公务员期刊网 精选范文 建筑结构设计论文范文

建筑结构设计论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的建筑结构设计论文主题范文,仅供参考,欢迎阅读并收藏。

建筑结构设计论文

第1篇:建筑结构设计论文范文

1.1高层建筑结构受力特征

高层建筑结构在模型上一般可以假想为一个从地基出发并不断上升的悬臂构件。高层建筑主要承受水平作用效应和竖向作用效应,水平作用效应一般指风荷载,在抗震设防地区还包括水平地震作用。竖向作用效应则一般由结构自重荷载产生,在抗震设防烈度为8、9度时的大跨度和长悬臂结构及9度时的高层建筑,还应考虑竖向地震作用。在这些作用效应下,结构整体及主体构件均需具有足够的承载能力、刚度和延性,整体的设计注重概念,应符合相关规定中对于建筑形体的规则性要求,包括平面布置的规则性及竖向布置的规则性。结构在抵抗弯曲方面来说,结构体系务必满足:不能使建筑物产生倾覆;在承受荷载时,它的支撑体系的某些部位不应被压屈、压碎或者直接被拉伸破坏;同时弯曲侧移不能超出弹性极限的范围。而结构在抵抗剪力方面来说,结构体系务必满足:建筑物不至于发生剪切破坏;同时结构的整体剪切侧移不能超过弹性极限的范围。最后对于结构的地基和基础来说,由于高层建筑一般是高次不静定结构,所以结构体系在支承点处应避免较大的不均匀变形,从而可以防止出现较大的二次内力。

1.2高层建筑结构的传力路线

高层建筑的竖向平面结构和水平平面结构都必须有明确的传力路线。以某个作用在楼面上的重力荷载为例,它要通过楼盖构件的弯曲传递给竖向结构的某个构件,直到建筑物的基础和地基。传力路线的模式根据结构的类别和布置而异。高层建筑的底层往往只允许有少量的立柱,以便有足够的空间可以设置宽敞的入口、前厅或广场。这时,有较密柱间距的上层结构的重力荷载,就要通过另一种结构体系传给底层立柱以及底层立柱基础。当高层建筑的楼层平面有突变时(如楼层有收进,或由矩形平面变成其他形状的平面时),或结构体系有变化时,它们的传力路线也会发生改变,这时往往既要有竖向的转换结构,也要有水平方向的转换结构。在高层建筑结构传力路线中还有一个区别于底层建筑结构的特殊问题,那就是高层建筑的每个立柱都承受着上层传来的重力荷载,要考虑它们各自在施工和使用过程中竖向压缩量的差异。这既要在设计中加以考虑,也要在施工过程中及时加以调整,以保证各层楼面的水平度,减小因不同柱的压缩量有过大差异而引起的结构内力。

2概念设计

2.1抗关于侧力构件合理布置规定

对于一个单独的结构单元,在设计上的通常做法是,一般会尽力避免设计出应力集中的缩颈和凹角部位;而且尽量不要在这些部位设置楼、电梯间。整个结构外形也要避免外挑,尺寸内收也不宜过急,避免在结构上形成薄弱部位。最大限度地防止因局部结构或构件破坏,而出现全部结构失去承载力的情况。

2.2关于高宽比的规定

高宽比的规定是对结构整体刚度、整体稳定、抗倾覆能力、承载能力以及经济合理性的综合考虑,是长期工程经验的总结,根据当前的实际工程来看,这一限值是比较经济合理与实用。但随着目前高层建筑的快速发展,设计师们发现其实高宽比并不是必须要满足的。实际工程已有一些超过高宽比限制的例子(如深圳京基100大厦高441.8m,共100层,高宽比为9.5,天津117大厦,高597m,共117层,高宽比为9.7),当然高宽比超过限值时,应对结构进行更加准确的受力分析,并施加可靠的构造措施。

2.3短肢剪力墙的设置问题

在新的规范中,将墙肢截面高度与厚度比为5-8的剪力墙定义为短肢剪力墙,且根据试验数据和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制。比如在剪力墙设计等级为四级,短肢剪力墙的配筋率要求是1%以上,而普通剪力墙则为0.2%。高厚比较小的构件的脆性破坏较大,不利于抗震。所以,在具体的高层结构设计里,设计师们应该充分利用其它现有构造形式来代替短肢剪力墙,减少不必要的麻烦。

2.4嵌固端的设置问题

在结构计算模型的选择上,如何准确地确定嵌固端位置是一个十分关键的问题,这直接关系到实际的受力状态与选择的计算模型是否符合以及内力等相应计算结果是否无误。因为现在高层结构通常会设有一层或者是二层的地下室(可以当作人防工程来使用),而嵌固端的选择,可以结合各层的刚度变化,再根据它的实际布置状况,可以选择在一层顶板的位置,也可以是二层顶板的位置,同时在地下室其他楼层等部位也是有很大可能的。但是在这个问题上,结构设计师们往往会忽略了一系列需要注意的问题,例如嵌固端的设置和刚度比的限制等问题,忽视这些问题将会对工程的质量和后期数据的分析造成很大的隐患。

3地基与基础结构设计

在基础的具体设计中,应根据地基复杂程度、建筑物规模和功能特征以及由于地基问题可能造成建筑破坏或影响正常使用的程度来确定基础设计等级。首先,地基计算应满足承载力计算的有关规定;其次,由于高层建筑的基础设计等级均为甲级或乙级,因此均应按地基变形设计;若地下室存在上浮问题时,还应进行抗浮验算。下面就高层建筑中不同的基础类型分别阐述在设计计算中应注意的事项:在对箱基和筏基的梁板进行配筋计算时,务必相应地扣除底板上直接作用的梁板荷载和自重,当出现箱筏的四边区格和地基反力过大的情况,这时要对梁板进行加强配筋;而在进行箱基结构设计时,要考虑洞口上下的连梁的影响,验算其截面面积,若洞口的位置或者大小有变动,要复核连梁的抗剪强度和抗弯强度;若是进行整体箱基和筏基的设计,必须考虑桩土的因素,其共同工作会对结构造成一定程度的影响。

4结构计算与分析

4.1结构整体计算的软件选择

当前比较常用的计算软件一般包括:建科院PKPM其中的SAT-WE,MIDAS,ANYSYS,ETABS,SAP等。由于各个软件使用的计算模型有一定区别,所以在各个软件计算结果上就会有或大或小的差异。实际工程中,务必考虑结构类型和计算模型的具体特点,在进行整体分析时选择最恰当的软件,并使用不同软件进行对比分析计算,从不同软件计算的相差较大的结果中,选择最接近工程实际情况的数据。若不能选择合适的计算软件,不但会消耗大量的时间和精力,更重要的是会对结构埋下安全隐患,造成日后的工程问题。所以为了保险起见,通常在布置复杂的高层设计中,宜使用不少于两种不同的模型来进行内力分析和计算。

4.2剪力墙底部加强部位墙厚的确定

在进行抗震设计时,剪力墙的底部加强部位一般采取增加边缘构件箍筋和墙体的布筋来防止地震荷载的影响,预防结构出现脆性破坏,从而能够比较有效的改善结构的抗震性能,在现行的规范中,明确指出剪力墙结构底部加强部位的高度可以参考墙肢的1/8和底部两层二者中的较大值;而部分框支剪力墙结构底部的取值,可考虑以上两层的高度及墙肢总高度1/8中的较大值。一般情况下,高层建筑结构底部加强部位的剪力墙截面厚度bw的取法按照以下规定,按照一、二级级抗震标准的情况,bw宜选择剪力墙无支长度的1/16或层高;按照三、四级抗震标准的情况,bw宜选择剪力墙无支长度的1/20或层高。但在墙底受力较小且结构层高相对较高的情况下,其厚度还按上述要求取值,就显得很不经济。所以,根据具体的工程实践,厚度可以适当减小,而且必须按照下面的公式计算稳定性。

5结束语

第2篇:建筑结构设计论文范文

关键词:建筑结构设计;工程造价控制;变量问题;控制措施

从建筑结构设计工程造价控制方面来分析,该阶段的工程造价控制对整个建筑项目工程造价控制的影响非常大,可以说结构设计的影响已超出总工程造价的50%以上;而从建筑结构设计周期来分析,其阶段的设计周期仅占总工程建设周期的20%,可见建筑工程结构设计阶段对总工程造价的影响有多大。就现阶段建筑工程结构设计的工程造价来看,值得建筑企业相关部门给予高度重视,并采取有效的控制措施,以保证建筑结构设计工程造价合理。

1建筑结构设计的工程造价

1.1建筑结构设计、工程造价基本概念。一个完整的建筑工程项目,前期工程规划以及结构设计环节非常重要,是整个工程项目施工的围绕核心,从建筑结构设计中能够充分显示出施工技术与工程造价之间所存在的关系,并予以有效的施工方案实现施工顺利、成本合理的目的,这样对工程造价来说也能够提高控制能力。建筑结构设计的主要目的就是以满足建筑方案要求,确保建筑项目整体设计合理,以达到建筑工程竣工后安全可靠、经济适用的目标,促进建筑企业可持续发展。建筑项目工程造价是指整个建筑工程施工、决策、设计等各环节投入成本的总额度。1.2建筑结构设计与工程造价之间存在的影响关系。工程设计的过程实际上就是将建筑工程中技术与经济两个元素从对立的走向转变成统一走向的过程,目的是以提高建筑工程技术能力的同时,降低建筑工程施工成本的投入,在以保证质量的基础上实现经济效益的提高。建筑工程项目中的各个成本投入环节非常多,在经过合理规划后,并取得决策确认,就可以作为控制建筑工程施工质量与工程造价的重要依据,因此,建筑结构设计的合理性、科学性非常重要。经过多年对工程造价的了解与分析,工程结构设计与工程造价之间的影响关系非常明显,以达到百分之五十左右的影响率。可见建筑结构设计对工程造价好坏的影响非常大。

2建筑结构设计阶段工程造价难以控制的变量问题

2.1工程造价机构配置不合理所引起的变量问题。就当前建筑项目设计中,结构设计环节至关重要,相应的工程造价结构配置也需要具备科学性与合理性,而现阶段,在建筑工程结构造价控制机构配置不合理已成为影响总工程造价的直接因素之一。在建筑工程项目中,造价管理部门与其他管理部门处于平等关系,甚至还有很多建筑工程中对工程造价部门的存在不够重视,并没有设立专门的管理与执行部门,因此在工程造价管理过程中,由于权限与独立性问题、部门地位问题、结构配置不合理问题导致造价管理工作中存在的各种问题居多,就拿独立性问题来说,直接影响数据的准确性,极容易发生后续工程造价的问题与误差,导致资金投入过大,浪费情况居多,不合理利用成本现象普遍,最后导致工程资金投入加大的问题。2.2控制造价环节缺乏执行力所引起的变量问题。执行力是一个任务是否能够有效完成的关键,在建筑工程造价控制过程中,其相关部门的执行力也一样重要,而现阶段在很多建筑工程项目中造价控制与管理的执行力严重缺乏,部分建筑企业对造价控制的重要性不够了解,也没有意识到造价控制的执行力会直接影响到总工程造价的结果。因此在建筑工程造价控制措施上仍是以传统的方法为主,不具备科学性,造价控制管理人员对工作的态度也不够认真,造价控制数据的准确性也有待审核与验证,进而造成资金使用不合理的情况发生。2.3缺乏准确的目标所引起的变量问题。在建筑项目结构设计环节中工程造价过程缺少一个明确的控制目标已成为影响工程造价控制重要因素,没有明确的目标就意味着工程造价控制处于盲目的状态中,这是一种级不负责任的问题。这个问题的具体表现是施工企业在确定设计阶段工程造价的目标时,不根据实际的情况来制定目标,不能形成一个有机地整体,对工程造价目标的一致性十分不利,降低后期施工工作的完成效率。

3实现建筑结构设计阶段工程造价控制的具体措施

3.1制定一个明确的工程造价控制目标。通常情况下,建筑设计阶段的工程造价的控制目标一般是采用制定方案的初步估算来制定所谓工程造价控制阶段的初步目标,对于包含具体技术设计的建筑工程将使用初步设计概算作为建筑结构设计阶段工程造价控制的目标,对于没有具体技术应用的建筑则可以不经过修改直接将初步设计概算作为工程造价的控制目标。3.2完善建筑结构设计阶段工程造价控制制度。完善的建筑结构设计阶段工程造价控制制度是有效实现建筑结构设计阶段工程造价的关键因素,要建立完善的建筑结构设计阶段工程造价控制制度需要保障已经制定的工程造价控制制度要完的工程造价控制的绩效评价体系,提升整的执行下去,其次要建立一套合理性工作人员的工作积极性,做到奖惩分明,最后是要明确建筑结构设计阶段工程造价控制的各阶段的目标和具体责任人,明确的目标和职责是工程造价控制工作的重要前提,也是提高建筑结构设计阶段工程控制的最有力的保障。3.3合理选择建筑设计阶段工程造价的控制方法。科学合理的工程造价控制方法是保障建筑结构设计阶段工程控制的关键因素,当前应用最广泛也是最有效的工程造价控制方法是采用价值工程的数据信息来对工程价值的工作内容进行科学分析,并使用限额设计的方式实现建筑结构设计阶段工程造价控制的规范化。尽管限额设计的方法对工程造价的控制产生了一定的作用,但是该方法在设计阶段的方案的制定和施工管理以及设计概要等方面还存在较大的局限性,在实际应用中会出现一些不合理或者运算错误的地方,要及时的发现并解决,以保证工程造价控制方法的合理性。3.4实现建筑结构设计阶段的工程造价的数字化。科学技术是第一生产力这句话十分适用于建筑结构设计阶段工程造价的控制,科技的进步带动了建筑结构设计阶段工程造价的控制方法数字化的发展,当今社会先进的网络计算机技术的发展更是为工程造价的控制带来了无限的上升空间,要合理使用现在互联网中庞大的信息资源,建筑结构设计阶段工程造价的控制的数字化发展是未来工程造价控制发展的必然趋势。设计研究专门的工程造价控制的计算机软件仍是提升工程造价控制方式数字化发展的重要方法。数字化条件下的工程造价控制必然会提高工程施工中的管理质量和控制效率。

尽管各大施工企业都具备比较完善的工程造价的控制方法,但是在具体的实施过程中还是会发生一定的问题,要加强行业交流和技术水平的探讨,取长补短,全面提高工程造价控制措施的科学性,促进建筑业的可持续发展。

作者:聂鸿魁 单位:秦皇岛维拓建筑设计有限公司

第3篇:建筑结构设计论文范文

所谓的结构概念设计就是指用与结构设计相关的理论指导实践的设计工作。而如果在设计的时候,如果缺乏理论的指导,那么建筑在结构设计上就变成了个人的主观设计,而不是理论层面接受的设计。当然在结构设计的时候,其理论应该是科学的合理的,符合现行社会和经济发展的,而且在设计的过程中,先进理论和先进工具的应用也是必须要考虑到的,不能出现落伍的情况。在进行结构设计的时候应该从以下三点进行考虑。

1.1方案选择的合理性设计方案的选择是十分重要的,不仅关系到以后工程的质量和结构,还影响着人们的居住。在结构方案的选择上,要遵守科学、合理、发展的原则,而且由于很多种因素都对设计方案造成影响,所以设计出来的方案就是多种多样的。方案设计出来了,又面临着合理的选择上,方案选择的不好,日后发生的后果不堪设想,所以应该进行认真的分析比较,选取的方案既要科学合理,又要经济,所以方案的选择很重要。在对设计方案的可行性进行选择的时候,要对建设地及施工材料等进行全面的分析,保证每一个环节的科学合理,还要有专业人士对各种影响设计的因素进行评估分析,选择出科学合理的结构概念设计方案。

1.2结构简图的科学性结构概念设计首先要有科学专业的理论作为支撑,而且一般情况下利用结构设计简图对结构概念设计的合理性进行评估。在结构简图的选择上,要遵照安全和准确的原则,选取合理的简图。因为如果选取的简图不够科学,那么相应的结构概念设计也会出现相应的错误,甚至对工程的质量问题造成巨大的影响。所以说,结构设计简图在制作时应该做到精确、科学,使出现的误差也在可控范围内,应该进行严格的审查,保证简图的质量。

1.3对计算的结果进行准确分析随着社会和经济的发展,信息技术被广泛的应用,特别是在数字的计算等方面设计出种类繁琐的计算软件,可是各计算软件在计算的结果上确实各不相同,让使用者也不知道哪个是正确的,所以在工程的设计中计算工作经常出现混乱。在进行设计时,软件的选择很重要,应该对各个软件进行系统化分析,根据工程的实际情况和设计的原理等,选择适合的软件,确保计算结果科学准确。

2如何在结构设计中运用概念设计

2.1建筑场地的合理性选择建筑场地的选择影响着结构概念设计的结果,所以说对结构设计来说非常重要。建筑场地的选择要符合施工的条件,同时满足采光、水电、噪音等多方面的考虑。最重要的一点,就是应该考虑建筑场地的抗震能力。选择的地点必须是抗震效果比较好的地点,以免发生危险的情况。一般在工程的初步设计之前就要进行建筑场地的科学选址和勘察,如果施工场地确实不允许,又必须在此进行建设,那么就应该做好科学有效的手段来降低危险系数。

2.2建筑基础的科学化应用建筑场地进行合理选择后,紧接着就是对建筑基础的科学化选择上,在选择的时候要根据建筑场地的地形和地质结构等进行分析,选取合理的建筑基础。一般在建筑基础的选择上有以下三种情况:

(1)桩基础。在地质比较松软或者负重比较大的情况下,大多会选择桩基础,因为桩基础能够使下部对上部进行力的承载;

(2)箱形基础。箱形基础的安全性比较高,抗灾能力比较强。一般高层建筑中会应用箱形基础。是因为箱形基础使下部的承载力实现均匀分配,保持地基的受力均匀;

(3)筏形基础。筏形基础能够实现分散建筑上部结构承载力,是下部承载力减弱,对地基进行力的控制,不出现地基的不均匀沉降。

2.3结构规则的合理应用建筑结构中只要保证非结构件的正常稳定运转,就能使建筑材料的成本实现降低,因此主体建筑结构的选择,要做到合理、科学和对称性,在多数的施工中,实现抗侧力主体结构的对称,所选择的平面结构也应该是容易形成对称结构的。当然,具体情况具体分析,还要根据实际情况进行选择,同时符合平面工程的科学设计。

2.4抗震抗灾能力的强化建筑设计和施工的成功与否,不只是外型和质量的方面,还有抗震抗灾上的需求。所以机构概念的设计,要考虑到抗震抗灾的问题,在设计时要多增加防线,以期实现减弱地震的危害性。当然结构的变化也能起到抗震抗灾作用,比如安装特定的原件,使得建筑体对地震的破坏力进行有效的减弱。

2.5结构刚度科学化选取建筑结构在刚度的选择上至关重要,而且在建筑结构概念设计中也必须遵守刚度的要求。结构刚度可科学化选择,是保证工程质量的有效措施,还能够对地震等灾害起到危险性降低的作用。与此同时,结构刚度的科学化选取还能扩大空间的占有率,使建筑平面的利用率等都能得到合理的利用。

3实施结构概念的措施

为了提高设计的科学性和合理性,同时保证工程的质量和安全,在进行结构概念的设计时,主要运用以下几种措施:

(1)在建筑场所的选择上,要选择抗震性能比较高的,如果选择的场所抗震性能较差同时还必须在此施工,那么要进行科学的补救措施,以免造成不必要的危险;

(2)在结构材料的选择上,要选择抗震系数比较高的结构材料,而且选取的材料还应具有良好的均匀性,满足抗震的要求,保证安全性;

(3)在结构构件的组合上,添加赘余等组件,减小地震的破坏性,也可以多增加防线;

(4)在构件的延性上下功夫,通过采取多种有效的手段,提高刚度和承重能力,增加抗震的能力;

(5)在构件的连接上,保证结构的整体性和统一性,加强对节点的控制,保证其连接的质量;

(6)实现所有设计的完全一致,在相关的数据等方面做到精确一致,保证方案的科学化和合理化。

4结束语

第4篇:建筑结构设计论文范文

关键词:建筑结构 设计 选型 地基设计 构造

近年来,我国建筑业得到飞跃式的发展,与此同时,建筑结构设计的整体水平和设计方式等也发生了很大的变化。建筑结构设计人员在实际设计工作中,经常遇到一些问题,需要灵活、合理处理。

1建筑结构的合理选形

建筑物地面以上的结构形式对工程造价有很大影响。目前我国民用建筑结构形式主要有砖混结构、框架结构、框剪结构、剪力墙结构、装配式大板、大模板结构、排架结构等。不同的建筑结构形式各有优劣,应比较各种结构的布置方案、受力体系及经济性能,结合实际,因地制宜,综合考虑以上因素,尽量采用适合本地区的经济合理的结构形式,建设出低造价、高质量、高标准的民用建筑。

混合结构的造价仅为钢筋混凝土框架结构造价的60%-70%,其钢筋混凝土用量少,适用于7层以下的建筑物。但混合结构是由墙体承重,对墙体布置有一定要求,不如框架结构灵活,其使用功能受到限制。7层以上12层以下的建筑宜采用框架结构,在其合适的位置上设置几道抗震剪力墙,可减小柱、梁的截面尺寸和配筋,从而达到节省材料的目的,且可以明显提高建筑物的抗震能力。框一剪结构一般适用于12层以上20层以下的建筑物,为增强建筑物的整体刚度,可其适当的位置上设置刚性筒体,也可以起到节省材料的效果。

2 建筑结构布置不合理的处理策略

结构的合理布置(使结构尽可能“规则”),是抗震概念设计中的十分重要的环节,这里的“规则”包含了对建筑的平立面外形尺寸,抗侧力构件布置、质量分布,直至承载力分布等诸多因素的综合要求。由于引起结构不规则的因素太多,特别是对于复杂的建筑体型,很难一一用若干简化的定量指标来划分不规则程度并规定限制范围。

由于缺乏规范依据及相应的设计规定,加之对结构抗震概念设计缺乏应有的了解,有些设计人员往往对结构规则性难以把握,有时甚至听从业主和建筑师的要求,在实际工程中出现了不少规则性很差、对结构抗震十分不利的高层建筑。比如平面扭转不规则问题,在框剪结构中,纵横剪力墙布置过分集中或仅布置在房屋的一端,使结构刚度中心严重偏离质量中心。有时甚至是结构整体计算的第一振型为扭转振型.

高位转换问题,某高层建筑采用框支抗震墙结构,高度约160m,Ⅳ类场地,6度设防,不仅房屋高度大大超过其最大适用高度,且在第6~7层处设置了厚板转换层,框支层数达到6层。框支抗震墙属抗震不利的结构体系,新修编的抗震规范,对此类结构的抗震措施仅限于框支层不超过两层;楼层错层问题,高层建筑中带有较大范围的错层,使楼层的楼板不连续,对结构抗震十分不利;高层建筑结构中,同时采用两种以上的复杂结构,诸如带转换层结构、错层结构、连体结构、多塔楼结构等,均属于复杂结构形式,根据抗震对高层建筑规则性的要求,高层结构不宜同时采用两种以上的复杂结构。

3 地基基础设计中常见的问题

3.1桩基选型不合理或对桩基施工的可行性、成桩质量的可靠性及桩基施工对周围环境的影响等方面考虑不够充分。

如某高层建筑设计采用大直径钻孔灌注桩,桩尖需穿越6~8m的卵石层进入中风化岩1倍桩径。按照现有的施工条件,桩尖穿越较厚的卵石层十分困难,成孔质量也较难保证,根据附近相似地质条件的工程经验,以卵石层为持力层(无软弱下卧层),并在桩端进入卵石层一定深度后进行桩底注浆,同样能达到提高单桩承载力、减小桩基沉降的目的。

3.2单桩承载力取值出现偏差或缺乏计算依据

因成桩工艺不同,地基土对不同桩型的支承能力是不同的,即按规范经验公式计算单桩竖向承载力时,对于不同的桩型,各土层的极限侧阻力和极限端阻力是不同的。有的工程地质勘察报告仅提供了计算打入式预制桩的单桩承载力设计参数,而设计采用钻孔灌注桩,并直接引用地质报告中的设计参数,使计算的单桩承载力出现偏差。某些工程场地原为河道或地势较低,上部土层为松散的新近填土,桩基设计时直接按经验公式计算单桩承载力或直接采用试桩提供的承载力数值,没有考虑上部未固结(或欠固结)土层在固结沉降过程中可能引起的桩侧负摩阻力的影响。验算桩身承载力时,没有考虑施工工艺系数ψc。或桩身压曲的影响;对抗拔桩,仅计算桩身承载力,没有进行桩身抗裂验算。有地下室时,在按静载试验确定单桩承载力时,没有扣除地下室深度范围内的桩侧摩阻力,由于基坑开挖后暴露时间不宜过长,试桩一般都在基坑开挖前进行,基坑开挖后,地下室深度范围内的桩侧摩阻力己不再存在。

3.3桩间距过小

桩间距过小,不满足规范对桩的最小中心距的规定。特别是试桩、锚桩之间的间距,往往被设计人员忽视,直接影响试桩结果的正确性。

3.4桩身钢筋笼长度不足

对挤土灌注桩,桩身钢筋笼长度没有穿越软弱土层的层底深度,不满足桩基规范((JGJ94-94)第4.1.1.2条“对于沉管灌注桩,配筋长度不应小于软弱土层层底深度”的规定,这也是工程设计中常见的问题。

4钢混结构构造方面存在的常见问题

4.1板-柱结构设计中存在的问题

板-柱结构的节点连接非常薄弱,不利于抗震,1988年的墨西哥地震充分说明了这一点。过去由于抗震规范和高规均没有对板-柱结构作出相应的设计规定,使设计人员在板-柱结构的设计中带有一定的随意性和盲目性。

4.2异形柱结构设计中存在的问题

近年来,在我省的住宅建设中,特别是高层或小高层住宅,有些采用了异形柱结构。由于缺少相应的设计依据和规定,目前在异形柱结构设计中存在的问题很多,也比较突出,主要表现在异形柱结构房屋的高度超高、体型不规则、结构布置不合理、抗震构造措施不当等方面。应当说,目前国内对异形柱的受剪承载力、节点承载力和结构延性等方面的试验研究还不多,对异形柱结构抗震性能的认识还不够充分。在这种情况下,设计异形柱结构时,对房屋高度、结构规则性及抗震措施等方面宜从严掌握。

4.3结构缝设置不合理,缝宽度不足

对于超长建筑物,为减少温度变化对结构的不利影响,合理地设置伸缩缝是必要的。有些设计人员提出用后浇带代替伸缩缝,笔者认为此种做法并不一定妥当。因为后浇带仅能减少混凝土材料干缩的影响,不能解决温度变化的影响。后浇带处的混凝土封闭后,若结构再受温度变化的影响,后浇带就不能再起任何作用了。对于不能或不便设置温度伸缩缝的超长结构,除留设施工后浇带外,还应采取其它构造加强措施,如加强顶层屋面的保温隔热措施,对受温度变化影响较大的部位适当配置直径较小、间距较密的温度筋,或采用预应力混凝土结构等。地下室结构宜尽量不设缝,而采取其它技术措施来解决差异沉降问题,如采用桩基,使绝对沉降和差异沉降控制在允许范围内,或在主裙楼之间留设施工后浇带,待主楼封顶后再连成整体。地下室埋于土中,建成后受温度变化的影响相对较小,因此对长度较长的地下室可采取留设后浇带、采用补偿收缩混凝土、局部提高配筋率等措施来解决混凝土干缩和温度应力的影响。

参考文献:

[1]李洪涛.我国建筑结构设计问题与展望分析[J].现代商贸工业.2010.07.

[2]魏利金.建筑结构设计常遇问题及对策[M].北京:中国电力出版社.2009.01.

[3]蒋曜州.浅谈建筑结构设计配筋[J].中国电力教育.2008.01.

[4]赵健玲.建筑结构设计中常见错误分析[J].科技风.2009.16.

[5]何磊.对建筑结构设计中若干问题的探讨[J].建材与装饰.2008.01.

以上文章,杂志请不要邮寄给作者,请邮寄2本杂志到:

第5篇:建筑结构设计论文范文

湖南株洲某住宅小区由多栋多层和9~15层小高层住宅组成,框剪结构,总建筑面积为120000m2。以地上9层小高层为例,标准1层结构单元见图1,层高3m;9层上有个跃层为第10层,局部突出屋面部分为电梯机房。建筑总面积为4337.18m2,建筑总高为27.600m。本工程建筑结构的安全等级为二级,抗震设防类别为丙类,按6度设防,地面粗糙度为C类,场地土类别为Ⅱ类。

2结构方案布置分析与选择

原结构方案采用一般的剪力墙结构,这种结构形式对于房屋高度不太大的小高层建筑来说,这种结构会造成刚度过大,重量增加,导致地震反应过强,使得上部结构和基础造价提高。所以,为了有效提高经济指标,经多方案论证,决定采用短肢剪力墙结构体系。

短肢剪力墙结构是指墙肢截面高度为厚度5~8倍的剪力墙结构,和一般剪力墙相比,这种结构型式的优点在于:

1)墙肢较短,布置灵活,可调整性大,容易满足建筑平面的要求。

2)减少了剪力墙而代之以轻质砌体,结构自重相应减轻,从而减小结构整体刚度,增大振动周期,降低地震作用力。

3)墙肢高宽比较大,延性较好,对抗震有利。

4)连梁跨高比较大,以受弯破坏为主,地震作用下首先在弱连梁两端出现塑性铰,能起到很好的耗能作用。

5)墙肢的承载力得到了较充分的发挥。

目前,《高层建筑混凝土结构技术规程》JGJ3-2002已对短肢剪力墙结构的设计作出了规定。

在本住宅结构平面布置中,尽量使结构平面形状和刚度均匀对称,短肢剪力墙双向布置,尽量拉通、对直,竖向布置中,力求规划均匀,避免有过大的外挑、内收,以及楼层刚度沿竖向突变,使整个房屋的抗侧刚度中心靠近水平荷载合力的作用线,以免房屋发生扭转。

根据建筑的平面布置,在房间、楼梯间、电梯间的四角,采用Z形、L形、T形或异形的墙肢。在设计过程中还应注意同周期的关系,使结构的第一自振周期避开场地土的卓越周期,以免地基与结构形成共振或类共振,既保证结构在风和地震荷载作用下的变形控制在规范允许的范围内,又要保证建筑物有相对合理的自振周期,做到结构设计经济、合理且实用。

本方案根据上述分析并经过多次调试,得到了4种结构方案,结构平面布置见图2。剪力墙截面厚度同相邻砌体填充墙厚度均为100mm。剪力墙、梁混凝土强度等级为C30。板的混凝土强度等级均为C25。主要连梁的尺寸大都为200mm×400mm。标准层楼板厚度为120mm,顶层楼板厚度为150mm,有别于肢长肢厚比不大于4.0的异形柱,短肢剪力墙的肢长肢厚比按规范要求控制在5~8范围内,一般剪力墙的肢长肢厚比均大于8。值得注意的是,对肢长肢厚比为4~5范围内的墙肢,目前规范尚无明确条文规定其构件类型,故设计时建议不要采用。

由于原方案的剪力墙过多,使底部剪力过大,使结构很不经济,同时布置了少量钢筋混凝土柱子,使结构不是很合理。故方案1在一般剪力墙结构的基础上去掉了构造柱并减少了少量的剪力墙(见图2a)。

在方案1基础上适当的减少一些剪力墙,从而使方案更经济,在调试过程中由于F轴剪力墙较少,从而使电梯间X方向的剪力墙承受过大的剪力造成超筋,故把电梯间X方向的剪力墙开洞口,使结构X向的刚度减少。(见图2b)

方案3是在方案2的基础上改善了Y方向的刚度,使两个方向的刚度相接近,使结构更合理且均匀对称(见图2c)。

在方案3的基础上把Y向的一些T型剪力墙变成一字型,虽然在多层、高层住宅设计中剪力墙结构应尽量避免一字型,但由于该结构的实际情况,所以采用了部分一字型(见图2d)。

3上部结构设计计算结果分析

3.1计算结果分析

从构件力学特性上来说,短肢剪力墙的肢长与肢厚比≥5.0,更接近于剪力墙,故计算时将短肢剪力墙作为剪力墙而不是柱考虑应更合理。因此,结构整体计算采用中国建筑科学研究院开发的SATWE程序(2003年版)进行。SATWE采用的是在每个节点有六个自由度的壳元基础上凝聚而成的墙元模拟剪力墙墙元不仅具有平面内刚度也具有平面外刚度,可以较好地模拟工程中剪力墙的真实受力状态,计算结果较精确;同时,对楼板SATWE可以考虑其弹性变形。虽然主楼结构平面较规则,立面也无刚度突变现象,但由于刚度较大的电梯井处筒体有点偏置,会产生扭转的影响,为了计算准确,地震作用计算考虑了结构的扭转耦联和5%偶然偏心的影响,取了27个振型计算。

1)自振周期的控制

考虑扭转耦联时的自振周期(计算时自振周期折减系数取0.8)如表1(只列了前6个)所示。从表1可得,方案4结构扭转为主的第一自振周期T3=0.9959s,平动为主的第一自振周期T1=1.1656s,T3/T1=0.854<0.9,满足(JGJ3-2002)

第4.3.5条的规定。

2)结构位移的控制

最大层间位移角(应≤1/1000)、最大水平位移与层平均位移的比值(不宜大于1.2,不应大于1.5)及最大层间位移与平均层间位移的比值(不宜大于1.2,不应大于1.5)见表2。从中可以看出,结构在风荷载和地震作用下的位移均能很好地满足规范限值。

3)剪重比控制

剪重比是反映结构承受地震作用大小的指标之一,地震力计算不能偏大,但也不能太小。因为短肢剪力墙本身抵抗地震的能力较差,如果短肢剪力墙分配的地震力太大,则很有可能不满足要求。本工程X方向的最小剪重比为4.50%,Y方向的最小剪重比为4.62%,根据“抗震规范”(5.2.5)条要求的X、Y向楼层最小剪重比均为3.20%,所以各层均满足要求。

4)轴压比是体现墙肢抵抗重力荷载代表值作用下的能力,“规范”对短肢剪力墙(尤其一字墙肢)要求更高一些。上述工程出现的短肢剪力墙轴压比在0.20~0.45之间,轴压比小于规范规定值。

3.2短肢剪力墙结构经济性分析

为了与工程实际情况相符,假设混凝土的成本与混凝土的体积成正比,钢筋的成本与钢筋的体积成正比。在总造价上,暂不考虑模板及楼板等工程的造价影响。材料的单方造价混凝土为430元/m3,钢筋4200元/t。表4为方案的经济指标汇总,由表4知,方案4比一般剪力墙结构在总造价上要节约17.8%,使材料得到了充分的发挥。

4结语

本文针对小高层住宅的结构特点,采用短肢剪力墙结构,在比普通剪力墙结构方案节省投资17.8%的情况下,使结构受力更合理,整体变形能力和结构吸能能力对抗震更为有利。本工程剪力墙结构的薄弱环节是建筑平面外边缘及角点处的墙肢,因而设计时在以上部位布置L型或一字型短肢墙,受条件所限也出现了少量一字型短肢墙,设计时严格控制其轴压比<0.6,且相差不应太悬殊,避免墙肢应力差异过大。高层建筑中的连梁是一个耗能构件,对抗震不利。多、高层结构设计中允许连梁的刚度有所下降。但应注意短肢剪力墙结构中,墙肢刚度相对较小,连接各墙肢的梁已类似普通框架梁,而不同于一般剪力墙间的连梁,不应在计算的总体中将连梁的刚度大幅下调,使其设计内力降低,应按普通框架梁的要求进行设计。

参考文献:

[1]高层建筑混凝土结构技术规程(JGJ3-2002)〔S〕1北京:中国建筑工业出版社,20021.

[2]建筑抗震设计规范(GB50011-2001)〔S〕1北京:中国建筑工业出版社,2001,1.

[3]李国胜.高层钢筋混凝土结构设计手册(第二版)〔M〕北京:中国建筑工业出版社,2003,1.

第6篇:建筑结构设计论文范文

1建筑结构设计的特点

1.1结构设计的延性特点

在建筑物使用的过程中,由于受到地震、风力以及沉降等因素的影响,建筑会发生一定的变形,尤其是一些高层建筑。为了避免高层建筑由于变形而发生损坏甚至倒塌现象,我们在对建筑结构设计的时候,需要采取一些措施使建筑物具有一定的结构延性,从而确保建筑结构的安全性。

1.2结构设计的水平荷载问题一般来说,在对一些低矮的建筑进行设计的时候,我们主要考虑的是竖向的荷载因素,而在一些高层建筑中,虽然竖向的荷载控制非常重要,但是,水平荷载则起着主要的决定性作用。鉴于此,在对一些高层建筑结构进行设计的时候,我们不仅要考虑竖向的荷载控制,更要注重水平荷载的影响,通过提高建筑结构水平荷载能力,进而增强建筑结构的稳定性和安全性。

1.3结构设计的抗震特点近年来,由于受到多种因素的影响,地震动发生频率增多,对建筑造成了严重伤害。因此,现代建筑对抗震性能的要求也比较高。在这种形势背景下,为了顺应时展潮流和满足现实发展需要,我们在对建筑结构进行设计的时候,还要考虑抗震要求,使建筑结构的质量达到小震不坏和大震不倒的标准,通过提高建筑结构的抗震性能,从而减少地震等自然灾害对建筑的毁坏。

1.4结构设计的侧移变形问题目前,为了节约有限的土地资源,高层建筑已经成为现代建筑发展的一种趋势。高层建筑的水平荷载比较大,并随着建筑高度的增加而增加,在一些因素的作用下,高层建筑就会发生一定的变形,使建筑的安全性大大降低。因此,在建筑结构设计的时候,我们要提高建筑的强度,使它具有良好的强度和刚度,有效控制侧移变形的发生。

2建筑结构设计的原则

2.1选用合理的基础方案基础设计是建筑结构设计中一个重要的组成部分,在对建筑进行基础设计的时候,我们需要综合考虑周围的地质条件、施工条件以及分析建筑结构的类型和荷载的分布等。总之,我们要从建筑实际情况出发,依据相关要求,选用合理的基础方案。

2.2选择适当的计算简图计算简图是建筑结构设计中一个关键环节,它是建筑结构的一种简化形式,对建筑结构的安全性具有重要影响。因此,在建筑结构设计的时候,我们要选择适当的计算简图,提高建筑结构设计的安全性,避免由于计算简图问题引发各种安全事故。

2.3选用科学的结构方案科学的结构方案是提高建筑结构设计水平的重要保证。因此,在对建筑结构结构进行设计的时候,我们要选用一个经济性的方案,确保建筑结构形式和结构体系的可行性。比如,在建筑结构体系方面,同一结构单元最好采用相同的结构体系,并且达到受力明确,传力简洁的要求。简而言之,在对建筑结构进行设计的时候,我们要综合考虑施工现场的地质条件、选材以及设计要求等因素,从而选用一个更加科学的结构方案。

2.4采取一定的构造措施为了提高建筑结构设计的科学合理性,保证建筑结构的安全稳定性,在进行建筑结构设计的时候,我们还要采取一定的构造措施。比如,我们要注意钢筋瞄固的长度,要关注构件的延性,要考虑温度的应力作用等。通过这些构造措施的应用,可以在很大程度上保证建筑结构的质量。

3建筑结构设计的安全性

安全性是建筑结构设计中一个重要的问题。为了保证建筑结构的安全性,在对其进行设计的时候,我们需要关注以下几个问题。第一,建筑设计中超高问题的处理。正如上文所述,在土地资源紧缺状况下,现代建筑向着高层的方向发展。但是,为了保证高层建筑的安全性,在对建筑结构进行设计的时候,我们要对建筑的高度进行严格控制,避免由于楼层过高影响建筑的质量和抗震性能等。第二,建筑中短肢剪力墙的问题。在建筑施工中,为了保证建筑结构的抗侧力,我们需要设置一定的剪力墙,而那些墙肢截面高厚比例是5—8的剪力墙,我们称之为短肢剪力墙。短肢体剪力墙在应用过程中会受到很多限制,因此,在建筑结构设计中,如果条件允许,我们尽量少用甚至不用短肢剪力墙,避免给建筑结构设计增添一些不必要的麻烦。第三,建筑中嵌固端的问题。在建筑结构设计中,嵌固端位置的选择也是一个不容忽视的问题。一般来说,大多数高层建筑都会有地下室,在对嵌固端进行设计的时候,我们可以把它设置在地下室的顶板位置,不仅有利于建筑结构的后期设计的顺利进行,而且也更加安全,减少了建筑结构设计中的安全隐患。第四,建筑中的规则性问题。随着建筑业的发展,我国建筑结构规则方面发生了很大的变化。比如,建筑设计中平面规则性的信息变化、建筑结构中嵌固端中上下层的刚度比的信息变化等。在对建筑结构进行设计的时候,设计工作人员要关注这些结构规则信息变化,并遵循新的规范,避免在建筑结构设计后期由于修改而增添麻烦。

4结束语

第7篇:建筑结构设计论文范文

关键词:房屋建筑;结构分析;抗震设计

一、抗震设计的重要性

从我们现在的经济发展状况来讲,城市人口越来越密集,房屋建筑也越来越多,若突然发生大的地震灾难就会造成难以估量的损失。房屋建筑根本性质就是为了给人们提供一个安全舒适的住宿,为人们的一个防护所,避免人们经受风吹日晒以及其他极端天气。地震则是我们目前所知的自然灾害中最严重的一个灾害,它所给人们造成极大的影响,地震不仅是简单的震动,也会引起一系列海啸、泥石流等自然灾害,其破坏性不可小觑。由此可见,当一个破坏性极大的灾难发生在人们最需要安全的避难所时,我们就不得不重视对于这一灾难的防护。再加上我们目前生活水平的提高,我们目前对于房屋建筑的要求应该是更为舒适,使用寿命更强,这就进一步要求我们对于房屋建筑的整体抗震性有更加完善的技术从而更好地保证我们生活的舒适性。

二、房屋建筑结构抗震设计规定

在我国,房屋建筑结构抗震设计的标准一般分为特殊设防类、重点设防类、标准设防类、适度设防类等四个类别,简称甲、乙、丙、丁。在甲乙类建筑体系设计中应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施,9度时应按比9度更高要求采取抗震措施。而丙类建筑应按本地区抗震设防确定其抗震措施。在丁类建筑中地震作用应按本地抗震设防烈度确定,但抗震措施(6度除外)允许比本地抗震设防烈度的要求适当降低。在多层和高层现浇钢筋混凝土房屋的结构类型中,当平面和竖向均不规则的结构或建造于Ⅳ类场地的结构出现时,适用最大高度应适当减少。在钢筋混凝土房屋抗震等级的要求中,它的抗震设计一般要满足,如果是框架部分承受的地震倾覆力矩大于结构总地震倾覆力矩的50%的话,那么它的框架抗震等级应按框架结构来定。另外当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层一下抗震构造措施的抗震等级可逐层降低一级,但不应低于四级。地下室中无上部结构的部分,抗震构造措施的抗震等级可根据具体情况采用三级或者四级。对于那些筒体房屋结构抗震的设计要求来说,筒体部分与框架部分楼板一般采用梁板体系。在施工程序及连接构造上我们采取减小结构竖向温度变形及轴向压缩对加强层影响措施来解决。当低于9度采用加强层时,加强层的大梁或桁架与周边框架柱的连接宜采用铰接或半刚性连接。需要注意的是如果是9度的情况出现时就不要采用加强层了。

三、抗震设计在房屋建筑结构设计中的运用

抗震的设计在整个建筑中可以说是十分关键的一环,我们可以从一下几个方面进行理解,从而体会抗震设计时如何在房屋建筑结构设计中进行运用,进而理解抗震设计在房屋建筑中的重要性。(1)提高房屋建筑结构的抗震力。抗震设计,顾名思义,就是保障房屋建筑能够在地震时将其破坏程度保障到最小范围。所以在进行房屋建筑结构的设计师,首先就要保障有一个稳固的地基。地基是整个建筑的基础,其抗震性能也就在一定程度上决定着整个建筑的抗震能力。其次,房屋的整体结构上要建造抗震能力强的结构。比如我们知道的一些几何图形具有稳定的效能,我们就可以将其运用在房屋的结构当中。规则、对称的建筑结构也能有利于保障房屋的稳定性,从而减少地震对于房屋建筑变形的影响。在房屋建筑中的一些小细节上注意到对于抗震的作用。(2)我们完善了房屋的抗震设计之后,可以再从地震一方面来思考如何降低地震作用对房屋建筑的影响。我们目前所采取的办法就是在建筑物的基础与主体之间加一个隔震层,也有人提出在建筑物的顶端部分设立一个“反摆”。这样的设计首先能够有效避免发生地震时建筑物之间互相碰撞,并且能够有效缓解在地震来临时房屋的震动幅度,从而保障房屋内部物品的安全。这样的设想我们目前已经有所应用,在一些实际的经验中我们也发现了这一方法的可行性。(3)保证建筑的刚度,建筑结构上的防护以及外部的防护之后,还有保障房屋建筑自身的坚硬程度。首先,就需要考虑到在进行建筑时,使用钢筋混凝土材料,保障房屋的稳固。其次,就是在我们已有的建筑结构上对整个建筑进行进一步的加固。这一方面我们目前已经有相关的规定,明确告诉我们如何对于不同建筑类型进行不同的外层加固。目前,我们也仍需对于房屋建筑的使用材料进行进一步的探究,努力寻找优化建筑材料的办法,能够帮我们在建造房屋时一方面减少不必要的材料浪费,另一方面就是将优质的材料的性能充分地体现在房屋建筑整体的抗震性能上。

四、房屋建筑结构抗震设计措施

1.房屋建筑位置的选择,房屋建筑位置的选择在一定意义上来说决定着房屋质量的好坏,一般地地震可以导致房屋建筑周围地表变化,这样就会造成地基的开裂,导致房屋出现问题。因此在地理位置的选择上,设计人员要对房屋建筑进行合理化选择:如选择开阔的坚硬场地,考虑场地土的刚度大小和场地覆盖层的厚度等。2.房屋建筑材料的选择,抗震性房屋建筑材料要选择那些质量优等的材料。要综合考虑保暖、防火等多种因素的存在,比如良好的钢、铝合金结构、木质结构及轻型复合材料等建筑材料作为主体材料。3.选择合适的建筑结构体系,结构体系要满足稳定性,要与建筑结构相配套。此外要注意建筑物传力途径的明确性,以及受力计算的明确性,保障在建筑体系中不使用转换层,这样就会保障有地震发生时候避免建筑倾斜或局部受损等现象的发生。4.做好底层框架抗震墙设计,鉴于我国的地震灾害多数发生在底层,一般突出表现为“上轻下重”的这样一个现象,所以在设计时候要突出底层的墙体比框架柱重,框架柱又要比梁重。这样的设计就会在发生地震时底层破坏的程度比房屋的底层轻得多。5.钢筋混凝土框架抗震内力设计。我们尽可能做到在地震作用下的框架呈现梁铰型延性机构,为减少梁端塑性铰区发生脆性剪切破坏的可能性,对梁端的剪力适当调整,使斜截面受剪承载力高于正截面受弯承载力,做到“强剪弱弯”。在实际运用中如不采取这个措施,柱端很可能比梁端先出现塑性铰。因此适当调整柱计算内力并增大配筋,使塑性铰首先出现在梁端,抗震性能较好。

五、结语

地震是人类生活面临的重要的自然灾害,危及着人民的生命与财产安全。在我国,目前人们对于房屋建筑无论是安全性还是舒适性的要求越来越高,房屋建筑行业不断改善自己的设计和技术,不断为人们提供更好更优质的服务。在建筑结构设计的时候,必须充分考虑抗震设计,并有采取适当的抗震措施,尽最大可能确保房屋质量,才能减少地震的危害。我们要进行不断地探索,对于抗灾设计有所重视,不断改善我们的技术,建造更优质的建筑。

作者:王甲辉 单位:吉林供电公司

第8篇:建筑结构设计论文范文

关键词:建筑结构设计 问题与措施

中图分类号:S611文献标识码:A 文章编号:

在建筑工程领域中,建筑结构设计是极其重要的一个环节,它不同于其它专业设计,它的设计质量直接影响着工程周期、成本节约,可以说是一个工程中重要的生命线。但在实际设计工作中,常常发生结构设计上的种种概念和方法上的差错,这些差错的产生,有的是由于设计人员没有对一般结构尤其是高层结构设计引起高度重视,盲目参照或套用其他的设计的结果;有的则是由于设计人员对设计规范和设计方法缺乏理解;还有的是由于设计人员的力学概念模糊,不能建立正确的计算模式,对结构电算结果也缺乏判断正确与否的经验。为了避免或减少类似的情况发生,确保结构设计质量能上一个台阶,建筑结构设计人员应注意以下常见问题:

首先:结构设计人员应该及早介入建筑的概念设计:建筑的概念设计在整个设计过程了起着举足轻重的作用,一幢建筑物的设计,如果没有事先经过全盘正确的概念设计,以后的计算模式再准确、计算再精确、配筋再合理。也不可能是一个经济、合理的优秀设计工程。根据最新的地震区域划分和规定,淮安的设防烈度规定为7度(局部6度)。结构设计无论是多层砖混或和框架剪力墙结构,都不同于以往的静力设计。必须从抗震的角度,采用二阶段设计来实现三个水准的设防要求。为此,结构设计人员必须及早介入建筑结构的概念设计,否则,将会导致建筑结构设计的不合理,给以后的结构设计带来难度。为在建筑物的方案设计阶段正确把握建筑结构的概念设计,应对不同形式的建筑形式,掌握各自概念设计中容易疏忽的要点:

其次:结构设计人员应该从结构计算进行合理设计:计算开始以前,设计人员首先要根据规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。振型组合数是软件在做抗震计算时考虑振型的数量。该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于0.9。具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9,若小于0.9,可逐步加大振型个数,直到x,y两个方向的有效质量系数都大于0.9为止。必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3倍。如果选取的振型组合数已经增加到结构层数的3倍,其有效质量系数仍不能满足要求,也不能再增加振型数,而应认真分析原因,考虑结构方案是否合理。

再次:结构设计人员应该从结构构造上进行合理设计

1、建筑超长结构设计问题与措施:

混凝土设计结构设计规范(GB50010-2010)规定其框架结构最大伸缩缝间距应为五十五米,同时规定在分段后浇带施工进程中应用可降低混凝土变化温度、预加应力措施或收缩措施并包含一定的充分依据,则我们可适应性提升伸缩缝间距。对于上述两条规范在实践设计中我们较难把握,对于建筑工程中一旦高于五十五米便进行伸缩缝设置这一点显然较难保证,而进行分段后浇带施工之后应具体将房屋长度控制在多少会不引发裂缝也较难掌握。笔者认为这一问题受到各区域温差以及不同混凝土收缩应力的影响。例如一些南方区域,建筑单层房屋高于五十五米并控制在七十米范畴中,则采用后浇带施工设置与构造强化措施而不进行伸缩缝设置通过实践证明是具有可行性的。同时在建筑结构设计中我们应在概念上对梁柱配筋实施必要调整。即我们应双层设置长向板钢筋,适应性强化梁板中部区配筋,对于量测梁柱尤其是边跨柱配筋我们应适应性强化进而有效抵御温度应力产生的推力,对建筑超长结构容易在角部形成扭转效应的我们需对其结构适应性强化。

2、设置板面温度应力筋问题与措施

相关建筑结构混凝土设计标准规定在较大温度应力现浇板范畴中应取得钢筋间距为一百五十毫米至二百毫米,应于末配筋板表面进行温度收缩钢筋布置,沿纵横方向上下板表面配筋率则不应低于百分之零点一,该条规定容易令设计人员产生理解出入。那么怎样的区域属于较大的收缩温度应力范畴呢,我们认为较短规则建筑物我们可位于屋面层或各楼面边跨相应设置温度应力钢筋,对各类超长结构建筑我们则可在其长向进行双层钢筋设置。其余部位我们可因人而异,对于重要功能区域的设置一些有条件的工程子项目不必过分强调。同时对于地下室具有较大厚度筏板且超过一千二百毫米时,我们应位于中间筏板进行收缩温度应力钢筋的科学配置进而有效抵御大体积混凝土形成的温度与收缩应力,配筋量应取筏板厚度的一半的百分之零点一。

3、强柱弱梁设计问题与措施

强柱弱梁建筑结构设计原则与理念主要基于小震不破坏、中度地震可维修、大型地震不倒塌的目标创设,建筑梁遭到破坏仅为某建筑区域构件被影响并发生失效,而倘若建筑工程的柱结构遭到破坏,则整体建筑项目工程均会遭到不同程度的损伤,由此可见破坏柱要比破坏梁产生更为严重的不良后果。因此设计建筑结构人员在实践过程中应坚持该设计理念,严格进行柱轴压比的控制,目前大多数建筑结构设计计算均参照小震开展。倘若小震影响下产生过高的柱轴压,则在大震灾害影响下便会对边柱形成较大附加轴力,令其遭到大震的严重损毁。因此为杜绝该类不良破坏影响我们应明确设计相关设计标准,即建筑轴压比设计不应高于百分之零点九,同时在设置柱断面与配筋阶段,我们应分部位进行科学处理,应适度加强角柱与边柱,并确保全柱的密集箍筋,控制配筋率应大于百分之一,不包含小截面柱的框架柱其纵筋均需要高于二十,柱筋种类的选择应得到有效控制,即尽量控制其在较小数量水平中,配筋应尽量与矩形截面柱保持良好的对称性。

三、结语

第9篇:建筑结构设计论文范文

一是层数和高度的增加,竖向荷载也不断加大,墙、柱结构面积也随之相应的增加。二是由于高度的增加,超限结构的水平荷载急剧增长,风力随着各层作用点高度的增加而不断加大,重力荷载代表值、各层作用点高度及构件截面刚度也会导致地震作用的加大,结构受力的主要思想因素来自于水平荷载。三是随着高层建筑层数的增加,所累加的效应也会越来越明显。而且在这其中还会由于压缩变形差而导致节点附加弯矩、倾覆弯矩所产生附加轴力,这也是超限结构设计时不可忽视的重要因素。四是层数的增加,导致需要调整的系数也加大,构件内力变形、位移值和位移比的控制难度都会有所增加,从而需要对其抗震等级进行提高。

2高层建筑结构超限设计的主体因素

2.1基于性能的抗震设计能否满足抗震性能目标

在高层建筑结构抗震设计中,通常分为小震、中震和大震作用下的抗震设计,计算分析方法也具有一定的区别。通常利用振型分解反应法或是弹性动力时程法来对小震作用进行计算分析;而中震则利用弹性计算和结构构件屈服判断分析法来对其抗震性能进行计算;在大震设计时,则利用静力弹塑性一Pushover推覆分析及动力弹塑性来对进行计算。利用这些计算方法可以有效的对各阶段所要实现的抗震目标进行判断,确保结构的安全性。

2.2考虑可能的风载作用控制并验算风作用下舒适度

通常情况下在对抗震超限审查项目中并不包括风荷载作用。但对于高层超限结构工程来讲,由于其高度与正常高层建筑的高度超出较多,这就会导致风起到较大的控制作用。所以需要在高层超限结构中对风载进行必要的分析。在具体分析过程中,需要通过风洞试验的数据对超高层建筑受相邻超高层建筑物风扰的影响进行分析,根据其横风作用的大小来采取必要的控制措施。在对横风和顺风作用进行超限计算时,需要将两个方向的风压值都要与放大系数1.3相乘,从而计算出相应的位移和强度,从而进一步对可能起控制的横向风作用进行有效控制,确保在风作用下高层超限结构设计的最佳舒适度。

2.3根据高层超限结构构件和刚度需求分析温差效应

目前高层结构采用的都为竖向构件筒体,桩截面和刚度都较大,这就导致就会导致在混凝土浇筑过程中楼盖梁板在水平方向上温差变形会有较大的约束力产生。从而导致相应约束力产生,即水平温差效应。所以在实际设计过程中需要对混凝土终凝时的温度差值所可能对结构带来的附加内力影响进行充分的考虑。

2.4针对超限分析要考虑混凝土徐变收缩对结构的影响

混凝土自身固徐变收缩的特性,但钢结构则不存在这个问题,但当混凝土附着在钢结构上时,随着时间的持续,则会导致徐变变形的发生。同时作为超限高层建筑,由于其竖向构件高度较大,这就会导致其徐变变形累计数量较大,而且同时还会有收缩变形发生,在这两种叠加变形的作用下,会导致超高层建筑竖向构件后期的塑性变形达到较大的一个量级,导致其超出荷载直接发生弹性变形,从而对部分结构构件或是非结构构件带来较大的影响。所以在实际设计过程中,需要对这种徐变收缩进行量化分析,对其可能导致的不利影响进行评估,根据分析的结果来对是否需要采用相应的对策进行判断,确保超限高层建筑的质量。

3高层建筑结构超限设计中主体问题的解决措施

对于超限高层建筑,其对于抗震性能进行设计时,需要采用科学合理的设计方法从而对高层建筑结构在大、中、小三个地震级别的抗震性能进行具体的分析和判断,对于竖向荷载及风载的作用,则需要在设计和计算时确保所选择的方法的规范性。从而有效的确保结构构件的弹性,确保其在小需作用下结构具有良好的弹性和完好性,不会有损伤发生,使结构在小震中具有较好的抗震性能。在对中震作用下结构的弹性进行计算时,需要利用地震反应谱曲线来对中震弹性进行计算,由于需要在计算中对各项系数进行确定,所以可以将荷载、材料及城市承载力调整等各项系数都取1.0为准,而在计算过程中可以不对地震作用下内力放大调整进行考虑,其标准值可以根据材料的强度来进行选取,以构件地震作用组合效应小于强度标准值计算的抗震承载力为标准,在这种情况下,则可以做到中震作用下,高层超限结构具有良好的不屈服性,具有较好的抗震性能。竖向构件及与外框柱及内筒剪力墙面内相交的主要框架梁均不出现屈服,梁均不出现受剪屈服,在小震及屈服判别地震作用1时,所有梁不出现受弯屈服;在判别地震作用2及中震时,核心筒连梁仅出现程度较轻的屈服(主要表现为面筋配筋率略>2.5%),可判断为轻微的损伤;另,右侧的边框架梁在中震下也出现轻微屈服,经将梁宽度适当加大后,即可满足该梁中震不屈服。实际设计时,将按小震和中震两者的较大值对构件进行配筋,这样则能实现中震作用下结构“重要构件不屈服,其他构件部分允许受弯屈服,可修复使用”的第二阶段抗震性能水准。对大震作用,则可以采用相应软件对结构进行静力弹塑性分析(Pushover)及用接口程序BEPTA进行模型的前处理和准备工作后通过分析软件对结构进行动力弹塑性分析。按弹塑性程序计算所反映的塑性发展程度来对构件以至整个结构进行相应的性能评价。高层建筑超限结构设计,为了确保其安全性,在对其抗震进行超限审查时,还需要通过对风载、温差和混凝土徐变收缩可能带来的影响进行深入的分析,确保真正实施高层超限结构时其性能能够得到有效的保障。

4结束语