公务员期刊网 精选范文 铁道工程论文范文

铁道工程论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的铁道工程论文主题范文,仅供参考,欢迎阅读并收藏。

铁道工程论文

第1篇:铁道工程论文范文

1.1铁道工程建设安全管理的主要内容分析

当前铁道工程项目的管理方法是采取以项目法施工管理的方式,其最为根本的特征就是把各生产要素有效的进行整合配置,并将其动态化的调配。铁道工程的施工管理在内容上是多方面的,其中的组建管理组织用来管理项目以及对项目的各计划的管理和对合同的管理等诸多方面。每个管理的内容都比较重要,对整个铁道工程建设的质量有着直接性的影响,所以将这些相关的管理内容要得到充分重视。

1.2铁道工程建设管理控制要素分析

铁道工程建设安全控制在当前还有着诸多压力,由于铁道工程建设是一项庞大的系统工程,在实际的建设过程中会面临环境及人等方面的因素影响,故此这些均为安全建设带来了很大的风险。其中的地质以及水文和气象等自然环境对铁道工程的建设会带来直接性的影响,另外还有面临着地下管线及交通、紧邻建筑等周边环境相对比较复杂的压力,还有技术及设备等诸多方面的控制压力,这些层面的控制要素都需要得到充分重视。

2铁道工程建设风险问题及安全管理策略实施

2.1铁道工程建设风险问题分析

从实际情况来看,铁道工程建设过程中还存在着诸多问题有待完善,这些问题会进一步引发风险,主要体现在施工前的准备工作没有得到切实做好。铁道建设行业施工前缺乏有效的规划及引导,这样在问题隐患上就有着很大的风险。在这些工程设备行业项目当中,倘若有一个环节没有做好就会引发整个建设的安全风险问题,会对后续的工作产生影响,进而造成经济和时间上的损失,对质量的控制也就存在着诸多困难。其次就是在铁道工程的建设施工部门的人员自身也有着不足,存在着违规违章的施工现象发生。主要就是施工管理人员及施工人员没有严格的遵循相关标准,所以对施工工程的质量带来的影响,降低了线路的强度。技术指导是铁道工程建设的重要环节,由于相关管理人员在技术上以及责任心方面没有得到有效的加强,就会造成施工质量得不到有效保障。这一方面的问题带来的风险是非常巨大的,所以管理人员自身的专业素质和技能是一个重要的问题。还有就是施工过的基础管理和施工组织相对比较薄弱,由于组织人员的配给有着很大的差异,人员自身素质及能力有着高低优劣,故此就对铁道施工建设造成一定影响。随意变更施工计划以及施工缺乏整体意识,工作作风不严谨,现场监管不合格等,这些问题都是造成铁道工程建设风险的直接因素。

2.2铁道工程建设安全管理策略实施

针对以上的相关问题要能够从多方面进行策略的实施,首先要完善铁道工程管理体制。我国的工程建设管理体制和国际先进水平还有着很大的差距,所以在当前铁路建设得到迅速发展的重要阶段,要将相关的工程建设的管理体制得到进一步的完善加强。从具体的措施上要规范工程的招投标工作,组建高质量建设队伍。其次要能够将工程安全管理制度进行有效完善,强化管理并进一步提升管理水平,将人力资源得到有效整合,加强安全监管力量。把铁道大规模建设施工安全和质量抓好,为铁路大规模建设提供人力资源的保障。还要整章建制,进而努力提升安全日质量管理的水平,夯实基础标准化管理建设深入推进,完善制度,建设管理水平明显提高。在这一方面要制定及完善各项考核激励机制,在考核的力度上得以加大,从而来调动参建人员的积极性。要坚持安全第一预防为主的理念方针,对铁道工程建设的安全管理要保证在安全的操作基础上进行,要将安全第一的理念深化到每个参建人员思想上,对安全施工管理的意识进行强化。还要能够科学的管理施工工作,对工程中的有效资源最大化的协调,严格审批每一施工步骤,严格遵守建设规章制度,通过科学化的手段进行管理。另外,要能够保障施工安全管理的先进性,通过合理化的施工组织形式施工,现阶段的铁道施工项目呈现出开花的局面,并在施工点方面也较多。所以要结合实际采用多样化的组织形式进行施工,可通过集中或者是分段式的方式进行施工,这样能够将施工的效率和安全性得到保障,并能够有效降低施工的成本,与此同时也要能够保障安全管理的先进性,提高施工的要求,并要充分利用先进科学力量作为安全施工的保障,对整体的施工风险进行降低。最后,要能够在施工前的准备工作的关口要能够严格的把控,严格按照有关的法律法规加以执行,确保铁道工程建设施工的安全进行。将施工的专业化水平要进行有效提高,对施工人员的专业技能及素质进行提高,对其采取定期培训的方式,将先进的技术和管理理念深入的贯彻,强化施工人员的风险意识和安全意识。这样才能够将铁道工程施工中的人力资源结构形式得到全面的创新,促进技术的应用效率提升。只有如此才能够有效的保障铁道工程建设的安全管理,推动我国的铁道工程发展的水平。

3.结语

第2篇:铁道工程论文范文

【摘 要】 运用风险管理的基本理论与盾构法隧道施工实践相结合的方法,阐述了风险管理在盾构隧道施工中的应用,并对盾构隧道的施工监督重点进行的了探讨,为地铁隧道的设计和施工提供有力的技术支持。

【关键词】 风险管理;地下铁道;盾构隧道;质量监督

0 前言

上海市轨道交通的实施目标是到2010年轨道交通网络规模达到400公里以上,建成中心城区轨道交通基本网络,加强城市副中心、黄浦江两岸和2010年上海世博会地区的集疏运轨道交通建设。地铁工程具有复杂性、不确定性、高风险性和灾害损失大等特点,并且近年来地铁隧道的开挖直径和开挖深度都不断增大、截面形状多种多样,因此地铁工程施工期的风险性与日俱增。上海轨道交通4号线发生事故以后,风险管理被学术界和工程界等提到新的议事日程。风险评估可以使决策更加科学化,更能减少事故的发生率,同时也可以为投保税率的确定提供依据。隧道工程的风险分析的代表人物Einstein[1、2]指出了隧道上风险分析的特点和应遵循的理念。剑桥大学的Salazar(1983)在博士论文“隧道设计和建设中的不确定性以及经济评估的实用性研究”中,将不确定性的影响和工程造价联系起来。Reilly(2000)提出了隧道工程的建设过程就是全面的风险管理和风险分担的管理过程,国际隧道协会[3]撰写了GuidelinesforTunnelingRiskManagement为隧道工程风险管理提供了一整套参照标准和方法。在国内,同济大学的丁士昭教授(1992)对我国广州地铁首期工程,上海地铁一号线工程等地铁建设中的风险和保险模式进行了一定的研究。上海隧道设计研究院的范益群博士(2000)以可靠度理论为基础,提出了地下结构的抗风险设计概念,计算出基坑、隧道等地下结构风险发生的概率以及定性评价风险造成的损失,并提出改进的层次分析方法。同济大学的黄宏伟[4]教授对崇明越江通道的风险评估项目进行了研究,研究内容包括前期选线、施工风险管理、环境保护、运营事故控制以及财务分析等。风险损失包括耐久性损失、工期损失、直接费用损失、环境影响损失等。盾构隧道施工风险机理如图1所示。

第3篇:铁道工程论文范文

关键词:隧道,软岩,变形,围岩支护

1概述

随着交通事业的快速发展,越来越多的隧道工程将会在地形、地貌及地质背景复杂的西部山区修建。隧道在施工过程中不可避免的会遇到软弱围岩、高地应力围岩、断层破碎带等复杂的地质状况。通常意义上,穿越这些地区的隧道统称为软岩隧道[1]。软岩隧道开挖易造成围岩大变形,控制围岩变形也是软岩隧道开挖所要解决的主要问题之一。尤其是对于穿越软弱地层的大跨度隧道而言,如果支护不强或支护不及时,将会发生塌方冒顶或二次衬砌严重开裂现象,将会给工程安全性造成严重的威胁。通常来说,隧道围岩大变形指在高地应力软弱围岩条件下,围岩发生沉降破坏并最终导致隧道围岩失稳的现象[1]。其实质是围岩产生剪应力使得岩体彼此错动、断裂破坏,也就是说使围岩的自稳能力丧失,产生塑性变形,进而迫使围岩向开挖洞室方向挤压,产生大变形的现象。对于大变形的界定[2],铁二院考虑了预留变形量的影响,认为单线隧道适当的预留变形量一般不大于150mm,双线隧道一般则不大于300mm,正常的变形量上限取上述值的0.8倍,在支护位移上,若单线隧道大于130mm,双线隧道大于250mm,就认定为发生了大变形。近年来,随着深埋特长隧道建设的日益增多,国内外对软弱围岩隧道大变形的变形机理[3]、变形特征[4]、控制措施[5]、施工工法[6,7]及支护时机[8]等等方面做了大量的研究,并取得了一定的成果。

2大跨软岩隧道存在的问题

由于地层地质的复杂性,大跨软岩隧道工程仍然面临着以下几个急需解决的关键问题:1)对围岩变形的判断与控制。对于软岩隧道围岩变形的研究主要集中在三个方面:a.从理论方面对变形机理进行研究;b.选择合理的施工工法对围岩变形进行控制;c.运用有限元或其他数值模拟的手段对围岩的变形量和变形趋势进行预测。从众多的学术论文和科研成果中不难发现,对于围岩变形的机理多是采用连续性介质理论进行分析,而实际工程中的围岩是非连续的,它是岩块和结构面在三维空间的一种非定向关系。尤其是对于地质状况比较复杂的软弱围岩,都是由多种物理成分组成的,且各物理成分的大小、多少及分布具有很大的随机性。但是,在实际的研究和应用中,例如采用数值模拟的方法对软岩隧道围岩变形进行分析时,又必须运用岩体的本构关系,这本身就是存在问题的,更不要说计算结果的准确性了。不论是理论分析还是数值模拟都没有办法对围岩的变形量进行准确的判断。这将引起另外一个问题,就是在采取控制变形措施时,通常采用的是依据相似工程经验制定施工方案,并没有针对不同的变形量采取相应的控制措施,因此变形控制措施也具有一定的盲目性。另外,隧道施工中变形可以达到1.0m甚至更大,软弱围岩变形本质上属于大变形问题,然而岩体力学中使用的弹塑性变形理论[9]虽然对材料的非线性进行了考虑,但是严格意义上仍属小变形理论。2)对合理支护时机的探讨。隧道二次衬砌施作时机始终是隧道界讨论的热点问题,二次衬砌的支护时机是保证二次衬砌长期稳定的关键。特别是对于软岩大变形隧道,如果二次衬砌施作过晚,则可能造成初期支护变形过大而无法控制,以致隧道失稳;但如果施作过早,则不利于地应力的释放和充分发挥围岩的自稳能力,从而使二衬受力过大而导致开裂,降低了隧道结构稳定性。因此,合理确定二次衬砌施作时机是保证隧道施工阶段和长期运营阶段安全性的关键。但是现阶段,对于隧道二次衬砌支护时机的研究仍然没有形成系统的体系。研究者多根据具体的工程背景选择不同的岩石弹塑性模型,采用的确定合理支护时机的判定方法也各有不同。对于二衬支护时机的影响因素的分析也多是针对单一影响因素,并没有综合考虑。

3软岩隧道的发展与展望

为了满通建设的需要,将不可避免的遇到更多的软岩隧道工程。围岩大变形的控制问题仍然是未来软岩隧道工程需要解决的关键问题。从根本上讲要更深入的研究围岩的变形机理,找出适用于实际工程地质状况的围岩的本构关系。在施工的过程中,超前地质预报要贯穿整个隧道的开挖过程,监控测量要及时跟进。对于具有代表性的工程要完善施工工法,以便以后类似工程经验借鉴。隧道是地层围岩和支护结构共同组成的复杂受力体。支护是一个过程,一个好的支护方案要让这一过程与围岩变形过程相协调。考虑到软弱围岩的蠕变特性,围岩的自稳能力是与施加相关的,因此二次衬砌的支护需要一个合理的时机。反过来理解,如果要确定合理的二衬支护时机,首先要对围岩的蠕变特性和变形机理进行充分而深入地分析,只有在此基础上,才能选择适当的支护时机和支护形式以及确定合适的支护参数。由于目前的研究多针对二次衬砌的支护时机探讨,应该将整个支护过程统一起来,形成与不同围岩级别、不同断面尺寸、不同开挖方式、不同支护参数相对应的系统的支护方案,以及更完善的施工工法。

4结语

本文主要针对近年来出现的软岩隧道工程中的突出问题进行了讨论,并对软岩隧道工程今后的发展进行了展望。为了满通建设的需要,更多更为复杂的软岩隧道工程也必将积累更多的工程经验,更好更深入的解决围岩大变形的控制问题。随着支护理论的不断发展、支护技术的不断进步,软岩隧道工程施工技术水平将会不断提高和发展。

参考文献:

[1]陈玉.共和隧道围岩大变形机理及防治措施研究[D].重庆:重庆大学,2008.

[2]喻渝.挤压性围岩支护大变形的机理及判定方法[J].世界隧道,1993,2(1):46-50.

[3]刘伴兴.软岩隧道大变形机理及位移控制基准[D].石家庄:石家庄铁道学院,2006.

[4]段庆伟,何满朝,张世国.复杂条件下围岩变形特征数值模拟研究[J].煤炭科学技术,2002,30(6):55-58.

[5]柴瑞峰,王才高.鸟鞘岭特长隧道大变形围岩段施工技术[J].铁道建筑,2005(12):38-39.

[6]王祥秋,杨林德,高文华.软弱围岩蠕变损伤机理及合理支护时间的反演分析[J].岩石力学与工程学报,2004,23(5):793-796.

[7]王建宇,胡元芳,刘志强.高地应力软弱围岩隧道挤压型变形和可让性支护原理[J].现代隧道技术,2012,49(3):9-17.

[8]刘全林,杨敏.软弱围岩巷道锚固支护机理及变形分析[J].岩石力学与工程学报,2002,21(8):1158-1161.

第4篇:铁道工程论文范文

关键词:水泥土搅拌桩;软基处理;灰浆稠度;质量检验

中图分类号: TQ172 文献标识码: A 文章编号:

一、研究背景

随着我国基础设施建设的规模愈来愈大,在城市中,大型的工程项目越来越多,这些工程问题涉及到各类软弱地基与不良地基的处理问题以及恶劣环境条件下的地基处理问题,地基处理问题的研究也由此成为土力学及岩土工程工作者研究的一个热点与难点。各类软弱不良地基需要进行地基处理才能满足建造建筑物、构筑物的承载力及变形要求,对这些不良的软弱土和特殊土进行地基处理,其目的是为了提高地基的强度和保证地基的稳定性、降低地基的压缩性、减少地基的沉降和不均匀沉降变形、消除地震时地基土的震动液化以及消除这些特殊土的湿陷性、胀缩性和冻胀性。

二、水泥土搅拌法的发展概况

水泥土搅拌法可以分为喷浆型搅拌法和喷粉型搅拌法。

1、喷浆型搅拌法

喷浆型搅拌法指以水泥浆状态拌入软土中的水泥土搅拌法。美国在第二次世界大战后曾研制开发成功一种就地搅拌桩—MIP 工法,即不断回转的、中空轴的端部向周围已被搅松的土中喷出水泥浆,经翼片的搅拌而形成水泥土桩,桩径 0.3~0.4m,长度10~12m。

2、粉型搅拌法

粉型搅拌法是通过专用的粉体搅拌机械,用压缩空气将水泥粉均匀的喷入所需加固的软土地基中,凭借钻头翼片的旋转搅拌使水泥粉和软土充分混合,形成水泥土搅拌桩。我国铁道部第四勘测设计院于 1985 年开发成功石灰粉体喷射搅拌法后,在 1988年与上海探矿机械厂联合研制成功 GPP-5 型粉体喷射搅拌机,并通过铁道部和地矿部联合鉴定后投入批量生产。以后铁道部武汉工程机械研究所和上海华杰科技开发公司也先后制造出既能喷粉、又能喷浆,全液压步履式的 PH-5 和 GPY-16 型单轴粉喷桩机,使国内喷粉桩的施工长度达到 20m。1

三、水泥土搅拌法的优点

水泥土搅拌法加固技术,其有以下独特的优点有:①将固化剂和原地基软土就地充分搅拌混合,最大限度地利用了原土;②搅拌时不会使地基土侧向挤出,所以对周围原有建筑物的影响很小;③桩长可以灵活调整,长短桩布置,以控制不同部位的沉降差;④土体加固后重度基本不变,对软弱下卧层不致产生附加沉降;⑤与钢筋混凝土桩基相比,节约了大量的钢材,并降低了造价;⑥可根据上部结构的需要,灵活地采用柱状、壁状、格栅状和块状等加固形式。由于存在着上述诸多优点,所以在我国得到了非常广泛的应用。

四、水泥土搅拌桩施工技术方案设计

1、水泥掺入比

水泥土搅拌桩施工前应根据加固土的性质及单桩承载力要求,确定水泥掺入比。水泥掺入比一般在15%~18%之间,且不能低于55.0Kg/m。

2、技术参数

施工工艺中的各项技术参数包括最佳的灰浆稠度、工作压力、钻进和提升速度等。一般情况下,水灰比为0.5:1;钻进、提升时管道工作压力为0.1~0.2Mpa,喷浆时管道工作压力为0.4~0.6 Mpa;钻进速度≤1.0m/min,提升速度≤0.5m/min。

3、施工机具选择

若采用单搅拌头机具,采用四搅两喷工艺;若采用双搅拌头机具,则采用两搅一喷工艺。

五、水泥土搅拌桩施工准备及工艺

1、水泥土搅拌桩施工准备

(1)施工场地准备

水泥土搅拌桩施工前应进行打坝、排水并清除淤泥及其他障碍物,对场地低洼区域进行回填粘土,确保地面标高高于桩顶50cm,并保证凿除软桩头后桩长及桩顶标高符合设计要求。

(2) 基础设施准备

人员进场搭建生活设施、仓库,做好水泥罐的基础,搭好搅拌台。

(3)完善施工现场供水供电系统

施工用水采用检验合格的淡水,施工用电采用发电机并要求备用发电机一台以防断电,并做好夜间照明工作。施工便道应提前修整,须满足施工材料及机械设备进场需求。

(4)原材料的检测及进场储存

水泥采用PO42.5级普通硅酸盐水泥。水泥进场后立即取样检验,检验合格后方可投入水泥土搅拌桩施工。水泥进场后采用下垫上盖,以防受潮和淋雨。

(5)机械设备的检验保养

组织机械设备进场,并立即对其进行调试、检验,使设备处于良好的工作状态,以保正常运行。

2、水泥土搅拌桩施工工艺

该工艺采用二次喷浆,四次搅拌,具体步骤如下:

(1)定位放线、机具就位对中;(2)水泥浆液配置 ;(3)喷浆搅拌下沉;(4)提升搅拌;(5)重复喷浆下沉;(6)重复上提;(7)清洗。

六、质量控制措施

1、水泥质量:水泥采用P.O42.5,进场水泥必须有出厂合格证和质保单,现场应架空垫高,并有防潮措施。试验部门及时对进场水泥进行抽检、复验,质量合格后方可使用。

2、桩径:必须采用相应规格的钻头,因磨损达不到要求时应予更换,一旦发现桩径小于设计要求须按相同置换率在桩边补桩。

3、为确保压浆时不发生断浆现象,严格控制喷浆和搅拌速度,机头提升速度不超过0.5m/min,控制重复下沉和提升速度。

4、由专人负责水泥土搅拌桩的施工,全过程旁站水泥土搅拌桩的施工过程。确保人员到位,责任到人。

5、 水泥土搅拌桩开钻前,应用水清洗整个管道并检验管道中有无堵塞现象,待水排尽后方可下钻。

6、为保证水泥土搅拌桩桩体垂直度满足规范要求,在主机上悬挂一吊锤,通过控制吊锤与钻杆上、下、左、右距离相等来进行控制。

7、第一次下钻时为避免堵管可带浆下钻,喷浆量应小于总量的1/2,严禁带水下钻。第一次下钻和提升时一律采用低档操作,复搅时可提高一个档位。每根桩的正常成桩时间应不小于40分钟,喷浆压力不小于0.4MPa。

七、结论

通过研究,对水泥土搅拌桩加固软土的机理有了更加深入的认识,并对桩基检测结果进行了分析总结,为以后同类型工程的施工提供了一定的参考。

参考文献

1、李翔军.水泥搅拌桩复合地基技术研究与工程实践.硕士论文, 天津大学,2003.

第5篇:铁道工程论文范文

论文摘要:介绍了当前国内国际的基建市场形势,对王木工程类专业学生的就业市场进行了分析,在高职工科类院校关于应对市场需求、提高毕业生就业率的问题上提出了相应的对策。

高职土木工程类专业包括铁道工程、公路工程、水利工程、工民建等各类专业,培养出来的学生基本都是面向土建类的施工企业,从事工程施工技术、测量、绘图、预算等基础性的工作。大多数工科类高职院校都有培养该类毕业生的专业,毕业生数量也在逐年增加。这些学校的授课体系基本相同,培养的应用能力也基本一致,相互之间形成了强大的竞争力。目前的就业市场前景如何,培养的学生如何适应市场需求以及如何提高就业率,是这类学校的头等大事。所以,有土木工程类专业毕业生的院校必须深人了解市场,调整教学计划,加强就业指导,实现“出口”畅通。

国内国际基建市场形势

铁路建设2004年1月,国务院通过了《中长期铁路网规划》,2006年铁道部又通过了《铁路“十一五”规划》,明确了铁路发展的主要目标和重点任务。《铁路“十一五”规划》提出:“十一五”期间,中国铁路发展的主要目标是:建设新线1.7万公里,其中客运专线7000公里;建设既有线复线8ooc)公里;既有线电气化改造1.5万公里;到2010年,全国铁路营业里程达到9万公里以上,复线、电气化率均达到45%以上,快速客运网总规模达到2万公里以上,煤炭通道总能力达到18亿吨,西部路网总规模达到3.5万公里,形成覆盖全国的集装箱运输系统。该《规划》还确定了铁路发展的六项重点任务,其中一项是加强人才队伍建设,实施“人才强路”战略,以经营管理人才、专业技术人才、技能人才三支队伍建设为重点。

公路建设2004年底,国务院通过了《国家高速公路网规划》,该规划确定未来2030年内,高速公路网将连接起所有省会级城市、计划单列市、83%具有50万以上城镇人口的大城市和74%具有20万以上城镇人口的中等城市,总规模约8.5万公里。目前已建成2.9万公里,在建1.6万公里,待建4万公里,分别占总里程的34% , 19%和47%。待建里程中,东部地区为0.8万公里,中部地区为1.1万公里,西部地区为2.1万公里,建设任务主要集中在中西部地区,特别是西部地区的建设任务相当繁重。建成这个系统大约需要30年。交通部印发的《公路水路交通“十一五”发展规划》确定的目标是:2010年,全国公路总里程将达到230万公里,其中高速公路6.5万公里,二级以上公路45万公里,县乡公路180万公里。具备通达条件的乡镇和建制村100%通公路,95%的乡镇、80%的建制村通沥青(水泥)路。

海外工程日益增多目前,我国承揽的非洲、南亚、东南亚等国的铁路、公路工程也日益增多,许多单位专门成立了海外公司,其中以中铁海外工程公司为最大,应该说这些单位的用人需求是比较大的。

城市建设方兴未艾目前,我国城市建设的速度不断加快。现在国内许多城市的道路建设都在向着构建城市快速干道、规划“XX城市X小时都市交通圈”的方向发展,目前在建或规划建设地铁的城市多达数十个,一般具有建设周期长、施工难度大、造价高等特点,这些都是潜在的就业市场。

当前就业市场分析

就业潜力较大近期笔者走访了中铁、中铁建、中建、中交系统等部分单位。根据用人单位的介绍,目前整体来说缺乏人才,现场施工技术人员,包括测量、绘图、实验、公路检测、高速铁路、地铁施工等方面的技术人员相当缺乏,尤其缺乏具有较高综合素质的人才。

新的就业市场逐渐开放目前,铁路工程、公路工程、房建工程相互渗透、相互交叉,市场全部开放,凡是有资质的企业都可以承揽相应的工程,中铁系统、中交系统、中建系统、中国水利水电系统以及地方建筑企业不断进人铁路、公路、房建等各个领域的建设,所占市场份额也不断扩大。例如,中建八局承揽了吉林省全部高速铁路的建设工程,上海四建在上海地铁项目中也占有一定比例等。这些都是潜在着的新就业市场。各单位招聘人才的数额也逐渐增加,例如中铁、中建系统所属的工程局每年计划招聘人数都在1000人左右,其中工程技术人员所占比例达80%左右的比例。

民营、私营、三资企业力量逐渐扩大目前我国的民营、私营、屯资企业数量逐渐增多,这些新兴企业面临的最大问题就是缺乏人才,尤其是具有一定经验的技术人员。因此,他们一直不断地从一些国有单位“挖人”,这一事实从国有施工企业人才流失现象中不难看出。

用人单位的用人政策日趋务实据用人单位介绍,从现场需要看,专科生、高职生比较容易适应现场,而且务实、留得住,有利于施工队伍的稳定。用人单位没有盲目地将人才层次定得很高,用人单位的用人观正在逐渐发生变化,变得更加切合实际。

高职院校就业对策

(一)调整教学计划,努力适应市场需求

教学计划的制定原则应该是宽基础、强技能。同时根据市场的实际需求,不断修改土木工程类专业的教学计划,使其培养的学生“型号”更加适应市场需要。例如,现在有些土木类高职院校的教学计划取消了计算机语言类课程,增加了在实际工作中具有很强实用性的计算机实际操作的有关内容,如办公软件以及同工程施工有关的计算软件等教学内容。

调整专业设置,可以按照工程大类设置专业,分方向制定教学计划。例如,道桥专业可以设置道桥方向、公路隧道方向、公路与城市道路方向、基础(路基路面)工程方向、道桥测量技术、道桥维修与养护技术等;铁道工程专业可以分为铁道维修与养护、城市轻轨与地下铁道、高速铁路、基础工程等方向,建筑工程可以分为给排水方向、装饰工程、结构工程等。

(二)加强就业指导,转变学生的就业观念

教育学生理性确定就业期望值2006年,北京高校毕业生就业指导中心公布了《2006年北京高校毕业生就业薪酬调查报告》,报告显示,北京高校2006届毕业生的平均起点工资为2262.31元,其中,近三分之二毕业生的起点工资在2000元以下,近四分之一毕业生的起点工资在1000元以下。结合近几年就业市场分析,可看出用人单位的用人政策在不断调整,有些用人单位不断提高毕业生的学历要求。例如,前两年本科生就可以轻松进人的单位,现在即使研究生毕业也很难进人了;相应地,各单位对本科生、高职生的要求也不断提高,以前部分单位曾经给予研究生、本科生的就业优惠政策,现在要么降低,要么取消,而与此对应的是,本科以上学历的毕业生供大于求。面临以上情况,各院校必须教育学生降低就业期望值,找准自己的位置,适应就业现实。

教育学生树立正确的就业观目前对毕业生最有吸引力的还是国有企业,尤其是由原来行业主管划转到地方管理的学校的学生,他们的传统和固有观念是本校原系统的各单位都是靠得住、效益好的,而对其他国有企业不感兴趣,对民营和私企更是不屑一顾。学生产生这种想法的原因,一是学生不了解就业市场,二是许多学校多年来的就业惯性所致。各高职院校都有各自传统的、固定的“客户”,而对一些新的领域不认可。因此要帮助学生了解市场行情,教育他们树立新的就业观。事实上.现在民营、私企不仅工资待遇不低,而且同样有保障机制,例如有些单位明确提出代缴三金、保险等费用,与国有企业并无多少差别,相反,有些国有企业却因地域限制不能解决户口等问题,限制了用人需求。

加强学生综合素质的培养目前各单位都建立了淘汰机制,对新招聘的毕业生先行试用一年。因此必须加强学生综合能力的培养,提高他们吃苦耐劳、适应现场的能力以及学习能力,这样才能稳得住,干得好,才能够打好基础。

加强和用人单位的联系目前,凡国内的工科院校,几乎都有土木工程、道桥、测量等专业的毕业生。企业在选择哪所学校毕业生的问题上具有很大的自主性,这就要求各高职院校一方面加强与用人单位的联系,建立长期的合作关系,一方面要树立品牌,取得用人单位的长期认可。

面向中西部就业从国家建设的重点来看,基建工程的重点在西部。根据2006年大学生的几次“双选会”实际情况来看,西部企业在大量地引进人才,尤其是西北地区的一些用人单位对毕业生的学历要求并不高,例如新疆的部分单位基本定位在专科以上层次,还有部分国有改制企业定位也比较准确,都在制定相应的人才政策。应该说,中西部的就业市场广大,因此要教育学生认清自我、认清形势,不要盲目地追求到沿海或东部比较发达地区就业。

第6篇:铁道工程论文范文

关键词:盾构隧道;既有线路;线路交叉施工

中图分类号: U45 文献标识码: A

盾构穿越既有地铁线已在北京、上海、广州、深圳、杭州等多个城市的盾构施工中有很多的案例,但在承压水粉细砂层中近距离(约2.07m)下穿施工仍无相关经验,且本工程下穿位置位于交通主干道正下方,一旦失控,后果极为严重。目前,武汉地铁2号线在试运营期间,施工的地铁3号线王家墩北站~范湖站盾构区间需要下穿地铁2号线范湖站~汉口火车站区间,是武汉轨道交通网络首个“地下立交”,在未进行加固承压水粉细砂层中近距离下穿,亦属首例。

1.下穿段相关参数:

1.1下穿段地质:2号线位于3-4粉质粘土夹粉土、3-5粉质粘土夹粉土粉砂层中,3号线全断面位于4-1粉细砂层中;地下水位根据现场实测,约为地表下9.8m;

1.2位置关系:3号线王~范区间隧道埋深约为18.1m,隧道底板为地表下24m,2号线范~汉区间隧道埋深约为10.1m,结构底约16m,隧道间净距为2.07m~2.5m;

1.3线路关系:王~范区间左线隧道在里程右DK17+210.790下穿2号线范~汉区间右线隧道,在右DK17+224.730下穿2号线范~汉区间左线隧道;王~范区间右线隧道在里程右DK17+217.760下穿2号线范~汉区间右线隧道,在右DK17+231.920下穿二号线范~汉区间左线隧道;平面交叉角度约114度;

1.4地表环境:交叉段位于青年路范湖转盘下,为青年路与常青路交叉口,为江汉区交通主干道之一,车流量极大;地表有10Kv高压电缆、直径600mm自来水管、中国移动通信光缆群等重要管线。

2.下穿既有隧道施工的关键性技术

由于下穿隧道离既有线路较近,在施工中必须采取切实可靠的技术措施,确保既有地铁2号线运营安全,必须解决如下几个方面的技术细节:

2.1 高水头承压水粉细砂层中土压平衡盾构施工,掘进参数尤其是土压力、出土量、同步注浆压力注浆量、二次注浆压力及量的参数控制,以及渣良技术;

2.2 对既有线路隧道进行的补充加固体系及相应参数,主要为软弱基底上的隧道二次注浆加固和隧道内钢结构整体加固两大部分;

2.3 既有线内沉降监测及隧道结构收敛监测技术,地表建构筑物沉降监测。

3. 风险分析

本工程需进行既有线的下穿,其最大的难点是对既有线的保护(主要为运营线路列车轨道沉降控制、隧道结构收敛控制),在实际的盾构掘进穿越过程中存在如下风险:

3.1由于盾构机刀盘到达下穿影响范围后对周边土体的挤压,可能造成既有线的偏移;

3.2穿越中盾构掘进参数如:土压力控制不当、原状土扰动过大,可能造成既有线的隆起或沉降,穿越后同步注浆(或二次注浆)不及时,亦可能造成既有线的隆起或沉降过大;

3.3土压平衡盾构机在承压水粉细砂层中掘进本身存在的盾尾、螺旋漏水漏砂风险;

3.4其他因操控不当,造成既有隧道结构拉裂、变形、导致地铁线路停运、地表道路塌陷等重大工程风险。

4.下穿既有隧道技术工艺原理

下穿既有线隧道,是采用常规的土压平衡盾构机对已加固或者未加固的隧道进行穿越,并保证既有线隧道结构安全、线路列车轨道沉降受控的地下立体空间施工技术。

5. 下穿既有隧道施工顺序及准备

5. 1 施工顺序

既有隧道注浆加固―既有隧道钢环加固―既有线内监测点及检测系统布置―盾构试验段掘进(确定掘进参数)―盾构下穿既有隧道及监控测量―下穿完成―补充注浆加固及监控测量―稳定。

5.2 施工准备重点

5.2.1 盾构机准备:盾构机进入下穿影响范围前,按照论证后的专项方案进行停机检查,主要包括:

主机工况:推进系统、液压系统、拼装机、同步注浆系统、盾尾密封、测量等系统设备正常运行及检修管理;

掘进参数复核:土压传感器准确性复核;推力、仓压、扭矩、刀盘转速等数据的匹配性;类似地层出土量与同步注浆量、注浆压力与地表沉降的关联情况;渣良添加剂种类及添加量;同步注浆浆液配合比。

后配套设施:编组列车工况及轨道;龙门吊工况及故障排除;拌合站检修。

5.2.2 既有线路准备

既有线路准备主要包括既有线路隧道的相关调查及预加固。

(1)既有线注浆加固

武汉地铁2号线范~汉区间隧道在设计及施工时未考虑后期有隧道下穿,因此,被下穿段地层为原状土(主要为3-4粉质粘土夹粉土、3-5粉质粘土夹粉土粉砂层软弱地层),考虑到隧道内已铺设了道床,隧道底部的5个点位注浆孔已被0.9m高道床覆盖,不能注浆。

因此,在2号线隧道内对与三号线相交范围的管片靠近道床的左右两侧共4个吊装孔进行二次注浆,对3-4、3-5软弱地层进行加固,提高地层密实度、整体性和承载力,减小后期施工影响隧道沉降。

加固范围:2号线左线49环到70环,右线44环到66环,左右线共计45环;每环如图5示4个点位。

加固参数:双液浆水玻璃使用模数2.4~2.8,浓度35~4°Be,与水泥配合比为1:1.15。

注浆压力:控制在1.5~2.0 MPa。

单孔注浆量:1~2m3。

(2)既有线型钢加固

由于设计为3号线下穿既有的2号线隧道,因此,2号线隧道会因3号线施工对周围承载的土体扰动造成局部应力集中而产生管片或结构破损,因此应增加2号线隧道整体稳定性来抵御盾构施工产生的应力变化,减小管片或结构变形量。主要采取以下措施:

①螺栓检查及复紧。

②防止环与环间错台的管片环向加固:2号线左线40环到70环(31环),右线45环到74环(30环),左右线共计61环,采用25mm钢板制作成内径为2.7m,长、宽为0.5m的弧形钢板,分成26块进行拼装(每块重65.84kg),安装在相邻两环管片的接缝中间,防止管片不均匀沉降使管片螺栓拉断。

③防止隧道轴线方向拉伸的管片纵向加固:2号线左线41环到78环(38环),右线36环到74环(39环),左右线共计77环,利用管片的吊装孔固定槽钢将受影响区域管片拉结为整体。根据隧道内管线的安装情况,可有6个螺栓孔(管片一周16个点位)进行16b槽钢管片拉结,可使得出现沉降较大位置的管片的沉降在相邻的管片的拉结下能均匀沉降,以减少隧道管片出现变形较大及破坏的风险。

5.2.3 监控测量准备

为保证地铁3号线王~范区间隧道下穿地铁2号线范~汉区间隧道时,能及时掌握隧道变形监测数据,考虑到地铁在试运营时人工监测将受到限制,采用隧道纵/横向沉降(电子水平尺)自动监测+隧道收敛(激光)自动监测。

6. 易发问题及应对措施

6.1 既有线沉降超过控制值

6.1.1 盾构机到达预警区

(1)调整盾构掘进参数(如上升则适当减小土仓压力、增大盾构出土量,沉降则相反)。

(2)掘进过程中向土仓内加量注入泡沫剂、膨润土等提高碴土的流动性和止水性,也可确保停止掘进时的保压性。

6.1.2 到达风险区及危险区

(1)在盾构机盾体通过二号线过程中,如监测显示二号线有沉降,则说明盾体周围空隙处气压消散,此时需要迅速使用二次注浆机通过中盾上的径向注浆孔注入Na基膨润土。注浆压力不超过土仓压力,如土仓压力明显升高,则立即停止注膨润土。具体注入膨润土的注浆参数还要根据实时监测反馈的数据及时进行调整。

(2)组织快速推进,盾尾到达沉降较大位置后进行同步注浆补浆。

6.1.3 盾尾脱离危险区后

(1)提高同步注浆压力,加大同步注浆量,使管片背后尽量填充饱满,

(2)沉降速率相对较大时,则要迅速通过管片上预留的注浆孔进行双液注浆,同时根据监测数据随时调整注浆参数。

(3)加大对二号线监测频率,随时观察变形动态,并以监测信息指导应急措施。

6.1.4 漏水漏砂

(1)合理控制盾构机姿态,防止尾刷破坏,同时,加强盾尾密封油脂注入的管理和监控,尤其是在4-1粉细砂层中,防止盾尾与管片之间漏浆、漏水漏砂。

(2)对长期用于砂层掘进的盾构机,下穿前检查舱门及密封情况,防止砂性土长期对仓门板磨损导致螺旋舱门关闭不严的而漏水漏砂的情况。

(3)结合试验段及以往施工经验,注入膨润土等改良材料对土仓内土体进行有效改良,形成良好的土塞效应后合理控制螺旋出土口回转压力,防止出现喷涌现象。

6.1.5 意外停机

(1)除在计划停机期间进行设备隐患全面排查外,在下穿期间机械设备人员跟班分别负责地面设施(龙门吊、拌合站)、轨道运输(编组列车、轨道)、盾构机进行实时保障,确保影响盾构掘进的因素第一时间排除,减少意外停机时间。

(2)领导井下带班,在地面、井口及洞内安排专职管理人员对盾构施工循环内各环节进行监管和疏导,减少影响时间,确保连续。

(3)结合掘进情况,确保不增加盾构机负荷的情况下建立实土压,防止意外停机后仓压损失过大。

7. 效果检验:穿越完成隧道稳定后监测数据

王~范区间左线隧道2012年9月10日始发,2012年11月24日至11月28日盾构机成功下穿通过2号线隧道,经电子水平尺监测2号线隧道沉降最大为-2.74mm。

王~范区间右线隧道2012年10月3日始发,2012年12月25日至12月29日盾构机成功下穿通过2号线隧道,经电子水平尺监测2号线隧道沉降最大为-3.2mm。

8. 效益

克服了高承压水、砂层、深埋隧道盾构接收的地质困难,地表管线、交通影响大的施工环境困难,提升了既有地铁二号线安全系数的同时,缩短了施工工期。

通过对特殊地质条件及环境下下穿既有隧道施工技术的研究,探索了穿既有隧道加固及保护的施工方法,总结了盾构掘进相关施工参数、过程控制要点、重难点将进一步提高我公司技术水平,并在国内地铁市场增大知名度,为后续类似施工积累丰富的经验,进一步开拓了市场竞争力。

参考文献:

(1)国标GB/T1 9000标准

(2)地下铁道工程施工及验收规范(GB50299-1999)

(3)铁路隧道施工技术安全规范(TB10304-2009)

(4)建筑工程验收统一标准(GB50300-2000)

(5)铁路隧道工程施工质量验收标准(TBJ417-2003)

(6)地下铁道工程施工及验收规范(GB50299-1999)

(7)地下铁道、轻轨交通岩土工程勘察规范(GB50307-1999)

(8)地下防水工程质量验收规范(GB50208-2011)

第7篇:铁道工程论文范文

关键词:软岩偏压铁路隧道; 大变形; 拱架拆换; 减载反压

中图分类号:U459.1 文献标识码:A 文章编号:

1概述

随着我国高速铁路的快速建设,受地形、水文地质条件以及规划平面要求等因素的影响,各种复杂地质条件下修建隧道大量出现,在地形偏压软弱岩体中进行隧道开挖支护便是典型现象之一 。软弱岩体特征复杂、岩性多变、围岩破碎,隧道易发生大变形,施工风险极大。软岩隧道的大变形破坏特征主要表现为:变形破坏方式多样、变形量大、变形速率快和持续时间长等特点 。截止至目前,虽然国内外学者对于软岩隧道修建提出了一系列控制标准及技术措施,但如何提高隧道结构在浅埋偏压条件下施工过程中的稳定性和有效控制隧道变形同时又提高施工效率,仍然是隧道工程界关注的热点问题 。现以软岩偏压铁路隧道工程为研究背景,综合分析现场施工量测数据和隧道大变形特征,进而分析产生大变形的原因,提出适合于浅埋偏压软岩内修建隧道的施工工法以及控制大变形的处治措施。

2 软岩隧道大变形特征及原因分析

2、1 隧道大变形特征分析

隧道自暗洞开挖以来,掌子面揭示围岩为强风化页岩夹砂岩,岩体破碎,自稳性差,有渗水,围岩变形严重。

隧道施工时根据开挖揭示的隧道工程地质条件及地形浅埋、偏压严重的特点采取了加强措施,但围岩及初期支护仍出现了严重变形,地表出现裂缝,导致已开挖段69 m 范围内初支变形侵限。

根据对施工现场的监控量测结果进行统计分析,,已开挖段出现大变形的问题主要有以下几个方面。

(1)围岩变形量大:拱顶沉降量大,其中D1K481+177.7 处拱顶累计沉降达49 cm;拱顶水平位移量偏大,其中D1K481+121 处拱顶水平位移达21.6 cm;

(2)围岩变形持续时间长:在围岩初期变形后,变形并未停止,而是持续发展,甚至加速发展。隧道的持续变形,造成初期支护变形过大而发生破坏,不得不进行衬砌拆换处理;

(3)拱脚位移收敛:线路左侧拱脚明显收敛,线路右侧拱脚偏离线路向外侧(山体低侧)位移,该段位于洞口段,浅埋偏压更严重,但变形量相对小,分析原因系该段已采用地表钢管桩注浆加固;

(4)初期支护变形破坏:由于围岩持续变形,初期支护严重变形破坏,且持续发展,易侵限。开挖过程中预留的40 cm 拱顶变形量,仍有局部侵限现象,主要分布在D1K481 + 175 断面拱顶处, 最大侵限值达到11.5 cm;

(5)地表开裂:据现场调查,施工开挖过程中,地表隧道中线两侧连续出现纵向裂缝, 裂缝伴随掌子面掘进而往前发展,且有变大趋势,裂缝无错台现象,裂缝最大宽度5 cm,长约50 m。

2.2软岩偏压铁路隧道大变形成因分析

综合下贵坪隧道施工实际情况,隧道发生大变形与地形特征、工程地质和水文条件、施工方法与工艺控制、支护措施等因素有关,具体分为以下几个方面。

(1)地形严重偏压:隧道出口穿越一单面斜坡,地形左高右低,斜坡呈下陡上缓状,自然坡度一般15毅~35毅,右侧坡脚相对较陡,达40毅,植被发育。隧道大致从斜坡中段通过,埋深浅,最大埋深仅约30 m,地形偏

压严重。

(2)岩质软,受断层影响,岩体破碎,开挖扰动后,周边围岩松动圈不断扩大:隧道穿越地层为页岩夹砂岩,属软质岩。隧道左侧约260 m 发育界牌断层,为区域性逆断层。隧道位于断层下盘,受此断层影响,隧道出口段岩层节理裂隙发育,强风化层较厚,岩体破碎,自稳能力差,裂隙间部分有泥质充填。局部有渗水,页岩遇水软化,围岩自稳定性差。

(3)施工方法不当及支护参数偏弱。隧道采用台阶法加临时仰拱法施工,随着施工扰动,岩体进一步破碎,在隧道发生大变形后未及时调整施工方法和加强支护措施,致变形加剧。

3 软岩偏压铁路隧道大变形控制措施

隧道大变形控制措施主要包括:施工方法调整和支护措施加强,浅埋偏压段洞外减载反压,以及变形侵限段初期支护拆换等措施。

3.1 施工方法调整和支护措施加强

3.1.1已开挖段支护加强

对已开挖段的支护加强主要包括洞内支护、地表加固两项措施。

(1)洞内支护:D1K481+116 ~ +155 段在既有的初期支护基础上增加了拱墙准42 mm 注浆锚管(长4 m,环纵向间距1 m)径向注浆加强支护。

(2)地表加固:开挖揭示围岩为强风化页岩夹砂岩,夹较多薄层状泥质粉砂岩,岩体破碎,稳定性差(雨季更甚)。洞身及隧底均位于该地层,且拱顶埋深仅3 ~10 m,偏压严重。在D1K481+145 ~ +185 段地表采用准75 mm 钢花管桩预注浆加固的横向范围由隧道中线两侧各12 m 扩大至隧道中线两侧各15 m,洞身范围加固深度自地表至拱顶以上0.5 m,洞身范围外加固深度自地表至隧底以下1 m。

3.1.2未开挖段支护加强及施工方法调整针对已开挖段在变更加强措施后仍发生较大变形导致侵限, 为确保隧道施工及结构安全, 对洞内D1K480+970 ~ D1K481+116 未开挖段146 m 支护措施进行适当调整,施工方法调整为CRD 法,如表3 所示。洞身复合型衬砌初期支护喷射C30 混凝土的厚度调整为30 cm,钢架采用全环玉25a 型钢钢架(间距0.6 m)。

3.2洞外减载反压

为减小地形浅埋偏压对隧道的影响,对D1K481+000 ~ +185 左侧山体进行开挖减载,利用开挖土石方对右侧沟槽进行回填反压,具体措施如下。D1K481+000 ~ +185 段洞外左侧山体开挖减载至高程约711 m,洞顶保留覆土厚度约6 m,开挖土石方量为5郾9 万m3,减载挖方全部用于右侧沟槽回填反压,回填高度至隧道内轨顶面以上5郾5 m 处,回填坡脚采用4 m 高坝式挡砟墙防护。

3.3初期支护变形拆换

为保证二次衬砌厚度, 确保结构安全, 对D1K481+116 ~ +185 段初支变形侵限或破坏部位进行注浆拆换处理。具体措施如下。

对初支变形侵限部位采用直径42 mm 钢花管径向注浆加固,钢花管纵、环向间距0.8 m,交错布置,每根长5 m。注浆采用水泥浆(水灰比1 :1),注浆压力1.0 ~1.2 MPa,注浆量按加固体积的15% 控制。注浆加固后对初支变形侵限或破坏部位进行逐榀拆换,拆换后及时施做二次衬砌。

注浆拆换顺序为:初支变形侵限或破坏部位注浆加固,侵限或破坏部位初支拆换,钢架落底成环,施作二次衬砌。

4 结论

(1)针对浅埋偏压软岩隧道选择适宜的施工方法对保证结构和施工安全十分重要。

(2)隧道发生大变形与地形特征、工程地质和水文条件、施工方法与工艺控制、支护措施等因素密切相关。

(3)隧道出现大变形时,洞内、洞外分别采取措施综合整治才能取得成功。

参考文献

[1]摇朱维申,何满潮. 复杂条件下围岩稳定性与岩体动态施工力学[M]. 北京:科学出版社,1996.

第8篇:铁道工程论文范文

关键词:山区铁路选线技巧

中图分类号:TN913.1 文献标识码: A 文章编号:

我国山区众多,山区面积多达660万平方公里,约占国土面积的2/3,且多分布于中西部地区,而中西部地区铁路网密度较低,随着国民经济和国防建设事业的发展,山区铁路还将不断建设。不断总结山区铁路选线的经验,提高选线技术水平,对于加快我国铁路的发展具有积极的意义。

铁路选线是一个复杂而系统的工程,能够体线一个项目设计的总体水平,是全线路基、桥梁、隧道、站场等各工程布局的综合体现。选线的基本原则之一就是根据国家政治、经济、国防的需要,结合沿途地区的自然条件、城镇分布、资源分布、社会发展等情况,规划线路的基本走向。选线的目标在于最终确定的线路方案能满足铁路运输能力的要求,具有较为合理的技术条件和经济效益。为了满足这些条件,在山区就要必须克服困难地形。这些困难的地形往往是控制线路走向的关键,也是影响线路平面、纵段面以及其他技术条件的重要因素。

新建铁路拉萨地处青藏高原西南部,正线长253km。本线路东起青藏铁路终点拉萨站,出站后折向南沿拉萨河而下,途经堆龙德庆县、曲水县后,折向西溯雅鲁藏布江而上,穿越长度近90km的雅鲁藏布江峡谷区,途经尼木、仁布县后抵达南重镇日喀则。桥隧总长115km,占线路总长的46%,其中桥梁45km/91座,占线路总长的18%,隧道70 km/29座,占线路总长的28%。根据拉日铁路线路特点及选线技巧,可以从下面几点进行分析。

一、雅江峡谷区地段内,发育着多个不同方向的断裂构造,有数条不同层面,具有断带宽、断带物质破碎的特点。区域内岩性较为复杂,地层软硬不一,均匀性较差,岩体受地质构造影响较重,完整性差。在选线工程中线路应尽量避开断裂交汇密集地带,并以较大角度、较短距离通过长、大断裂。

根据地质资料,在尼木至卡如一代,由于受F1、F2活动断裂的控制,为地热的异常带,对隧道工程的施工、运营具有一定的影响。因此在选线过程中线路应尽量远离山体。

滑坡地段的选线,对技术复杂、工程量大、采用整治措施也不易确保稳定的大型滑坡,线路应尽量绕避。对于河谷地段滑坡,可考虑移到滑坡对岸通过,或在滑动面以下适当位置以隧道通过,但是必须采取有效的工作措施,以确保施工和运营的安全。

崩塌、岩堆地段的选线,在山体极不稳定,岩层非常破碎的陡峻山坡,会发生大规模的崩塌,且工程处理困难的地段,应尽量绕避。若采用修建明洞,在稳定岩层内修建隧道等措施通过,需要经过比较后通过,或者外移设桥通过,或考虑跨河至对岸的绕避方案。

泥石流地段选线,对严重的泥石流集中地段,应尽量绕避。当沿河两岸均有泥石流时,应尽量泥石流较轻微的一侧通过,必要时刻多次跨河以绕避对岸的重点泥石流。线路必须通过泥石流时,应尽量避免穿过沉积区,宜在通过区设桥跨过,并留有足够孔跨及净高。如受高程限制不能设桥时,可以明洞或隧道通过,此时应将明洞或隧道的进出口设在泥石流的影响范围以外,并应有足够的埋深。

二、陡坡路基的横截面选线,在陡坡路基地段一般工程艰巨,高填、深挖、明洞、隧道、坡度、河岸防护等工程相伴出现,因此需要做些大比例的横断面来确定最佳的线路位置。

桥渡路线方案的选择,对铁路工程造价、养护维修费用和运营安全都有较大的影响,特别是控制线路方案的特大桥、高桥和地质水文条件复杂的桥渡选择,影响更大。

由于雅鲁藏布江峡谷区位于8度高地震区,因此在跨雅江时,针对桥位选择时由下面几点论述:首先,桥位的选择应结合两岸的地形及地质条件,两侧桥头应尽量设置于岩石上,避免于断层和断层交汇及密集带通过。其次,针对雅江峡谷区雅江水文条件差,两岸地形复杂,线路应尽量采用正交或大角度来跨越雅江,跨越雅江时,采用的是大跨度连续梁结构。

三、隧道路线方案的选择,必须做好工程地质和水文地质的调查勘探等工作,特别是对于控制线路方案的长隧道、地质复杂的隧道,更要做好大面积选线和区域性地质调查,切实掌握工程地质和水文地质情况,从技术经济方面综合考虑做好比选。

隧道应该置于稳固的岩洞中,洞身应有足够的深埋;洞门位置应结合洞身同时选定。洞口附近一般岩石风化破碎,若处理不当,易造成崩塌,严重的还要接长明线洞或改线。一般应“早进晚出”,“穿硬避软”,“穿梁避沟”,“正穿避斜”。

隧道必须穿过断层带时,切勿于断层走向平行,应尽量使线路与断层走向正交。

隧道必须通过滑坡或错落地段时,应使隧道洞身埋藏在错落体或滑坡面以下稳固地层中,并有一定的埋藏厚度,保证隧道不受山体变形的影响。隧道通过岩堆地区时,应在一定覆盖厚度下之基岩中通过,避免将洞身放在岩堆体内。

隧道应避免穿过对施工极为不利的地质结构松软特别是含水较多的大块石地层的第四纪堆积层。当仅在洞口局部地段通过无法避开时,应勘察明确堆积层的厚度、性质、范围、及地下水情况,提出相应的工程措施。

铁路选线是铁路勘测设计中决定全局的重要工作。要做好定线工作,必须考虑多方面的因素,逐步接近的分阶段进行工作,内容应从粗到细、从整体到局部;工作进度应从面面到带、从带到线,直到确定线路的具置。平、纵断面设计应充分考虑通风、车站分布、排水、施工、养护等方面的问题,根据牵引种类、地形、地质条件,采取不同的措施。线路专业人员除熟悉本专业知识外,还应对站前其它专业都有所了解,加强选线设计的总体性、协调性,才能选出技术性强、运营条件好、工程经济的线位。

山区铁路线路方案的选定,受设计的主要技术标准、线路沿途地区的自然条件、工程技术及运营条件等因素的控制,关系到能否适应国家要求和地区经济发展的需要,并直接影响到铁路本身的经济效益。必须做好充分的外业踏勘调查和内业分析研究,选线的质量也反过来影响到其他各专业的工作,进而影响整条线工程大小、投资高低等,因此需要对选线方法认真总结。本文分析了拉日铁路的选线方法阐述了相应选线措施,对于铁路的选线工作应该有一定的参考和帮助作用。

参考文献

【1】《铁路线路设计规范》(GB50090-2006)

【2】朱颖 复杂艰险山区铁路选线与总体设计论文集[M].北京 中国铁道出版社,2010.

第9篇:铁道工程论文范文

关键词:公路隧道,变形分析,信息处理

 

1地形、地貌

隧址区位于某地区盆地东部边缘,经过地段为溶蚀峰丛地貌区,以中低山峰丛为主,其间有大量冲沟发育。隧址区环境地形总体呈东、西两侧较低,形成冲沟地貌,隧道从地势较高的峰丛内穿过。,信息处理。根据隧道勘察报告及隧道开挖对掌子面的调查,隧道经过地段地层按地层时代由新到老关系自上而下依次为第四系覆盖层(Q)、三叠系安顺组(T1a)、三叠系大冶组(T1d)、二叠系龙潭组(P2lt)。

2 隧道变形数值分析

根据勘察报告及检测报告,现对该隧道完整岩体进行变形数据分析,隧道监测对每个断面设置了水平收敛和拱顶下沉7个监测点,根据计算破碎岩体的计算方式,对完整岩体段进行最终变形量和最大变形速率进行分析。根据计算结果,确定完整岩体的最终变形量和最大变形速率。2.1 隧道完整围岩应力

隧道顶部的完整岩体含有软弱夹层及无软弱夹层时,隧道围岩应力分布图见下图2-1~2-6。

图5-1 x方向应力分布图图5-2 带夹层的x方向应力分布图 图5-3y方向应力分布图图5-4 带夹层y方向应力分布图

图5-5xy方向应力分布图图5-6 带夹层xy方向应力分布图

根据隧道围岩应力模型分布图可以分析:

1)上边工况最大压应力发生在隧道顶部部位,其值在含软弱夹层的断面中略显较大,且隧道开挖断面与软弱夹层相接处应力最大,由此可见,含有软弱夹层的为岩体稳定性较差,对隧道拱顶的影响较大。隧道顶部的软弱夹层对隧道水平方向的应力分布影响较小。,信息处理。

2)当软弱夹层距离隧道减小与软弱夹层厚度增大,隧道拱顶的应力明显增大,所以当软弱夹层距离减小和厚度增大到一定的程度时,在隧道开挖过程中要采取相应的措施,保证隧道施工的安全性。

2、隧道完整围岩周边位移变化

隧道顶部的完整岩体含有软弱夹层及无软弱夹层时,隧道围岩应力变形图见下图5-7~5-12。

图5-7x方向应变分布图图5-8 带夹层 x方向应变分布图

图5-9y方向应变分布图图5-10 带夹层y方向应变分布图

图5-11xy方向应变分布图图5-12 带夹层xy方向应变分布图

根据隧道围岩应力模型分布图可以分析,隧道顶部的软弱夹层对隧道围岩稳定性的影响主要表现在以下几个方面:

1)隧道顶部竖向位移变化最大,而水平位移变化很小;侧壁部位竖向位移略大与水平位移;隧道底面竖向位移变化很大,而水平位移可以忽略。在初期支护后,含软弱夹层的断面应力变形较小。

2)顶部有软弱夹层分布的时候,拱顶点、拱腰点和侧壁点的竖向位移均小于无软弱夹层时的位移;而拱脚的位移变形基本没有变化,竖向位移均小于无软弱夹层隧道时的位移;

3)隧道拱顶下沉的位移变化量较小,说明拱顶以上围岩开挖引起的位移与软弱夹层成反比;并且软弱夹层引起的竖向开挖位移也越小。,信息处理。总之,隧道拱顶的软弱夹层对隧道拱顶以上围岩开挖释放位移有一定的抑制,但变化量较小。4)完整岩体与有软弱夹层的岩体的隧道周边位移的变化量差别较小,因此软弱夹层对围岩的稳定性影响也较小,但在施工过程中,遇到软弱夹层,也要做好相应的处理措施。,信息处理。

综上所述,考虑到实际的工程地质情况比较复杂,理论推导在建模方面的简化,数值模拟对地层复杂性的简化,以及实际测量中的人为因素和误差存在,对其进行总结分析。在隧道变形速率及累计变形量达到如下值时,要进行预警及对该断面做相应处理。,信息处理。

3 结论

随着我国交通建设的快速发展,特别是国家对西部大开发战略的实施,公路隧道方案在山区的高等级公路建设中日益引起重视,不同长度、不同类型的隧道大量涌现。,信息处理。因此,及时总结和研究岩溶地区隧道监控最大变形量,深入探讨隧道施工中各种不良地质现象对隧道变形影响的原因,总结现有隧道监测的成功经验和失败教训,才能为新建的工程提供重要的参考资料和决策依据,对经济地、高质量地建设公路隧道有十分重要的意义。

本文采用数值模拟分析计算,对隧道某一断面进行对比分析,得出了隧道在不同的受力段其围岩变形的一般规律,以及各个断面不同位置的受力、位移及塑性破坏情况。为以后隧道工程施工过程中的变形量控制提供了重要依据。为以后的公路隧道工程监测提供了可借鉴的经验。

参考文献:

[1]关宝树.隧道力学概论,西南交通大学出版社,1993.03.

[2]朱汉华,孙红月,杨建辉.公路隧道围岩稳定性与支护技术.科学出版社,2007.01.

[3]张永兴,王桂林,胡居义.岩石洞室地基稳定性分析方法与实践,科学出版社,2005.06.

[4]陈秋南.隧道工程,机械工业出版社,2007.08.

[5]朱永全,宋玉香.隧道工程,中国铁道出版社,2005.09.

[6]夏才初,潘国荣.土木工程监测技术,中国建筑工业出版杜,2001.07.

[7]范智杰.隧道施工与检测技术,2001,(1):54-55.

[8]王兰生,李天斌,徐进等.川藏公路二郎山隧道围岩变形破裂的调研与监测[J],四川省公路学会隧道专委会学术论文集,1998.

[9]王兰生,李天斌,徐进等.高地应力区公路隧道施工围岩稳定性预测预报系统[J],四川省公路学会隧道专委会学术论文集,1998.