前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的混凝土缓凝剂主题范文,仅供参考,欢迎阅读并收藏。
[关键词]水泥混凝土 超时缓凝 超量掺加
水泥混凝土加水后,由于水泥的水化,随着时间的推移,浆体逐渐失去流动性、可塑性,这一过程称为混凝土的凝结。我国标准按照美国材料试验标准(ASTMC403)提出的贯入阻力试验来确定混凝土的凝结时间。若贯入阻力达3.5MPa和28MPa分别表示混凝土的初凝和终凝。混凝土的初凝时间不能过快,以便施工时有足够的时间来完成混凝土的搅拌、运输、浇捣和砌筑等操作,混凝土的终凝也不能过迟,以便混凝土能够尽快的硬化,达到一定的强度,以利于下道工序的进行。
水泥混凝土凝结时可能产生的异常凝结行为主要为:假凝、瞬凝、超时缓凝和不凝。假凝其特征是水泥和水接触后几分钟内就发生凝固,且没有明显的温度上升现象。此时再加拌和(无须加拌和水),仍可以恢复塑性,用于浇注并以通常形式凝结;瞬凝,特征是水泥和水接触后浆体很快地凝结成为一种很粗糙的、和易性差的混合物,并在大量放热的情况下很快凝结;超时缓凝就是混凝土的终凝时间严重超过设计或预计的凝结时间。在水泥混凝土施工过程中,如果产生异常凝结,将对工程质量造成严重的危害。
一、水泥混凝土产生超时缓凝的现象
随着商品混凝土和泵送混凝土的发展,在混凝土的生产过程中通常掺加了减水剂、缓凝剂等外加剂和活性掺和料。如果外加剂的掺量过大、或出现外加剂与水泥和活性掺和料的相容性等问题而引起的水泥混凝土凝结时间严重超过设计和预计的凝结时间造成混凝土很长时间才凝结,对强度造成损失,并影响工期,有的造成混凝土长期不凝结,使结构破坏,以致造成严重的工程事故。
二、水泥混凝土产生超时缓凝的原因
1.缓凝组分的超量掺加
混凝土工程中常用缓凝剂来延长凝结时间,使新拌混凝土较长时间保持塑性,以便浇注,提高施工效率,在泵送混凝土中缓凝剂和高效减水剂复合使用可以减少坍落度损失,保持良好的泵送性能。缓凝剂和缓凝减水剂均具有一个适宜的掺量范围(按水泥质量的百分含量)如:木质素磺酸钙掺量为0.2~0.3%,葡萄糖酸钙的掺量为0.1~0.3%;工程中通常规定木质磺酸钙和葡萄糖酸钙类缓凝剂的掺量不超过0.25%。研究表明随着缓凝剂掺量增加,缓凝作用增强,在适宜的范围内掺缓凝剂不但不会影响后期强度,反而有所提高;但超剂量(大于适宜掺量的5倍)的使用缓凝剂不但产生严重缓凝,而且还要造成强度损失,严重者造成长时期不凝结硬化,造成严重后果,产生工程质量事故。
2.减水剂与水泥、掺和料的相容性问题
在现代混凝土技术中,并不是每一种符合国家标准的水泥在使用一定的减水剂时都有同样的工作性能,同样也不是每一种符合国家标准的减水剂对每一种水泥流变性能的影响都一样,这就是水泥和减水剂的相容性问题。与水泥一样,掺和料与水泥之间也存在相容性问题。影响减水剂与水泥、掺和料相容性的主要因素,对减水剂来说,是其化学性质、分子量、交联度、磺化程度和平衡离子;对水泥来说,是SO3含量同水泥中的C3A的含量、水泥细度和碱含量的匹配。其中水泥中的C3A的含量、SO3的形态和含量、减水剂对石膏的溶解度的影响和掺和料的种类通常是引起相容性问题的主要原因。
减水剂与水泥的相容性问题对水泥混凝土凝结的影响,既有过早凝结硬化的,如:假凝、瞬凝,也有超时缓凝的。混凝土工程中高效减水剂的超量掺加,由于表面电荷有时异常高度集中而引起水泥浆体絮凝和高度触变性,表现为超时缓凝;同时由于水泥与减水剂相容性引起水泥混凝土假凝、瞬凝其产生的水化产物覆盖在水泥颗粒表面,阻碍水泥与水进一步反应,使水泥水化反应的诱导期延长,也可能表现为水泥混凝土超时缓凝;另外掺和料的掺加及其与减水剂的相容性问题也可能引起水泥混凝土的超时缓凝。
3.水泥中SO3含量
缓凝剂的缓凝作用也受某些水泥的SO3含量所影响。如在观音阁水库大坝混凝土的施工中,出现了超时缓凝现象。经调查发现观音阁水库大坝浇注混凝土所用水泥在生产过程中因控制氟石膏掺量的微机失控,造成氟石膏实际掺量剧减,导致水泥中SO3含量仅有0.7~0.8%严重偏低造成混凝土不凝。
4.水泥掺和料
目前,工程中使用的水泥大多都有掺和料,掺和料的加入既降低了水泥的成本,又改善了水泥的某些性能。但掺和料品种或用量不当时,则往往会引起混凝土异常凝结。如掺量过高时,可能引起超时缓凝。
5.不恰当的施工工艺或措施
在混凝土的生产和施工过程中不恰当的措施也可能引起混凝土的超时缓凝。如混凝土在生产时拌和水中含有油类、酸、糖,在外掺缓凝剂的条件下会对混凝土产生严重的缓凝现象。如:湖南某糖厂施工了一批预制构件,施工后一个星期仍未硬化,后经调查,发现预制构件养护覆盖层为装过糖的旧麻袋,其中糖随养护用水掺入混凝土中而引起超时缓凝。因为糖掺入水泥混凝土中,能吸附在水泥混凝土表面上,形成同种电荷的静水膜,使水泥颗粒相互分散,不致相互聚合成较大的粒子,从而起到缓凝作用。
另外在上述原因引起混凝土超时缓凝的前提下,混凝土的初凝和终凝时间延长,而施工却按预计的凝结时间进行养护,而此时混凝土还没有终凝,过早的实施养护,会破坏混凝土的结构,使混凝土的早期强度发展受到损失,在某种意义上也推迟了水泥混凝土的凝结硬化。
参考文献:
[1]郑毕海.水泥混凝土异常凝结初探.内蒙古科技与经济,2004,(23).
[2]颜国林等.混凝土异常凝结原因分析与解决措施的初探.2007,(4).
[3]尹白云.水泥混凝土异常凝结初探.江西交通,2001,(6).
[4]王智.水泥混凝土超时缓凝的初探.混凝土,2000,(12).
[5]黄士元等译.混凝土.中国建筑工业出版社,1986.
[6]严吴南,彭家惠等.建筑材料性能学.1996.12.
关键词:钢筋混凝土厚板转换层施工技术
中图分类号:TU74 文献标识码:A 文章编号:
Abstract: combining with engineering examples. Mainly a project 1.8 m thick plate conversion layer construction, this paper briefly describes in reinforced concrete thick plate conversion layers structure construction technology.
Keywords: reinforced concrete thick plate conversion layers construction technology
1.工程概况
该工程是一座多功能的综合性大厦,地上33层,地下1层,大屋面总高度为99.27 m,总建筑面积为60 375 m2 ,第4层为1.8 m厚板转换层,将其上部5~33层的剪力墙结构体系转换成框架结构体系,见图1。转换层厚板的平面尺寸为1318 m ,钢筋重达850 t,混凝土总量为2430 m3 ,强度等级C40。
2.确定施工方案
厚板转换层自重及施工荷载为51.3 kN/m2,采
图1 转换层平面布置图
用常规的支模体系,单靠下层楼板承受如此大的荷载势必会破坏下层结构,而采用分层卸载的方法则必须从地下室底板起搭设4层支撑架,靠各层楼面的变形协调来传递扩散荷载,这样既不经济也不能保证结构楼板不产生开裂现象。经过分析比较和计算,确定采用叠合梁的原理转换厚板,即将转换板混凝土分两次浇筑,第一次浇筑0.8 m厚,待其强度增长达到90% 后再浇筑第二层1.0 m厚混凝土,利用第一层先浇板承受第二层后浇板的施工荷载,转换板的钢筋相应分两层绑扎。
2 施工方法
2.1 模板工程
模板支架采用扣件式钢管脚手架,钢管采用外径48 mm、壁厚3.5 mm的焊接钢管。立杆用3.6 m的整根钢管,中间不设接头,间距为0.5 m x0.5 m,立杆下满铺2.5 cm厚木板,水平方向拉杆设4道,并设剪刀撑。顶端横杆与立杆的扣件下加设1个扣件,以增大抗滑移能力。顶端横杆上放10cm×10cm木檩条,间距为40cm。模板采用竹节板。转换层的侧模用l4钢筋在相应位置与暗梁主筋拉接,横纵间距见图2、图3,外部与模板背楞固定。经验算,上述模板支撑体系满足第一步0.8 m厚混凝土的施工要求。
图2 先浇0.8 m厚混凝土侧板安装示意图
在转换层施工期间,1~3层的梁板支撑均不拆除,在第一步0.8 m厚混凝土强度达到设计要求后,在第二步1.0 m厚混凝土浇筑前,松开三层模板支撑顶端横杆与立杆的扣件进行卸荷,然后再全部上紧,以使第一步0.8 m厚混凝土板和模板支撑体系共同承受上部荷载。在第二步1.0 m厚混凝土强度达到设计要求后方可拆除全部模板及支撑。
图3 后浇1.0 m厚混凝土侧板安装示意图
2.2 钢筋工程
钢筋绑扎分两次完成,先绑扎下层0.8 m 范围内 32@110和 2O@200两层钢筋,待混凝土浇筑完并处理好上表面后再绑扎上部1.0 m范围内钢筋。转换厚板1.8 m高整板各层钢筋网片的固定,使用钢筋作立杆焊接形成间距1 m的架立网,作为各层钢筋的支撑体系。在0.95 m高位置增设 2@100双向钢筋网,以提高混凝土抗裂性,避免温度应力和收缩应力引起混凝土开裂。
2.3 混凝土工程
(1)混凝土配合比。转换层混凝土强度等级为C40,提前进行试配,采用“三掺”技术,调整混凝土配合比。水泥:砂:石予:水:粉煤灰:外加剂=1:2.06:3.09:0.53:0.22:0.023,选用普通硅酸盐水泥;掺加适量粉煤灰以减少水泥用量,降低水泥水化热,可控制混凝土温度裂缝的出现,统筹改善混凝土的流动性和可泵性;掺加适量UEA膨胀剂,以补偿混凝土的收缩。可控制混凝土收缩裂缝的出现;掺加适量缓凝早强减水剂,以提高混凝土早期强度,可控制混凝土初凝时间。混凝土的水胶比控制在0.45以下,砂率控制在44%以内,水灰比控制在0.48以下,混凝土的入泵坍落度控制在140―160mm,混凝土总含碱量不大于3 kg/m3 。
(2)混凝土施工缝的处理。
为使转换板的整板的承载性能不因混凝土分两次浇筑而下降,必须在两浇筑层结合面采取特殊处理措施,来保证两层混凝土板协同工作嵋 。
预留坑槽:在先浇层板上表面留设间距1 m呈梅花形布置的混凝土坑槽,槽深为100 mm,平面边长300 mm,通过预埋木盒来实现。
混凝土表面处理:对先浇层板混凝土上表面。在混凝土初凝前涂刷一道高效缓凝剂即界面剂,混凝土终凝后立即用水冲洗即可露出表面石子,下次混凝土浇筑前再充分水润。
(3)混凝土的浇筑。
采用泵送商品混凝土,使用插入式振捣器分层捣实混凝土。通过检测第一步0.8 nl厚混凝土浇筑时留置的同条件养护试件的强度,判定混凝土是否达到设计强度等级,以确定第二步1.0 nl厚混凝土的浇筑日期。
(4)混凝土测温。
测温点布置必须具有代表性和可比性,沿浇灌高度,应布置在底部、中部和表面,垂直测点间距为500mm,水平测点间距为5m。当使用热电偶温度计时,其插入深度可按实际需要和具体情况而定,一般不少于热电偶体径的6~10倍,测温点的布置距边角和表面应大于50mm,并对测温数据进行分析,实施动态控制。
(5)混凝土养护。
由于转换层在春季施工,所以采用蓄水法进行养护,在混凝土初凝后先洒水养护3h。随后进行蓄水养护,蓄水高度为100 mm。板侧面挂草袋(或麻袋)进行浇水养护,使其保持湿润。根据在转换厚板不同深度各相关部位埋设的测温点,所显示的混凝土内部温度变化情况,及时采取措施,调整混凝土的养护水温。混凝土中心温度与表面温度之差。表面温度与环境温度之差均小于25 ℃。当中心温度与表面温度之差超过25℃时,可提高养护水温;表面温度与环境温度超过25℃时,可适当降低养护水温。反之亦然。
3.结论分析
(1)施工实践证明,采用叠合梁法原理将转换板混凝土分两次浇筑,很好地解决了厚板的施工荷载传递问题,同时将第一次与第二次浇筑的施工缝做成梅花形布置坑槽,解决了混凝土叠合面的抗剪承载力问题。
(2)测温数据显示,转换层混凝土施工期间,第一次浇筑时间为2006年3月1日至3月3日、第二次浇筑时间为2006年3月19日至3月21日。环境温度为12℃~26℃,混凝土入模温度为19℃~23.1℃,混凝土中心最高温度为60.7℃~63.5℃。低于预控极限75℃;最大温升为36℃~40℃,低于预控极限值45℃;内表温差最大值为24℃~24.5℃,表外温差最大值为23.8℃~24.6℃,远低于预控极限值30℃,温差得到有效控制,同时实践证明混凝土配合比设计达到了低水化热温升的预期目的。
(3)混凝土28d抗压强度试验报告显示,试块强度达到设计强度等级的120%~140% ,均值126% ,试验结果表明,按设计配合比配制的混凝土强度完全满足设计要求,质量稳定。
(4)1.8 nl厚板转换层混凝土浇筑2个月后(收缩基本已完成),经现场全面检查1~4层楼板(包括
转换层)未发现可见裂缝。
4结束语
关键词:聚羧酸高效缓凝减水剂;混凝土;耐久性;工程应用技术
Abstract: in this article, through combining the durability of concrete and water reducing agent engaged in the study of relevant work experience, this paper briefly summarizes the clustering of carboxylic acid efficient slow the structure characteristics of the water reducing agent and its advantages; And detailed analysis of carboxylic acid efficient together on water reducing agent for goods of concrete penetration-proof quality, freezing-thawing resisting sexual resistance, corrosion resistance, anti-chlorine sulphate corrosive, resistance to corrosion of reinforcement, steel and concrete bonding strength of durability influence. Finally, combined with engineering example, the paper introduces the high efficiency of carboxylic acid together on reducing agent of project application technology.
Keywords: gather water reducing agent of carboxylic acid efficient slow; Concrete; Durability; Engineering application technology
中图分类号:TU37文献标识码:A 文章编号:
1. 引言
硬化混凝土的耐久性包括抗渗性、抗冻融性、抗硫酸盐腐蚀性、抗氯盐腐蚀性、钢筋锈蚀、钢筋―混凝土粘结强度等几个方面。通常,适度引气、水灰比低的硬化混凝土在严酷环境条件下的耐久件良好。掺用高效减水剂可起到适度引气、降低水灰比的作用.所以掺入高效减水利可提高硬化混凝土耐久性,至少可以说,高效减水剂的掺入不会对耐久性产生不利影响。
2. 聚羧酸高效缓凝减水剂概述
聚羧酸高效缓凝减水剂对是以带有羧基、磺酸基、羟基、聚氧化烯基链节等活性基团的不饱和可聚合单体为原料,经直接共聚法、聚合后功能化法或原位聚合与接枝法制得的一些全新的高性能减水剂。该类减水剂特有的梳形分子结构赋予其低掺量、高碱水、保水及增强效果好等特点,此外,还可以通过“分子结构设计”、控制合成工艺参数等手段,调整其分子结构,分子量及其分布,从而实现高性能化,因此,该类减水剂已成为高效减水剂的研发热点和重点之一,并代表着高效减水剂的发展趋势。
聚羧酸高效缓凝减水剂的优点:(1)掺量低而分散性能好,通常在胶凝材料用量的0.2%~0.5%的掺量下,混凝土减水率可达30%以上,且不离析,不泌水。(2)保坍落度性能好,混凝土90~120min内坍落度基本无损失;(3)与水泥、掺合料及其他外加剂的相容性好。(4)可有效地提高用于替代波特兰水泥的粉煤灰、磨细矿渣等掺合料的掺量,从而降低混凝土成本。(5)可根据不同设计要求,用于配制普通、高强、超高强、高流动性、早强、大体积混凝土等。(6)制备过程中不使用甲醛,因而不会对环境造成污染。
3. 聚羧酸高效缓凝减水剂对混凝土耐久性的影响分析
3.1 抗渗性
混凝土的抗渗性与其孔隙率及孔结构有关。混凝土内孔隙按孔径大小大致可分为<4~5nm、5~50nm、50~100nm及>100nm四级。若孔径大于50nm的孔隙体积分数增大,则会对混凝土强度和抗渗性带来不利影响;若孔径小于50nm的孔隙体积分数增大,混凝土强度和抗渗性、耐腐蚀性等均有提高。同时,当混凝土掺入高效减水剂后,将导致混凝土的水灰比降低,孔结构得以改善,这样可以有利于增加混凝土内部结构的密实度,减少泌水通道,从而有效地提高混凝土的抗渗性能。
3.2抗冻融性
高效减水剂对混凝土抗冻融性的影响与普通减水剂类似。当混凝土中掺入非引气型高效减水剂时,减水剂的高效减水作用可有效地使得混凝土的水灰比显著降低,同时鉴于混凝土结构中可冻结的游离水减少,使得混凝土抗渗性提高,从而有利于提高抗冻融性。这主要是由于当混凝土掺入引气型高效减水剂或掺入非引气型高效减水剂与适量引气剂时,由于所掺外加剂的引气作用,混凝土体系中会引入一定量的独立、微小、稳比的气泡,可有效地缓解冻结和过冷水迁移所产生的膨胀压力集中,从而显著提高混凝土的抗冻融性能。
3.3抗硫酸盐、氯盐腐蚀性
通过工程试验研究发现,掺高效减水剂混凝土抗硫酸盐、氯盐腐蚀性与普通混凝土无明显差异。虽然聚羧酸高效缓凝减水剂中会含有一定量的硫酸盐,但是在推荐范围内,一般不会影响硬化混凝土的抗冻融性。另外,为了有效地防止钢筋腐蚀。一般,高效减水利掺入对钢筋混凝土中的铜筋无锈蚀作用。
3.5钢筋-混凝土粘结强度
对于普通混凝土和轻质混凝土,高效减水剂掺入可增强钢筋-混凝土的粘结强度。有资料显示:对于普通混凝土,若用平圆钢,则高效减水剂掺入可使7d龄期混凝土的钢筋-混凝土粘结强度从1.2MPa增加到3.5MPa;若用螺纹钢则,则粘结强度从15.0 MPa增加到27.5 MPa。
4. 工程应用技术
鉴于在混凝土中通过掺入高效减水剂,可以在水灰比一定的条件下,显著改善混凝土的工作性;也可以在工作性基本相同的条件下,大大减少混凝土拌合用水量,有效地降低水灰比,提高混凝土自身强度。所以,通过掺用高效减水剂可制备各种高强、高性能混凝土。而通过工程实践表明,目前通过掺入高效减水剂可制备以下的混凝土产品,使其在混凝土工程中的应用广泛。
(1)预应力或预制混凝土。掺入高效减水剂可使得预制混凝土的抗压强度在8~18h达到40MPa等级;掺高效减水剂的预制混凝土可在更低的养护温度和更短的养护时间条件下,得到更高的早期强度,从而减少促凝养护能耗;此外,还抗压节约水泥,减小振捣能耗,减少噪音。
(2)补偿收缩混凝土。制备补偿收缩混凝土时,掺入一定量的高效减水剂,可降低水灰比,增加混凝土早期收缩,减少混凝土的后期收缩,从而节约膨胀剂或膨胀水泥。
(3)对于普通骨料混凝土,掺入高效减水剂可减小泵送压力和管压30%;对于轻骨料混凝土,掺入高效减水剂可减小泵送压力和管压10%;此外,掺入高效减水剂可减小泵送阻力随泵送速度增大而增加的幅度。
(4)钢纤维增强混凝土。对于钢纤维增强混凝土,掺入高效减水剂可减小由于钢纤维掺入而引起的工作性损失;当然,与不掺钢纤维的混凝土相比,要得到相同的工作性,掺钢纤维混凝土的高效减水剂掺量需适当增加。
(5)超高强混凝土。高效减水剂的减水分散、增强效果好,所以可用于制备超高强混凝土。研究发现,混凝土中掺用占重量1%~4%的高效减水剂,可使100d龄期强度高达150MPa。
(6)高铝水泥混凝土。为保证高铝水泥混凝土的性能,一般水灰比不高于0.40,水泥用量不低于400kg/m3,否则混凝土的强度,尤其是后期强度将会降低,其原因是亚稳态的铝酸钙水合物转化为稳态的铝酸三钙水合物。如果在高铝水泥混凝土中掺入高效减水剂,就可以在较低水灰比的条件下,制得工作性良好的流态混凝土,而且不影响混凝土的后期强度。也即掺高效减水剂的高铝水泥超塑性混凝土的2d龄期抗压强度低于基准混凝土,而180d龄期的抗压强度于基准混凝土基本相当、其原因是高效减水剂对高铝水泥的水化速度无明显影响。
(7)粉煤灰、矿渣、硅灰活性掺合料掺量较高的高性能混凝土。当以大量粉煤灰代替普通水泥制备高强混凝土时,掺入高效减水剂可改善工作性,减少拌合用水量约20%,同时可进一步提高强度。混凝土中掺入高效减水剂,可在保证工作性的前提下,增大粉煤灰或矿渣等水泥基替代材料的掺量,结语水泥,同时不影响混凝土的强度,因此具有突出的环境和经济效益。同样,当水泥浆或混凝土中掺用硅灰时,达到相同工作性所需的拌合用水量随硅灰掺量的增大而增大。为此,可在硅灰掺量一定的条件下,掺入高效减水剂拌合用水量;亦可在拌合用水量一定的条件下,掺入高效减水剂来增大硅灰掺量。
5. 结语
文章通过结合笔者从事混凝土减水剂研究的相关工作经验,对聚羧酸高效缓凝减水剂的结构特点进行了详细分析,针对聚羧酸高效缓凝减水剂对混凝土的抗渗性、抗冻融性、抗硫酸盐腐蚀性、抗氯盐腐蚀性、钢筋锈蚀、钢筋-混凝土粘结强度等耐久性的影响进行了全面分析。分析结果表明,掺用高效减水剂可起到适度引气、降低水灰比的作用.所以掺入高效减水利可提高硬化混凝土耐久性,至少可以说,高效减水剂的掺入不会对耐久性产生不利影响。
参考文献:
[1] 黄大能,谢尧生. 中低强度混凝土专用聚羧酸减水剂――Point-400S型缓凝高效减水剂[J]. 建筑施工,2002,(03):35~39.
[2] 王子明;郝利炜;王晓丰. 第三代混凝土减水剂――聚羧酸系高性能减水剂[J]. 山西建筑,2011,(06):78~80.
【关键词】高层建筑;转换层;钢筋混凝土;施工技术
一、钢筋绑扎施工技术
(1)施工前的准备工作。在施工前,应首先把握钢筋的原料质量,确保按照设计要求标准与规格采购。在钢筋工程施工前,需按照图纸的要求级别、根数、直径、尺寸、形状等准备好钢筋下料。在制作钢筋前,需保证其表面的氧化皮及污垢清理干净,对于现场缺少与图纸要求相符的材料,需要用其他规格材料替代时,必须征得设计部门与监理部门的同意,经过设计变更手续后才能施工。(2)钢筋的施工方式。由于框支梁的钢筋需要插入柱内约1.2~1.5m,因此柱内混凝土必须等到框支梁绑扎完毕之后才能进行浇筑,在浇筑过程中应注意避免钢筋移位及混凝土污染钢筋现象。框支梁钢筋在绑扎时应事先搭设临时的钢管支撑,等到混凝土浇筑之后再拆除,重新搭设正式的框支梁支撑架,当梁的跨度≥8.5cm时,框支梁除了按照设计的要求采取配筋之外,还应确保钢筋骨架就位后不会产生施工变形,并在梁的上部下排筋下端加设Φ22≤220mm的横向支撑钢筋,并沿着梁骨架的两侧加设Φ22≤100mm的斜撑垂直支撑筋。因框支梁柱节点处钢筋较密,钢筋下料时需精算弯钩长度、每根主筋做好编号,保证钢筋绑扎一次到位,确保框支梁柱节点截面尺寸;考虑框支梁柱节点浇筑混凝土时下料难、下振动棒难的情况,绑扎此处钢筋时可预先间隔插入Φ48钢管撑开下料、下棒空间。
二、转换层的钢筋施工要注意的事项
(1)首先要熟悉图纸、施工顺序。在施工转换层的施工前钢筋翻样必须熟悉图纸,特别是对结构关键部位放大样。钢筋在绑扎前必须对施工顺序、操作方法和要求向操作人员详细交底,施工过程中对钢筋规格、数量、位置随时进行复核检查。要特别注意一些较复杂部位的钢筋位置,数量及规格。(2)控制各种钢筋的施工。施工时,在钢筋绑扎完成后,必须特别检查直螺纹接头以及悬臂结构的撑脚是否牢固可靠。施工当中要严格控制柱插筋位置,避免发生钢筋位移及规格与设计图纸不符。控制面板负筋的高度,特别是悬挑部位的钢筋,设置钢筋支架及跳板,避免人为踩踏后落低,悬挑结构必须单独开具隐蔽工程验收单。(3)工程结构的钢筋不任意代换。在施工转换层的结构的工程结构上的钢筋不得任意代换,实际情况需调整时必须由技术部门与设计协商同意后方可施行,并办技术核定单。钢筋的绑扎搭接及锚固除规范要求外还须满足抗震设计规范要求。钢筋绑扎时如遇预留洞、预埋件、管道位置,须割断妨碍的钢筋,要按图纸要求留加强筋,严禁任意拆、移、割。(4)专人管理钢筋混凝土施工。在施工浇捣混凝土时要派专人看管,随时随地对钢筋进行纠偏,以保证钢筋位置正确。柱头、剪力墙插筋与底板下皮钢筋绑扎牢固,在底板面筋上套一只箍筋,箍筋位置放正确后与底板面筋点焊,离面筋1米的范围内再套三只箍筋,插筋与箍筋绑扎牢固。剪力墙插筋根据面筋的轴线,用麻线拉出剪力墙的外边线,在底板面筋点焊剪力墙插筋的定位筋,根据定位筋插入钢筋,下端与底板下皮钢筋绑扎牢固,上部与定位筋绑扎牢固,离定位筋1米高度范围内绑扎三道引铁,并设置板墙“S”拉筋。转换板底部保护层厚度为35mm,采用35×50×50的混凝土垫块,梅花形布置,每平米不少于一块。顶部保护层厚度为35mm。
三、转换层混凝土的浇筑技术
(1)确保混凝土施工.在进行混凝土施工尽量安排在白天进行,并确保混凝土的输送不问断。混凝土浇筑应分层进行,每层高度控制在300~500mm。每层间隔时间1.5~2h。混凝土的振捣采用机械振捣为主,人工扦插为辅。插入振动器宜采用快插慢拔,振动时间以出现泛浆为准,同时插入点距离应在振动棒有半径1.25倍范围内。(2)混凝土的铺设。在进行楼板混凝土浇筑,除在梁处采用插入式振动器外,其余均采平板振动器沿垂直浇筑方向来回振捣。平板振动器依口成排进行,且排与排之间应有一定的搭接,确保混凝土不漏振,以达到其密实度。(3)严格进行施工布管及拆管。管泵送前,加强压送水湿润管和泵体,必要时将湿麻袋覆盖于泵管上,降低混凝土温度;泵送过程中,有泵管与溜槽配合,控制泵送冲击力,避免挠动深梁锚固筋;混凝土入模温度控制。入模温度直接影响混凝土的中心温升值,固而降低入模温度是转换层大体积混凝土施工重要控制内容之一。
参 考 文 献
[1]赵西安.现代高层建筑结构设计[M].北京:科学出版社,2000:937~1146
关键词:混凝土梁式转换层结构;施工技术;分析;设计
近些年来,我国的建筑行业得到了飞速的发展,涌现出越来越多的建筑结构形式。其中,转换层结构实现了上下建筑空间和结构形式的变化,在现代建筑结构中具有重要意义。所谓的转换层结构,就是由于高层建筑上下部楼层结构体系差异较大或者由于上下楼层竖向结构轴线错误或距离扩大,导致建筑在设计时需在上下楼层间布置的一种建筑结构。在实际工程中,转换层的结构形式多种多样,但以梁式转换层最为常用,本文结合具体的工程实例,对混凝土梁式转换层结构的施工技术进行了分析阐述。
1 梁式转换层结构分析
梁式转换层结构采用将上部剪力墙落在下部转换大梁的框支梁上,通过框支柱支撑框支梁,工程上常称梁式框支剪力墙结构。梁式转换层结构传力方式采用墙―梁―柱(墙),其传力直接、明确,工程上易于计算、分析和设计,施工也简单明了。梁式转换层由于有其独特的优势,在底部大空间的框支剪力墙结构体系中广泛应用,但对于上下轴线错位布置结构,由于需较多的转换次梁,其局限性较为明显。在工程实际应用中,其结构形式多样,基本原理也大多采用下部的转换大梁来支托上部结构。根据转换层上部结构形式及受力特点,梁式转换层主要包括以下八种形式,如图1所示。
图1 梁式转换层结构示意图
2 转换层设计应力分析
一般来说,高层建筑转换层设计时,由于下部楼层空间较大,转换层高度有可能产生突变,需考虑将转换层上、下楼层结构抗侧刚度及承载力设计保持一致,确保转换层传力部位安全有效,满足高层建筑抗强风和抗震设计的要求。
多高层建筑转换层结构,其地震剪力应按《高层建筑混凝土结构技术规程》乘以增大系数(一般选1.5),对特一级、一级、二级转换层结构其地震剪力应乘以增大系数分别为1.8、1.5和1.25。
转换层抗震设计时除考虑竖向荷载、风荷载或水平地震作用外,还对竖向地震作用进行计算分析。转换层建筑竖向地震剪力的计算可以通过反应谱方法或动力时程来计算,工程上一般近似考虑将转换层地震竖向剪力用重力荷载内力乘以增大系数(一般选取1.1)。
转换层水平设计,除整体计算外还需要做进一步细节补充计算。工程上一般采用计算机软件协助和手算进行。首先将不同抗震设防烈度和抗震等级的标准值按照规定折算成设计值,结合转换层荷载计算结果,通过水平转换层跨连和墙连情况计算内力。其次,需考虑风荷载组合时,将计算结果进行叠加即可。最后,将计算结果与整体分析结果进行比较,按照较大截面设计值进行选择。
3 工程实际
3.1 工程概况
某工程地下室2层,地上22层。其中1层层高为5.1m,2层、3层层高为4.2m,4层层高为5.1m,4层以下为8.4m×8.4m大柱网,5层以上为剪力墙住宅楼,4层设置为转换层。建筑下部竖向结构除核心筒外主要为1100mm×1100mm的方柱;水平结构主要为高大断面框架梁,其截面尺寸主要有:800mm×1500mm;800mm×1700mm;900mm×1700mm;900mm×1800mm;1000mm×1800mm;1000mm×2000mm等。水平结构配筋中,纵向钢筋以三级为主,直径分别为28mm和32mm,下部设计最多6排,上部最多5排设计,转换层其他纵筋直径均大于20mm;箍筋以二级为主,直径12mm~16mm,其他一级箍筋直径8mm~12mm。板厚180mm,板双层配筋均为通长Φ12mm@200mm,混凝土C55,内掺≥12%的UEA-H及适量杜拉纤维。
3.2 模板支撑系统的设计
竖向结构的模板施工同其他结构,主要采用散拼模板,施工工艺按照柱、墙、梁模的配置要求进行,并采用对拉螺栓设计。由于本工程体量大,梁体自重与施工荷载大,因此梁与板模板的支撑施工非常关键。在本工程模板系统设计中,板厚180mm,荷载4.50kN/m2,选择板模支撑为Φ48mm×3.5mm的钢管扣件支撑体系,钢管纵横间距800mm;对转换大梁,因其荷载最大达42kN/m,梁模支撑选择单立杆钢管扣件支撑体系,立杆间距控制450mm~550mm之间,受力横杆为双杆,纵横水平杆间距从下到上依次为250mm,1200mm,1200mm。
3.3 支撑搭设及构造要求
模板支撑搭设顺序如下:转换大梁支撑较大次梁一般次梁搭设板模支撑。转换大梁模板支撑搭设工艺:先按700mm搭设立杆纵横间距,将水平杆间距设置为1200mm;在钢筋绑扎过程中,首先对梁立杆加密,使梁宽+700mm范围内的立杆间距控制在350mm内,同时,对加密区的每根立杆下铺垫60mm×160mm的木方,木方长3000mm~3500mm,立杆底部、木方上铺6mm厚×100mm×100mm的钢板。
为了改善转换梁模板支撑受力,将大梁的少量荷载传递到下层梁板根部,改善支撑系统的稳定性,对大梁的中间1/4跨加斜向支撑,支撑体系如图2所示。同时,与楼层的其余结构支撑连成整体,并对整个支撑系统加设斜向支撑及剪刀支撑,间距6000mm。
图2 模板支撑体系示意
板模的支撑体系搭设按照主体结构模板支撑要求施工,同时考虑与大梁支撑的连接。梁侧模施工按照墙体模板施工要求进行,对拉螺栓的间距严格控制在600mm以内。楼梯间部位的大梁模板支撑间距同其余大梁,其支撑并辅助于再下一层的梁板结构。
3.4 钢筋工程
3.4.1 钢筋料表的编制
下料长度:直钢筋下料长度为构件长度-保护层厚度+弯钩增加长度;弯起筋下料长度为减去保护层厚度的直段长度+斜段长度+弯钩增加长度-弯曲调整值;箍筋下料长度为减去保护层厚度的箍筋周长+箍筋调整值。考虑与梁筋的关系,竖向钢筋应在原留置钢筋的基础上确定下料长度;水平结构的下料长度以单根构件长度为依据。如果超过该控制长度,采取在作业面连接来完成。
箍筋的大小控制:柱在钢筋混凝土构件中起受压、受弯作用。柱根据外形不同有普通箍筋柱和螺旋箍筋柱两种。柱内配置的钢筋有纵向钢筋和箍筋。纵向钢筋主要起承受压力的作用,箍筋起限制横向变形,有助抗压强度提高,对纵向钢筋定位并与纵筋形成钢筋骨架的作用。柱内箍筋应采用封闭式。主箍宽度应以构件断面尺寸减2倍的主筋保护层为内空尺寸,其高度的控制应根据梁绑扎的先后顺序确定,并应满足设计总说明要求;内部次箍宽度应以主箍的内空尺寸平分几等份后作为内空尺寸,高度同主箍。
3.4.2 钢筋的制作
钢筋加工制作时,要将钢筋加工表与设计图复核,检查下料表是否有错误和遗漏钢筋,对每种钢筋要按下料表检查是否达到要求,经过这两道检查后,再按下料表放出实样,试制合格后方可成批制作,加工好的钢筋要挂牌堆放整齐有序。
3.4.3 钢筋的安装与绑扎
根据设计图纸检查钢筋的钢号、直径、根数及间距是否正确,特别要检查负筋的位置。检查钢筋接头的位置及搭接长度是否符合规范。钢筋绑扎是否牢固,有无松动。检查混凝土保护层是否符合规范要求。检查钢筋表面是否有油渍、漆污和颗粒状(或片状)铁锈等――钢筋表面不允许有上述缺陷。钢筋位置及预埋件位置偏差要在规定的范围之内。
柱、墙钢筋的绑扎基本同主体结构,但柱子钢筋的绑扎应分两步进行,即先将梁以下柱子的箍筋依序套入柱主筋内并绑扎到位,在梁、柱节点位置,待梁的全部钢筋摆放到位以后,再将柱子的其他单肢箍及柱筋外箍分别绑扎到位。
3.4.4 钢筋连接
钢筋机械连接强度高,质量稳定可靠;操作简单,施工速度快;适用范围广,适用于各种方位及同、异径钢筋的连接;不受钢筋的化学成分、人为因素、气候、电力等诸多因素的影响;无污染,符合环保要求,无明火操作,施工安全可靠。本层所有框支梁的连接采用滚压直螺纹机械连接。
3.5 混凝土工程
本工程中转换层混凝土施工工程量大,浇筑时间长。为保证施工质量,在施工中采取以下措施。
混凝土质量控制:达到工程需要的混凝土强度;控制12h~15h的初凝时间;达到大体积混凝土施工工艺:施工时减少单方用水量并利用掺用外加剂等来提高和易性及流动性。在浇筑时,应有严格的计划,注明标号、体量、浇筑时间、坍落度、外加剂(包括杜拉纤维)掺量等,减少水泥用量并优选低水化热水泥。
施工缝设计:对于所有墙体和竖向施工缝进行处理。浇筑工艺采用:先东西侧,后南北侧顺序,分层浇筑转换大梁,每层高度为50cm,不在主梁上留施工缝。浇筑时每个出料口采用2台~3台振动棒和多个平板振动器,振动时间为25s~35s,以保证密实,确保振捣到位。
取样并养护混凝土试件:本工程转换层梁板结构混凝土浇筑施工中取样数量至少应为12组,其中一组为7d强度,采用相同条件进行养护。养护工艺主要有:覆盖养护,利用双层薄膜并经润湿后覆盖,覆盖时间为7d以上,7d后利用浇水养护,浇水养护的时间也是7d,始终保持混凝土湿润。
4 结语
随着我国的建筑行业的飞速发展,越来越多的建筑结构形式逐渐出现,转换层结构的应用也会越来越广泛。由于不同用途的楼层,需要大小不同的开间,就要采用不同的转换层结构形式,但是带转换层的高层建筑在转换层部分通常梁、柱或板的尺寸较大,施工位置较高,因此,为了保障转换层的质量,要对转换层现场施工的质量控制、施工的安全保障措施等方面有极为严格的限制。
参考文献:
关键词: 钢筋混凝土;梁式转换层;特点分析;施工技术;质量控制
转换层的施工是高层建筑结构施工的难点和重点,必须事先根据要求制定合理的施工方案,混凝土结构梁式转换层施工易在施工过程中发生一些质量问题,严重的甚至会导致返工的重大损失。因此对于转换层的施工应该高度重视关键的施工技术问题并对相关因素进行分析,制定可行的施工方案,从而保证转换层施工的可靠性。
1工程概况
本工程属多功能商住楼,地下二层,地上三十层;总高92。1m。首层至四层为商业门店,五至三十层为住宅。其中一至四层为框支剪力墙结构,四层为梁式转换层;五至三十层为剪力墙结构。
2梁式转换层框支柱及框支梁的特点
2.1构件截面尺寸大,主筋及箍筋种类多且直径较大
转换层层高5.53m,框支柱截面尺寸为1200×1200、1200×1800;框支梁截面为1200×2000、800×1800两种。框支柱主筋直径为36mm、32mm及28mm,框支梁的主筋直径为32mm及25mm,且均为三级钢筋。大直径钢筋重量大不易倒运,在制作过程对钢筋机械设备磨损较大,所以要安排好人力及设备以保证钢筋下料的及时性。
箍筋的种类繁多且直径较大,在制作过程中严格按照图纸尺寸进行加工。一次制作的数量不要过多以免箍筋尺寸产生误差,导致绑扎过程中箍筋无法绑扎到位。制作好的箍筋要按次序分类堆放,吊装至作业面时减少了施工人员挑料的时间,加快施工进度。
绑扎过程中大直径钢筋不易绑扎到位,尤其是框支柱及梁主筋的间距不易控制。箍筋绑扎前要严格按照间距在主筋上做好标识,绑扎时按照图纸要求将箍筋绑#LN位。
2.2直螺纹连接技术要求高
由于钢筋直径较大且自重较大,所以钢筋连接采用对焊或电弧焊都不妥,不易操作且不能保证施工质量,在实际操作中采用剥肋滚压直螺纹连接技术。框支柱及梁直螺纹接头采用I级接头。滚压直螺纹钢筋连接属于“现场预制、现场连接”式,因此要求设备摆设位置要相对固定,安放位置周围要求有一定事实上的空间。一至四层层高较高,框支柱的主筋也较长,必须合理安排好原料堆放场地与各种钢筋机械设备的位置,避免重复倒运。滚压机安装时中心轴线应与钢筋轴线保持水平面同心高度,同时设置待加工钢筋支架,其摆放位置应适应钢筋加工,直螺纹加工过程中必须严格按照规范进行操作。
①钢筋下料必须使用砂轮切割机,以保证钢筋丝头长度及直径。切LI面应与钢筋轴线垂直,不得有马蹄形或翘曲。
②剥肋长度应略短于滚压丝扣的长度一扣。
③卸下加工过的钢筋用量规检查螺纹中径及长度,并做调整,直至加工出合格丝头。
④加工好的钢筋及时戴保护帽,连接钢筋以前检查钢筋丝头是否和套筒规格一致,直螺纹牙形是否完好、清洁。
⑤套丝长度:接头长度为套筒长度加两端外露丝扣长度。
2.3钢筋自重大。钢筋数量多直径大导致了构件总体钢筋自重大
以其中一道框支梁为例:钢筋自重为9.44吨,安装框支梁上部纵筋时需塔吊进行逐一吊装。梁下支撑若按常规支撑体系,由三层梁板来承受如此大的荷载势必会破坏梁板结构,而且不能避免因模板支撑体系变形叠加而导致楼板产生开裂等质量问题,因此不能采用常规的模板支撑体系。
2.4结构受力复杂。施工技术要求高
转换层中框支柱与框支梁的截面同宽,加之梁、柱自身的钢筋根数较多,导致了钢筋排列密集。柱顶梁柱锚固筋与板筋、梁端根部钢筋穿插,使梁柱节点施工难度大。合理安排好施工工序是保证梁柱节点有质有序施工的关键。
2.5对纵向钢筋弯折要求高
根据03G101―1中对纵向钢筋弯折的要求为:d≥25时,r=6d。依此计算,直径为36的钢筋弯折半径应为216mm。现场的钢筋弯曲设备无法满足此要求,必须自制专项弯曲配套设备。
3框支柱钢筋的施工
3.1框支柱箍筋绑扎
由于框支柱主筋大部分需要弯锚入框支梁或楼层板内,极少部分纵筋本着“能通则通”的原则延伸到上层剪力墙楼板顶(见图1)。弯锚长度自框支柱边缘算起,弯锚人框支梁或楼层板内长度≥lae,故柱箍筋必须提前全部戴齐后方能进行主筋的连接!待柱主筋连接完毕后再将箍筋逐个分开按间距绑扎到位。
图1框支柱纵筋锚固方式
3.2框支柱纵筋的绑扎
由于主筋根数多且锚入梁内或板内的位置不同,导致了框支柱的纵筋平直段高度不一致,在施工过程中对每根框支柱的每根纵筋进行编号,且每根柱均附一张钢筋详图。现场绑扎时根据钢筋料单及带有钢筋编号的柱筋图纸将柱筋一一连接到位。
框支柱主筋到四层地面其顶锚固长度必须保证统一标高。施工过程中严格按照规范执行:框支柱纵向受力钢筋接头宜相互错开,钢筋机械连接的连接区段长度以35d计算(d为被连接钢筋中的较大直径),在距基础顶面嵌固部位Hn/3设第一个接头,距楼面≥Hn/6、≥hc、≥500mm(取较大值)处设第一个接头(Hn为所在楼层柱净高、hc为柱截面长边尺寸)。以此可根据各层层高来确定柱主筋的下料长度。为了确保框支柱纵筋能准确的锚入转换层梁及板内,待三层顶板浇筑完毕后及时在柱纵筋上弹好50线,然后依据50线来确定待接纵筋垂直长度。根据纵筋是锚入梁内还是锚人板内来确定钢筋的下料长度(锚人板内的钢筋比锚入梁内的垂直长度长100ram)。
框支柱纵筋顶部弯锚长度过长,采用直螺纹连接时必须采用正反丝的套筒。主筋平直段弯锚人梁、板的钢筋应在连接前确定弯锚的方向:中问柱的主筋可向四周梁及板内弯锚,边柱应向内侧的梁板内弯锚。为了避免锚入板内的钢筋过于靠近梁边而导致梁根部箍筋无法绑扎到位,锚人板的纵筋应与柱立面呈4O~60度的夹角。
3.3框支柱浇筑孔的留置
根据工程实际情况,在适宜的位置留置框支柱混凝土浇筑孔。留置方法为:距待浇筑混凝土面150mm处将柱箍筋向上提,使上下箍筋的间距保持在500mm左右,中间采用架管配合木方来支撑上部箍筋的重量。由于框支柱纵筋间距较小,暂不安装接头部位高于待浇混凝土面的纵筋,待混凝土浇筑完毕后再进行连接。这样既临时加大了柱纵筋的间距又保证了纵筋不被混凝土污染。
4框支梁钢筋施工
4.1节点处理
由于框支梁钢筋较多,且梁柱截面同宽,框支梁大部分纵筋无法在同一竖向平面处弯锚。考虑将框支梁的上部纵筋在柱内不同位置向下弯锚,且确保钢筋的水平锚固长度水平段不少于0.4le。梁的上层、底层及端部弯头筋均是多排钢筋,所以在钢筋绑扎时对于梁上部纵筋每排间距确保不少于1.5d且大于30mm(d为受力钢筋直径);对于梁下部纵筋每排间距确保不小于d且必须大于25mm。对于梁端部弯头钢筋由于受柱断面尺寸限制,弯头钢筋排距不得小于25mm。
4.2钢筋的吊装
框支梁上部纵筋垂直锚固长度达3.2m,钢筋过长且自重较大,无法按照常规的方法进行安装,现场施工采用塔吊对纵筋进行逐根吊装。由于纵筋长度较长,为了防止纵筋在吊装时发生变形而无法保证梁的截面尺寸,在吊装前根据纵筋长度不同在其中部辅以不同长度的架管,对其进行强度补强。每根纵筋的位置应提前确定,根据纵筋的直径及平直段长度确定吊装次序。
4.3钢筋安装
梁钢筋绑扎的方法:核心筒部位周圈剪力墙、柱的水平筋及箍筋先绑扎到转换层底板下口平。框支梁采用“自下而上,整体同步”的方法施工,即根据梁顶纵筋所在的标高位置整体同步向上安装绑扎,每一个同标高内纵筋全部绑扎完毕后,再绑上部同一标高纵筋。
首先在支设好的梁底模板两侧搭设施工架子,架子高度要高于梁纵筋的设计标高。架子用于支撑梁上部纵筋的重量,抬高纵筋的高度以便套箍筋、穿底部纵筋。先放置梁上部两侧的纵筋,注意纵筋的位置,这样既可以保证其余纵筋的位置,又可以保证箍筋绑扎完毕后不会紧贴梁侧模板。梁上部纵筋为多排,先安装下排纵筋再按装上排纵筋。两层钢筋之间加钢筋头,并用铁丝绑扎牢固。
4.4钢筋安装的质量控制
对于梁内同一位置有多层钢筋时,为确保受力钢筋的位置准确、摆放平直,即采用直径为25mm的短节钢筋横向放置于两层钢筋之间,短节钢筋间距沿梁长度方向每1米放置一根,且每层受力钢筋之间竖向均用钢筋头隔开。梁底部钢筋的混凝土保护层为35mm,对于高度为1800及以上的框架梁,由于钢筋直径均在25mm以上。R根数众多,因此钢筋自重很大,大理石垫块已不能承受其荷载。采用直径为36mm、长度为1.4倍梁截面宽度的短节钢筋作为垫块,将此短钢筋与底层纵向受力钢筋约呈45度夹角放在梁底模板与底层箍筋之间。
图2 框支梁主筋安装示意图
5结束语
在工程实践中采用了以上行之有效的质量保证,确保了框支柱及框支梁钢筋工程的顺利进行,钢筋数量及位置准确。同时也符合设计要求,满足规范、标准要求,满足强制性条文要求。
参考文献
关键词:大体积混凝土;转换层;施工;方法
[ Abstract ] This paper analyzes construction technology of a residential building engineering ‘s big volume concrete ,puts forward the concrete construction method .
[ Key words ] big volume concrete; transition layer; construction ;method
由于转换层混凝土的施工是大体积混凝土施工,所以几平所有文献资料都认为转换层混凝土的施工主要是防止裂缝问题。就作者调查过的有限工程实例而言,到目前为止还未发现有任何一个工程的转换层的混凝土表面出现超出规范要求的裂缝,比一般的结构楼层质量要好的多。这可能是由于在作业过程中充分重视的原因,从而也可以肯定钢筋混凝土结构的施工质量好坏对控制裂缝起着至关重要的作用。
1 转换层的重要作用
转换层是一幢住宅建筑物中为满足不同使用功能,采用不同结构形式相连结的关节点,它既是下部结构的封顶,又是上部结构的“空中基础”,在整个建筑物结构体系中起着至关重要的连结纽带作用。转换层构件一般截面尺寸较大,板式转换层的厚度多在300cm以上,所以转换层混凝土的施工必须按大体积混凝土要求进行施工。
2 转换层大体积混凝土与基础工程中大体积混凝土的区别
2.1 基础大体积混凝土下底面几乎不受外界温度影响,而转换层大体积混凝土几乎所有的面都受外界温度变化的影响,外界温度的较大波动都有可能引起混凝土温度裂缝的产生。
2.2 基础大体积混凝土一般位于基坑内,下面是桩基和原土地基,不存在支撑问题,施工环境较为理想。而转换层大体积混凝土多在地面以上,处于悬空状态,支撑问题是转换层结构的主要问题。
2.3 基础混凝土的各种温度控制理论和裂缝控制理论比较成熟,而转换层大体积混凝土目前尚缺乏成熟的理论,只能参考基础大体积混凝土理论考虑。
3 转换层大体积混凝土的施工工艺
某工程建筑面积7833.33m2,由十六层标准层和一、二层停车场两部分组成,第3层设置厚板转换层,转换层板厚为450mm。厚板的受力钢筋为双层双向22@12O钢筋。厚板及混凝土强度等级为C50配合比如表1,混凝土一次浇筑成型。
注:①本配合比所使用材料为干材料,根据材料实际含水量情况随时进行现场调整。
3.1 转换层混凝土的配合比设计
3.1.1 水泥的选用:优先选用水化热低的42.5MPa,矿渣硅酸盐水泥或火山灰硅酸盐水泥:掺入粉煤灰或沸石粉,降低水泥的用量,使用水化热相应降低;掺入减水剂,减少水的用量,使混凝土缓凝推迟水化热峰值的出现,延长升温阶段,达到混凝土表面温度峰值梯度减小的目的。
3.1.2 粉煤灰:为了减少水泥的用量,可掺入水泥用量10%的粉煤灰取代水泥,粉煤灰不得超过《矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰质硅酸盐水泥)(GB1344—85)所规定的最高限量。
3.1.3 减水剂:为了满足和易性和减缓水泥早期水化热发热量的要求,宜在混凝土中掺入适量的缓凝型减水剂。常用的有木质素减水剂、树脂减水剂等。在转换层大体积混凝土加入的主要是木质素磺酸钙(又称M型减水剂),在保持混凝土配合比不变情况下,掺与水泥质量0.2~0.3%的M型减水剂可使坍落度提高10mm左右;保持混凝土的抗压强度和坍落度不变,一般可节约水泥8~1O%;保持混凝土坍落度和水泥用量不变,其减水率为1O%左右,抗压强度提高1O~15%。
3.1.4 其它外加剂:除了加入减水剂外,转换层混凝土还可根据需要加入其它外加剂如引气剂、膨胀剂(JEA膨胀剂)、泵送剂、杜拉纤维、钢纤维、聚丙烯纤维等。
3.2 转换层混凝土的浇筑
3.2.1 混凝土的浇筑方向应先中间、后周边,向两个方向推进(如图1),转换梁、板混凝土采用“一个坡度,薄层浇筑,一坡到顶,循序渐进”的原则(如图2)。一方面,这样浇筑加大了混凝土部分工作面的面积,有利于混凝上部分水化热排出,另一方面,也有利于降低混凝土浇筑时模板的侧压力。
3.2.2 节点部位的保证措施。转换层中梁、柱、墙节点部位钢筋过于密集,为确保此部位的混凝土浇筑密实,须采取以下措施:
a.采用同标号的细石混凝土浇筑上述部位;
b.对局部钢筋过于密集处要作适当调整,确保插入式振动器有足够的工作界面;
c.浇筑过程中安排专人检查墙、柱等竖向结构的侧模,如发现墙、柱混凝土浇筑到位后模板经敲击发出空响声,则应立即通知混凝土浇筑人员,对此部位加强振捣,并补浇混凝土,确保混凝土浇筑密实;
3.2.3 大体积混凝土的测温极其重要,转换层混凝土浇筑可以通过测温来了解混凝土的内部变化情况。测温的方法是通过在混凝土的内部埋设热电阻传感器,用测温仪进行量测。根据混凝土水化热温升规律确定测温时间大约为1O~14d,测温分为两个阶段。第一阶段为升温阶段,自混凝土终凝后开始测温至混凝土的最高温度;第二阶段为降温阶段,自混凝土最高温度到混凝土中心温度为4OºC左右。各测点测量温度,前72h每3h测一次,72h后每6h测一次,并做好测温记录,及时分析测温结果,以便调整混凝土的养护措施。
3.2.4 混凝土的养护。转换层混凝土初凝后、上表面立即覆盖塑料薄膜和草袋子并浇水养护,不宜浇水过多,保持混凝土的湿润即可。厚板侧面及底面采用保留模板的方法养护,部分钢模板的部位要采用外包塑料薄膜和干草袋的方法保温,养护时间不少于14d。
4 大体积混凝土温度控制措施
混凝土采取保温养护,为了减少混凝土内外温差,延缓收缩和散热时间(即使后期缓慢地降温),使混凝土在缓慢的散热过程中获得必要的强度来抵抗温度应力,同时降低变形变化的速度,充分发挥材料的徐变松驰特性,有效的消减约束应力,使之小于该龄期抗拉强度,防止内外温差过大并超过允许的界限(一般为20~25ºC),导致出现温度裂缝,而采取在混凝土表面适当覆盖保温材料。保温法温控计算包括选定保温材料、计算保温材料需要的厚度。
其计算根据热交换原理,假定混凝土的中心向混凝土表面散失热量,等于混凝土表面保温材料应补充的发热量。
这种保温方法大多采用在表面覆盖1~2层草袋(或草垫、下同),或一层塑料薄膜加一层草袋。可使混凝土外表与外界气温差缩小到1O℃ 以内,同时可减少混凝土表面热扩散,充分发挥混凝土强度的潜力和松驰作用,使应力小于抗拉强度;另一方面能保持适度的湿养护(或浇少量的水湿润),有利于水泥的水化作用顺利进行和弹性模量的增长;前者可提高混凝土早期的抗拉抢渡,防止表面脱水;后者可增强抵抗变形能力。大量的工程实践证明,保温养护对防止大体积混凝土结构出现有害深裂缝或贯穿性温度收缩裂缝是有效的。
本工程实例采用一层草袋和一层塑料布基本上可以满足保温要求。
【关键词】混凝土结构;转换层;施工特点;施工技术;安全保障措施
现代高层建筑向更高、体型更复杂、结构形式更多样、功能更齐全、综合性更强的方向发展。建筑功能日益复杂化,使得建筑结构常常需要采用结构转换层来完成上、下层建筑物结构的转换。不同用途的楼层,需要大小不同的开间,采用不同的结构形式。带转换层的高层建筑在转换层部分,由于梁、柱或板的尺寸较大,施工位置较高,所以对转换层现场施工的质量控制、施工的安全保障措施等方面都有极为严格的限制。
1 转换层的结构设计特点
在转换层的结构设计中,由于结构下部楼层受力较大,上部楼层受力较小,正常布置时是下部刚度大,墙多柱网密,到上部渐渐减少墙,柱扩大轴线间距。转换层大致有梁式、桁架式、空腹桁架式、箱形和板式等。和一般结构层相比,转换层结构具有结构重量大、结构层刚度大、几何尺寸超大、受力复杂等特点,这就意味着转换结构组成了建筑物的主要构件,它们的设计是否合理、安全、经济对整个结构的安全性、结构造价、施工费用等有着重要的影响。转换层的结构设计一般都是按照强化转换层及其下部、弱化转换层上部的原则进行的,使转换层上下主体结构的侧向刚度尽量接近,平滑过渡。根据抗震要求转换层一般均设置在 3 层及3层以上。
2 转换层的施工特点与措施
2.1 转换层模板支撑系统
转换层结构的体量大、自重大,对模板支撑系统的承载能力、刚度和稳定性都有严格的要求,必须进行详细的计算。以梁式结构转换层为例,梁本身的线荷载通常在60~100 kN/m,加上施工荷载就更大。在结构设计时,应综合考虑转换结构的施工方案,建立符合实际的力学分析模式,达到设计和施工的统一。
设置模板支撑系统后,应对转换梁(板)及其下部楼层的楼板进行施工阶段的承载力验算。当作为多层支撑荷载传递时,上下立柱的位置应对齐,防止上下楼面因受力不匀而造成的局部损伤。在梁式结构转化层施工中,由于梁的侧向高度较大、厚度较薄,所以应验算模板系统侧向稳定性和侧向强度,防止整体跑位和胀模。
2.2 支撑系统的拆除
混凝土浇筑完成后,当混凝土强度达到设计强度时,才允许拆除模板及支撑系统。如采用搭设施工平台支模,可在转换层装饰装修完成后再拆除支撑系统。拆除前,须由施工人员提出拆除申请,由项目技术负责人组织有关人员进行验证,符合有关规定后方准予拆除模板。
2.3 钢筋工程
转换梁(板)的含钢量高,主筋长,梁柱节点区钢筋密集,合理安排好就位次序是钢筋施工的关键。在两梁相交的柱节点区上下共有几十层上百根主筋在此相聚,加上腰筋、柱筋等,主筋还须弯起锚固,众筋抢位现象十分突出。任何一根主筋的就位错误,均会造成大量的返工。因此,准确地翻样和下料是钢筋顺利施工的前提。转换层大梁的主筋是转换层中最重要的受力单元,应采用最可靠且对钢筋无损害的连接方式,通常采用冷挤压连接法。大梁上下几排钢筋在绑扎就位时要保证其上下对齐形成垂直的钢筋间隙,以便混凝土浇筑和振捣。一般转换梁底筋非常密集,施工时可与设计院、监理、甲方协商,合理安装转换梁中钢筋位置,有利于混凝土浇筑。由于钢筋复杂,浇筑混凝土时派专人检查及保护钢筋,避免钢筋变形移位。
当转换层的梁或板混凝土分两次浇筑时,应在施工缝上增设抗剪钢筋,以保证上下层混凝土结合牢固。
2.4 混凝土施工
转换层的混凝土一次浇筑量很大,混凝土的强度等级也较高,特别是梁式结构转换层和板式结构转换层,多属于大体积混凝土施工,不仅给模板支撑系统带来很大困难,而且混凝土内部容易产生温度裂缝。
在进行大跨度、超高度转换梁及转换厚板的混凝土施工时,应事先设计好混凝土浇筑的路线、浇筑方式,并采取措施防止混凝土产生温度裂缝。实际工程中经常采取的施工措施有:
2.4.1 转换层混凝土分层下料、分层振捣,每次浇筑厚度500mm左右。混凝土振捣采用赶浆法,上下层的间隔时间不应超过2h,以保证新老混凝土接槎部位粘结良好。
2.4.2 转换梁和梁柱相交的地方钢筋都非常密集,以致于许多地方都无法插入振动棒,为了保证混凝土进入梁底部,所以在混凝土浇筑前应及时进行实地勘察,确定振动棒的插入地点,振捣范围能否满足振捣要求等。除采用在钢筋下料时留出下料和振动棒位置外,还采用在转换梁和柱相交的地方和转换梁底部用钢管卡出插振动棒位置,浇筑混凝土前抽出钢管,就形成了下料口兼插入口。
2.4.3 转换梁的混凝土浇筑时应适当控制混凝土的浇筑速度,一般单层为5m/h,前后两层浇筑的间隙时间适当延长,且浇筑时必须有木工在下部进行模板的检查,浇筑时用锤子锤击四周侧模板,促进和检查下部混凝土的密实度。
2.4.4 转换层构件混凝土体积较大,混凝土强度等级高,商品混凝土水灰比大,收缩应变大,易产生构件表面微小裂缝,影响观感,为了防止产生裂缝,在混凝土内掺MPC 聚合物纤维膨胀剂,要求限制膨胀率不小于0.015%。根据混凝土的配合比和预计的施工气候及现场条件,应采取措施控制混凝土内外温度差,缓解大体积混凝土水化热高,温度应力过大,控制混凝土裂缝。
2.4.5 混凝土养护。混凝土由于浇筑体量大,所以浇筑后应特别注意养护,以减小混凝土内部与表面的温差值。待混凝土浇筑后,应用草包、麻袋或塑料薄膜覆盖保温,使表面保持湿润状态。冬季施工时还应按规定做好保温测温工作。
3 安全保障措施
高层建筑中转换层施工都属于高空危险作业,所以一个切实可行的安全保障措施是施工的关键。建筑工程施工的特点,决定了建筑施工中的危险因素多存在于高处交叉作业、垂直运输、电气工具使用以及基础工程作业中。伤亡事故主要有高处坠落、物体打击、机械伤害、触电事故,施工坍塌和中毒事故等类别,这几类伤亡事故是建设施工中的最主要伤害。
3.1 成立以项目经理为核心的安全管理领导机构,突出专职安全工程师的责权,建立以各队安全员为骨干的安全管理网络。
3.2 实行安全事故易发点控制法,通报事故易发点,由专人负责跟踪监控。
3.3 操作人员必须持有效证件上岗,并加强施工前的班前培训,熟悉施工工艺,提高安全意识。
3.4 建筑工人几乎每时每刻都工作在危险的环境中,必须配备安全帽等必需防护用品或用具,并随时高度关注可能出现的危险状况。
3.5 注意架体在搭设及后期施工过程中的安全,对架体立杆及结构楼板的应力、挠度位移变化,必须进行全程监测。
3.6 平台周边的临空面,应先期设置安全防护栏杆,并随着架体的搭设,及时用安全网进行全封闭的安全围护。
3.7 模板支撑系统的钢管脚手架与结构的相邻处,应每步每架设置刚性连墙杆,其余部位应与内架联结成整体,以提高排架支撑系统的整体稳定性。
3.8 在浇筑混凝土时,操作工人需时刻观测支撑体系的安全稳定情况。
【关键词】钢筋混凝土;转换层;施工技术
转换层结构要承受上部各层的全部荷载,在施工过程中应确保施工质量。针对高层建筑转换层施工时钢筋密集、浇筑的砼量大、跨度大且承受的竖向荷载大等难点,通过优化混凝土配合比,注意对钢筋密集部位的浇捣、控制温度及养护等措施,以保证砼强度达到要求,并有效控制混凝土早期收缩裂缝和后期有害裂缝的产生,从而确保高层建筑厚板结构转换层的稳定可靠。
1 转换层的结构和受力特点
高层建筑的厚板转换层通常是设置在建筑结构的下部,转换层要承受上部传递下来的荷载,如果结构层不具有足够的强度的话,结构破坏将会导致严重的后果。所以一般情况下转换层结构都需要采用刚度较大的材料,重量也要比一般的楼层结构超出不少。另外高层建筑的厚板转换层结构由于其自身具有较大的强度和刚度,与其他结构的差异性可能会导致在地震发生时,该部位产生较大的变形破坏。厚板转换层结构还具有较大的截面面积,截面过大也会增加施工的难度。
厚板转换层是一种三向都受力的复杂构件,高层建筑物上部传递下来的荷载也是复杂多变,分布也不够均匀。在上部剪力墙密集的部位,厚板转换层的内力就相对较大,在厚板转换层的边角位置,剪力墙数量少。板体内部的受力也就相对较小。厚板转换层的竖向受力方面要对整体的弯曲和局部的弯曲效应进行综合的考虑。高层建筑的厚板转换层的厚度是影响到结构动力反应的一个重要的因素。转换层的厚度会对结构的频率造成影响。在相同频率的策动力作用下,竖向力的影响效果会随着板体厚度的增加而显著的增加。厚板转换层中还存在着一定的薄膜应力。
2 转换层的布置形式
2.1 施工方案
厚板转换层自重及施工荷载为51.3kg/m2,采用常规的支模体系,单靠下层楼板承受如此大的荷载势必会破坏下层结构,而采用分层卸载的方法则必须从地下室底板起搭设4层支撑架,靠各层楼面的变形协调来传递扩散荷载,这样既不经济也不能保证结构楼板不产生开裂现象。经过分析比较和计算,确定采用叠合梁的原理转换厚板,即将转换板混凝土分两次浇筑,第一次浇筑0.8m厚,待其强度增长达到90%后再浇筑第二层1.0m厚混凝土,利用第一层先浇板承受第二层后浇板的施工荷载,转换板的钢筋相应分两层绑扎。
2.2 在底部形成大空间的转换层
在高层建筑的下部保留大空间的结构形式是现在很常见的情况,这种情况下可以在建筑平面的低端设置转换层,使得转换层能够跨越底层建筑的平面,使得上部荷载能够很好的传递到下部结构的支撑点上。另外也可以设置一个强度大的筒体,能够支撑起转换层,四周向外悬挑,这样也可以做到形成一个下部的大空间结构。
2.3 外部大柱网形式转换层
如果高层建筑存在筒中筒的结构形式,需要在外筒结构设置转换层结构。添加水平转换层之后可以在建筑的下部扩大柱子之间的间距,从而形成大的空间。这种情况下的转换层结构要沿着结构的外延的周围的柱列或者是角筒进行布置。此外按照结构功能的划分,转换层的结构形式又可以分为三类:上下结构层之间的转换。通常是采用剪力墙结构将上部的剪力墙转换为下部的框架,以便形成更大的内部自由空间结构。改变上下结构层的柱网和轴线。这种结构形式没有对上下结构层的结构进行改变,但是通过添加转换层扩大了柱子之间的间距。对结构形式和结构轴线同时改变。在上部结构层设置剪力墙通过转换层结构改变为框架,同时柱网的轴线要和上部结构的轴线错开布置,来达到一个上下部结构不对齐的目的。
3 施工方法
3.1 模板工程
模板支架采用扣件式钢管脚手架,钢管采用外径48mm、壁厚3.5mm的焊接钢管。立杆用3.6m的整根钢管,中间不设接头,间距为0.5m*0.5m,立杆下满铺2.5cm厚木板,水平方向拉杆设4道,并设剪刀撑。顶端横杆与立杆的扣件下加设1个扣件,以增大抗滑移能力。顶端横杆上放10cm*10cm木檩条,间距为40cm。模板采用竹胶板。转换层的侧模用¢14钢筋在相应位置与暗梁主筋拉接,外部与模板背楞固定。经验算,上述模板支撑体系满足第一步0.8m厚混凝土的施工要求。在转换层施工期间,1—3层的梁板支撑均不拆除,在第一步0.8m厚混凝土强度达到设计要求后,在第二步1.0m厚混凝土浇筑前,松开3层模板支撑顶端横杆与立杆的扣件进行卸荷,然后再全部上紧,以使第一步0.8m厚混凝土板和模板支撑体系共同承受上部荷载。在第二步1.0m厚混凝土强度达到设计要求后方可拆除全部模板及支撑。
3.2 混凝土工程
混凝土施工缝的处理。为使转换板的整板的承载性能不因混凝土分两次浇筑而下降,必须在两浇筑层结合面采取特殊处理措施,来保证两层混凝土板协同工作。预留坑槽:在先浇层板上表面留设间距lm呈梅花形布置的混凝土坑槽,槽深为100mm,平面边长300mm,通过预埋木盒子来实现。混凝土的浇筑。采用泵送商品混凝土,使用插入式振捣器分层捣实混凝土。混凝土测温。测温点布置必须具有代表性和可比性,沿浇灌高度,应布置在底部、中部和表面,垂直测点间距为500mm,水平测点间距为5m。当使用热电偶温度计时,其插入深度可按实际需要和具体情况而定,一般不少于热电偶体径的6—10倍,测温点的布置距边角和表面应大于50mm,并对测温数据进行分析,实施动态控制。由于转换层在春季施工,所以采用蓄水法进行养护,在混凝土初凝后先洒水养护3h。随后进行蓄水养护,蓄水高度为l00mm。板侧面挂草袋(或麻袋)进行浇水养护,使其保持湿润。根据在转换厚板不同深度各相关部位埋设的测温点,所显示的混凝土内部温度变化情况,及时采取措施,调整混凝土的养护水温。混凝土中心温度与表面温度之差。表面温度与环境温度之差均小于25摄氏度。当中心温度与表面温度之差超过25摄氏度时,可提高养护水温;表面温度与环境温度超过25摄氏度时,可适当降低养护水温。反之亦然。
4 结束语
由于转换层具有“大、重、密”的特点,使施工难度增大,稍有不慎,就可能发生支撑系统失稳、模板变形、钢筋错位、混凝土漏浆等质量问题。因此,在进行施工时,除加强施工技术管理外,还必须加强质量控制。模板支撑体系不仅要进行精确计算,还要有足够的构造措施保证,并要强化检查,完善手续。对进场钢管、扣件进行“三证检验”并随机抽查钢管厚度及扣件螺栓拧紧扭力矩。搭设过程中随时检查弹线的准确性及立杆是否与定位点对应,在确保混凝土全部达到设计强度的100%时支架方可拆除。钢筋绑扎必须保证位置的准确,为后续施工打下良好的基础。钢筋的品种、质量必须符合设计要求和有关标准规定,表面必须清洁,钢筋的间距要均匀,各排上下位置要对位,预埋位置、数量及形式必须符合设计要求。
参考文献: