、三角函数模块、解析几何模块是各专业都需要运用的知识。先由个人负责选材编写模块内容,然后再汇总研究,进行补充和删减内容。

4、根据专业需要,制定针对不同专业的数学教学

由于这部分内容与专业知识相关,需要与各专业教师协作。首先有各专业选取本专业的数学知识模块,然手结合专业实际问题,设计编排,尽可能的科学合理地把专业相关的知识融入数学教学中去。这样既确保为专业服务性,又合理有效的增强数学教学的实用性。而且进一步促进基础课教师与专业课教师的交流。

二、数学课程改革的效果和存在问题的改进措施

1、中职生生源的复杂性,出现了知识面断层

中职生生源复杂,学生数学知识基础也参差不齐,存在知识断层问题,决定先从集合的概念开始学起,集合这章内容较为简单易学,从而弥补学生知识断层问题。同时,提高学生学习兴趣,树立学习数学知识的自信心,对接下来的函数模块、不等式模块等数学知识做好铺垫。

2、数学课程改革教材的汇编

数学课程改革教材的汇编大致分为两个部分。第一部分称为公共数学,将各专业共同涉及的数学知识汇编成第一年数学的教学内容。我校公共数学知识包括函数、三角函数和解析几何这三大模块。第二部分称为专业篇数学,根据各专业的需要,补充和提高专业所需要的数学知识,更好的服务于专业课的学习。

3、数学课程改革教材的教学

第3篇:数学课程论文范文

关键词:数学课程标准;研制

文[l]提出了"关于我国数学课程标准研制的初步设想"(以下简称《设想》)之后,引起数学教育界各方人士的关注,对此问题的研究也日渐成为热点。经各方努力,《义务教育阶段国家数学课程标准·征求意见稿》已于2000年3月份问世,高中数学课程标准的研制工作也已启动。从l999年7月开始的这段时间,笔者曾多次参加过关于标准研制的有关会议,接触到从数学家、数学教育家到一线中小学数学教师对此工作的种种观点,深感研制的过程确如文[1]所希望的"应成为数学教育思想大讨论的过程",这样一个过程为世纪之交的中国数学教育改革灌注了活力,经历其中,深受启发,以下就几个方面问题作一探讨。

1关于课程标准研制的基本理念和指导思想

在讨论中,不少观点的争论实际上都可上溯到这个层面上来,它涉及到为什么要制定标准?以什么制定标准?所制定标准需要体现的核心思想或观念是什么?这些问题实际上关系到标准研制的基础,也是需要在研制过程中不断深入研讨以形成共识的。

1.1应首先以时代性要求作为标准研制的依据

作为实施《面向21世纪教育振兴行动计划》的一项重要工作,当然应该从更广阔的时代背景出发,反映出数学课程在新的历史条件下的发展变化和应达到的目标,诚为G.豪森在《数学课程发展》一书中所指出的:应该将数学课程发展放在历史的,以及更普遍的社今的、教育的背景中去加以考察。"从这一角度出发,至少如以下几个方面是应该考虑的:

(1)未来社会发展的新特征(如社会的信息化、数字化、学习化)对教育及数学教育提出的新要求;

(2)数学学科本身的发展变化(如技术性特征的凸现、应用环境的拓展、以数学理性精神及数学语言、思想、方法为核心的数学文化与人的生存更紧密的联系等);

(3)数学教育观的新发展(如数学教育功能、价值的变化;对数学教育过程、本质的新认识等);

(4)数学教育改革的国际、国内时代背景(如怎样适应以培养创新精神和实践能力为中心的素质教育总要求以及国际数学教育改革的新趋势等)。

应该说,我国数学教育工作者在近几年的研究中已敏锐地关注着上述时展要求所赋予的数学教育新的时代特征。如在ICME-8上,我国学者提出了"中国数学教育的范式革命",引起国际数学教育界的关注。之后,文[2]进一步从数学教育价值观、认识论观、数学观3个维度组成的框架来描述这种观念的变革。文[3]从"数学素质教育的建设是一项深刻的教育思想改革"的角度对上述观点予以支持。20世纪末连续两年·。在上海举行的"数学教育高级研讨班",不仅对20年来我国数学教育的成就和特点进行了总结和国际比较,还对改革的目标和未来10年中国数学教育的发展作了展望,作为参与者,深感数学教育的新观念、新思维已成为问题研讨的基础;而在北京举行的全国高师数学教育年会上,主题报告《数学教育如何迎接知识经济时代的挑战》鲜明反映出在知识经济理念之下对数学及数学教育的新认识。这里还要提及的是以青年学者为主体的"21世纪中国数学教育展望课题组"围绕"大众数学的理论与实践"进行了长达6年的实验研究,专家鉴定意见指出:该课题"在数学教育观和数学教育改革的指导思想、基本思路和原则、理论依据方面提出了一套较为系统的新思路"。其主旨报告从重新认识数学、重新认识学生、重新估价我国数学教育现状、把握国际数学教育新方向等方面论述了其研究在未来义务教育中"代表着一种新的数学思想和实践体系"。

上述具有一定代表性的研究活动集中地反映出这样一种共识,即:应该以一种基于时展要求之下的全新的理念来推进数学教育改革,而这也就成了标准研制的一个重要的思想基础。

1.2关于《设想》所提出的改革的基本理念

它主要涉及到如下层面:(l)数学观,从数学是模式与秩序的科学,是普遍适用的。技术,是一种充满探索与创造的过程等方面去反映对数学发展的新认识。(2)突出"以人的发展为本"的数学教育观,从中体现出数学教育与国民素质、人的理性思维、自我情感发展、解决问题能力的新关系,体现出平等教育、终身教育与可持续发展的新观点。(3)围绕"学习的建构",从数学学习的本质、方式、教师作用等方面形成一种新的学习认识论观念。(4)基于以上观念变化,提出新的教育评价观,即建立一种注重过程的、动态的、多样化的数学教学评价机制。

应该说,上述理念基本反映了目前的研究成果和共识,反映了未来发展的时代要求,为前期研制奠定了必要的思想认识基础。随着研制进程的推进和讨论的深入,研制者对上述理念也作了一些调整和补充,我们不难从文[5]及《义务教育阶段数学课程标准征求意见稿》中发现一些变化。

1.3关于标准研制的核心思想

文[6]认为"一个好的数学课程标准还应其有明确的指导思担",它应该有一个核心的思想予以表述,它"事实上构成了新的改革运动的主要特征,或者说,是次之改革运动成败的关键因素"。笔者赞同这样的成点,只是认为这种核心理念的形成需要经历一个过程(从某种意义上讲,它本身也是研制的一个成果),它需要对诸多层面的理念予以梳理、贯通、整合及提炼,需要以深入的理论与实践研究为基础,它也不仅仅是一种理性思考的产物,更应该能通过课程载体落在实处。

综合研制过程中所接触到的种种观点,比较趋于共识的是:新课程标准应注重在素质教育的目标下实现"人的发展",有鉴于此,就必须实现如下转变,即:从面向少数学生转变为面向全体学生;从强调以获取知识为首要目标转变为首先关注人的情感、态度、价值观和一般能力的培养;从数学接受性学习转变为数学活动中的建构性学习;从仅于数学内部学数学转变到更多地联系数学外部(社会、生活、其它学科等)学数学;从追求特定时限学习目标的实现转变到着眼于学生终身学习及可持续发展基础的养成。

2课程标准研制需要注意的几个策略

由于"标准"的研制在我国尚属首次,加之涉及面广,需解决的问题多,且要经历一个较长的研制实验过程,可以说是一项数学教育改革的系统工程,为有效地实施这项工程,应该注意方法、策略问题。笔者曾在1999年10月份召开的北京会议上就此问题发表过意见,现在本文着重就几个问题再谈点个人意见。

2.1需处理好几个关系

首先要处理好继承与发展的关系。建国以来,我国数学教育经过若干历史发展阶段,积累了宝贵的经验和教训,形成了具有自我特色的厚重的历史底蕴。特别是改革开放以来,数学教育改革理论和实践上都取得了巨大的成绩,这是应该充分肯定的。但也应该看到,基于应试教育的大背景,数学教育也出现了许多值得认真研究、加以解决的问题。而如果从前述时展的要求看,数学教育在某些方面还有相当大的差距,更应该加快改革进程。正是基于这样一种分析,决定了"标准"研制的基本态度应是扬弃加变革,即采取历史唯物主义和辩证唯物主义态度对数学教育的过去和现状作实事求是的分析,既要肯定成绩,也要正视问题,更要以改革的姿态,适应未来发展的需要。应该说,研制者所采取的态度是严肃而科学的,除了注意历史总结,现状剖析和未来需求设计这三者的贯通外,其着力点放在了适应未来发展需要上,这也表现了"标准"是一个适应未来的向前看的标准目前有人对标准研制是否充分肯定了我国数学教育的成绩以及目前改革步伐是否迈得过大所表现的忧虑是没有必要的。

另一个需要处理好的是坚持自我特色与借鉴国际经验的关系。数学教育研究历来具有国际协作的传统,而数字化社会的到来,使"地球村"更加成为现实,全球一体化的大趋势使得各国的数学教育更加走向开放和交流。值此世纪之交,各国数学教育研究异常活跃,反思过去、调整现在、思考未来已成为共同的主题。数学教育在这特定的时代背景下也呈现出更多带普遍规律性的特征,这无疑为我们提供了进行国际研究的大好时机。中国作为世界上学习数学人口最多的国家,其研究应该更多地融入国际数学教育改革的主潮流,一方面吸取别国之长;另一方面也为国际教育界提供自己的经验。正是从局这双向目的出发,在标准研制中,加强国际比较研究就显得极其重要。研制组除了进行"国际数学课程改革的最新进展"的专题研究外,还广泛收集了各国第一手资料,有针对性地进行了国别研究和其它方面的专题研究。事实证明,这种比较研究对于认清自己国的长处和不足,把握数学教育改革的趋势是有效的,值得进一步深入下去。

在研讨中,还涉及到正确处理好需要与可能的关系问题。比如,关于计算机(器)的普遍使用能否实现,某些现代内容(如概率统计)的增加是否会造成地区间新的水平差异,在义务教育阶段,创新精神的培养是否能落到实处,师资水平能否保证标准的实现,等等。笔者认为,在标准研制中,注意我国国情和现实可能性固然重要,但这种现实可能性一定是放在21世纪发展的背景下加以考虑的,一定是以时代需要为前提的。所谓目标既定,行动使然,课程标准应该在这个意义上体现它的先导性。

2.2吸纳各方力量参与,增强研制工作的开放性

应该说研制工作一开始就注意到了这一点。除就《设想》在全国普遍征求意见外,还先后召开了华东、华南、西南、西北、华北地区的座谈会,并通过多种形式,分别听取了数学家、数学教育家、高师研究者、教研员、一线中小学教师及其他各方人士的意见,并调动国内、境外有关学者的力量,进行了5个方面专题的调研,研制工作及有关会议也考虑到了地区性和各个层面的代表性。考虑到标准研制及具体实施、实验还将持续一个相当长的过程,更需要各方参与、通力合作才能收到实效,因此在研制的开放性上还需加强。应鼓励针对研制及实验有关各层面课题的立项研究,更提倡多方联合对重点问题进行攻关研究。

2.3提倡学术论争,增强研制过程的活力

围绕着标准研制,一段时间以来,在各种期刊上出现了不少文章,仁者见仁,智者见智,其中多有观点碰撞。事实上,数学教育研究的多元化格局已是当前发展的趋势,更何况我们是在做过去从未做过的事,如果众口一词,循之一径那才是不正常的事。学术论争必然带来学术繁荣。笔者参加的几次会议,尽管时时感到"火药味",但同时更感到言者的坦诚和成就这一事业的高度责任感。因标准研制所引发的学术论争是一件大好事,它必然为这一工作灌注强劲的动力。

3关于课程标准的设计

3.l标准水平的定位

此问题曾引起人们的关注(并引发出应是高水平还是低水平的争论),这里要解决好4个方面的问题:(1)要以反映基础教育阶段数学课程的基本要求(即普及性、基础性、发展性)为定位的依据;(2)从上述依据出发,标准应首先是对全体学生的基本标准,但正如它是致力于"人的发展"的标准,所以这一标准又不应理解为基于当前现状的低标准,而是着眼于21世纪发展要求的高标准;(3)标准在确立规范性要求的同时,应体现一定的弹性,这种弹性能为标准的实施(教材编制、教学实施、教学评价手段及地区实际情况差异)提供必要的发展空间;(4)3学段(9年级)之间的水平划分也应体现科学性和学段水平之间的递进发展关系,即通过阶段性与发展性的有机结合,来刻画标准的完整水平定位,而这些又是需要一定的研究来予以确定的。

3.2标准的内容与结构

《设想》对九年义务教育阶段的标准提供了一个基本框架,反映出如下特点:(1)以基本理念阐释标准制定的时代背景与指导思想;(2)将目标体系分为发展性领域与知识性领域,"虚"实结合、内容与活动结合、知识与素养(能力、态度等)结合、认知与情感结合,通过两个领域的交融、互动,来实现课程的总目标;(3)进一步对实施课程目标从课程设计和教学过程两个方面提出了思路,按此思路可对教材编写、教学实施、教学评价等方面形成指导性意见。这样。目标体系、教材编写、教学实施、教学评价就形成了一个相互贯通,有机结合的体系,应该说这是值得肯定的有一定特点的结构。

这之中,目标体系的设计特别是知识领域内容的设计是重点,也曾引发出一些有争议的问题。如关于平面几何的改革,关于小学是否引入方程,关于计算机(器)的进入?关于四则运算的要求以及一些具体内容的增、舍等等。此外,关于如何看待数学能力;如何贯穿数学思想方法;如何体现数学的文化价值;关于"证明"限制的程度怎样才合适;在3部分内容(数与式、空间与图形、概率统计)之外如何反映数学的联系(内部及外部联系);发展性目标对知识性目标的导向如何落在实处;如何处理好课程标准与教材编写与呈现之间的关系等也是引起关注的问题。

第4篇:数学课程论文范文

[关键词]高职教育;高等数学;课程建设

目前,中国的高职教育已进入“大众化”阶段,其发展状况如何将直接关系到整个社会经济的发展。而高职教育必须至少抓好三项建设,即实训基地建设、专业建设和课程建设,其中课程建设是基础[1]。高职院校的课程建设虽然是以“饭碗课”为主,但是高等数学是高职院校的一门主要基础课程,不仅为学生学习后继课程和解决实际问题提供了必不可少的数学知识和数学方法,而且也有助于培养学生思维、分析解决问题和自学的能力,以及使学生形成良好的学习方法;对于日后计算机运用、数控机床和单片机编程能力等方面都将发挥着不可替代的功效。因此不管是从精品课程建设的需要,还是从提高教学质量、培养学生能力与素质的角度来看,可以说高等数学教学质量的好坏在一定程度上直接影响后续课程的教学质量。因此,要培养高质量的人才,充分发挥高等数学课程在高职教育中的作用,就必须全面系统地做好高等数学的课程建设。

一、高等数学教学的现状

许多人以为,高等数学没有什么用。这一想法的由来是对纯数学和应用数学的认识不清。目前在高职中所开设的数学课一般都是大学一年级的高等数学,其内容和纯数学基本相同,仍然是变量数学。但在高职中需要解决的是工程与实践中的现实问题,是应用性问题,而不再是纯数学理论。例如,同样是讲述“函数”,高职中更应强调的是如何建立现实问题中变量之间的关系,即函数方面的数学建模,而不再是纯粹强调定义域和对应法则问题。但即便是高职中的高等数学也不是应用数学,它要求学生理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。其实数学教育在学校教育中占有的特殊地位是毋庸置疑的,它能使学生表达清晰,思考有条理,使学生学会用数学的思考方式解决问题、认识世界等。另一方面,目前的这种状况也给所有从事数学教学的同仁们敲了一次警钟,使我们认识到数学教学已经到了必须改革的时候了。

二、高职高等数学课程建设应注意的问题

高职院校在人才规格、人才培养目标等各方面的特殊性决定了其课程建设也不同于其他院校的课程建设,在建设中应注意以下几方面的问题:

1.岗位群要求综合知识多但不深

高职培养的学生一般是适合某一岗位或是岗位群。这一培养目标就决定了其对于知识的学习要多,但并不需要很深,这也就是平时所说的“必需、够用”。例如同样数控专业的学生将来并不都是从事数控编程,也可能是操作机床或是销售、维修工作,这些不同就导致了对知识的需求有所差别。因此为适合岗位群的要求,在学习中就必须涉及到该专业的所有可能知识。同时由于学生就业的凭证是“技能”,所以对理论知识不需要太深。

2.基础课学时少、训练少、习题少,但培养学生能力方面要求却很高

同样由于高职培养目标决定了对于基础课程的学时较少,由此带来的学生训练的机会较少,而且结合专业可供使用的实践性习题也不多,但是对于知识的要求却并不低。

3.专业需求对于知识点的要求不一,众口难调

不同的专业对高等数学的需求是不一样的,有些专业要求仅以一元函数微积分为基础,而有些专业则还需要多元函数的微积分,对于有些专业复变函数的知识比较重要,而有的则侧重于线性代数等等,众口难调。

4.学生水平参差不齐,吃不饱和学不了的是两个大头

目前许多人对于高职院校还存在着看法,总认为其就业出路是工人,所以只有在上不了大学的情况下才会选择高职,造成高职院校的学生基础普遍较差。当然也不乏一部分对高职前景看好的基础较好的学生,这些构成了高职学生的主体,基础水平参差不齐。基础好的吃不饱,基础差的学不了。

5.要考虑少数人的需求

高职中有一部分学生的去向是专升本,虽然这部分学生数量较少,但作为培养单位的学校也同样应考虑他们的需求,因此开设的课程中,应考虑为他们将来的升本科打好基础。

三、对高等数学课程建设的几点建议

1.一纲多用,同时建立不同专业的课程评价标准

既然高等职业院校以能力本位教育为基础,而非学科本位为基础,就应该建立与人才培养方案相一致的教学大纲和课程评价标准。统一制订适合高职特点的教学大纲。同时根据不同专业的要求制订相关的课程评价标准,使一个大纲能为多个专业所用,而不同的专业又有不同的侧重点,即不同的课程模块。除此之外,高等数学要想真正建设好,还必须联合不同专业共同制订本专业的课程评价标准。其实课程评价已经不再是某一学校的事,在以市场标准取向的前提下,高等职业教育质量的鉴定应实现内部评价和外部评价的互动统一,也称为“内审与外审”。其中“外审”则是社会“第三方”或上级教育机构对学校的各种评估或检查,以确定其社会认可度;“内审”则要求学院建立相应的评价标准和监督机制对课程本身进行审核[2]。因此,一纲多用,同时建立不同专业的课程评价标准是提高高职院校内涵的一项实质性工作。高等数学作为一门公共基础课程,在统一的教学大纲指导下,各有侧重地建立该专业课程评价标准,以促进高等数学更好地为专业服务。

2.围绕课程评价标准大胆整合数学课程

课程评价标准是针对职业院校不同专业而建立的,其效用等同于具体的教学大纲,但是又比教学大纲更具有灵活性。由于作为基础课的高等数学教学大纲只有一个,但是课程评价标准是因专业而设置,而且一经建立,势必促使教师根据不同的专业需求对数学课程进行大规模整合。因为一方面各个专业对数学基础要求不一样,另一方面能力本位的指导思想不可能在基础课程上花太多的课时。而为了达标,必须对高等数学、线性代数、概率、数理统计等模块进行整合,使其能够满足不同的专业需求。而且确定的课程评价标准也限定了不同的专业有不同的教学重点。例如,“导数的应用”中经济管理专业应侧重曲线的单调性、凸凹性的特点以及利用导数分析边际问题和弹性问题的应用;而模具专业就应该侧重于曲线凸凹性以及利用导数分析曲率的相关问题上等。同时还应结合不同的教学内容,所布置的作业同样应有所针对性,以满足不同的专业需求。

3.增设有关高等数学的公共选修课和讲座

以上提到一个大纲多专业使用,同时整合课程内容,使得不同专业的教学重点有所针对性。但是总的来说,不可能在有限的课时内将所有的模块都涉及到;而且高职学生的毕业去向中有一部分学生可能会选择继续深造,也有一部分学生基础较好对数学又有兴趣,希望能够学到更多的数学知识。鉴于以上情况,应该在基本的必修课程之后,继续开设这一方面的公共选修课,而且选修课程的范围可以覆盖所有高等数学的内容。部分内容较少的模块如傅立叶变换、曲率、边际与弹性等可以以讲座的形式进行,其他的内容一般来讲,一个模块设置为一门选修课,例如多元函数的微积分、线性代数、概率论、数理统计、复变函数等可独立开设。而且不管是讲座还是公选课,如果涉及到某个专业的理论基础,可以要求该专业学生限选,其他内容学生可以根据自己的喜好和需求选择不同的课程。这样既满足了部分学生的愿望,解决了部分学生专升本的问题,同时又丰富了高职院校的课程结构和学生的业余生活,而且由于公共选修课门数的增加也有利于完全学分制的实施。

4.培养“双师”型数学教师或鼓励数学教师进行“专业”培训

目前我国的高等职业院校大多都是从普通中专或高等专科学校套转过来的,作为高等院校的时间不长,其中的大部分教师都只有理论的知识和相应的教学经验,但对于实践这一块比较陌生,尤其是数学教师大都是从事理论教学的,对于实践几乎是一无所知,对高职中不同专业所需要的理论基础也了解甚少。要想真正能够适应高职的发展必须加强实践能力,进行“双师素质”培养。同时,也可以直接将数学教师相对固定到具体的专业,通过对其进行本专业的培训,使之了解本专业的理论基础,以在数学教学中更有效地发挥教学效果。其实,目前已有相当一部分院校都是这样做的,在引进人才时就直接引进一些本科专业为基础数学或者英语,硕士研究生专业为管理或者机械的毕业生,这样的人才在进校以后,既可以从事基础课的教学,又可以从事专业课的教学,而且他们在基础课的教学中,更能贴近专业。也可以引进学基础数学或是英语专业的本科生,在岗位上将其培养成能为具体专业所用的懂“专业”的“双师”型教师。

5.教学方式与考核方式的改革

传统的数学教学方式主要是讲授式,这种方式虽然比较节省时间,而且有利于教师组织教学,但是讲授式很难体现“教学”“双边活动”的过程,学生参与太少,久而久之,容易造成学生懒散、不愿意动脑筋的习惯,不利于学生能力的培养。事实证明活泼多样的教学形式如讨论式、竞赛式等更能增加师生之间的互动、激发学生的学习兴趣。因此改革以往纯粹的讲授式教学方法,针对概念、例题、理论或应用等不同的内容采取不同的教学方法并结合现代化的教学手段定能起到事半功倍的效果。除此之外,考核方式的改革也是课程建设的一个重要方面。目前高等数学的考核方式主要以笔试为主,该课程确实是一门理论课程,其考核历来也都是笔试,但在能力本位的高职院校是否可以像其他课程一样考虑不用笔试,即就不同的章节,针对不同的专业,设计相应的实践性练习,要求学生在规定的时间完成,在整个课程结束之后,综合学习过程中的作业完成情况给学生一个成绩。在此过程中一方面培养了学生的动手动脑的习惯,改变了以往纯粹灌输式的死的理论;另一方面锻炼了学生运用所学知识解决实际问题的能力。例如在机械类学生学习误差理论时,便可设计一测量问题要求学生以单、双精度变量的不同方式来估计误差,同时还可以就两种不同计算方式所确定精确度的高低、所用时间的多少等方面来比较两种方式的优缺点;或是估计误差的可信区间(在给定的可信度下)等。

6.开展数学实验及数学建模能力训练

数学实验是利用实验手段和实验器材,设计系列问题增加辅助环节,从直观、想像到发现、猜想,从而使学生亲身经历数学的建构过程的一种试验。也就是在多媒体手段的支持下,把我们的数学课堂教学变成一间功能齐全的“数学实验室”。在数学实验室里,学生从“听”数学的学习方式变成在教师的指导下“做”数学;数学实验中也将更多的探索、分析、思考的任务交给了学生。诚如有心理学家所说:“听过会忘记,看过会记住,做过会学会”[3]。这也是数学学习方式转变的具体体现,学生的主体性得到充分发挥的有效途径。而开展数学建模活动与数学实验是相辅相成的,学生在实验过程中体验了数学创作的快乐,通过建模活动进一步发挥其创造性思维和应用知识的能力,将数学理论与实际问题结合起来,充分调动学生的主观能动性。而且在平时的训练中,可以针对专业设置相应的建模练习。通过实际问题的演练,避免了纯数学理论教学的枯燥性,可以提高学生学习的主动性,培养了学生应用知识的能力,同时也加强了学生的数学素养。除此之外,开展此类活动,老师必然要先行学习、锻炼、实践,因此这种方式也是培养数学类“双师”的有效途径。

7.注重对学生数学素养乃至综合素质的培养

素质教育虽然已经不同程度地被写进了教学大纲,但真正能够在实施过程中实现的却是非常少。教育部有关文件也着重指出,高职教育要“主动适应社会经济发展对高职高专教育的需要,全面推进素质教育,树立科学的人才观、质量观和价值观”[4]。这一决定表明高职院校对人才培养目标定位的准确性和社会对高职院校学生的社会需求性。高等数学作为高职课程之一在教学过程中除了教会学生基本的理论知识和学会应用知识的能力之外,还有一项重要的任务就是让学生在学习中体会到数学的完美与精巧,培养学生热爱数学、愿意钻研数学的精神和毅力。例如把问题数学化,可以提高分析、解决实际问题的能力,培养学生具有思维的逻辑性和方法的灵活性,形成良好的思维品质;数学史上探索精神和思想方法对学生的熏陶会影响人的一生,使其受益终生。所以数学是一种文化,它不仅使人得到了数学方面的知识修养,而且可以全面提高人的素质。

课程建设作为专业建设的基础,它是高职教育中的一项重要内容。高等数学因其课程自身的特殊性决定了它也同

样应该受到高度的重视,而不再是可有可无的。高职教育要注意纠正学生在专业课程与公共课程中的一重一轻的倾向,避免因这种倾向造成知识的偏差、人格的移位。

[参考文献]

[1]李南峰,施复兴,罗芸红.高职院校课程建设问题探析[J].十堰职业技术学院学报,2004,17(4):14-16.

[2]苟建忠.谈高职教育课程的多元整合[EB/OL].[2006-12-16]./g-jxgg/kcgg/8255.shtml.

第5篇:数学课程论文范文

使用网络媒体,高等数学教学资源可以多种方式组合,以适应A级、B级、C级不同学习者的需要。高等数学的教学从单纯课堂教学延伸到了网络上的协同辅导、学习和工作。网络提供的各种学习资源还可以被不同高校共享,并在每个学习者需要的时间和地点被使用,使高等数学的教学突破了时间和空间的限制。本设计利用云南省昆明市西南林业大学已经建设完成的遍布各教室、各学生宿舍的校园网络,以高等数学课程教学内容为核心,以高等数学教学资源库、网络课程、模拟测试题库等为资源支撑,建设高等数学课程教学网站,为教师所需集成各自教学内容、为学生自主学习和个性化培养提供全面的支持和服务。

2课程学习网站功能模块结构

2.1数学新闻

数学新闻信息显示,由课程负责人在后台添加新闻信息,包括标题、添加时间、简要描述、详细描述等内容,前端以列表形式进行展示,学生点击新闻标题,进入相应的新闻详细信息页浏览新闻内容。对新技术、新知识的分享,让学生能从课堂之余学习新知识。

2.2教学团队

办学质量的好坏,取决于学校管理的各个方面,而最关键乃教学管理。该项主要展示学校数学的教育师资力量。

2.3数学史话

数学科学具有悠久历史,与自然科学相比,数学更是积累性学科,其概念和方法更具有延续性。从古至今,从国内到国外的著名数学大师趣事收集于此,不仅能让学生更多的了解数学发展历程,还能提高学习兴趣,从各素材中汲取养分,为今后学习奠定基石。

2.4课程安排

学生进入高等数学课程网站后,从导航菜单中进入课程安排选项,浏览每位教师制定的教学安排计划,了解各个学习阶段应要学习或掌握的知识,并能根据教师的课程安排计划合理调整自身的学习计划,以不断增强自身知识结构,复习和预习课程内容。

2.5学习园地

学习园地模块共分为两个小的模块,分别为查看作业布置和作业提交。查看作业布置可以查询本次课或以前课程的课后作业,并能进行在线练习,或记录下来再学习。作业提交,学生根据教师的要求,完成作业后,进行作业的提交。当然,为了安全考虑,在学生上传文件前必须首先进行登录,上传文件仅为rar或zip的压缩包文件,上传文件大小不超过3Mb。作业上传路径为教师布置作业时产生的路径,教师收取作业时进入该路径即可。

2.6在线测试

传统考试从出题、组卷、印刷到试卷的分发、答题、收卷等程序,使得整个过程人工参与量大、周期长,容易出错,还需做好保密工作,使得学习考试成本较大。而在线测试可以实现无纸化、网络化、自动化,教师可以从题库中按所需自动组题成一套试卷,学生也可自行到系统内抽取题目进行测试,该过程充分合理利用资源,节省了财力、物力、人力,同时也大大提高了学生学习的主动性和积极性。

3数据库设计

第6篇:数学课程论文范文

一、要充分开发和利用校内外教学资源。

教材不再是唯一的教学资源,要善于开发和利用校内外教学资源,拓宽学生的知识面,丰富学生的视野。让学生体会到数学与生活的紧密联系,在生活中学习数学,体会其应用价值。例如,教学《方向与位置》这一课时,我把学生带到操场,让学生辨认东、南、西、北,以及操场的四周各有什么,以四人为一小组,展开游戏活动,让学生在熟悉的情境中学习数学,大大降低了难度,激发了学生的学习兴趣,从而理解掌握方向与位置。

二、要善于从多彩的生活中发现和寻找数学资源。

现实世界是数学的丰富源泉,但由于受教学时间的限制和学科知识系统化的影响,能进入教材的只能是生活多棱镜的一个侧面。这就要求教师做生活的有心人,善于寻找、发现身边可供学生进行观察、实验、猜测、验证、推理与交流等数学活动的教学资源。在教学中,我善于运用生活素材,激发学生的学习兴趣,帮助学生学好数学。例如,在教学万以内数的读法时,我了解到许多学生早已会读很多万以内的数了,只是个别中间或末尾有零的数在读时有点困难,因此,上课的前一天布置调查作业,请学生收集日常生活中他们见到过的万以内的数,学生从报纸、杂志、超市广告等材料中发现了许多万以内的数。如:电脑每台4805元,洗衣机2800元,全校有学生1280名。在课堂上,首先让每个学生把他们所找到的数在四人小组内交流,然后每组选择两个最喜欢的数写在黑板上,接着请学生将黑板上的数进行分类。学生很快分出了四类:没有零的数、中间有零的数、末尾有零的数及中间末尾都有零的数。

没有零的数大家都会读了,每个学生自己读一读,而中间或末尾有零的数的读法,通过生生互教、生生互学的形式总结读法,而本节课的重点则是解决中间、末尾都有零的数的读法。掌握了数的读法后,在练习中又设了让学生读一读珠穆朗玛峰的高度,人民大会堂的座位数,非洲象的重量,学校图书馆的藏书数,这样的设计,将教材中枯燥、缺少生活气息的题材改编成活生生的题目,使学生感受到生活中处处皆数学,从而激发他们学习数学的兴趣,提高他们应用数学的能力。

三、要重视其他学科资源与数学学科的整合

凡是科学知识必是一脉相通的,因此教师在教学中必须打破学科本位思想,密切联系其他学科,这样既可以使学生了解数学在不同学科中的运用,也可以使学生学习数学的过程丰富多样。在学习的过程中,教师完全可以将其他学科的内容作为学习数学的材料或情境,这样可以收到事半功倍的效果。

例如,我在教《找规律》时,有机地结合音乐与美术中的知识,通过让学生拍节奏、做动作,感受到音乐的节奏也是有规律的,让学生体会到规律知识不仅仅是颜色的排列规律、形状的排列规律,它与音乐也有着密切的联系。通过欣赏几幅二方连续的纹样,拓宽了学生的视野,得到了美的享受,激发了学生创造规律的欲望。

第7篇:数学课程论文范文

(一)发挥教师作用

提高学生兴趣兴趣是最好的老师,因此,只有数学引起了学生足够的兴趣后,才可以使学生发挥自主学习的作用,使其从根本上去享受知识具有的乐趣。高中数学是一种具有很强的理论性且比较抽象的课程,要使学生主动学习具有一定的难度,绝大多数教师都试着寻找一些方法引起学生学习数学知识的兴趣,但大部分都以失败告终。在新课程标准的引导下,数学教师可以使用以下几种方法来培养学生学习数学知识的兴趣。

1.课堂教学的开展必须与学生在各个阶段学习的特点相结合。数学教师需要了解学生在不同的年龄段具有的学习行为特点,紧密结合其学习知识的思维模式,再与教学内容相结合,进行各种各样的数学教学活动,从而改变传统且枯燥的数学教学模式,最终使学生学习数学知识的兴趣得到加强。

2.数学课堂教学需要使用辅助教具。数学教师需要应用先进的多媒体技术,将一些视频内容与图像内容插入到课堂教学的过程中,通过这些先进的教学方法培养学生对数学的兴趣。

3.打造和谐的教学课堂氛围。数学教师必须改变传统的高高在上的形象,不但要完成数学知识的教学任务,还必须具有渊博的知识和崇高的品质,从而使学生的情操能够受到感染与引导。只有如此,才能使学生效仿教师的行为与性格,完成学生学习数学知识的兴趣培养。

(二)引导学生主动学习

培养学生独立思考最大限度地发挥学生自主学习的能力是新课程标准的重要标准。数学作为一门可以极大增强学生思维能力的课程,对学生学习其他课程也具有积极的影响。因此,数学教师在课堂教学中不仅仅要使学生学会数学课本上的东西,也要重视学生独立解决问题能力与自主学习知识能力的培养,如此才能够完成建设高中数学高效课堂的根本目标。在建设高效的高中数学教学课堂的过程中,最重要的是培养学生自主探索和独立思考的能力,高中数学教师必须在其制定的教学计划中重点培养学生的这两种能力,使学生可以养成主动探索和独立思考的习惯,增加其学习数学的效率,从而能够提高数学的教学质量。

二、案例分析

新课程标准下的高中数学教育通过先进的方法描述数学概念、定理及性质等内容,并需要在实际中灵活运用。例如,在讲述函数的重要性质———奇偶性时,其定义很容易理解,但学生初学时并不能很好掌握。这是由于在实际应用的过程中,学生经常使用的是函数的对称性。而且高一学生还不能深入领悟数形结合的思想,因此作为这节课程的授课对象,大部分学生能听懂课程,但不会做题。笔者认为做好以下几点可以提高这节课的效率。

1.从几何图形开始,使学生明白中心对称与轴对称,了解对称图形的特点,总结函数解析式的几何性质,这样学生才能够将形与数相结合,深入了解到数形结合的思想。再通过函数解析式推导出奇偶性质,使学生从数与形两方面理解定义,为今后的学习打下坚固的基础。

2.在讲解完定义后,通过具体的例题,让学生自己判断函数存在的奇偶性并分析函数具有的性质,例题要有适当的难度,让学生容易接受。

3.在课后练习中,将函数的奇偶性与单调性相结合,使其可以相互影响。为下节课讲解函数单调性埋下伏笔,使学生的学习效果更好。

三、结语

第8篇:数学课程论文范文

新课程标准先编制的新教材具有的一大特点就是在教学案例上最大程度地贴近生活,与实际联系密切。比如,在学习圆时.以生活中学生再熟悉不过的“车轮为什么是圆的”导入,将其与圆这一知识点联系起来,学习有关圆的一些知识,最后又将所学知识应用到实际生活中。做到来源于实际,服务于实际,实践一理论一实践。同时也探求事物的内部联系及其发展的规律性,符合“由近及远”的事物的认知规律。再如:在讲“两点之间,线段最短”这一数学知识点的时候,我采取的措施是:先带领学生观察学校草坪的四个角,然后提问设计问题:两对角之间,如何走才是最近的?学生自然地理解了这一知识点,课堂教学效率也大为提高。采用这种情景导入的数学教学方法,极大地增强了学生的学习兴趣和学习参与度,发挥了学生的主体性。现代学习模式大多强调问题学习,即以问题作为学习的出发点和落脚点,将其贯穿整个学习的全过程。因此,作为初中数学教师要积极创设与初中学生身心发展水平相适应的问题情境,发散学生的思维,让学生积极开动脑筋。发挥学生学习的主体性,积极运用建构主义理论,通过学生已有的生活经验和数学知识,将其与课堂数学知识建立联系,注重培养他们的问题意识。

二、师生交流,相互讨论,体验学习的快乐性

在新课程中,教师和学生的角色和以往发生了重大的变化。学生由原先的被动接受者转变成了学习和认识的主体,是教学活动的重要承担者。教师则由原先的传授者转变为一个引路人,由原先的传道授业转变为更多地培养学生学习习惯和思维习惯。数学教师应充分发挥数学学科直观性、过程性和逻辑性强的特点,提升学生的学习激情。为此,教师可以更多地采用多媒体教学手段,利用它的优势,为学生提供更多直观性强的教学素材和教学资源。新教材让学生有更多的自主学习空间,让学生在愉悦的学习氛围中获得数学知识。强调对于学生能够自己解决的问题,让学生独立思考,相互交流讨论,以合作学习的方式进行学习。需要注意的是,谈论交流活动要落到实处,切记流于形式,影响课堂教学环节和教学时间。

三、避免复杂,学会探究,理解数学的学科性

与旧教材相比,新教材删减了大量繁琐复杂而又无实际意义的计算题,对一些复杂数字的计算要求学生能够通过掌握计算器即可。在课堂教学活动中,为了保持学生对于数学的兴趣,要避免枯燥无味和繁杂无序的运算与论证。需要注意的是,对于计算器的使用应有所节制,不能什么题目的计算都采用计算器,否则会造成过度的依赖,导致学生缺乏应有的计算能力。数学是“冷而严肃的美”,不可能在毫无载体的情况下让我们直观地感受和理解。因此,需要在数学教师的不断引导下,让学生通过体验去感受。然而,这种感受一旦形成习惯,便形成了持久而稳定的数学学习兴趣。学会数学中的“统一美”“抽象美”“奇异美”和“严谨美”,让学生感受到数学美无处不在,其感悟数学美的能力也就会随着时间一天天地增长。

四、,发扬个性,注重教学的开放性

鉴于初中学生在数学学习上的认知水平和各自社会经历各不相同,由此造成他们对同一个问题的理解程度和水平也不尽相同。基于以上认识,新课程标准特别强调“由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”在承认个体差异的同时,强调学习的个性,即不同的人学习不同的数学,人人学有用的数学。这就要求教师在教学和习题练习设计中,注意这一差异性的客观存在,注重分层教学设计和练习设计。在解题中,不同层次的学生可以提出不同的解题方法,促进学生个性发展,防止思维定式形成,给学生提供较为广阔的创造空间,培养学生的创新精神。

五、突出创新,重在探究,培养学生的创新性

“知识经济的发展主要依靠新的发现、发明、研究和创新,其核心在于创新,包括知识创新和技术创新。知识创新、技术创新以及创新人才培养的基础是教育。”因此,新教材别增加了有关探究性教学的内容。在具体的课堂教学中,需要我们广大的教师注重培养学生的创新能力。如我在设计有关“圆与圆的位置关系”的数学知识时:制作了“两圆关系”的PPT,通过在屏幕上移动其中的一个小圆,让学生非常清晰地理解了两圆之间的六种位置关系,将学生感受到的上升到理性。因此,通过采用类似的直观演示,让学生自己去操作,去体验,让他们的大脑中自己形成有关概念,深化理解和认识。初中数学中学生的创新能力培养,有赖于教师对学生正确的引导,通过全方位、多角度地深入数学教材,理会初中数学的教学规律。由此,也就很好地贯彻了“以学生发展为本”的理念。

六、结语

第9篇:数学课程论文范文

《义务教育数学课程标准》指出:数学教学,要紧密联系学生生活实际,从学生生活经验和知识出发。要求数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,真正体现“人人学有用的数学,有用的数学应当为人人所学”的基本理念。因此,在数学教学中,如何使学生领悟数学知识源于生活,又服务于生活,用数学的眼光去观察生活实际,是每位教师都应重视的问题。

一、创设生活化的教学情境,激发学生的学习兴趣

在我们的生活中到处都充满着数学。教师在教学中要善于从学生的实际生活中搜集信息,抽象出数学问题,使学生感到数学就在自己身边,消除对数学的畏惧感和神秘感,而产生浓厚的学习兴趣。例如,在教学二年级下册数学图形与变换一单元中的平移现象时,教师首先演示缆车、升降电梯、风车、电扇的运动,这四种物体的运动学生在生活中都比较常见,通过动态演示,很容易激发学生学习探索新知识的兴趣,然后再通过比较分类,使学生初步感知平移旋转现象。而在深化学生对平移概念的理解这一环节时,引导学生联系日常生活,找出生活中其他的一些平移现象,使学生感受数学与日常生活的紧密联系,体验到生活中处处有数学,对数学产生亲切感。

二、运用所学知识解决实际问题,培养学生解决实际问题的能力,真正做到学以致用

学生在课堂上所获得的知识必须到生活实践中去运用,才能更深刻地理解和掌握知识。学生在应用数学知识解决实际问题的过程中深刻地感受到数学的魅力及其归宿,使他们在生活中主动地运用数学,情趣得以激发。例如,在教学“正方形和长方形的面积计算”时,可要求学生测量教室里一些物体的面积,如黑板、门窗、桌面、教科书等等,学生积极性很高,真正体会了学习的乐趣。而课后,则鼓励学生做一些实践性的作业,回到家里测量并计算出客厅、餐厅或卧室的面积,看大约需要铺多少砖等等,即根据数学内容和学生已有的生活经验,将数学问题与生活问题相联系,把数学知识融化于生活实践中,解决日常生活中的一些实际问题,这是学习数学的最终目的。

三、学生数学生活经验的积累,是培养学生学习数学主动性的有效途径

著名教育家顾泠沅说:“在课堂教学范围里对教师最有意义的是学生学习动机的激发,也就是要使学习的内容让学生感兴趣,对有了兴趣的事学生就会认真地把它学好。”这话表明:兴趣是最好的老师。学生有了兴趣,才会产生强烈的求知欲,主动地进行学习。同样,学生数学学习主动性和兴趣的激发,在很大程度上和其数学生活经验的积累息息相关。只有在生活的实践中不断积累运用数学知识、方法解决问题的实际经验,学生才能在思维和情感上更加投入地参与到数学学习的活动中。因此,教师可以让学生通过实例创设情境、通过实物(挂图)创设情境、运用媒体创设情境、模拟生活创设情境等等,结合自己的校园、家庭、社会周边生活环境等,有目的地寻找、搜集和生活相关的数学问题,并尝试用所学到的数学方法去解决。如,学过“用比例解决问题”后,组织一次实践活动,要求学生测量操场旗杆的高。有的学生提出爬上去量,有的学生提出找根长竹竿量……这时,老师拿了一把1米长的木尺,笔直地竖在旗杆旁。在阳光下老师指着旗杆、木尺问:旗杆、木尺的长与影长有何关系?学生悟出了应用比例的知识解决这个问题的方法,并通过测量、估算出了旗杆的高。随着一个个问题的解决,学生的数学生活经验日趋丰富,学生利用数学知识解决问题的能力也不断提高,学习数学的主动性不断增强,从而实现从“要我学”向“我要学”的转变。

学习是为了应用。因此,教师在教学中要经常培养学生联系生活实际、运用数学知识解决问题的意识和能力。知识也只有运用才能被学生真正掌握,也只有在实践运用中才能体现其价值。