网站首页
教育杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
医学杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
经济杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
金融杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
管理杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
科技杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
工业杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
SCI杂志
中科院1区 中科院2区 中科院3区 中科院4区
全部期刊
公务员期刊网 精选范文 生物技术发展范文

生物技术发展精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物技术发展主题范文,仅供参考,欢迎阅读并收藏。

生物技术发展

第1篇:生物技术发展范文

关键词 海洋生物技术

发展展望

近10年来,由于海洋在沿海国家可持续发展中的战略地位日益突出,以及人类对海洋环境特殊性和海洋生物多样性特征的认识不断深入,海洋生物资源多层面的开发利用极大地促进了海洋生物技术研究与应用的迅速发展。1989年首届国际海洋生物技术大会(以下简称MPS大会)在日本召开时仅有几十人参加,而1997年第四届IMBC大会在意大利召开时参加入数达1000多人。现在IMBC会议已成为全球海洋生物技术发展的重要标志,出现了火红的局面。《IMBC 2000》在澳大利亚刚刚开过,《IMBC 2003》的筹备工作在日本已经开始,以色列为了举办们《IMBC 2006》早早作了宣传,并争到了举办权。每3年一届的IMBC不仅吸引了众多高水平的专家学者前往展示与交流研究成果,探讨新的研究发展方向,同时也极大地推动了区域海洋生物技术研究的发展进程。在各大洲,先后成立了区域性学术交流组织,如亚太海洋生物技术学会、欧洲海洋生物技术学会和泛美海洋生物技术协会等。各国还组建了一批研究中心,其中比较著名的为美国马里兰大学海洋生物技术中心、加州大学圣地亚哥分校海洋生物技术和环境中心,康州大学海洋生物技术中心,挪威贝尔根大学海洋分子生物学国际研究中心和日本海洋生物技术研究所等。这些学术组织或研究中心不断举办各种专题研讨会或工作组会议研究讨论富有区域特色的海洋生物技术问题。1998年在欧洲海洋生物技术学会、日本海洋生物技术学会和泛美海洋生物技术协会的支持下,原《海洋生物技术杂志》与《分子海洋生物学和生物技术》合刊为《海洋生物技术》学报(以下简称MB T),现在它已成为一份具有权威性的国际刊物。海洋生物技术作为一个新的学科领域已明确被定义为“海洋生命的分子生物学如细胞生物学及其它的技术应用”。

为了适应这种快速发展的形势,美国、日本、澳大利亚等发达国家先后制定了国家发展计划,把海洋生物技术研究确定为21世纪优先发展领域。1996年,中国也不失时机地将海洋生物技术纳入国家高技术研究发展计划(863计划),为今后的发展打下了基础。不言而喻,迄今海洋生物技术不仅成为海洋科学与生物技术交叉发展起来的全新研究领域,同时,也是21世纪世界各国科学技术发展的重要内容并将显示出强劲的发展势头和巨大应用潜力。

1.发展特点

表1和表2列出的资料大体反映了当前海洋生物技术研究发展的主要特点。

1.1加强基础生物学研究是促进海洋生物技术研究发展的重要基石

海洋生物技术涉及到海洋生物的分子生物学、细胞生物学、发育生物学、生殖生物学、遗传学、生物化学、微生物学,乃至生物多样性和海洋生态学等广泛内容,为了使其发展有一个坚实的基础,研究者非常重视相关的基础研究。在《IMBC 2000》会议期间,当本文作者询问一位资深的与会者:本次会议的主要进步是什么?他毫不犹豫的回答:分子生物学水平的研究成果增多了。事实确实如此。近期的研究成果统计表明,海洋生物技术的基础研究更侧重于分子水平的研究,如基因表达、分子克隆、基因组学、分子标记、海洋生物分子、物质活性及其化合物等。这些具有导向性的基础研究,对今后的发展将有重要影。

1.2推动传统产业是海洋生物技术应用的主要方面

目前,应用海洋生物技术推动海洋产业发展主要聚焦在水产养殖和海洋天然产物开发两个方面,这也是海洋生物技术研究发展势头强劲。充满活力的原因所在。在水产养殖方面,提高重要养殖种类的繁殖、发育、生长和健康状况,特别是在培育品种的优良性状、提高抗病能力方面已取得令人鼓舞的进步,如转生长激素基因鱼的培育、贝类多倍体育苗、鱼类和甲壳类性别控制、疾病检测与防治、DNA疫苗和营养增强等;在海洋天然产物开发方面,利用生物技术的最新原理和方法开发分离海洋生物的活性物质、测定分子组成和结构及生物合成方式、检验生物活性等,已明显地促进了海洋新药、酶、高分子材料、诊断试剂等新一代生物制品和化学品的产业化开发。转贴于

表1 近期IMBC大会研讨的主要内容

表2 近期IMBC大会和《Marine Biotechnology》学报论文统计表

1.3保证海洋环境可持续利用是海洋生物技术研究应用的另一个重要方面

利用生物技术保护海洋环境、治理污染,使海洋生态系统生物生产过程更加有效是一个相对比较新的应用发展领域,因此,无论是从技术开发,还是产业发展的角度看,它都有巨大的潜力有待挖掘出来。目前已涉及到的研究主要包括生物修复(如生物降解和富集、固定有毒物质技术等)、防生物附着、生态毒理、环境适应和共生等。有关国家把“生物修复”作为海洋生态环境保护及其产业可持续发展的重要生物工程手段,美国和加拿大联合制定了海洋环境生物修复计划,推动该技术的应用与发展。

1.4与海洋生物技术发展有关的海洋政策始终是公众关注的问题

其中海洋生物技术的发展策略、海洋生物技术的专利保护、海洋生物技术对水产养殖发展的重要性、转基因种类的安全性及控制问题、海洋生物技术与生物多样性关系以及海洋环境保护等方面的政策、法规的制定与实施倍受关注。

2. 重点发展领域

当前,国际海洋生物技术的重点研究发展领域主要包括如下几个方面:

2.1发育与生殖生物学基础

弄清海洋生物胚胎发育、变态、成熟及繁殖各个环节的生理过程及其分子调控机理,不仅对于阐明海洋生物生长、发育与生殖的分子调控规律具有重要科学意义,而且对于应用生物技术手段,促进某种生物的生长发育及调控其生殖活动,提高水产养殖的质量和产量具有重要应用价值。因此,这方面的研究是近年来海洋生物技术领域的研究重点之一。主要包括:生长激素、生长因子、甲状腺激素受体、促性腺激素、促性腺激素释放激素、生长一催乳激素、渗透压调节激素、生殖抑制因子、卵母细胞最后成熟诱导因子、性别决定因子和性别特异基因等激素和调节因子的基因鉴定、克隆及表达分析,以及鱼类胚胎于细胞培养及定向分化等。

2.2基因组学与基因转移

随着全球性基因组计划尤其是人类基因组计划的实施,各种生物的结构基因组和功能基因组研究成为生命科学的重点研究内容,海洋生物的基因组研究,特别是功能基因组学研究自然成为海洋生物学工作者研究的新热点。目前的研究重点是对有代表性的海洋生物(包括鱼、虾、贝及病原微生物和病毒)基因组进行全序列测定,同时进行特定功能基因,如药物基因、酶基因、激素多肽基因、抗病基因和耐盐基因等的克隆和功能分析。在此基础上,基因转移作为海洋生物遗传改良、培育快速生长和抗逆优良品种的有效技术手段,已成为该领域应用技术研究发展的重点。近几年研究重点集中在目标基因筛选,如抗病基因、胰岛素样生长因子基因及绿色荧光蛋白基因等作为目标基因;大批量、高效转基因方法也是基因转移研究的重点方面,除传统的显微注射法、基因枪法和携带法外,目前已发展了逆转录病毒介导法,电穿孔法,转座子介导法及胚胎细胞介导法等。

2.3病原生物学与免疫

随着海洋环境逐渐恶化和海水养殖的规模化发展,病害问题已成为制约世界海水养殖业发展的瓶颈因子之一。开展病原生物(如细菌、病毒等)致病机理、传播途径及其与宿主之间相互作用的研究,是研制有效防治技术的基础;同时,开展海水养殖生物分子免疫学和免疫遗传学的研究,弄清海水鱼、虾、贝类的免疫机制对于培育抗病养殖品种、有效防治养殖病害的发生具有重要意义。因此,病原生物学与免疫已成为当前海洋生物技术的重点研究领域之一,重点是病原微生物致病相关基因、海洋生物抗病相关基因的筛选、克隆,海洋无脊椎动物细胞系的建立、海洋生物免疫机制的探讨、DNA疫苗研制等。

2.4生物活性及其产物转贴于

海洋生物活性物质的分离与利用是当今海洋生物技术的又一研究热点。现人研究表明,各种海洋生物中都广泛存在独特的化合物,用来保护自己生存于海洋中。来自不同海洋生物的活性物质在生物医学及疾病防治上显示出巨大的应用潜力,如海绵是分离天然药物的重要资源。另外,有一些海洋微生物具有耐高温或低温、耐高压、耐高盐和财低营养的功能,研究开发利用这些具特殊功能的海洋极端生物可能获得陆地上无法得到的新的天然产物,因而,对极端生物研究也成为近年来海洋生物技术研究的重点方面。这一领域的研究重点包括抗肿瘤药物、工业酶及其它特殊用途酶类、极端微生物定功能基因的筛选、抗微生物活性物质、抗生殖药物、免疫增强物质、抗氧化剂及产业化生产等。

2.5海洋环境生物技术

该领域的研究重点是海洋生物修复技术的开发与应用。生物修复技术是比生物降解含义更为广泛,又以生物降解为重点的海洋环境生物技术。其方法包括利用活有机体、或其制作产品降解污染物,减少毒性或转化为无毒产品,富集和固定有毒物质(包括重金属等),大尺度的生物修复还包括生态系统中的生态调控等。应用领域包括水产规模化养殖和工厂化养殖、石油污染、重金属污染、城市排污以及海洋其他废物(水)处理等。目前,微生物对环境反应的动力学机制、降解过程的生化机理、生物传感器、海洋微生物之间以及与其它生物之间的共生关系和互利机制,抗附着物质的分离纯化等是该领域的重要研究内容。

3.前沿领域的最新研究进展

3.1发育与生殖调控

应用GIH(性腺抑制激素)和GSH(性腺刺激激素)等激素调控甲壳类动物成熟和繁殖的技术[1],研究了甲状腺激素在金绍生长和发育中的调控作用,发现甲状腺激素受体mRNA水平在大脑中最高,在肌肉中最低,而在肝、肾和鳃中表达水平中等,表明甲状腺素受体在成体金银脑中起着重要作用[1],对海鞘的同源框(Homeobox)基因进行了鉴定,分离到30个同源框基因[1],建立了青鳉的同源框(Homeobox)基因[1],建立了青鳉胚胎干细胞系并通过细胞移植获得了嵌合体青鳉[1],建立了虹鳟原始生殖细胞培养物并分离出Vasa基因[2],进行斑节对虾生殖抑制激素的分离与鉴定[2],应用受体介导法筛选GnRH类似物,用于鱼类繁殖[2],建立了海绵细胞培养技术,用于进行药物筛选[2],建立了将海胆胚胎作为研究基因表达的模式系统[2],通过基因转移开展了海胆胚胎工程的研究[2],研究了人葡糖转移酶和大鼠已糖激酶cDNA在虹鳟胚胎中的表达[3],建立了通过细胞周期蛋白依赖的激酶活性测定海水鱼苗细胞增殖速率的方法[3],研究了几丁质酶基因在斑节对虾蜕皮过程中的表达[4],从海参分离出同源框基因,并进行了序列的测定[4]。

3.2功能基因克隆

建立了牙鲆肝脏和脾脏mRN A的表达序列标志,从深海一种耐压细菌中分离到压力调节的操纵子,从大西洋鲑分离到雌激素受体和甲状腺素受体基因,从挪威对虾中分离到性腺抑制激素基因[1];将DNA微阵列技术在海绵细胞培养上进行了应用,构建了班节对虾遗传连锁图谱,建立了海洋红藻EST,从海星卵母细胞中分离出成熟蛋白酶体的催化亚基,初步表明硬骨头鱼类IGF-I原E一肽具有抗肿瘤作用[2];构建了海洋酵母De—baryomyces hansenii的质粒载体,从鲤鱼血清中分离纯化出蛋白酶抑制剂,从兰蟹血细胞中分离到一种抗菌肽样物质,从红鲍分离到一种肌动蛋白启动子,发现依赖于细胞周期的激酶活性可用作海洋鱼类苗种细胞增殖的标记,克隆和定序了鳗鱼细胞色素P4501A cD-NA,通过基因转移方法分析了鳗细胞色素P450IAI基因的启动子区域,分离和克隆了鳗细胞色素P450IAI基因,建立了适宜于沟绍遗传作图的多态性EST标记,构建了黄盖鲽EST数据库并鉴定出了一些新基因,建立了班节对虾一些组织特异的EST标志,从经Hirame Rhabdovirus病毒感染的牙鲆淋巴细胞 EST中分离出596个 cDNA克隆[3];用PCR方法克隆出一种自体受精雌雄同体鱼类的ß一肌动蛋白基因,从金鲷cDNA文库中分离出多肽延伸因子EF-2CDNA克隆,在湖鳟基因组中发现了TC1样转座子元件[4];鉴定和克隆出的基因包括:南美白对虾抗菌肽基因、牡蛎变应原(allergen)基因、大西洋鳗和大西洋鲑抗体基因、虹鳟Vasa基因、青鳉P53基因组基因、双鞭毛藻类真核启始因子5A基因、条纹鲈GtH(促性腺激素)受体cDNA、鲍肌动蛋白基因、蓝细菌丙酮酸激酶基因、鲤鱼视紫红质基因调节系列以及牙鲆溶菌酶基因等[1—4]。

3.3基因转移

分离克隆了大马哈鱼IGF基因及其启动子,并构建了大马哈鱼IGF(胰岛素样生长因子)基因表达载体[1]。通过核定位信号因子提高了外源基因转移到斑马鱼卵的整合率[1],建立了快速生长的转基因罗非鱼品系并进行了安全性评价;对转基因罗非鱼进行了三倍体诱导,发现三倍体转基因罗非鱼尽管生长不如转基因二倍体快,但优于未转基因的二倍体鱼,同时,转基因三倍体雌鱼是完全不育的,因而具有推广价值[2];研究了超声处理促进外源DNA与金鲷结合的技术方法,将GFP作为细胞和生物中转基因表达的指示剂;表明转基因沟鲶比对照组生长快33%,且转基因鱼逃避敌害的能力较差,因而可以释放到自然界中,而不会对生态环境造成大的危害[3];应用GFP作为遗传标记研究了斑马鱼转基因的条件优化和表达效率[3];在抗病基因工程育种方面,构建了海洋生物抗菌肽及溶菌酶基因表达载体并进行了基因转移实验[2];在转基因研究的种类上,目前已从经济养殖鱼类逐步扩展到养殖虾、贝类及某些观赏鱼类[2.3]。通过基因枪法将外源基因转到虹鳟肌肉中获得了稳定表达[4]。

3.4分子标记技术与遗传多样性

研究了将鱼类基因内含子作为遗传多样性评价指标的可行性,应用SSCP和定序的方法研究了大西洋和地中海几种海洋生物的遗传多样性[1]。研究了南美白对虾消化酶基因的多态性[1];利用寄生性原生动物和有毒甲藻基因组DNA的间隔区序列作标记检测环境水体中这些病原生物的污染程度,应用18S和5.8 S核糖体RNA基因之间的第一个内部间隔区(ITC—1)序列作标记进行甲壳类生物种间和种内遗传多样性研究[2];研究了斑节对虾三个种群的线粒体DNA多态性,用PCR技术鉴定了夏威夷Gobioid苗的种类特异性。通过测定内含子序列揭示了南美白对虾的种内遗传多样性,采用同功酶、微卫星DNA及RAPD标记对褐鳟不同种群的遗传变异进行了评价,在平鱼鉴定并分离出12种微卫星DNA,在美国加州鱿鱼上发现了高度可变的微卫星DNA[3];弄清了一种深水鱼类(Gonostoma gracile)线粒体基因组的结构,并发现了硬骨鱼类 tRNA基因重组的首个实例,测定了具有重要商业价值的海水轮虫的卫星DNA序列,用RAPD技术在大鲮鲆和鳎鱼筛选到微卫星重复片段,从多毛环节动物上分离出高度多态性的微卫星DNA,用RAPD技术研究了泰国东部泥蟹的遗传多样性[3];用AFLP方法分析了母性遗传物质在雌核发育条纹鲈基因组中的贡献[4]。

3.5 DNA疫苗及疾病防治

构建了抗鱼类坏死病毒的 DNA疫苗[1];开展了虹鳟IHNV DNA疫苗构建及防病的研究,表明用编码IHNV糖蛋白基因的DNA疫苗免疫虹鳟,诱导了非特异性免疫保护反应,证明DNA免疫途径在鱼类上的可行性,从虹鳟细胞系中鉴定出经干扰素可诱导的蛋白激酶[2];建立了养殖对虾病毒病原检测的ELISA试剂盒,用PCR等分子生物学技术鉴定了虾类的病毒性病原,将鱼类的非特异性免疫指标用于海洋环境监控,研究了抗病基因转移提高鲷科鱼类抗病力的可行性,研究了蛤类唾液酸凝集素的抗菌防御反映[2];研究了一种海洋生物多糖及其衍生物的抗病毒活性[3];建立了测定牡蛎病原的PCR—ELISA方法[3];研究了Latrunculin B毒素在红海绵体内的免疫定位[4]。

3.6生物活性物质

从海藻中分离出新的抗氧化剂[1],建立了大量生产生物活性化合物的海藻细胞和组织培养技术,建立了通过海绵细胞体外培养制备抗肿瘤化合物的方法[1];从不同生物(如对虾和细菌)中鉴定分离出抗微生物肽及其基因,从鱼类水解产物中分离出可用作微生物生长底物的活性物质,海洋生物中存在的抗附着活性物质,用血管生成抑制剂作为抗受孕剂,从蟹和虾体内提取免疫激活剂,从海洋藻类和蓝细菌中纯化光细菌致死化合物,海星抽提物在小鼠上表现出批精细胞形成的作用,从海洋植物Zostera marina分离出一种无毒的抗附着活性化合物,从海绵和海鞘抽提物分离出抗肿瘤化合物,开发了珊瑚变态天然诱导剂,从海胆中分离出一种抗氧化的新药,在海洋双鞭毛藻类植物中鉴定出长碳链高度不饱和脂肪酸(C28),表明海洋真菌是分离抗微生物肽等生物活性化合物的理想来源[2];发现海洋假单胞杆菌的硫酸多糖及其衍生物具有抗病毒活性,从硬壳蛤分离出谷光甘肽一S一转移酶,从鲤血清中分离出丝氨酸蛋白酶抑制剂,从海绵中分离出氨激脯氨酸二肽酶,从一种珊瑚分离出具DNA酶样活性的物质,建立了开放式海绵养殖系统,为生物活性物质的大量制备提供了充足的海绵原料[3];从虾肌水解产物中分离到抗氧化肽物质[4];从一种海洋细菌中分离纯化出N一乙酸葡糖胺一6一磷酸脱乙酸酶[4]。

3.7生物修复、极端微生物及防附着

研究了转重金属硫蛋白基因藻类对海水环境中重金属的吸附能力,表明明显大于野生藻类[1],研究了石油降解微生物在修复被石油污染的海水环境上的可疗性及应用潜力[1];研究了海洋磁细菌在去除和回收海水环境中重金属上的应用潜力[1];用Bacillus清除养鱼场污水中的氮,用分子技术筛选作为海水养殖饵料的微藻,开发了六价铬在生物修复上的应用潜力,分离出耐冷的癸烷降解细菌,研究了海洋环境中多芳香化烃的微生物降解技术[2];从噬盐细菌分离出渗透压调节基因,并生产了重组Ectoine(渗透压调节因子),从2650米的深海分离到一种耐高温的细菌,这种细菌可用来分离耐高温和热稳定的酶,在耐高温的archaea发现了D型氨基酸和无氧氨酸消旋酶,测定了3种海洋火球菌的基因组DNA序列,借助于CROSS/BLAST分析进行了特定功能基因的筛选,从海底沉积物、海水和北冰洋收集了1000多种噬冷细菌,并从这些细菌中分离到多种冷适应的酶[2];建立了一种测定藤壶附着诱导物质的简单方法,研究了Chlorophyta和共生细菌之间附着所必需的形态上相互作用,研究了珊瑚抗附着物质(dterpene)类似物的抗附着和麻醉作用[3];分析了海岸环境中污着的起始过程,并对沉积物和附着物的影响进行了检测[4]。

4.展望与建议

第2篇:生物技术发展范文

生物技术产品种类有限,技术落后我国的生物技术产品研究及产业发展所需要的仪器设备、实验试剂大部分还是依靠从国外进口,我国生物技术产业的技术与装备与发达国家相比还存在很大的差距,生物技术研发产品种类少、水平低、有效市场占有率小,我国自主研发和生产的产品在国际上还不占主导地位。我国的生物科技大部分的研究成果还只是在实验室,没有走进市场转化为现实产品。

生物技术研究和产品开发重复现象严重,创新能力不足生物技术属于高新技术产业,产品的研发需要有极大的创新意识。我国生物技术的研究和产品开发经常跟踪国外研究技术和产品,自主的知识产权产品较少。而产品的开发也仿制国外已经批准上市或者正在临床研究的产品,不能自主研发,没有创新意识和创新能力,总跟在别人身后,重复别人的工作。

投入不足,产业化规模较小生物技术产业也是资金密集型产业,需要大量的资金投入,是高投入、高风险和高回报的产业,因此产品的研制和开发需要大量资金的投入。而我国对生物技术产业立法不完善,增加了投资的风险。而投融资渠道也很单一,主来来源于国家科技基金投入和部分企业及个人的资金投入。目前我国生物技术公司不少,但大部分都是中小型企业,规模较小,公司效益较差,缺乏产品的研发能力和市场竞争能力,不能在日益激烈的生物技术产业市场形成自己独特的规模和品牌。

生物技术的实验室水平和产业水平不对等,产业转化慢目前,我国的生物技术在实验室水平上落后国外技术二三年,但是在产业转化上却落后发达国家十几年。先进的技术成果在转化和进入市场时较慢,严重影响了生物技术的产业化。

研发人才和产业化经营管理人才缺乏由于技术研究开发人员培养周期较长,大量优秀的科研人员滞留在国外,国内缺乏优秀人才,而国内现有生物技术人才偏重于理论研究,缺少人才,在我国生物技术产业化发展中,常常出现实验室里的科研成果难以产业化,或者产业化成本很高而无经济价值的现象。同时,由于生物技术产业有较强的技术性,要求企业家不仅要有企业管理能力还要具备生物技术专业知识,技术兼经营型人才的短缺,造成大多生物技术产业经营者不懂专业,导致大量决策失误,影响生物技术产业发展的效果和进程。

促进生物技术产业发展的对策

政府要加大投入和引导,重视生物技术产业发展加大对生物技术产业的资金投入。生物技术产业发展需要大量的资金。除了政府加大对科研机构、科研单位的资金投入外,可以考虑由政府出面,面向国内外公开招募基金合作者,同时吸引民间资金的流入。民间资金可以来源于银行、民营企业、外资企业等,也可以来自养老金、保险公司的风险基金等。政策保护和倾斜。生物技术产业发展需要政府的政策支持和保护。政府要制定一系列法律法规来保护和鼓励生物技术产业的发展,通过法律规定来加强合作、鼓励创新,促进技术改革。

重视技术创新,避免重复研发随着全球经济一体化时代的到来,生物技术产业化水平的提高在很大程度上依靠的是技术的创新,重视技术的创新,要敢于创新,勇于创新,力争研发出拥有我国自主知识产权的技术和产品。生物技术产品的研发和投入市场需求的经费较大,因此在研发产品或开发新的生物技术产品之前要先进行专利搜索,避免重复研究开发,加强对我国知识产权的保护,建立起以自主发展为基础的生物技术产业体系。

加快生物技术转移,选择部分重点产品走向国际市场我国的实验室生物技术成果转化为市场产品较慢又难,影响了生物技术的产业化发展。因此在市场经济条件下,要加强与研发机构的联系,引导企业的加入,密切关注生物技术研发成果,促进生物技术产业转移和辐射,有效地使单一技术向成熟的商品发展,演化成配套的设备和技术工艺,促进生物技术的商品化和产业化。生物技术在转基因植物、生物芯片、医药等领域都有较大较快的发展。我国的某些基础较好、接近或者达到国际先进水平的产品或和项目可以集中优势、整体设计、分段实施,将这批先进的拥有自主知识产权的产品投入国际市场,走出生物技术成果转化的成功之路,增强并确立我国生物技术产业的国际竞争能力和地位。

第3篇:生物技术发展范文

关键词:低碳生物技术;法律激励机制;运行;完善

[中图分类号]Q81 [文献标识码]A [文章编号]1671-7287(2011)03-0013-10

一、低碳生物技术的地位与法律支持

1、低碳生物技术与当代能源、环境问题

当前,全球能源与环境问题愈演愈烈,能源资源的短缺以及能源过度的开发利用对环境产生的影响成为世界共同关心的话题。以往,各国为解决本国的能源与环境问题,大多以利用现有的能源资源为出发点,试图最大限度地控制世界能源资源,特别是传统化石能源,以保证国家能源安全。如今,在低碳发展的束下,通过技术进步、发展新能源和可再生能源以满足不断增长的能源需求以及环境保护的需要,成为各国经济发展优先考虑的方向。其中,大力发展生物技术,不仅能有效地利用地球现有丰富的生物原料,还可以通过工业过程达到生产能源的目的。生物技术既可以充分利用资源、实现能源生产,又满足了低碳发展的需要,应该得到广泛的重视。

生物技术是应用自然科学和工程学的原理,依靠生物作用剂的作用将物料进行加工以提品或为社会服务的大幕。现代生物科学发展迅速,以分子生物学理论为先导、以基因工程等技术为核心的现代生物技术已经开启了大规模工业化应用的时代。人们开始运用生物学的方法以及现代工程科学所开拓的新技术和新工艺,对生物体进行不同层次的设计、控制、改造或模拟,对现代社会产生了巨大的影响。

在低碳经济的大背景下,生物技术应用于能源与环境等领域能缓解能源需求,改善环境,实现经济与社会的可持续发展。利用生物技术,以可再生资源生物质为原料,大规模生产人类所需要的能源、材料和化学品等,是解决目前人类面临的能源及环境危机的有效手段之一。目前在生物技术中,低碳生物技术主要包括生物能源技术、生物材料技术、污染治理生物技术等,其中生物能源技术作为重要的能源清洁技术,具有很大的潜力和良好的发展前景。

2、低碳生物技术的发展状况与法律支持

当前生物技术得到了越来越多的应用,也发挥着越来越大的作用,特别是在推动生物质能的转化及生产方面,生物技术发挥着关键作用,通过产业化运作,实现清洁可再生能源的规模生产,是生物能源技术的价值所在。现代生物质能的发展方向是高效清洁利用,将生物质转换为优质能源,包括电力、燃气、液体燃料(燃料酒精、丁醇、生物柴油等)和固体成型燃料等,其中生物质发电包括农林生物质发电、垃圾发电和沼气发电等。生物质能具有资源量大、相对集中、能量品位较高的特点,在各国的可再生能源规划中占据着十分重要的地位。据世界经济合作与发展组织(OECD)预测,到2030年生物经济将初具规模,届时将有35%的化学品和其他工业产品来自生物产业,二氧化碳的年排放量也将随之减少10-25亿吨。其中,工业生物技术的贡献率将达到39%。随着生物能源技术的进步,生物质能的优势和成本不断下降,生物质能必将在未来世界的能源结构中占有一席之地。

20世纪90年代以来,以燃料乙醇和生物柴油为代表的第一代生物质能得以发展。目前,美国为世界第一大燃料乙醇生产国,巴西位居第二,欧盟各国则是最主要的生物柴油生产地,其他国家也都在积极发展生物质能。生物质能的发展带来粮食种植结构偏重玉米、粮食供应总量下降、粮食(油料)价格振荡上升、粮食危机引发动荡等一系列问题。因此,开发第二代、第三代生物燃料(即非粮生物燃料)成为世界各国关注的重要议题。但由于麦秆、草和木材等农林废弃物为主要原料(第二代生物燃料)的技术成本较高,真正商业化的项目较少;而第三代生物燃料是以微藻为原料的生物燃料,其油脂很难提炼,从海藻中提炼生物燃料的研究正处于实验室阶段,距离商业化还较远。因此,第一代生物质能短期内不会被第二、三代生物燃料所替代,第二、三代生物质能将是人类的理性选择,也是生物燃料必然的发展方向。我国生物质资源丰富,主要有农作物秸秆、树木枝丫、畜禽粪便、能源作物(植物)、工业有机废水、城市生活污水和垃圾等。据估算,我国可用于发电的生物质能,近期可达5亿吨标煤,远期可达到10亿吨标煤以上,如果充分利用农林生物质,生物质能装机容量可达1.5亿千瓦以上。

目前,我国已经具备了低碳生物技术发展所需的基础条件。譬如,拥有全球最大规模的发酵产业基础、形成了现代生物工业产业群体与产业化条件、拥有一支技术创新研发队伍与相应的平台条件。此外,在酶工程、发酵工程与过程工程等领域我国具有一定的技术基础,大宗发酵产品具有国际竞争优势,生物塑料、生物能源、生物基化工材料等快速发展,多种产品的规模为全球最大。虽然如此,我国的生物能源技术与美国、巴西等国相比还有一定差距,在技术创新和产业化方面还有待加强。我国目前生物质能与生物能源技术发展面临的困难主要有:①生物质资源不足、品质不佳、收集困难、难于转化。生物质燃料需要大量的能源植物做支撑,但对于中国这种粮食需求很大的国家,不可能大规模利用粮食作物作为主要原料,加上第二、三代生物质能还难以商业推广,造成了生物质原料供给的不稳定。②生物质能分散的特点适合发展中小企业规模的项目,但中小企业在资金和技术上没有优势,在技术革新方面的能力和动力都不足。③生物转化工艺成本高,生物能源终端产品品质不佳、产品标准欠缺。④自主技术开发亟待突破。生物质能利用技术仍处于产业化发展初期,特别是缺乏具有自主知识产权的核心技术,使得生物质能产业在基础技术研究、新产品研发和应用技术创新等方面存在技术含量低、产品单一等问题。

低碳生物技术需要通过商业应用和市场推广才能实现其经济与社会效用,而低碳生物技术的进步也因其经济与社会效应得到进一步提升,这是一个相互促进的过程。然而,在低碳生物技术的发展前期,市场机制不完善以及前景不明朗使得技术研发及其推广动力不足。因此,低碳生物技术以及生物质能开发需要各种激励举措提供助力,尽快实现从技术到市场的过渡。国家通过各种激励机制促进生物技术革新,引入投资以及完善技术研发平台,再配合以市场机制的共同作用,带动生物技术在生物质能等领域实现规模化、产业化发展。与此同时,生物技术及生物质能产业作为新兴的产业,

不可避免会产生盲目发展的现象,因此,需要政策与法律引导。总之,政策与法律的扶持与引导是低碳生物技术得以快速发展的重要保障和推动力:通过合理的制度设计,对低碳生物技术发展进行规划,明确其战略地位,有助于消除市场对其发展前景的疑虑,为其发展指明方向;通过有效的激励机制,促进低碳生物技术的研发与推广,推动技术和产业同时驶入发展的快车道。法律激励机制对低碳生物技术发展的重要作用决定了我们必须重视激励制度的设计,保证其高效性,同时也要关注其现实运行的状况,保证其有效性,如此,各种激励机制才能真正形成积极效应。

二、低碳生物技术法律激励机制的确立

我国十分重视低碳生物技术的发展,特别在生物质能领域,国家出台了许多法律与政策以推动和保障生物质能技术的研发和产业化,在注重规划的同时也在各类鼓励技术研发的目录中将其收入,以使低碳生物技术具有良好的发展环境。随着我国将生物质能作为国家能源结构调整、节能减排的一项重要战略规划,低碳生物技术必将拥有广阔的发展前景。

1、现有的激励框架

在政策与规划方面,《可再生能源中长期规划》根据我国经济与社会发展需要和生物质能利用技术状况,提出了重点发展生物质发电、沼气、生物质固体成型燃料和生物液体燃料。到2020年,生物质发电总装机容量达到3000万千瓦,生物质固体成型燃料年利用量达到5000万吨,沼气年利用量达到440亿立方米,生物燃料乙醇年利用量达到1000万吨,生物柴油年利用量达到200万吨。国家“十二五”规划在第二十九章“造就宏大的高素质人才队伍”中提到了对生物技术以及能源资源领域人才队伍的协调发展。此外,“十二五”规划还在其他3处提出了生物质能:一是在第七章“改善农村生产生活条件”中提到了“实施新一轮农村电网升级改造工程,大力发展沼气、作物秸秆及林业废弃物利用等生物质能和风能、太阳能,加强省柴节煤炉灶炕改造”的内容。二是在第十章“培育发展战略性新兴产业”中提出“新能源产业重点发展新一代核能、太阳能热利用和光伏光热发电、风电技术装备、智能电网、生物质能”。三是在第十一章“推动能源生产和利用方式变革”中提出“积极发展太阳能、生物质能、地热能等其他新能源”的原则。《国务院关于加快培育和发展战略性新兴产业的决定》(国发[2010]32号)也将节能环保产业、生物技术和因地制宜开展生物质能作为重点的发展方向。

在鼓励技术研发方面,国家中长期科学与技术规划、“973”和“863”计划等都将工业生物技术列为攻关重点之一。《国家中长期科学和技术发展规划纲要(2006~2020)》中也有关于重点和优先提高生物质能等可再生能源技术的内容。《国家高技术产业发展“十一五”规划》认为:“生物产业将成为未来经济发展的主导产业。要充分发挥我国特有的资源优势和技术优势,着力发展生物医药、生物农业、生物能源和生物制造,保护和开发特有生物资源,保障生物安全”。国家发改委、科技部、工信部、商务部、知识产权局于2011年6月了《当前优先发展的高技术产业化重点领域指南(2011年度)》,确定了当前优先发展的包括生物、新材料、先进能源、节能环保、资源综合利用以及高技术服务等10大产业中的137项高技术产业化重点领域,生物技术、先进节能技术等包含在其中。《可再生能源产业发展指导目录》、《产业结构调整指导目录(2011年本)》也将生物质生产技术和设备纳入产业调整的范围。近几年的《国家先进污染防治示范技术名录》和《国家鼓励发展的环境保护技术目录》也将生物质资源综合利用、生物污染治理等技术列入其中。

在立法方面,20世纪90年代以来,中央和各地方政府出台了一系列的法律法规,在不同层面上支持可再生能源产业的发展。《中华人民共和国电力法》、《中华人民共和国节能源法》、《中华人民共和国大气污染防治法》、《中华人民共和国循环经济促进法》等法律,都作出了关于鼓励开发利用清洁能源的规定,《中华人民共和国科学技术进步法》、《中华人民共和国促进科技成果转化法》则为科学研究、技术开发与科学技术应用及成果转化提供了法律制度框架。特别是《中华人民共和国可再生能源法》(以下简称《可再生能源法》)的颁布和实施,正式确立了可再生能源在国家能源战略中的地位,包括生物质能在内的可再生能源发展进人了新的发展时期,为低碳生物技术的应用提供了更为坚实的法律制度保障。

2、具体激励机制的建立

有了国家政策与法律的制度保障,低碳生物技术就有了明确的发展方向和良好的发展环境。同时,低碳生物技术从研发、项目建设到推广都需要实实在在的激励措施,因此,还需要更为具体的制度设计和及时有效的执行。当然,生物能源与生物技术的发展最终要靠市场,要立足于提高产业自身竞争力,符合社会发展的需要,这样才能保持产业长远的发展。在发展初期,实施国家的各种激励机制将有助于突破制因素,加快产业发展进程。此外,激励不能只限于某些措施或某些方面,而应将其作为一个综合系统工程来看待,使各种激励措施形成一个有机联系的整体,这样激励机制才能发挥积极而有效的作用。具体而言,以下一些激励措施与行动应是当前低碳生物技术发展的关键着力点:

①统筹规划与束性目标。低碳生物技术的发展离不开社会对生物质能源的需求,生物质能的发展也需要低碳生物技术的支持和推动。制定长远发展战略或发展路线图是世界上大多数国家发展生物质能的成功经验之一。统筹规划是准确定位生物质能和低碳生物技术的重要途径,一个长远的能源及其技术发展规划就确定了一国未来各种能源及其技术发展的走向。许多发达国家先制定一定阶段内生物质能在国家能源结构中的束性目标和计划,在此框架之下,出台一系列的优惠政策,并通过市场经济的手段鼓励各界投资和利用。

为了确保可再生能源发展目标的实现,许多国家制定了支持可再生能源发展的法规和政策。德国、丹麦、法国、西班牙等国采取优惠的固定电价收购可再生能源发电量;英国、澳大利亚、日本等国实行可再生能源强制性市场配额政策;美国、巴西、印度等国对可再生能源实行投资补贴和税收优惠等政策。

美国、巴西、瑞典是世界上生物质开发利用最多的国家之一,这些国家都强制推行了生物质能在能源结构中的束性目标。1999年8月,美国颁布了《开发和推进生物基产品和生物能源》的第13134号总统令,提出到2010年生物基产品和生物能源增加3倍,到2020年增加10倍,每年为农民和乡村经济新增200亿美元的收入和减少1亿吨碳排放量;同年国会通过了“生物质研发法案”。2002年美国制订了《生物质技术路线图》并成立了“生物质项目办公室”及“生物质技术咨询委员会”。2005年8月布什签署的《国家能源政策法

案》中制订了可再生燃料标准(RFS),RFS明确指出必须在汽油中加入特定数目可再生燃料且每年将递增。2007年12月的《能源独立和安全法案》又制订了更为严格的可更新燃料标准:到2022年用于运输的可再生燃料至少要达到360亿加仑/年。巴西作为世界上唯一在全国范围内不供应纯汽油的国家,其乙醇的生产量仅次于美国,而出口量位居世界第一。燃料乙醇在巴西能源总量中的比重从1975年的5%增至2008年的16%,并且占到巴西可替代能源总量的35%。早在20世纪70年代,瑞典就颁布了一系列强制性的有关能源合理化使用和节能的法律、法规,并随着技术的发展不断进行修订完善,以此来指导、规范企业的行为。在1998-2002年间,瑞典就投入了25亿瑞典克朗用作长期的气候研究,在2003年又提供3亿瑞典克朗基金给交通和能源部门用作改善气候环境。在政府及巨额投资支持下,瑞典生物质能利用技术得到迅猛发展。

我国在《可再生能源中长期规划》中提出了可再生能源的发展目标:2010年可再生能源消费量达到能源消费总量的10%,到2020年达到15%。在生物质能领域,根据国家能源局最新的规划,我国2015年生物质发电装机要达到1300万千瓦(较2010年增长160%)、集中供气达到300万户、成型燃料年利用量达到2 000万吨、生物燃料乙醇年利用量达到300万吨,生物柴油年利用量达到150万吨。数据显示,2010年我国农村以秸秆为燃料的生物质发电装机突破500万千瓦。从这些数据来看,生物质能已经基本达成《可再生能源中长期规划》中2010年的目标。这些目标的达成基本上是通过地方基层加强本地域的生物质利用(特别是沼气)的成果,是自上而下的推动方式,其依据如国家能源局的《国家能源局关于推荐绿色能源县的通知》(国能新能[2009]343号)等,并没有给对企业设定相应的生物质能甚至可再生能源在能源生产中的束性目标,而是通过鼓励农民消费绿色能源来引导资源整合,是一种鼓励性而非强制性的方法。

随着各地对生物质的利用率逐渐升高,特别是农村地区资源综合利用水平的提高,进一步发展生物质能将会重新遭遇瓶颈,鼓励性的推广只能利用现有的成熟生物转化技术,对低碳生物技术的革新要求并不高,难以对低碳生物技术研发产生足够的推动力。因此,未来我国不仅应当继续推广农村生物质能的应用,还应在发电、生物燃料、运输等领域设定强制性的生物质使用比例目标,并根据其技术革新的程度设定弹性的财税优惠措施,如此,才能更快地推动生物能源技术的发展。

事实上,在实现可再生能源发展目标的大背景下,我国在发电领域已经有了一些束性目标的尝试,如“十一五”规划中明确提出:“实行优惠的财税、投资政策和强制性市场份额政策,鼓励生产与消费可再生能源,提高在一次能源消费中的比重”。《可再生能源中长期规划》提出了对非水电可再生能源发电规定强制性市场份额目标:到2010年和2020年,大电网覆盖地区非水电可再生能源发电在电网总发电量中的比例分别达到1%和3%以上;权益发电装机总容量超过500万千瓦的投资者,所拥有的非水电可再生能源发电权益装机总容量应分别达到其权益发电装机总容量的3%和8%以上。但这些规定在现实中缺乏配套的实施细则,导致很多发电企业,特别是小企业难以执行。而作为《可再生能源法》修改后被寄予厚望的“可再生能源并网配额管理办法”迟迟不能出台,其原因除了对配额的比例仍有争议之外,来自电网及大发电企业的阻力也是重要的阻碍因素。除了发电外,生物液体燃料方面也应借鉴美国和巴西等国家的经验,设定一定的混合燃料比例,以促进生物燃料技术的进步。

②研发投入支持。技术进步是提高产业竞争力的重要因素,也是解决能源与环境问题的有效方案。要实现生物能源技术的突破,研发与示范阶段的资金投入是必要的保障条件。在一般的情形下,技术研发与示范应采取国家投资和社会多元化投资相结合的方式以保证充足的资金和实现良性的技术竞争。

目前我国部分生物质利用转化技术达到了国际先进水平,但总体技术水平仍比较滞后,主要体现为:在气体燃料方面,虽然我国沼气产业起步较早,但沼气技术仍停留在小规模的户用沼气层面,大规模、产业化地利用沼气的技术与装备都有待开发。在液态生物质燃料方面,燃料乙醇的生产技术水平与国际先进水平存在较大的差距,目前国内生物柴油生产仅有几家民营企业采用原始的且会造成环境污染的液碱酯交换技术,而在国际上高压醇解法已经进入中间试验阶段。在生物质固体成型燃料方面,生产设备简陋,难以为生物质成型燃料的大规模生产提供保障。联产大宗化工产品和生物可降解精细化工产品在国外已经形成新兴行业,而我国大部分产品尚未研制,而生产这些化工产品是增加生产企业利润的重要途径。因此,我国生物质能源产业要进一步发展就要力争突破技术瓶颈,加大对生物能源技术研究与开发的资助,确保跟上世界生物能源技术发展的步伐。

据《可再生能源中长期规划》的投资估算,2006~2020年,我国将新增2800万千瓦生物质发电装机,按平均每千瓦7000元测算,需要总投资2000亿元;新增6200万户农村户用沼气,按户均投资3000元测算,需要总投资1900亿元;加上大中型沼气工程、太阳能热水器、地热、生物液体燃料生产和生物质固体成型燃料等,预计实现规划的2020年可再生能源目标任务的总投资将需2万亿元。如此大规模的投资不仅应应用到现有技术的推广方面,也应保证足够的资金投入技术研发与示范领域。

《国家高技术产业发展项目管理暂行办法》(国家发改委[2006]第43号)规定,对经批准列入国家高技术产业发展的项目计划,给予中央预算内投资补助或贷款贴息。生物能源技术作为国家高技术的内容之一,符合国家重点扶持和优先发展的方向,因此,应该享受一定的研发与示范资金支持。在财政部的《可再生能源发展专项资金管理暂行办法》(财建[2007]371号)中也明确规定了可再生能源开发利用的科学技术研究项目,需要申请国家资金扶持的,通过“863”、“973”等国家科技计划(基金)渠道申请,不适用可再生能源发展专项资金。因此,在目前阶段,技术研发一般不享受生物能源领域的资金支持,而只适用技术项目的支持。根据上述有关规定,国家高技术项目的资金来源包括项目单位的自有资金、国家补贴资金、国务院有关部门或地方政府配套资金、银行贷款以及项目单位筹集的其他资金。项目资金原则上以项目单位自筹为主,国家采用资金补贴的方式予以支持。

虽然国家对生物能源技术给予了高度重视,安排了相应的资金支持项目,地方也配套有相应的研发资金支持规定(如《重庆市高技术产业发展项目管理暂行办法》),但总体而言,国家在生物能源技

术研发方面的支持力度还不够,且这些项目要求的条件和成果较高,一般的中小企业项目很难申请到相匹配的资助。与此同时,企业研发投入的资金规模还较小,尚未真正成为技术创新的主体,目前,我国工业企业研发支出仅占销售收入的0.8%,远低于发达国家4%的水平。产学研紧密结合的机制没有形成,科技与经济脱节的问题仍然突出。目前,我国科技成果转化率仅为25%左右,而发达国家高达60%。为此,国家税务总局于2008年《企业研究开发费用税前扣除管理办法(试行)》(国税发[2008]116号),规定企业从事《国家重点支持的高新技术领域》和国家发改委等部门公布的《当前优先发展的高技术产业化重点领域指南》规定项目的研究开发活动,其在一个纳税年度中实际发生的直接研发活动产生的费用支出,允许在计算应纳税所得额时按照规定实行加计扣除。

技术研发是实现产业化的第一步。目前我国在这方面的资金支持还不够,范围不广,管理不规范,未来不仅需要加大对生物能源技术研发的投入,还要完善“产-研-政”之间有效的沟通和成果转化机制,形成完整的从研发到政策支持到产业化的体系,如此,才能在起跑线上赢得先机。

③财政与税收优惠。财政税收优惠是经济发展的重要杠杆、产业调整的风向标,也是最基础、应用最广泛的激励措施。我国目前对低碳生物技术的财税激励措施主要体现在生物能源方面,这是不够的,还应基于此而扩充到全部低碳生物技术领域。目前,相关财税激励和补助措施主要表现在:

一是建立风险基金,实施弹性亏损补贴。财政部、国家发改委、农业部、国家税务总局、国家林业局2006年颁布《关于发展生物能源和生物化工财税扶持政策的实施意见》(财建[2006]702号)提出了坚持产业发展与财政支持相结合,鼓励企业提高效率的原则。此外,为化解石油价格变动对发展生物能源与生物化工所造成的市场风险,为市场主体创造稳定的市场预期,将建立风险基金制度与弹性亏损补贴机制。当石油价格高于企业正常生产经营保底价时,国家不予亏损补贴,企业应当建立风险基金;当石油价格低于保底价时,先由企业用风险基金以盈补亏,如果油价长期低位运行,将启动弹性亏损补贴机制。

二是原料基地与秸秆能源化利用补助。为保障生物能源和生物化工原料供应,切实做到发展生物能源和生物化工不与粮争地,财政部《生物能源和生物化工原料基地补助资金管理暂行办法》(财建[2007]435号)对生物能源和生物化工定点和示范企业提供原料的基地发放补助(林业原料基地补助标准为200元/亩,农业原料基地补助标准原则上核定为180元/亩)。为加快推进秸秆能源化利用,培育秸秆能源产品应用市场,《秸秆能源化利用补助资金管理暂行办法》(财建[2008]735号)规定对符合支持条件的(从事秸秆成型燃料、秸秆气化、秸秆干馏等秸秆能源化生产的)企业,根据企业每年实际销售秸秆能源产品的种类、数量折算消耗的秸秆种类和数量,中央财政按一定标准给予综合性补助。

三是上网电价及费用分摊激励。目前我国采取财政补贴和电网分摊相结合的方式促进可再生能源发电。《可再生能源发电价格和费用分摊管理试行办法》(发改价格[2006]7号)中明确了可再生能源发电价格实行政府定价和政府指导价(通过招标确定的中标价格)两种形式。可再生能源发电价格高于当地脱硫燃煤机组标杆上网电价的差额部分,在全国省级及以上电网销售电量中分摊。生物质发电项目上网电价实行政府定价的,由国务院价格主管部门分地区制定标杆电价,电价标准由各省(自治区、直辖市)2005年脱硫燃煤机组标杆上网电价加补贴电价组成。补贴电价标准为每千瓦时0.25元。发电项目自投产之日起,15年内享受补贴电价;运行满15年后,取消补贴电价。自2010年起,每年新批准和核准建设的发电项目的补贴电价比上一年新批准和核准建设项目的补贴电价递减2%。发电消耗热量中常规能源超过20%的混燃发电项目,视同常规能源发电项目,执行当地燃煤电厂的标杆电价,不享受补贴电价。2010年7月,国家发改委《关于完善农林生物质发电价格政策的通知》(发改价格[2010]1579号),规定对农林生物质发电项目实行标杆上网电价政策,未采用招标确定投资人的新建农林生物质发电项目,统一执行标杆上网电价每千瓦时0.75元(含税)。通过招标确定投资人的,上网电价按中标确定的价格执行,但不得高于全国农林生物质发电标杆上网电价。已核准的农林生物质发电项目(招标项目除外),上网电价低于上述标准的,上调至每千瓦时0.75元;高于上述标准的国家核准的生物质发电项目仍执行原电价标准。由于我国各个地区的煤电标杆电价水平差异大,使得各地生物质发电项目的实际上网电价差别很大,如何协调和平衡各地的生物质发电上网电价也是价格政策研究的重点之一。国务院价格主管部门应根据各类生物质能技术的技术特点和不同地区的情况,按照有利于生物质能发展和经济合理的原则,研究和完善生物质发电项目的分类价格政策,促进生物质发电项目的进一步发展。

四是可再生能源专项基金资助。根据原《可再生能源法》规定要求,财政部设立了可再生能源发展专项资金,后来配套了《可再生能源发展专项资金暂行管理办法》,但对如何申报资金、优惠政策幅度多少等没有明确提出。修订后的《可再生能源法》将原来“国家财政设立的可再生能源专项资金”修改为“国家财政设立可再生能源专项基金”,主要资金来源是可再生能源电价附加收入和国家财政专项资金。根据相关人员的解释,将“资金”改为“基金”将使这笔补贴更具有“基金纵向管理”的优势。除了行政成本大大降低之外,也可以做到“收取,统一发放”,以保证可再生能源投资企业按时获得收益,以鼓励其积极性。不过,早就起草完成的“可再生能源专项基金管理办法”迄今为止仍未能颁布,这对生物质能发展产生了消极的影响。

五是税收优惠。根据《高新技术企业认定管理办法》(国科发火[2008]172号)以及《国家重点支持的高新技术领域》的规定,生物能源技术属于高新技术,符合规定的企业可以申请认定,经认定后的企业可依照《中华人民共和国企业所得税法》(以下简称《企业所得税法》)及其《实施条例》、《中华人民共和国税收征收管理法》及其《实施细则》等有关规定,申请享受税收优惠政策。根据《企业所得税法》,国家对重点扶持和鼓励发展的产业和项目,给予企业所得税优惠。国家需要重点扶持的高新技术企业,减按15%的税率征收企业所得税①。在生物质能产品方面,《财政部、国家税务总局关于对利用废弃的动植物油生产纯生物柴油免征消费税的通知》规定从2009年1月1日起,对符合条件的利用废弃的动物油和植物油为原料生产的纯生物柴油免征消费税。

由于我国生物质能开发利用还处于起步阶段,

高新生物能源技术也还未取得重大突破,相关的财税激励政策亦未能周全地考虑生物能源技术及生物质能产业的特点,因此,这些激励措施存在规定不科学、不完备、落实不到位等问题。例如,有些政策补贴起点过高,如财政部《秸秆能源化利用补助资金管理暂行办法》(财建[2008]735号)仅支持注册资本金1000万元以上、年消耗秸秆量1万吨以上的大中型企业,导致多数企业都无法得到补贴;有些政策设计不完整,补贴仅针对直接生产环节,对消费能源产品的终端用户则没有补贴。国家对生物质能产业的优惠、补贴、奖励很难落到中小企业身上。除国家全力支持的农村沼气项目外,生物质能产业发展的大部分政策倾向于规模化的大型项目,如燃料乙醇和液体燃料项目,国家每年向4家陈化粮燃料乙醇定点企业(黑龙江华润酒精、吉林燃料乙醇公司、安徽丰原生化以及河南天冠)发放补贴,走非粮路线的中小企业却很难拿到同等的补助。没有得到补贴的中小型生物质能源企业,生产成本相对较高,在竞争中明显处于劣势,想得到大的发展十分困难。而在液体燃料市场上,目前中石油、中石化只收购拿到正式批文的黑龙江华润酒精等4家定点供应企业的燃料乙醇,中小企业生产的乙醇销路不畅,导致部分生物燃料企业无法将产品变现,整个生产经营无法正常循环运转。

未来我国财税激励机制应当根据生物技术和生物质能产业的技术及行业发展水平,因势制宜、因时制宜地设计有效、弹性的激励措施,既要保证“对症下药”,又要注重规划引导,保证财政税收政策的合理性以及相互协调。

④收购激励与政府采购。低碳生物技术应用的前提是所生产的产品能够在市场上销售出去,保证资源不被浪费,同时也能抵消一定成本。在当前化石能源开采利用费用较低的情况下,无论是生物质发电,还是生物质液体燃料,其成本都相对高昂,如果没有特殊的优惠政策和刺激措施,很难在市场上有足够的竞争力。因此,对生物能源的收购激励,包括政府采购,能够给相关企业解决产品生产的后顾之忧,同时,政府通过实际行动支持生物能源发展,将起到很好的示范和宣传作用。

在生物质发电方面,《可再生能源中长期规划》提出了国家电网企业和石油销售企业要按照《可再生能源法》的要求,承担收购可再生能源电力和生物液体燃料的义务。2007年7月25日,国家电力监管委员会第25号令,即《电网企业全额收购可再生能源电量监管办法》,规定了电力监管机构对该制度的实施情况进行监管。2009年修改的《可再生能源法》第十四条重申了国家实行可再生能源发电全额保障性收购制度:电网企业应当与按照可再生能源开发利用规划建设,依法取得行政许可或者报送备案的可再生能源发电企业签订并网协议,全额收购其电网覆盖范围内符合并网技术标准的可再生能源并网发电项目的上网电量。同时,该法第十六条对生物质能源作了专门的规定:国家鼓励清洁、高效地开发利用生物质燃料,鼓励发展能源作物。利用生物质资源生产的燃气和热力,符合城市燃气管网、热力管网的入网技术标准的,经营燃气管网、热力管网的企业应当接收其入网。国家鼓励生产和利用生物液体燃料。石油销售企业应当按照国务院能源主管部门或者省级人民政府的规定,将符合国家标准的生物液体燃料纳入其燃料销售体系。

然而,修订后的《可再生能源法》除了规定全额保障性收购的原则性提法外,配套的实施细则未能及时跟进,收购电量中可再生能源电量所占的比重、可再生能源发电并网国家标准的制定等问题上均有不同程度的空白。在生物液体燃料方面,燃料乙醇和生物柴油市场还不完善,配套的规定也处于缺失状态,现实中的生物液体燃料收购基本还需要依靠石油企业的自觉。

一个稳定的生物质能源需求方是生产企业保持持续盈利能力的关键。在生物质能源发展的早期,由于成本以及价格较高,完全通过财政补贴的方式并不能发挥生物能源“物尽其用”的功能。而政府采购则能较好地实现两者的兼顾:既能满足政府自身的需求,又间接为生物能源创造了市场。事实上,政府采购已经成为一些生物能源发达国家普遍采用的激励措施之一,美国联邦政府有关法律要求政府必须购买国产高能效产品和“绿色产品”,要求联邦政府在2005年购买10万辆洁净汽车,其中包括生物质燃料汽车。巴西相关法律也明确规定,联邦一级的单位购、换轻型公用车时,必须使用包括燃料乙醇在内的可再生燃料汽车。政府采购不仅能够起到很好的示范和宣传作用,通过直接对话与交易,还能够节省通过其他方式可能产生的中间费用,因而是一种高效率的“合作”方式。我国政府也可借鉴国外的经验,通过购买生物质能来源的电力等其他有效方式来以实际行动支持生物能源的发展。

⑤培育和完善市场。任何产业的发展都需要以市场存在为基础,产业规模效益的实现与上下游市场的依托密不可分。市场不发展,产业就会失去活力,甚至会因不符合社会的需要遭到淘汰。当前世界能源发展的趋势之一就是市场化与自由化改革,我国经济、能源领域也在进行着大规模的市场体制改革。因此,发展生物能源和生物技术市场,将为低碳生物技术的发展注入崭新的活力。

由于低碳生物技术是新兴的技术,其产业化发展有可能会因技术的不成熟造成不可预料的损失,因此,对生物技术及其产品市场的监管就显得尤为重要。如不能正确加以引导,将可能破坏生物能源资源开发与利用;燃料乙醇、生物柴油产品质量如不合格,将可能影响到交通运输安全;在生物能源和生物化工生产环节,如不严格标准,会造成环境污染,增加能源消耗。因此,发展生物能源与生物化工必须充分考虑资源、技术、环保、能耗等多方面因素,严格市场准入,加强行业监管。《关于发展生物能源和生物化工财税扶持政策的实施意见》规定了生物能源与生物化工企业实行严格的行业准入制度。地方发改委、财政部门根据国家统一的推广规划,联合推荐申报定点企业,申请企业必须符合行业准入标准。国家发改委、财政部按有关规定选择并确定定点企业。

然而,上述规定在一定程度上造成了生物液体燃料的市场准入和产品流通体系不通畅。毫无疑问,严格的产业准入和产品流通政策措施是生物液体燃料产业有序发展的基本保障。但是,由于局限于数家生产企业和两大石油公司的封闭体系,在一批从事甜高粱乙醇和生物柴油生产企业的产品无法进入车用成品油经销体系和终端消费市场,特别是生物柴油还根本没有正常的车用燃料销售渠道,从而阻碍了非粮生物液体燃料产业的进一步发展,打击了相关企业进一步加强技术研发、扩大示范项目建设的积极性。在生物质发电方面,由于对“全额保障性收购”的细化规则还未出台,导致目前生物质发电市场处于比较混乱的状态,特别是中小型生物质发电项目,并网十分困难。此外,电网公司的智能电网系统还未能跟进建设,接受生物质能并网还没有具体的标准,且目前的接网政策更多的是对电网提出束性要求,没有对可再生能源发

电厂提出束要求,更多的标准亟须配套。因此,整个生物质能市场基本还处在“萌芽期”,市场规模还不大,相关制度建设还不健全,生物质能市场还需进一步培育和发展。

三、完善低碳生物技术的激励机制及其运行

我国目前对低碳生物技术的激励除了少部分符合条件的高新技术企业以及研发项目之外,产业端以及配套制度建设等领域还处于起步阶段,真正商业化的市场还未建立;以生物能源为核心的产品激励措施也不够规范;各种激励措施并不完全符合现实的状况,很多规定由于缺乏实施细则未能得到有效实施。低碳生物技术发展不仅需要一整套规范的、系统的激励机制设计,而且还应落实到现实运作中,实现其高效性和有效性的统一。由此,需要政府在战略规划与计划、法律法规及其配套规定、行政管理与监管、经济与财税优惠等方面完善体制,也需要企业和市场理性发展,形成从制度设计到产业运行的良好互动状况。

战略规划与计划是产业及技术发展的动力和落脚点,明确的战略与计划为产业及技术的发展指明了方向。因此,需要尽快开展科学、系统的生物质资源调查与评价工作,综合考虑低碳生物技术的发展与技术路线,在国家能源统筹的框架下客观、准确定位生物质能的地位和作用,不能盲目和无序发展。生物质能源化利用的技术选择必须遵循“因地制宜,资源优先”的原则,在资源确定的前提下,需要结合当地的社会经济发展、农民收入、气候、交通、环境等实际情况而定。当资源和当地条件可以适用于多种技术时,可以根据技术的综合效益进行选择。立法是实现国家战略与规划的重要途径,也是制度设计和运行的最终保障。目前我国除了《可再生能源法》之外,直接涉及生物质能和生物能源技术的法律寥寥可数,且基本都是在可再生能源的背景下进行原则性阐述。此外,相关的行政法规处于空白状态,专门的部门规章也还未颁布。现行关于生物质能的规定主要是国务院的通知、意见以及各部门的工作规划与方案,这些非规范性文件不仅数量不多,且极不规范,变动调整快,具有较短的时效性。可以说,相关立法的缺乏是生物能源产业发展面临的最大困难之一。生物质资源由于其特殊性,其发展需要协调能源部门、农业部门、科学技术部门、工业部门、财政部门、税收部门等多个部门的关系,这种复杂性也是目前难有一部专门性的部门规章的原因。因此,我国未来在该领域的立法的关键是提高立法位阶,至少也应该有专门的行政法规规定生物能源发展的各种宏观问题,再由各部门制定实施细则去执行,这样生物能源的发展才能有坚实的制度保障。

产业管理与市场监管是任何产业发展所必需的行政管制手段。在中国,产业管理更是一种常见的管理方法。如前文所述,我国目前大量的部门政策文件(非规范性文件)都涉及产业管理的内容。生物技术的发展也不例外,特别是在其发展的早期,政府的直接介入十分必要。产业管理与市场监管在行业行政规划、项目与市场准入、行业标准、检测监控、检查监督等方面发挥着重要的作用。特别是在目前我国生物能源领域相关立法和制度还不完善的状况下,产业管理与行业监管已经成为了生物能源产业发展的主要推动力量。随着生物能源技术的进步和生物质能市场的发展,未来我国应逐步减少政府直接管理的范围,更多的资源配置应让市场去解决;与此同时,还应加强对技术发展的监管,保证技术发展符合社会的需要,减少技术进步产生的负面影响,最终实现产业管理、市场监管与技术监管的和谐统一。

第4篇:生物技术发展范文

关键词:环境生物技术,微生物,生物净化,生物修复,生物降解,反应器

环境生物技术(environmental biotechnology)是利用生物的生理活动,高效净化污染环境以及将污染物转化为资源的人工技术系统。作为一门新型的边缘学科,主要涉及生物技术、工程学、环境学和生态学等学科,不仅包含了生物技术所有的特点,还融合了环境污染防治以及其他工程技术, 其核心是微生物学过程[1]。它是近20年来产生的一门多学科相互渗透的新兴边缘学科,环境生物技术可以按技术难易划分为三类[2] 第一类是指以分子生物学技术为主体,以基因工程为主导的污染控制与监测技术,包括构建降解杀虫剂、除草剂、多环芳烃类化合物等污染物的高效基因工程菌,创造抗污染型转基因植物等。第二类是以目前大量应用的经过改革与创新的生物处理技术,如生物流化床法、上流式厌氧甲烷发酵法和变形活性污泥法等等。 第三类包括:生物稳定塘、人工湿地和污染控制资源化生态工程等自然净化系统。 本文仅讨论后两种环境生物技术。

1.环境生物技术的特点

作为高新技术之一的生物技术用于污染治理已有悠久的历史。但是,由现代生物技术和环境工程技术相结合的环境生物技术,是20世纪 80年代才诞生于欧美地区[3]。 环境生物技术是21世纪国际生物技术的一大热点领域,它将在环境治理上发挥着重要的作用。环境生物技术产生、发展及演变与一系列的环境污染问题有着密切的联系。 近年来,随着细胞融合技术、基因工程技术、分子生物技术等的发展,环境生物技术得到了进一步的发展。生物与环境之间既有对立的一面,又有统一的一面,生物体靠体内调节和变异来适应环境变化,同时通过自身来影响和改变环境。 环境生物技术拥有许多其他方法不可比拟的优势,如微生物对各类污染物均有较强、较快的适应性,并可将其作为代谢底物降解和转化,具有效果好、运行费用低、无二次污染等优势。用生物方法处理污染物的最终产物大都是无毒无害、稳定的物质,如二氧化碳、水、氮气和甲烷等,通常可一步到位,避免了污染物的多次转移,因此它又是一种消除污染安全而彻底的手段。另外,生物处理技术的产物或副产品,大多可以较快生物降解的,并可作为资源加以利用,有助于把人类活动产生的环境污染减到最小程度。生物技术还易于进行大规模操作,一些生物曝气池、生物滤池的容积之大,也是其他工艺望尘莫及的。 生物方法还可以就地利用天然水塘或土壤层作为污染物处理场所,这可大大降低处理费用。因此生物技术在环境领域的应用将是势不可挡的。 环境生物技术具有深远的发展前景,特别是对于寻求用低成本解决环境问题的发展中国家具有极大潜力。

目前,环境生物技术在废水处理、废气处理、环境监测、污染检测和补救、毒性鉴别等诸多领域的应用研究已经开始进行[4] ,有些也已取得了初步成果,但是环境生物技术的潜在优势还远没有引起人们的重视。

2 环境生物技术的应用

生物技术在环境方面的应用主要有:用植物和微生物清除环境污染物、毒物;用生物传感器监测污染;用微生物杀虫剂代替化学杀虫剂等。运用环境生物技术进行水污染治理,是目前采用的主要技术措施,它具有以下优点: ①生物既具有很强的吸附力,又具有良好的沉降性,处理效果好; ②生物具有很强的降解能力,处理效率高; ③可处理水量大,方法成熟; ④成本低,无二次污染。 生物法在处理污水时所起的重要作用已受到关注,它在环保领域中的应用还有待于进一步研究和拓展,以下几点是环境生物技术在环境污染治理方面的具体应用。

2.1生物修复

有毒化学品尤其是石油、有机氯化物、化学聚合物等造成的污染已成为世界性问题,在各种清除污染物的技术中,生物修复是最有前途的技术之一。 生物修复即生物除污,是指生物特别是微生物催化降解有机污染物,从而修复被污染的环境、消除环境中的污染物或修复由于对生态系统管理不善造成的损害的一个受控或自发进行的过程。不同类型的生物都有不同的生物除污作用。例如:利用植物吸收污染物(植物除污) 是一个正在兴起的研究领域。 植物修复技术是以植物忍耐和超量积累某种和某些化学元素的理论为基础,利用植物及其共存微生物体系清除环境中的污染物的一门环境污染治理技术[5] 。

2.2 生物监测

传统的环境监测以化学分析用成熟的仪器为主,当代生物技术发展了生物监测为主的新手段,如通过测定微生物的酶和细胞基因等监测环境的变化。 目前研究较多的有生物发光菌、卤素呼吸菌、苯乙烯降解菌等,主要监测水体中的有害物质和海水中藻类的爆发。

2.3 微生物降解技术

微生物对污染物质的代谢、转化及降解作用,是当今环境污染控制研究中最活跃的领域之一。 许多微生物和原生动物可以净化废水,传统的生物处理技术大多是对自然生长的微生物群体加以驯化、繁殖利用,对污染物的降解水平较低。 20世纪70年代以来,针对一些特定的有毒废水或成分单一的高浓度有机废水,已选育出具有较高降解活性的菌种,并进行纯培养后用于废水处理,已初步显示出一定的优越性,成为近年来利用生物处理废水的一种常用方法。微生物在废水处理中的特殊作用将不断得到挖潜,而且用微生物来处理环境污染物是一种安全、经济的方法。

2.4 生物发酵技术

生物发酵工程涉及最早的领域是废水生物处理。目前关注的生物发酵技术主要有: ①水解- 好氧生物处理法( H/ O 法) ,其特点是将厌氧过程控制在水解和酸化阶段。用H/ O 法处理表面活性剂废水、焦化废水和印染废水等难降解工业废水,其效果十分显著,COD 去除率较常规法提高20 %~30 %;处理城市污水时,其出水COD 浓度

2.5 生物强化处理技术

为了提高废水处理的效果,而向废水中投加从自然界中筛选的优势菌种或通过基因组合技术产生的高效菌种,以去除某一种或某一类有害物质的方法. 主要强化方法有:

①高浓度活性污泥法,以高污泥浓度和长泥龄来促进对难分解物质的处理,加快反应速度。 日本用该法处理难分解的聚乙烯醇和粪便污水取得显著效果[6] 。 ②生物- 铁法,是在普通活性污泥中加入无机盐如铁、钙、镁等,多用铁盐(氢氧化铁或氧化铁粉) ,形成生物铁絮凝体活性污泥,具有高浓度活性污泥法的特点,主要用来提高去除污水磷的效果。 ③生物- 活性炭法,综合利用微生物氧化能力和活性炭良好的吸附能力,使二者产生协同增效作用。在该系统中,每克活性炭去除1~3gCOD ,分解废水毒性能力增强,同时还显著提高了脱氮水平 。

2.6 生物反应器技术

生物反应器技术,是现代生物技术发展的一个主要方向。该法主要应用于制药、食品、精细化工等行业。其特点是:容量大,连续运行,自动化控制,操作简便。 美、英、德、日本等现大量生产现代化的新型生物膜反应器,其共同特点是反应器内装有比表面大的载体,有利于微生物附着生长形成生物膜;供气或供给的其他反应条件优越,污染物具有充分的时间与微生物接触,有利于增强微生物的分解代谢能力。我国的北京、上海等地也在积极开发研制。目前,2000m3的反应容器已经问世。 虽然其处理能力较低,造价较高,但其管理方便,运行费用低,所以欧美地区约有70 %的污水处理厂采用该技术⑸ 。

2.7 微生物絮凝剂的应用

微生物絮凝剂是利用生物技术,通过微生物发酵,抽提精制而得到的一种具有生物分解性和安全性的新型、高效、无毒的廉价的水处理剂,这些都是目前使用的无机或有机合成高分子絮凝剂等所不具备的。 通过细菌、真菌等微生物生产出的生物絮凝剂由于具有降解性能好,使用成本低,不会导致二次污染等优点已广泛应用于工业废水处理中。目前,已筛选出19 种具有絮凝能力的微生物,其中,霉菌8种,细菌5种,放线菌5种,酵母菌1种[3]。 随着生物技术的发展,生物絮凝剂的开发与应用具有良好的发展前景。

2.8 生物净化技术

生物净化处理包括稳定塘和土地处理系统。 稳定塘是污水处理技术中最简单的一种,其特点是结构简单,工作可靠,不需要什么特殊技术就可连续处理污水。 一般停留时间较长,需占用较大的土地面积。 可用于污水的一级、二级处理。 土地处理系统是利用土壤及其微生物、植物根系的净化能力处理污水,同时利用污水中的营养元素和水分促进农作物、牧草或树木生长,具有一定的生态效益和经济效益。 其特点是投资少,能耗低,易管理和净化效果好。 若这两个系统有机结合,可实现污水的二级、三级处理。 由于稳定塘系统比正规污水处理厂更能有效的去除有机化合物及N、P 等,由厌氧塘、兼性塘、好氧塘串连而成的稳定塘系统已成为二级处理的有效替代方法[7]。

2.9固定化微生物技术

它是生物工程领域中的一项新技术。 进入20 世纪80 年代以后,国内外开始应用这种具有独特优点的新技术来处理工业废水和分解难生物降解的有机物质,并取得了令人瞩目的成果。 随着现代生物工程技术的不断发展,一些具有特异性的优势菌种不断得到改造或创造,将这些高效专性菌脱色菌、脱氮、脱磷菌等进行固定化后,菌体密度提高,大大提高了处理效率,尤其是对难降解有毒物质的治理有明显的优势。

3 环境生物技术的发展趋势

环境生物技术是我国的一个重要发展领域,也是解决环境问题的根本措施。应结合我国国情进行急需的环境生物技术研究, 从国内外的研究与应用现状可知,目前环境生物技术最有应用前景的领域是高效的废物生物处理技术、污染事故的现场补救、污染场地的现场修复技术以及可降解材料的生物合成技术。

3.1 生物反应器的研究与发展

厌氧与好氧工艺相结合,生物膜与活性污泥相结合的反应器将成为废水处理反应器的主要发展方向。 其技术发展的总趋势是在活性污泥中加入载体,发展既有固定载体又有流动载体,既有好氧又有厌氧固定膜的反应器,最大限度的增加反应体系中的生物量和生物类群,最高水平地发挥微生物降解污染物的生物活性,同时兼顾便于管理和降低运行费用。 高质量传感器,信息传输与数据处理等构成的自动化控制系统,将在多种反应器中发挥作用,提高生物处理的效率,节约大量的人力,简化操作程序。

3.2 利用生物技术实施资源化战略

采用生物技术方法建立无害化生产工艺过程,实现废水循环利用,同时将部分无毒有机污染物转化为副产品,开发利用废物生产甲烷,氢气和燃料乙醇的多层次生物技术,增加由生物发酵处理有机废物的资源化工程的种类和产品,充分实现废物资源化。

3.3 建立各种生物监测手段

在环境中低浓度污染和沉积物中的污染物的研究方面,除继续应用指示种、耐污种、敏感种以外,还应利用各种形态、生理、生化、遗传的异常改变和群落多样性指数,建立各种生物监测手段,其中生物传感器技术具有广阔的应用前景。

3.4 利用微生物进行生态环境修复

一些生态工程,如污水稳定处理、土地处理、固体废弃物处理技术和方法在环境污染处理方面起到很重要的作用。 近年来人们更加重视土地、湿地、湖泊、河流的生态修复与重建工作,并发展用于环境修复的多种微生物制剂。 这方面的研究方向主要是对环境污染具有抗性的生物种类的筛选和培养。

另外,一些新的应用领域也引起了注意[8],如超级工程菌的构建,从环境中分离筛选出的菌种,其降解污染物的酶活性水平有限,需要对这些菌株进行遗传学改造。因此使近期的研究热点从一般的筛选工作转入到降解代谢途径、降解酶系组成以及其遗传控制机制上来。在此基础上就可能实现用质粒

转移、分子育种和基因重组技术构建有特殊功能的超级工程菌。人工构建的能够生物降解污染物的基因工程菌,具有生长繁殖迅速,絮凝性能好和对难生物降解污染物的较高降解活性。

第5篇:生物技术发展范文

关键词:生物技术;动植物;发展;问题;对策

追溯我国生物技术的发展使要从1953年开始,这一年发现了DNA双螺旋结构,也是因为这个发现,我国的生物技术才能迎来发展的时代。而在20年后,DNA重组我国在生物技术上的研究提高了一个层次。现阶段,生物技术的发展已经逐渐成熟,成为我国各行各业中不能缺少的一种技术,而且影响的深度更深,影响范围更广。毋容置疑,当今的时代属于生物技术,尽管生物技术的发展为我国带来很多的利益,但是在无形中也带来的一些问题。

一、生物技术应用发展情况

1.1生物技术在动物上的应用与发展

人们在动物上运用生物技术的主要目的是:促进动物生长、提高畜产品质量、改善畜产品品质、生产药用蛋白;动物抗病育种;建立诊断和治疗人类疾病的动物模型,生产可用于人体器官移植的动物器官等,并取得了巨大的成就。研究人员利用鼠类基因能获得经遗传改良的绵羊,这种绵羊产毛量能比普通绵羊提高6%。科学家们利用生物技术得到的转基因猪中有20%的血红蛋白与人体内的血红蛋白相同,这种血红蛋白从转基因猪中分离后能在室温下储荐6-12个月,比储存人体全血的时间要长,在不远的将来有可能成为人血的代用品。与此同时,从转基因羊、转基因牛生产人血代用品的研究也取得了明显进展。

1.2生物技术在植物上应用与发展

植物生物技术研究起源于50年代,80年代中后期发展迅猛,至今已有35个科的120种植物成功地进行了转基因,有40多种的植物种类获准进行田间试验。与转基因动物相比,转基因植物取得的成就更为可观,2014年全世界有20个国家种植了转基因植物,美国是转基因植物种植大户,利用生物技术可以将有价值的目的基因(来源于病毒、细茵、动物、植物、微生物、水生生物)导入植物内,使其性状(产量、质量、花期、花色等)抗逆性(抗病毒、抗病虫、抗除草剂等)发生变化,从而培养出理想中的转基因植物。全球种植的商品化转基因植物主要是大豆、玉米、棉花、油菜、马铃薯、南瓜、小麦、番茄、烟草等。美国1999年种植的大豆中55%是转基因大豆、玉米中约有40%是转基因玉米。我国将生物技术应用到农业尚处于起始阶段,但研究的总体水平并不低。据统计,目前我国正在研究的转基因植物种类达47种,涉及各类基因103个,正在中试的项目有48项,批准环境释放的有49项。已有6种转基因植物被批准进行商品化生产。目前进入商品化生产的主要是转基因抗虫棉,种植面积达10多万亩。

在植物上利用生物技术已取得了骄人的成果。利用生物技术可获得高产、优质、抗逆性强的水稻。我国已获得单产12t/hm2,超级稻、日本培育出高赖氨酸含量以及富含铁元素的水稻、美国科学家从马铃薯中获得了一种抗虫基因、经转基因后的水稻能抗害虫进食、英国研究人员利用生物技术培育出耐盐水稻、国际水稻所科技人员研究出耐淹水稻,转基因抗旱水稻的研究工作也在进行中,利用生物技术培育抗稻瘟病、水稻白叶枯病的研究工作也取得了重要突破。

二、生物技术带来的问题

1、食品安全问题

食品问题一直都是人们关心的问题,而且食品专家也一直都在探讨,在食品上使用生物技术而引起的过敏反应也存在,很多的人认为转基因食品里加入了生物技术,食用转基因食品对人的身体是有助的,因此开始大量的使用转基因食品,但是这种观点是错误的,尽管转基因食品中加入了生物技术,但是还是存在安全问题,而且还是不容易被发现的问题,具有一定的潜伏期,如果被人们食用,对人的健康非常不利。

2、生态环境安全问题

生物技术在食品上,容易引起食品安全问题,而生物技术带来的环境问题,比食品安全更严重,而且更加复杂。因为基因属于移动的,而且基因可以在动物后者是植物身上,相互影响,这样就会造成一些问题例如:部分物种会出现灭绝,动植物之间是处在一个生物链之中,一个动物灭绝,那么这个食物链就出现断裂,随之生态环境失衡。国际的一些组织就认为生物技术会带来基因污染,因此强烈抵抗在环境中使用生物技术。

3、地区政治经济平衡问题

世界上要经济发达的国家,也有经济相对落后的发展中国家,而生物技术的出现,就使发达国家与发展中的国家之间的差距拉大。很多发达使用生物技术并且把该技术作为一个垄断的技术,从而使原本就存息的贫富差距加大。如果一个地区长期属于经济发展不平衡状态,那么这个地区的社会将出现动荡。

三、解决问题的对策

1、加大对生物技术的研究,不仅仅是国家,规模较大的企业也可以开展生物技术相关的研究,而且研究的机构最好可以与国家以及企业相结合,如果科研机构单独的开展研究,会面对一些例如资金之类的压力,如果可以与政府或者是企业合作,一方面保证了研究的资金以及技术,另一方面,能够将研究的成果共享。在当今的时代,只有掌握了高超的生物技术才能能够在时代中生存,而且还可以利用生物技术去解决一些人类无法解决的问题。

2、法律支持,国家自从支持发展生物技术以后,就不断的颁布法律,支持技术的研究以及应用。以科委为首就相继颁布了《基因工程安全观管理法》以及《农业生物基因工程安全管理实施办法》可以只有这两个法律是不够。而且也不能只用这一个部门支持生物技术,卫生部、免疫部以及环保部门等等,都要一起联合制定支持生物技术发展的法律法规,将生物技术的研究规范化,而且也能保证有具体的管理制度。

3、生物技术研究有几个环节,首先要开展实验,然后通过试验、再次进行环境释放、最后在开始生产,在这几个环节中,要严格的监控,特别是在投入到市场之后,更要根据市场的风险研究成果。市场上的每一种生物产品都要有具体的标识,从而让消费者通过对标识的认识选择合适的产品。

4、提高生物技术产品的检测水平,摆脱依赖别国代为检测的困境。普及和提高消费者对生物技术的认识水平,树立保护国家安全、国家利益和公众利益的观念。

四、结束语

生物技术企业不断发展壮大。由于生物技术前景广阔,发展潜力巨大。我国从事生物技术产品开发的企业,如雨后春笋,不断涌现。另外,生物技术产业格局从治病为主向治病、保健、提高生活质量的健康产业过渡。兼并重组愈演愈烈,大企业愈来愈大,协作型竞争已经成为当今生物技术产业的主流;因此要加大生物技术的研究。

参考文献:

[1] Clive James. 2011年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志. 2012(01)

第6篇:生物技术发展范文

关键词 美国 生物技术产业 空间分布

美国的生物技术起步最早,经过几十年的发展,已具备了全球最先进的技术水平、最多数量的技术成果储备,也具备了比较完整的产业链,技术进步领先,人力资源充足,专利保护得力,资本市场结构合理,关联产业和支撑产业发展完备,并制定了产业发展战略和实施了有力的产业发展推动措施,已经形成多个发展势头良好的产业集群和优秀的产业发展环境。目前,生物技术产业已成为美国高技术产业发展的核心动力之一。美国在生物技术及其产业化方面占据着世界领先地位,尤其在健康和生命科学领域有很强的竞争优势。美国拥有世界上约一半的生物技术公司和一半的生物技术专利,技术革新的速度远比其它国家的公司要快。美国生物技术产品销售额占全球生物技术产品市场的90%以上。生物技术产业是美国新型的典型的技术密集型产业,它正对美国的经济发展产生较大的影响。2002年,全球上市生物技术公司中有52%是美国公司,全球生物技术产业总收入的74%是由美国公司创造的。30年来,生物技术企业开发的新药超过150种获得FDA批准,目前美国有针对200多种疾病的370多种生物技术医药产品已进入人体临床试验后期。研究美国生物技术产业发展现状,有利于制定我国生物技术产业发展的相关科技政策。

数据来源:Ernst & Young LLP, annual biotechnology industry reports, 1993~2004.

一、规模持续扩大,收入增长迅速

2003年,美国生物技术公司达1473个,而这一数字不包括为数更多的相关技术公司和传统制药公司,生物技术产业的雇员人数达19.8万人,超过了玩具和体育用品产业的就业人数之和。生物技术产业还为服务于它的行业创造了近30万个就业机会。近10年来,美国生物技术产业一直保持年均13~14%的增长速度,自1992年以来规模扩大了一倍以上,收入从当年的81亿美元增加到2000年的267亿美元,2003年,生物行业的总收入达392亿美元,实现销售收入284亿美元(表1),分别比2001年增长32.4%和16.8%。

二、投入增长很快,创新成果显著

美国产业界和政府部门十分重视对生物技术产业R&D及基础研究的投入,1992~2002年,美国生物技术产业R&D投入年均增长速度达31.8%,由1992年的49亿美元增长到2001年的157亿美元,2002年尽管股市融资低迷,亏损不断增加,但R&D投入还是增加了30.6%,达205亿美元,2003年为179亿美元(表2),占美国全部产业R&D投资的10%左右。尽管20世纪

资料来源:根据NSF Science & Engineering Indicators 2004 Appendix table 4-34数据绘制

90年代以来,联邦政府国防R&D投入增幅降低,但对于生命科学的研究经费却不断增加,年均增长达7.1%,增幅是最高的,到2003年达256.67亿美元(1996年不变价),为1990年的2.5倍。高强度的投入,产生了大量的创新成果,目前,全球一半以上的生物技术专利为美国所有,生物技术专利数不断增加,自1998年以来,美国每年生物技术专利数都超过7000件(表2),2002年达到7763件,生物技术专利占美国全部专利的比重由1992年的4.3%,上升到2002年的8.0%,十年间专利数增加了两倍,而占全部专利的比重也增加近一倍。

资料来源:根据 U.S. Patent and Trademark Office. Ernst & Young LLP, annual biotechnology industry reports,1993~2004.有关数据整理

由于生物技术产业本身技术密集的特点,加之其还处在技术创新的关键时期,使得该产业成为研发投入强度最高的产业。近10年来,美国生物技术产业研发投入强度(R&D投入/销售收入)一直居高位,这是其它行业所没有的,最低年份的1999年为66.5%,最高年份的1994年达90.9%,2002年也达84.4%(表2)。2002年人均R&D支出10.5万美元,大大高于1993年的7.2万美元。

三、公司遍及全国,高度集中12州

生物技术产业在美国是一个非常活跃的行业,据统计2003年,美国共有1473个生物技术公司(不包括相关行业公司),每个州至少有一个,但分布极为不均,数量居前12位的州共有生物技术公司1201个,占81.5%。其余各州仅占18.5%。这12个州为:加里福尼亚州436个(29.6%),马萨诸塞州200个(13.6%),马里兰州94个(6.4%),北卡罗来纳州84个(5.7%),新泽西州69个(4.7%),纽约州65个(4.4%),宾夕法尼亚州61个(4.1%),得克萨斯州48个(3.3%),佐治亚州43个(2.9%)、华盛顿州40个(2.7%),佛罗里达州32个(2.2%),康涅狄格州29个(2.0%)。

四、空间分布不均,形成九大产业聚集区

研发是生物技术产业发展的基础,高强度的研发投入成为美国生物技术产业发展的基本保证。但由于各州的原有基础不同,发展生物技术的条件各异,以及各州政府差异性的生物技术发展战略,使得美国生物技术产业研发在空间分布上表现出不同的特征。

研发机构主要分布在太平洋和大西洋沿岸地区。2002年生物技术研发机构(表3)居第一位的是太平洋区,共有1357个机构,占全国的26.35%,居第二位的是南大西洋区,有890个机构,占17.28%,中大西洋区有635个,占12.33%,居第三位,机构数最少的是中央东南区,只有217个,占全国的4.21%。居全国前三位的地区合计占全国机构数的56%,其它6个地区仅占全国的44%。

资料来源:根据 U.S. Patent and Trademark Office. Ernst & Young LLP, annual biotechnology industry reports, 1993~2004.有关数据整理

从业人员与机构分布不尽一致。2002年,全美生物技术研发的从业人员有11.67万人,太平洋区最多,有3.3万人,占28.4%;中央东北区次之,有1.85万人,占15.8%;中大西洋区居第三位,有1.8万人,占15.4%;南大西洋区居第四位,有1.6万人,占14.2%;从业人员最少的是中央东南区,只有2916人,占2.5%。

生命科学家分布各地不均,南大西洋区拥有生命科学家85887人,占全国18.6%,中大西洋区有74850人,占16.2%,居第二位,太平洋区73970,占16.0%,居第三位,居第四位的是中央东北区,有63748人,占13.8%。九大区中,人数最少的是山地区,只有24220人,占全国的5.2%。

生物技术教育发展不平衡,2002年美国授予的生命科学高等教育学位人数达107803人,其中,南大西洋区最多,达21761人,其次为中央东北区和中大西洋区,分别为16920人和14355人,居第四位的是太平洋区,14004人。这四个地区占全国的比重达62.2%。

转引自Joseph Cortright Signs of Life:The Growth of Biotechnology Centers in the U.S.The brookings Institution Center on Urban and Metropolitan Policy2002

从都市层面看,生物技术产业研发主要集中在九大都市区,波士顿(Boston)、洛杉矶(Los Angeles)、纽约(New York)、费城(Philadelphia)、北卡金三角(Raleigh-Durham)、圣迭戈(San Diego)、旧金山(San Francisco)、西雅图(Seattle)及华盛顿-巴尔地摩(Washington-Baltimore),形成了九大生物技术产业集聚区,这9大集聚区汇集了全国最生物技术公司的3/4,且过去10年新成立的公司的3/4也集中在这里。同时,九大生物技术产业聚集区也是生物技术产业研发聚集区,拥有顶级的生物技术科研机构,具有强有力的研究开发能力,至少拥有一所全国前20名的大学,其中,波士顿有哈佛大学和麻省理工学院;旧金山湾区有加利福尼亚大学旧金山分校、加利福尼亚大学伯克利分校和斯坦福大学;圣迭戈有加利福尼亚大学圣迭戈分校;华盛顿地区有美国国家卫生研究院(NHRI)、霍华德.休斯医学院研究实验室、马里兰大学研究中心和约翰斯.霍普金斯大学;北卡罗莱纳有杜克大学、北卡罗莱纳州立大学罗利分校、北卡罗来纳大学查珀尔希尔分校等著名大学,它们是形成生物技术产业研发集聚区的基础。据研究①,在美国51个100万人口的都市区中,这9大都市区平均所获得的NIH经费是其它42个都市区平均数的近8倍,生物技术专利数则为其它42个都市区的10倍;生物技术的商业化程度高,新成立的生物技术公司数、100人以上的生物技术公司等远多于其它42个都市区(表4)。

五、对我国的启示

美国是世界上生物技术产业研发最发达的国家,生物技术产业是美国仅次于信息产业的第二大高技术产业,也是本世纪最有前途的高技术产业。美国生物技术产业研发水平居世界领先地位,研发机构遍布全国,产业研发空间结构已具雏形。美国生物技术的发展对我国有如下启示:

制定“生物经济强国”战略,大力发展生物技术产业。生物技术产业已经成为影响中国乃至世界科技发展全局的重大科学前沿问题和战略高技术问题,生命科学与生物技术及其产业的发展将极大地推动经济增长和社会进步,正展现出未可限量的前景,要树立把握重大发展机遇的战略意识,坚定地把发展生物技术产业作为赢得未来竞争的战略选择;同时各省要根据不同的省情,制定差别性的“生物经济强省”战略,发展生物技术产业。

充分发挥政府的组织协调功能,发展生物技术产业。切实制定符合国情科技政策,促进生物产业发展,积极推进生物科技创新体系建设,构建具有国际一流水平的科研机构,切实加强基础研究,提高原始性创新能力;整合、培养和造就一支高水平的研发和管理队伍,使我国生物科技总体研发水平达到或接近国际先进水平,在若干重要领域达到国际领先水平。建立适应生物经济要求和符合生物科技创新规律的体制和运行机制,从政策上主导中国生物技术研发及其产业化的综合实施,促使在全国形成几个重点的生物技术产业集群。

大力提高生物产业规模经济水平。通过财税、信贷等政策引导生物企业兼并、重组和联合,打破生物市场条块分割的局面,实现资源合理流动与优化配置,以形成合理的生物产业地区结构、部门结构和产品结构,获得生物产业的整体规模效益。建立和完善生物产业社会化公共服务体系,大力发展从事生物技术信息咨询、技术评估,包括生物安全性评估、专利、投融资等方面的中介服务机构,以增强我国生物产业的综合竞争力。

注释

①Joseph Cortright Signs of Life:The Growth of Biotechnology Centers in the U.S.The brookings Institution Center on Urban and Metropolitan Policy,2002

第7篇:生物技术发展范文

生物质(Biomass)是指通过生物体的光合作用形成的有机物质或由其转化的物质,例如动物体及排泄物。可利用的生物质包括森林、农作物及农作物废弃物、农林加工废弃物和动物粪便。生物质的主要成分为纤维素、半纤维素、木质素、脂类、蛋白质、淀粉、灰分和芳香族物质。其中,纤维素、半纤维素和木质素是不易被人和动物利用的物质,脂肪和芳香族化合物是重要的动植物提取物。由于生物质是通过光合作用固定CO2形成的有机物,因此生物质燃烧后释放的CO2与光合作用时固定的CO2相当,是一种CO2零排放的能源物质,对保护生态环境减少温室气体排放具有重要意义。

生物燃料是可再生能源的重要组成部分,对交通运输业(陆运、空运和海运)的可持续发展有举足轻重的作用。例如液体的和气体的生物燃料:生物柴油、生物醇类(生物酒精、生物甲醇和异丙醇),生物二甲醚(bio-DME),生物油、生物气(沼气),生物氢气,以及填埋场气(主要是CH4)等等。不同于石油,生物燃料被视为是CO2中性的,因为再其产生过程中吸收了同样数量的CO2,燃烧释放量不可能增加。此外,许多生物燃料是含氧的(如生物醇),有助于降低燃烧过程中含氮化合物颗粒的排出量。

我国生物质能源的现状与发展趋势

我国非常重视生物质能的发展。“十二五”期间,国家下发多个文件指导生物质能源的发展。国务院的《国家“十二五”科学和技术发展规划》、《国家能源科技“十二五”规划(2011-2015)》、国家发改委2012年7月下发《可再生能源“十二五”规划》都明确了发展生物质能源的产业目标。国家能源局特别《生物质能发展“十二五”规划》,明确了生物质能的发展目标。到2015年我国生物质液体燃料将到达500万吨。低成本纤维乙醇、生物柴油等先进非粮生物液体燃料的技术进步,为生物燃料更大规模发展创造了条件,以替代石油为目标的生物质能梯级综合利用将是将来主要发展方向。

生物质能,是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为固体、液体和气体燃料,是取之不尽、用之不竭的一种可再生能源,因此生物质能是太阳能的一种表现形式。

我国现阶段生物质能源发展的原料主要是油料植物、秸秆及动物粪便等传统生物质资源。据估算,2012年我国废弃的农作物秸秆资源7.4亿吨,折合3.2亿吨标准煤;农产品加工废弃物1.4亿吨,折合标准煤0.17亿吨;禽畜粪便7.8亿吨,折合标准煤5.3亿吨;林木生物质资源10亿吨,折合标准煤5.8亿吨;生活垃圾3.1亿吨,折合0.45亿吨标准煤,但生物质资源的实际利用量在1亿吨标准煤左右,约占可利用总量的15%~20%,因此具有较大的发展潜力。我国生物质能源发展的一个基本原则是“不与人争粮,不与粮争地”,因此,生物质能源主要来自于农林废弃物。

到2015年,生物质能年利用量超过5 000万吨标准煤。其中,生物质发电装机容量1 300万千瓦、年发电量约780亿千瓦时,生物质年供气220亿立方米,生物质成型燃料1 000万吨,生物液体燃料500万吨。建成一批生物质能综合利用新技术产业化示范项目。

全球生物能源技术发展趋势

理想的生物燃料应该是能够用非食品原料廉价生产,常年供应且能方便地使用现有供应设施,其能量密度与汽油或柴油相当。可以使用10%~25%(E10-E25)混合生物乙醇汽油的汽车数量正在增加。新型弹性燃料车辆能够燃烧任意混合比例的生物乙醇,包括百分之百的水合乙醇(E100)。类似的,生物柴油也可以任意比例混合,混合的比例已经从现在的2%~5%(B2-B5)设定到未来的10%~20%(B10-B20)。与生物乙醇比较,生物柴油含有更高的碳含量,能够产生类似于传统柴油相当的热值。生产成本尤其是原材料的价格是目前更高比例混合生物燃料的限制因素。

第一代生物燃料是目前商业化较成功的生物燃料,包括生物乙醇和生物柴油,其原料是甘蔗、玉米、小麦、谷物、菜籽油,蔬菜油和提取的动物脂肪。第一代生物醇(生物乙醇)是通过啤酒酵母发酵来源于作物的植物糖和淀粉产生的,这些作物包括甘蔗、甜菜和玉米。巴西生物乙醇生产以甘蔗为原料,而美国主要是以玉米为原料生产生物乙醇。第一代生物柴油的生产是对植物油的化学修饰完成的,如油菜、棕榈树和大豆等,植物油脂和提炼的动物脂肪通过脂肪酸甲酯化作用生产生物柴油。然而,第一代生物燃料的原材料直接与食品或饲料产品形成竞争,其发展是不可持续的,会导致食物商品价格的飙升,使其进一步推广受限制。因此生物燃料的发展与推广需要第二代、第三代甚至第四代生物燃料的发展。

第二代生物燃料已经有了初步发展,其原料包括木质纤维素,生物废弃物,固体废弃物。木质纤维素难以降解,从木质素纤维形成可发酵糖要经过多步骤处理,例如原材料前期处理、采用物理的、化学的或生物的进行预处理、可溶性半纤维素糖从固体纤维物中分离出来的固、液分离、酶水解纤维素产生可发酵的葡萄糖等木质纤维素利用中,相当大的精力集中到真菌纤维素降解酶酶解途径的研究。酶解过程涉及一个联合过程,是末端葡萄糖水解酶和纤维素外切酶共同作用,两种酶都隶属于典型的糖苷水解,是通过攻击寡糖-多聚糖底物的异构中心中的水分子来实现的。木质纤维素酶的酶活性低、酶解成本高是木质纤维素利用的一个瓶颈。

生物柴油是指由动植物油脂(脂肪酸甘油三酯)与醇(甲醇或乙醇)经酯交换反应得到的脂肪酸单烷基酯,最典型的是脂肪酸甲酯。与传统的石化能源相比,其硫及芳烃含量低、闪点高、十六烷值高、具有良好的性,可部分添加到石化柴油中。但是使用动植物油脂生产生物柴油造成与人和动物争资源的现象。一种新型的油脂生产正在形成――微生物油脂,微生物油脂可以利用农作物秸秆通过发酵方式工厂化生产,不仅可以废物利用,而且节省土地,用其生产的生物柴油接近石化柴油的性能,有较好的发展潜力。

第三代生物燃料是基于藻类物质的新一代燃料,利用它们产生的碳水化合物、蛋白质、蔬菜油生产生物柴油和氢气。据估计,藻类产量可达61 000升/公顷,相比之下,作物如大豆、菜子的产量分别是200升/公顷、45升/公顷。微藻类特别是小球藻细胞内脂类的积累能够达到其生物质50%。产生的生物油通常酸值较低,有利于生物柴油的合成。微藻类具有第一代、第二代生物燃料原材料不能比拟的优势。微藻类能够使用海水和污水养殖,不会与食品生产形成竞争。

第四代生物燃料主要利用代谢工程技术改造藻类的代谢途径,使其直接利用光合作用吸收CO2合成乙醇、柴油或其他高碳醇等,这是当前最新技术。虽然该技术尚处于实验室研究阶段,但在环保、成本等方面的优势已经可以预期。

生物能源产业展望

据统计2010年大约1 200亿升生物燃料产量用于运输业,几乎是2005年的2倍。全球现有生物燃料市场生物乙醇占近80%,其余的主要是生物柴油。市场主要是第一代生物燃料,美国是最大的生物乙醇生产国,产量为490亿升,第二位是巴西,产量为280亿升,分别占全球输出的57%和33%。欧盟领导着生物柴油生产,占2010年世界生物柴油市场的53%。预期到2020年,全球生物燃料的总产量为2 000亿升,其中生物乙醇1 550亿升,生物柴油450亿升。

将来生物燃料将在能源技术的应变上占有重要的地位,白色生物技术在生产生物燃料和化学原料领域具有较大的潜力。第一代生物燃料技术已经成熟,但与食品生产原料竞争。未来生物燃料的发展与推广需要第二代(木质素纤维、生物废弃物、固体废物)和第三代(藻类和蓝细菌)技术应用到新兴生物燃料的生产。

新一代生物燃料短期内取得商业化成功具有较大的挑战性。新一代生物燃料的试点和规模化示范仍需继续进行,因为与取得商业化成功的第一代生物燃料相比其生产成本过高。无论是热化学的还是生物化学的技术手段,目前还没有清晰最佳技术途径。

第8篇:生物技术发展范文

食品检测中鉴定微生物的常规方法

微生物鉴定是食品微生物检测实验室的一项基本工作,也是实验室能力验证考核的一项基本内容。目前市场上微生物鉴定平台主要采用经典的生化反应方法。主要产品涉及法国生物梅里埃的手工API系统,自动化的ATB系统及全自动的Vitek2Compact系统。美国BD公司的Phoenix100系统及美国Biolog公司的微生物鉴定系统。

法国生物梅里埃的手工鉴定系统API

API是公认的微生物鉴定金标准方法,API无需专用仪器,采用标准化手工方法完成细菌的生化鉴定,为低成本替代传统手工细菌生化鉴定的最佳产品。

API系统特点:

完整的鉴定谱:15种试条,可鉴定550余种细菌;

简单方便:标准化方法,成本低廉,判读结果简单

快速高效:4~24小时可获得鉴定的结果。

该系统主要用于刚刚开始组建的食品微生物检测实验室,只需要API鉴定试剂盒,菌库软件及孵箱就可以具备标准的微生物鉴定能力了。

法国生物梅里埃New ATB系统

New ATB系统是半自动化的微生物鉴定系统,该系统可鉴定由环境、原料及制成品分离导致的细菌,同时也可以进行药物敏感性试验(包括肠杆菌、非发酵G(-)杆菌、葡萄球菌、链球菌、酵母菌、厌氧菌)。可鉴定770种细菌,进行近80种抗生素药敏实验分析。

ATB还具备快速鉴定模式,可以在4小时内进行大多数细菌的快速鉴定。

New ATB系统原理:鉴定试条包含风干底物的反应孔,经标准浊度的菌液活化,于指定温度培养4小时/24小时后即可进行读数鉴定。计算机根据阅读器检测到的结果自动调用相应试剂条数据库,得出生化/同化结果和药敏试验结果。系统将所得编码跟数据库的典型菌株生化谱比较,以客观的2个参数(鉴定百分率及T-值)计算鉴定结果。

New ATB系统特点:

速度快捷;

提供自动化接种,阅读及分析试条结果;

准确可靠的结果ID 32及快速ID 32试条由金牌标准API试条改良而成,配合自动化概念,结合成完整的细菌鉴定系统。

法国生物梅里埃全自动微生物鉴定系统Vitek2Compact

美国BD公司的Phoenix100系统

Phoenix100系统自上市以来已经超过10年时间,采用的基本原理为生化反应原理,在医院市场得到一定程度的应用。客观的讲该系统使用维护成本过高,耗材主要是鉴定药敏复合板,需要另配肉汤及指示剂,导致耗材成本过高。另外采用荧光加比色指示生化反应,对于细菌鉴定而言灵敏度过高,经常出现不能鉴定的情况,导致耗材的浪费。

美国Biolog公司的Microstation和Omnilog自动微生物鉴定系统

Microstation和Omnilog自动微生物鉴定系统基于95种碳源或化学敏感物质的利用进行微生物鉴定。该系统并非基于经典的伯杰手册的鉴定方法,在业界有学术方面的争议,主要是对碳源同化鉴定方法存在异议,认为该方法可以用于科研,但是实际鉴定报告的运用上,没有方法可以对比。该方法要求操作人员比较专业,一般定位是科研用途。

食品微生物鉴定技术的发展

以上列出的是目前经典的微生物鉴定技术,随着国际上微生物鉴定技术的发展,新的技术不断出现,希望能够更快,更准确,更全面的进行微生物鉴定,相关的技术平台主要有飞行质谱快速微生物鉴定法及分子水平上的快速微生物鉴定方法。

细菌快速鉴定飞行质谱方法

Maldi-TOF(基质辅助激光解析飞行时间质谱仪)用于理化方面蛋白质的分析,是一种成熟的分析方法。近年来,随着技术地进步,科学家们发现可以通过分析细菌核质体不同大分子蛋白的组成来进行细菌的鉴定,于是该方法很快在细菌快速鉴定方面得到了广泛使用,该技术也数次获得诺贝尔奖。

质谱法进行快速微生物鉴定具有以下特点:

(1)鉴定速度快:常常在数分钟内就得到鉴定结果;

(2)鉴定准确:同常规微生物生化鉴定方法比较符合率高;

(3)操作简便:只需要简单的操作就可进行复杂的微生物鉴定;

(4)菌库大:相比生化鉴定方法,质谱法建立菌库更快,可鉴定的微生物种类更多,对于一些用常规方法难鉴定的微生物鉴定效果较好。

该技术一经微生物鉴定运用,就得到了多方面的关注,甚至很多专业人士认为该技术在未来5年内将大规模装备于中国的微生物实验室。

目前市场上可进行快速细菌鉴定的质谱产品只有法国生物梅里埃和德国布鲁克可提供。两种产品均有其优势,梅里埃的质谱鉴定产品VITEK MS强项在于其菌库及建库方法,具有菌库标准,建库方法被认可,菌库容量大,鉴定结果准确。德国布鲁克产品具有硬件方面的优势,是专业生产质谱的厂家。

微生物16S测序方法及全基因组测序方法

生物细胞DNA分子的一级结构中既具有保守的片段,又具有变化的碱基序列,保守的片段反映了生物物种间的亲缘关系,而高变片段则能表明物种间的差异。这些保守的或高变的特征性核苷酸序列是不同分类级别生物(如科、属、种)鉴定的分子基础,因此可根据rDNA(核糖体DNA)序列设计用于某一种、属、科甚至更大类群范围的微生物检测或鉴定的探针。细菌中rRNA(即rDNA)高度保守,以16S rRNA为聚合酶链式反应(PCR)扩增靶分子的细菌快速分类鉴定标准方法已经成功建立,该方法可以应用于细菌种、属和科的鉴定及系统进化分析等。与其它细菌鉴定方法比较,16S rRNA测序技术鉴定细菌具有高效、准确、简便、特异性强的优点.随着基因组学的迅猛发展, 细菌16S rRNA间隔区序列数据库不断扩大,运用16S rRNA序列分析技术对微生物进行分类鉴定,确定微生物在进化中的位置,已成为微生物鉴定中至关重要的方法。

第9篇:生物技术发展范文

1、固体生物质燃料

生物质成型燃料燃烧是把生物质固化成型后采用略加改进后的传统燃煤设备燃用,该技术将低品味的生物质转化为高品味的易储存、易运输、能量密度高的生物质颗粒(pellets)状或状(briquettes)燃料,热利用效率显着提高,能效可达45%(如瑞典的Kcraft热电工厂),超过一般煤的能效。欧洲在生物质成型燃料方面起步较早,900万人口的瑞典年颗粒燃料使用量为120万吨,瑞典20%集中供热是生物质颗粒燃料完成的;600万人口的丹麦年消费成型燃料70万吨。瑞典还开发了生物质与固体垃圾共成型燃烧技术,解决了垃圾燃烧有害气体二恶英(dioxin)超标问题。

直接燃烧作为能源转化形式是一项传统的技术,具有低成本、低风险等优越性,但效率相对较低,还会因燃烧不充分而污染环境。锅炉燃烧采用现代化的锅炉技术,适用于大规模利用生物质;垃圾焚烧也采用锅炉燃烧技术,但由于垃圾的品味低及腐蚀性强等原因,对技术水平和投资的要求高于锅炉燃烧。通过技术改进,生物质直接燃烧的能效已显着提高,直接燃烧的能效已达30%(如丹麦的Energy 2秸杆发电厂,瑞典的Umea Energy垃圾热电厂)。美国生物质直接燃烧发电约占可再生能源发电量的70%,2011年美国生物质发电装机容量为9799MW,发电370亿Kwh。

1)生物质固体燃料生产技术

目前国内外普遍使用的生物质成型工艺流程如图1-1所示。压缩技术主要包括螺旋挤压式成型技术、活塞冲压成型技术和压辊式成型技术,其中前两种技术发展较快,技术比较成熟,应用较广。但一般的成型技术需要将生物质加热到80°C以上才能使其成型,所以能耗较高,增加了生物制成型燃料的成本。

免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

AI写作,高效原创

在线指导,快速准确,满意为止

立即体验
文秘服务 AI帮写作 润色服务 论文发表