公务员期刊网 精选范文 数学分析论文范文

数学分析论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学分析论文主题范文,仅供参考,欢迎阅读并收藏。

数学分析论文

第1篇:数学分析论文范文

在过去常规的数学分析教学课程只要以公式推导、定理证明为主要教学内容,却对数学分析的应用思想以及融合贯通少有讲授。这就导致学生们虽熟练掌握这门课程的理论知识,但是学生们将掌握的知识应用于实际问题的解决过程中却存在效果不满意,或无法学以致用。因此学生会形成数学的掌握仅仅是为了考试而学习,无现实意义等错误思想。若在数学分析的教学过程中融合数学建模方式进行教学,利用数学建模思想来熏陶学生,通过通过将数学的意义思想完整的进行介绍,将数学概念与公式的实际源头与应用情况进行宣教,使学生充分了解数学与实际生活之间存在的密切关系。首先,通过利用数学建模思想融入数学分析的教学课程中可有效促进学生数学的行使效果。适当配合数学模型方式糅合数学分析的理论知识与实际方法,可帮助学生迅速理解数学分析的内容概念,全面掌握理论知识与实践能力。其次,利用数学建模思想促进学生的数学学习兴趣,以改善在教学过程中因理论性复杂、定义生涩难懂导致学生学习积极性不高以及枯燥乏味等数学教学问题。因此,在数学分析的教学中融合数学建模教学方式具有巨大的应用价值。

2数学建模思想在概念教学中的渗透

按照大范围来讲,数学分析的内容中包含了函数、导数、积分等数学概念,这类概念均属于实际事物数量表现或空间形式概括而来的数学模型。在数学教学过程我们可以根据概念的具体事物原型或平时生活中易见到的事物进行引用,让学生了解到理论上的概念性知识不仅仅存在与课本中,更与日常生活中具有紧密的关系。对此,老师在教学相关概念知识时,最好联系实际,创造合适的学习环境,为学生在学习过程中通过适当的观察、想象、研究、验证等方式来主导学生的教学活动。例如微积分教学中,刚开始感觉其较为抽象笼统,不过仔细观察其形成过程会发现其实具有较多的基础原型,通过旋转体体积、曲边梯形面积等具体问题紧密联系,应用微元法求解即可得出积分这个较为抽象的概念。通过适当的取材,建立概念模型,引导学生对教学的积极兴趣,可比简单的利用数学符号来描述抽象概念要具体生动得多。

3数学建模思想在定理证明中的渗透

在数学分析课程中存在较多的定理,而怎样在教学过程中让学生熟练掌握带来并应用则成为目前数学分析教学中较为困难的。其实在书本中大部分定理是有着具体的意义,不过在通过笼统的刻印组书本中后导致定理创造者实际想法无法清晰表现在其中,致使学生在接受定理教学中感到茫然。对此,在定理教学过程老师应结合该定理知识的源指出处以及历史渊源,从而促进学生的求知欲取进一步了解该定理的意义与作用。同时应用建模思想将定理作为模型的一类,利用前期设计的特定问题引导学生逐步发现定理定论,通过这种方式让学生在吸收定理知识的过程中体验到研究探索发现的重要性,为学生树立的创新观念。

4数学建模思想在课题中的渗透

数学分析教学中需要讲解大量课题,通过对具有代表性的课题进行讲解以达到促进应用知识解题的能力并巩固。但是在过去传统的课题讲解中,与应用相关的问题教学较少,仅有的少部分也是条件满足解答肯定的情况,这不利于学生创新性思维培养。因此,在课题讲解中尽量选取以具体应用的问题作为例题,设置相应的问题来引导学生发现其中存在的错误,并结合自身知识来解决其错误,通过建立模型的方式来进一步巩固自身知识。

5数学建模思想在考试命题中的渗透

目前数学分析的教学考试中试题的设置普遍以书本课题为主,又或者直接将某些例题设置成选择或填空的答题方式,却缺少开放型的试题或全面考察学生是否掌握数学知识应用解决实际问题的试题。可能目前这种考试设题方式对老师的阅卷提供了便利,但是往往也造成部分学生在课本考试中分数较高,但在解决实际具体问题往往存在不足,对学生思维中形成了为考试而学习,忽略了对数学概念的理解,导致具体问题解决能力不足。对此,可利用数学建模思维去设置一部分开放型试题,利于学生在解题过程中将所学的数学建模方式应用与具体中,以此来观察学生的数学素质以及知识水平并适当修改教学方案。又或者通过命题论文的方式来了解学生综合水平,学生通过将自身所学知识进行适当的总结,探讨自身学习体会,来加强学生对相关知识的进一步理解,深化了数学建模思想的渗透。

6结语

第2篇:数学分析论文范文

六、要培养学生“三会”。

关键词:讨论,“思维参与”,自主、探究、合作学习,“跳一跳,能摘到”,“三会”,两极分化。

《标准》基本理念第一条中用比以前更为明确的语言提出:“使数学教育面向全体学生,实现——人人学有价值的数学;人人都能获得必需的数学;不同学生在数学上得到不同的发展。”,同时新课程标准中的“基本理念”中指出:“教师应……帮助学生在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动的经验。”为了实现学生能生动活泼的学习,能充分的展示自己,能在思辨中去探求新知,课堂讨论便成了教学中实现这一理念的主要方法之一。

新课程实验已经3年有余,对课改实验,广大实验区的教师投入了满腔热情,付出了艰辛劳动。新课程给实验区教学带来了新气象,教师的教育观念、教学方式以及学生的学习方式都发生了可喜变化。但是,随着新课程实验的深入,一些深层次的问题也随之出现,比如当前,课堂讨论主要存在讨论小组的设置比较随意,讨论时机把握的不够好,讨论方法不科学以及讨论氛围没形成等问题,从而导致课堂讨论表面上看热热闹闹,实际上没有任何效果。那么,怎样才能让学生既能动得了,又能动得好?才能达到讨论的最佳效果呢?本人结合我教学实际来谈谈体会!以便同各位同人共享。

一、讨论小组的建立要合理

以往的讨论一般按原先的座位同桌讨论,或者是前后排的学生讨论,这样可能导致有的小组学习力量强,有的小组学习力量弱的局面,针对这种情况,教师应根据学生的学习成绩,学习习惯、性格、兴趣、需要等因素加以分组,分组时不仅要重视学生智力因素的发展,而且要重视学生非智力因素的培养。每组各个层面的学生都应兼顾,这样才能取长补短,同时教师可设计不同层次的问题让学生讨论,使每个学生生动活泼的、主动的发展。

二、调动学生的“思维参与”

新课程倡导的自主学习、合作学习、探究性学习,都是以学生的积极参与为前提,没有学生的积极参与,就不可能有自主、探究、合作学习。实践证明,学生参与课堂教学的积极性,参与的深度与广度,直接影响着课堂教学的效果。正如有的专家所说,“没有学生的主动参与,就没有成功的课堂教学”。

为此,应当创设情景,巧妙地提出问题,引发学生心理上的认知冲突,使学生处于一种“心求通而未得,口欲言而弗能”的状态。同时,教师要放权给学生,给他们想、做、说的机会,让他们讨论、质疑、交流,围绕某一个问题展开辩论。教师应当给学生时间和权利,让学生充分进行思考,给学生充分表达自己思维的机会,让学生放开说,并且让尽可能多的学生说。条件具备了,学生自然就会兴奋,参与的积极性就会高起来,参与度也会大大提高。只有积极、主动、兴奋地参与学习过程,个体才能得到发展。

三、讨论的时机要恰当

对问题的讨论应把握时机,过早学生的认知水平没有达到最近发展区,学生找不到解决问题的切入点,白白地浪费时间而一无所获。过迟学生对问题已基本弄懂,讨论的意义不大。教师还应设计多层次的问题满足各层面学生的多元需要,把握好学生思维的,及时提出问题让学生讨论,以激发学生思维的火花。此外,讨论时应把握“跳一跳,能摘到”的原则,在讨论的效果上做文章。

四、讨论的方法要科学

常见教师把题一呈现,便马上让学生讨论,讨论了两三分钟,教师便草草收场,只留于表面形式,没有注重效果。教师不能由于时间关系,相互交流未充分展开就终结,应给学生提供自主探究、合作交流的广大空间。在教学实验中,我曾经把班上的学生分成三组,第一组对问题直接讨论,第二组独立思考,第三组先独立思考然后讨论,经过多次实验结果发现:第三组学习效果最好,第一组效果最差。第一组的学生容易注意到别人的意见,思维活动受到了束缚,容易得出一些倾向性的结论;第三组表现在它的“预热效应”上,学生有各自不同的思维活动,出现了多种解决问题的途径,有利于学生积思广益的学习。第三组的学生无论是在解决问题的途径上、质量上都优于其它两组。可见,讨论的方法很值得推敲。

五、讨论的氛围要和谐

讨论应营造一种氛围,使每位学生不用担心自己的意见被批评,而是坚信自己的观点是受欢迎的,小组中的成员不是批评别人的意见,而是倾听、补充、完善所提出的问题解决方案,教师应鼓励学生大胆发表自己的观点、观点即使错了,在教师的指引下学生才能真正明白问题的关键所在。只有这样,学生讨论起来,才心无疑虑,才能互相启发,取长补短,不同层次的学生才能各有发展。

六、要培养学生“三会”

有的老师将小组合作理解为小组讨论。我们经常可以看到这样的教学场面:讨论时,学生各说各的,有的学生不善于独立思考,不善于互相配合,不善于尊重别人的意见,也不善于做必要的妥协。学生讨论后,教师依次听取汇报,汇报完毕,活动便宣告结束。

第3篇:数学分析论文范文

数学课堂上创设情境,有利于激发学生的学习兴趣、激活学生的思维,有利于突出知识的发生过程,“掐头去尾烧中断”的教学正在逐渐减少,创设数学情境正受到越来越多教师重视,但在实际教学过程中也有不尽如人意的地方,因此,避免数学课程改革的新误区,落实务实高效的课堂教学是当务之急.

7.1走出情境创设误区,避免两个极端

极端一认为教学不需要情境.我国的基础教育课程改革正在如火如茶地展开,但是传统教育观念根深蒂固,受教育评价制度,高考指挥棒,以及家长对孩子学习成绩的迫切要求的影响,有的教师重新又回到应试教育的现实中去了.有的教师只把教学情境当作点缀,作为课堂教学的摆设,在教学活动中谈的是探究教学,但操作的是应试教学,备的是启发式教学,上的是灌输式教学,出现了一种课改的扭曲现象.极端二认为无情境不教学.在新一轮课改中,有的教师由于对情境创设的认识上的偏差,认为情境创设每节课都需要,提出无情境不教学.教学的各环节都精雕细琢,每一个问题都力求有新意,每一个教学步骤都希望有出其不意的效果,结果不顾教学内容,不讲实效,教学为了情境而情境,在课堂上不同程度出现了赶时髦的现象,使情境创设走向了形式化趋向.表现为:(l)情境创设过分依赖多媒体,一切以多媒体为中心,追求课件的“花哨”,结果让学生视觉疲劳,眼花缭乱,学生长期处于各种图画的诱惑下,习惯了感官刺激而懒于思考甚至变得不会思考,同时也削弱了情境应有的作用,忽略了对知识的掌握.(2)课堂小组合作学习表现为无价值的讨论,闪电式的讨论和目标不明确的讨论.一些小组合作表面上是学生全员参与,而实际是一盘散沙,纯粹为合作而合作.这些合作学习,看似把学生作为学习的主体,实际上学生己成为教师操纵的木偶.这样的情境不是从学生的发展需要出发,不能促进学生认知的深化,更谈不上情境创设的实效.(3)有的教师以频繁、思维含量低的提问代替情境创设,提问由于缺少精心设计而不能激发学生的思维,升华学生的思维能力.(4)有的智力游戏、知识竞赛等活动与课堂内容毫不相关,由于一味追求课堂的趣味性,完全变成了活跃课堂气氛的工具,教学内容的外包装,其实质是忽视了学生的认知点,忽视了学科性,也忽视了对学生双基的培养和训练.这些不良倾向如不加以纠正,新课程理念的落实将成为一句空话.

7.2投身课程改革,切实转变教学观念

数学情境的创设方法很多,如何更好地结合数学教学的特点,针对各种课型,各知识块创设更有效的教学情境,如何增加情境化的教学内容的知识承载量,如何在课堂教学中妥善安排各种教学情境的主次地位,培养学生的创新思维,如何将情境教学与其它教学方式有机融合,如何梳理数学情境资源,需要我们不断的探索、总结和自身知识的不断丰富,需要我们对生活的热爱和对教育事业的热情.教师必须转变陈旧、落后的教育观念,树立符合新课程改革需要的新理念,具备新课程实施所需要的新技能,优化数学教学课堂,优化学生认知结构,由只重视知识的传授与各种能力的单项训练转向注重学生的全面发展.

7.3情境的创设与情境的展现都不能脱离教学实际

课堂教学要着眼于学生实际和教学实际,要考虑到因材施教的原则.情境的创设与情境的展现是统一的,创设是展现的基础,展现是创设的目的.它们是同一过程在不同阶段的具体表现.如果不考虑展现只是盲目的去创设,那自然会违背教育原则和数学教学的特点.教学是一门艺术,它更是一门科学.教师要依教材内容、难易程度、学生接受水平以及教材前后的关联而选用创设情境方式.创设情境应有利于教师“搭桥”,学生“过桥”,符合学生认知结构.如关于对称的学习,在小学、初中和高中都有相关的内容,但学习时侧重点显然应有所不同.但是,在实际教学中,教师们几乎都采用了相同的方法,利用多媒体技术在大屏幕上呈现形形的对称图形让学生观察.不同阶段的学生对于对称的认识和体验是不同的,是不是都必须呈现大量图形或进行演示,学生刁‘能够理解对称的含义和不同对称的特点呢?如果要演示,应该演示什么?要达到什么目的?这些问题应该在创设情境时都需要考虑.小学生的动手能力强,发言踊跃,如果对他们讲对称图形,与其在大屏幕上反复呈现各种对称图形,还不如让他们自己举例或动手折叠,那样获得的体验可能比仅观看大屏幕要深刻得多.初中生学习对称,对轴对称和中心对称特点理解还很不到位,如果教师在呈现很多对称图形的同时,能动态演示不同对称的翻转或旋转过程,将对学生加深对不同对称特点的理解有很大帮助,在高中函数的奇偶性教学时,教师如果再对学生直观演示大量对称图形,或让学生动手折叠,这对他们而言就没有多大意义了.此时学生的抽象思维能力己经达到了一定水平,他们不需要借助多媒体观察对称图形,也不需要动手折叠,就已经完全可以理解不同对称的含义和特点了.过多的、缺少挑战性的生活情境问题反而不能激发学生的求知欲望数学发展史表明,数学一方面来自外部,即现实社会发展的需要,另一方面源于内部,即数学自身发展的需要,如果把情境创设片面理解为情境的生活化,一味追求数学与生活的联系,而使数学淡化,那将是对数学情境教学的一大误解.有些已经解决过的数学问题完全可以看着新问题的一个情境,而不应该让情境生活化的思想框住自己的手脚,使情境创设僵化.

7.4教材应为教师创设情境提供丰富的素材

随着课程改革进程的加快,在数学课堂教学中创设数学情境,正得到不断地充实和完善,它的效果也在不断地呈现出来.但是,教师因为时间、精力、经验的不足,理解的偏差,在新课程数学教学中,对情境创设的探索与实践还不够充分,还有很多值得研究的地方,要创设一个恰当情境并非易事.因此,有关专家在教材编写时,如果能为教师配备可供灵活选择的情境素材,如课件、教具模型、背景知识等,供一线教师教学时参考,这样将便于教师创设情境,推动情境教学的健康发展

参考文献

[l]孔企平,张维忠,黄荣金.数学新课程与数学学习[M.北京:高等教育出版社,2003.

[2]王晓军,张维忠.数学文化视角下课堂教学情境的设置[J].中学数学教学参考,2007(l一2).

[3]吕传汉,汪秉彝.论中小学“数学情境与问题提出”的数学学习明.数学教育学报,2001(10).

[4]吕传汉,汪秉彝.论中小学数学情境与提出问题的教学田.数学教育学报2006(2).

[5]施文光,朱维宗,吕传汉.数学“情境一问题”教学与抛锚式教学之比较研究[J].数学教育学报,2007(2).

[6]祝辉.情境教学研究.上海师范大学硕士学位论文,2005.4.

[7]全国情境教学一情境教育研讨会综述[J].教育研究,1997(4).

[8]徐斌艳.数学教育展望[M].上海:华东师范大学出版社,2001.

[9]张奠宙,李士齐,李俊.数学教育学导论四].北京:高等教育出版社,2003.

[10]中华人民共和国教育部编.开创基础教育改革与发展的新局面【MI.团结出版社,2001.

[l11中华人民共和国教育部制订.全日制义务教育阶段数学课程标准(实验稿)【M.北京:北京师范大学出版社,2001.

[12]数学课程标准研制组.数学课程标准(实验稿)解读[Ml.北京:北京师范大学出版社,2002.

[13]朱慕菊.走进新课程—与课程实施者对话【M].北京:北京师范大学出版社,2002.

[14]’张大均.教育心理学四].北京:人民教育出版社,1999.

[15周小山,雷开泉,严先元.新视野课程中的数学教育[明.成都:四川大学出版社,2003.

[16]唐瑞芬,朱成杰.数学教学理论选讲【M.上海:华东师范大学出版社,2000.

[17]石永生.中学数学新课程课堂教学案例「明.广州:广东高等教育出版社,2003.

[18]济南市教学研究室编.数学教学案例分析[M].济南:山东教育出版社,2005.

[19]张奠宙,宋乃庆.数学教育概论【M.北京:高等教育出版社,2004.

[20]刘兼,黄翔,张月一数学课程设计「M].北京:高等教育出版社,2003.

[2l高向斌.走向合作性教学【M.太原:山西教育出版社,2003.

[22]孙若月.中学数学课堂教学的情景创设[J].中学数理化,2003(8).

[23]陆书环,傅海伦.数学教学论【M].北京:科学出版社,2003.

[24]唐先贵.高中数学课堂设计与新课标下的素质教育[J].中国数学教育,2006(11).

[2习刘冰.信息技术与课程整合的教学设计课例一则[l].数学通讯,2006(11).

[26]陈柏良.数学课堂教学设计的艺术性[J].中学数学教学参考,2006(6).

[27]张建伟.基于问题解决的知识建构[z].教育研究,2000(10).

[28]章建跃,曾文艺.数学教育心理学【M].北京师范大学出版社,2000.

129]李秀伟.唤醒情感一一情境体验教学研究〔M].济南:山东教育出版社,2007.

[30]刘绪菊.启迪智慧—问题探究教学研究「M.济南:山东教育出版社,2007.

[31]谢明初.数学教育中的建构主义:一个哲学的审视[M].上海:华东师范大学出版社,2007.7.

[32]辛自强.知识建构研究:从主义到实证【明.北京:教育科学出版社,2006.10.

133]叶柱.数学教学新视界探真【M].杭州:浙江大学出版社,2005.

[34](荷兰)弗赖登塔尔.作为教育的数学【M].上海:上海教育出版社,1995.

[35]郑毓信.数学教育哲学[间.成都:四川教育出版社,2001.

[36]曹才翰,章建跃.数学教育心理学[M].北京:北京师范大学出版社,1999.

[37]章建跃.中学数学教育心理学[M].北京:北京教育出版社,2001.1.

[38]A.A.斯托利亚尔著,丁尔升译.数学教育学【M].北京:人民教育出版社,1984.

第4篇:数学分析论文范文

数学是抽象性、逻辑性很强的一门学科。小学生的思维正由具体形象思维为主向逻辑思维为主的过渡阶段。由于数学知识的抽象性和学生思维的形象性之间的矛盾,学生往往不易掌握。此外,小学生好动、注意力不集中,课堂如果不丰富多彩、趣味横生,很难抓住他们的心。为了更好地突破教学中的难点,我利用小学生爱新鲜、好胜、好奇心强的特点,在教学中引入信息技术,这样可以引起学生的学习兴趣,锻炼学生的思维能力,取得良好的教学效率。这里就信息技术中的计算机技术在教学中的运用进行交流。

一、运用信息技术辅助的导入环节生动而有趣。

“导入”是一节课的起始环节,也是最影响一节课成功的环节。俗话说:好的开头是成功的一半嘛,因此,教师要抓住儿童的好奇心理,巧妙导入新课,激发学生的学习兴趣。导入新课的方法很多,利用信息技术进行导入也是众多方法的一种。

例如:一年级上册中比较单元中的“动物乐园”一节,我用计算机技术显示了“动物乐园”的场面,屏幕上出现了声情并茂的彩色图面:今天是动物乐园第一天营业,瞧,一大早小动物们都开开心心地赶来了。计算机技术中发出了小鸟欢快的叫声、小熊、小猴愉快的叫声。小动物们一蹦一跳、笑容满面的让观看的同学非常兴奋,这时我说:“小动物们来的太多了,瞧,小熊、小鹿、小猴、小兔他们几个淘气包在比较谁的伙伴来的多呢?”这节课我们就和他们一起去比较比较(揭示课题)。

这样导入新课,为学习新的知识做了良好的准备,调动了学生的热情,学生很自然、积极地动脑筋,寻找解答方法及答案,教师在教学中就显得轻松多了!

二、信息技术的运用有利于独立、深刻、灵活的思维、突破难点。

利用计算机播放课件,化静为动,化难为易,能突破教学重点、难点。例如在教材第一册“9”的认识中的“图画应用题”时,用计算机显示出冰块上站着9只企鹅摇摇摆摆的问:图上告诉什么了?学生回答后,计算机显示“{9}”及右上部的3只企鹅跳进海里,溅起一个问题:图上又告诉你什么了?学生做答后,在没有企鹅的冰块上出现了“?只”并闪动几次,这时我问:“问号表示什么?”你能完整的说说图中你知道些什么?要求什么?怎样列式?这里充分利用计算机技术优势,化静为动,把企鹅图进行动态演示并配以声音,调动了学生多种感官参与,使学生清楚的看到“原来只数—去掉只数—剩下只数”的过程,可以有效的突破难点。与原始的“左边减右边”这样的生硬教学模式相比,有了更大的趣味性、直观性、易接受性。

再如,小学生在解答“比…多,比…少”的求差、求和应用题时混淆的非常厉害,常常出现见多就加,见少就减的错误做法,这样的难点也可以利用计算机技术解决。

如:一年级下册教材的在同一张powerpoint上,左边运用动画出现9只鸭子,右边出现12只小鸡,然后提问:小鸭比小鸡少几只?小鸡比小鸭多几只?这样看图显示就很清楚的弄清“小鸭比小鸡少3只”和“小鸡比小鸭多3只”是一回事,3是大数减小数得到的差。通过分析,学生会体会到比谁多时,“比”前面是大数,比谁少时,“比”前面是小数。

三、在练习设计中运用信息技术可以帮助学生更好地完成训练。

练习是使学生掌握知识、形成技能、发展智力的重要手段。练习题设计的形式,练习题分析的过程都会影响学生好的思维训练,在练习中适时运用计算机技术可以起到事半功倍的效果。例如,一年级下册总复习中的第20题,将六个模型设计成可以动的画面,学生在说出两个数字后,相应的两个模型就会一前一后动一下,如果符合题意,就会发出一阵掌声,如果错了,就会出现一个鼓励声音:再试一次。这样学生就会重新调整思维方向,再做选择。

第5篇:数学分析论文范文

1、数学符号的科学性

数学符号是数学文字的主要形式,它是构成数学语言的基本成份。

1,2,3,4,5,6,7,8,9,0,这十个符号是全世界普遍采用的,它们表示了全部的数,书写、运算都十分方便。这10个符号常被称为阿拉伯数字,实际上却是印度人创造的,只是经过阿拉伯传到欧洲。这是印度对人类文明的一项重大贡献,这一贡献的意义也可能是今天的人们不易觉察的。但是,18世纪一位法国著名数学家曾说过:“用不多的记号表示全部的数的思想,赋予它的除了形式上的意义外,还有位置上的意义,它之如此绝妙非常,正是由于这种简易得难以估量。”

关于“位置上的意义”,指的是数字的进位表达。比如说724,它实际上是7×100+2×10+4,可是它只需简写成724就明白了。此外还有空位的问题,假若有个数字是7×1000+2×100+4,那该怎么写呢?现在我们是很容易回答了,不就写为7204吗?可是,在最初的数字符号系统中是没有0这个符号的。有的用一个点来表示:72•4有的用一个方格来表示;有的干脆就拉开一点写,表示空一位;……但这些写法的不准确、不方便是显而易见的。直到使用了0这个符号,问题才得以解决。而0这个符号比其他符号的出现晚了好几百年。如果年看72004这个数字,我们能更清楚地体会到0这个符号的特殊意义。

数学的简洁不只表现在数字符号上,还表现在其他符号上,表现在命题的表述和论证上,表现在它的逻辑体系上,总之,表现在思维经济上。

数学符号有许多种,除了前面提到的数字符号外,还有代数的符号,通常用英文字母或希腊字母表示。在笛卡儿时代,以英文字母的开头几个表示已知数,如a、b、c、…,以英文字母的最后几个代表未知数,如x、y、z,或以a、b、c、…代表常数,以x、y、z代表变数。现在,这已不是固定的了,在某种约定之下,a、b、c、…也可代表未知数,也可以表变数,x、y、z也可以代表已知数,也可以代表常数。还有一些特殊的常数,如π,e。还有另一些表现数量的符号,往往是其他类型符号的组合。

数字研究的对象已不只限于数,还研究形,表示三角形,表示四边形,表示圆。

数学研究的最一般对象是集合,而表示集合的符号常常用英文字母的斜体,如A、B、C、D、X、Y、Z等。某些特殊的集合又用特殊的符号表示,例如,用N表示自然数集,而实数集则用R表示,N与nature(自然)一词有关,R与real(实的)有关。特定的集合组成空间,空间有时用S表示,S与space(空间)一词有关,但也用其他字母表示空间。这些符号的运用使得数学语言变得简练。

还有一类符号是表示关系的,通过种种关系起联结作用。常用的如等号=,近似等号≈,全等号≌或。还有不等号≠,<,>,<<。∥表示平行关系,表示垂直关系,与表示元素与集合之间的关系,表示集合与集合之间的关系,表示蕴涵关系等等。

还有一大类是关于运算的符号。+,-,×,÷是四则运算符号。是开方运算符号,sin,cos,tan是三角运算符号,lim是极限运算符号,d,是微积分运算符号。表示若干项乃至无穷项求和,表示连乘(若干因子或无穷个因子),!表示阶乘,,是集合论中的运算符号。映射是比运算更普遍的概念,f,g,h等常被运用作映射符号。

微积分是英国人牛顿和德国人莱布尼茨彼此独立发现的,牛顿和莱布尼茨使用的微分符号却是不同的。牛顿创立了微分符号,比如说的微分用表示,可是牛顿的这一符号对于高阶微分并不方便,并且不宜于表现微分与积分的关系,因而实质上并不十分科学。相比之下,莱布尼茨的符号在这两方面都比牛顿的符号更加科学合理,它反映了事物最内在的本质,减轻了想象的任务。诸如这样的优美的式子,是在莱布尼茨符号下才能出现的。而英国人却以牛顿为自豪,这是无可厚非的,但是,由于他们长时间固守牛顿的符号,使英国数学的发展受到了严重的损害。

所以,数学符号的科学性直接影响着数学语言的质量,影响着数学及数学教育的发展。

2、数学语言的简洁性

数学语言非常简洁精确,它具有独特的价值,它是科学语言的基础。

从宏观来说,人们常以“成千上万”来研究多,再多就是“百万”、“千万”了,更多则是“亿万”。可是,数学能作出更简洁也更明确、更有力的表示,比如说,1025、286243这样巨大的数字,一般语言就说不太清楚了。

从微观来说,日常语言之中,“失之毫厘,廖以千里”,用一毫一厘来形容微小,还有形容体积之小的,时间之短的,距离之近的。但是,没有比10-15,10-45这样一些表达更能说明问题,它也更简洁、更明了。

[a,b]仅由a、b、[]这三个数学符号表出,但如果比用一般语言描述就成为“大于或等于a,小于或等于b的一切实数的集合。”除去标点还得需要20个符号,其中18个汉字。

若对任何使得对任何n,m>N,有,则数列有极限。这是著名的柯西判别准则。如果要用一般语言是无论如何也表示不清的,

作为有理数、无理数、代数数、超越数、实数、虚数之间关系之一的式子,是各种数的大统一。用数学语言来表达是这样的简洁、明晰。

数学语言有其独特之处,有其独特的价值,它不仅是普通语言无法替代的,而且它构成了科学语言的基础。越来越多的科学门类用数学语言表述自己,这不仅是因为数学语言的简洁,而且是因为数学语言的精确及其思想的普遍性与深刻性。

我们看看下面几个式子,就能明白物理学是如何用数学语言来表述的。

F=0

F=

F=

第一、二两个式子分别表达的是牛顿第一定律和第二定律,第三个式子说的是万有引力定律。

惯性定律说的是,在没有外力的条件下,物体保持原有的运动(或静止)状态,然而简洁的数学式F=0(C是常数)表达了定律的实质。

第二定律说的是,力与质量和加速成正比,数学式子F=表达了这一点。当质量是常数的时候,式子可写为F=,又可用a表示加速度,因此牛顿第二定律又可以表示为人所共知的形式F=ma。

万有引力定律说的是,任何两个物体之间都有引力存在,其大小与两物体质量之积成正比,与距离的平方成反比,式子F=又是多么有力地刻画了这一思想。

3、数学语言的通用性

数学语言与一般语言相比,它具有无民族性、无区域性,它世界上唯一的通用语言。

数学语言是人类语言的组成部分,它与一般语言是相通的,而且可以说是以一般语言为基础的。一般语言掌握得如何,直接会影响数学语言的学习。但是,一般语言学得很好的人也不一定能掌握好数学语言,它们毕竟有差别。

一般语言具有民族性、地区性,一般语言与民族、地区文化有极密切的联系。不同地区语言的差别可以很大,这种差别主要指符号及法则体系的不同。例如,英语与俄语,不仅符号表示的差别很大,而且语言规则的差别也很大;至于汉语,它与英语、俄语的差别更大,从书写来看,汉语是方块字,从读音来看,英语、俄语是拼读法,语法的差别也特别大。

就是同一民族,书面语言完全相同而发音很不相同的情形更多,例如同讲汉语,北方与南方就有很大不同,北京话与广大话很不相同。而且,目前世界上的语言就多达2500—3000种,其中仅美洲语言即有1000多种,非洲语言也近1000种。100万以上人口使用的文字则只有140种。这140种之中,以汉语为母语的人最多,约占世界人口的20%;其次是英语,约占6%;再次是俄语、西班牙语、法语,使用这五种语言的人占世界人口的40%以上。

但数学语言没有地区性、民族性。全世界因为地区之不同、民族之不同而有二、三千种语言(远远超过全世界国家的数目),可是,全世界的数学语言只有一种。

这种语言符号,全世界的中学生大学生们都认识,同一种书写、同一个含义,只是读音一般有所不同而已。

从以上的探讨中我们可以发现,由于构成数学语言的数学符号科学、简洁,而导致数学语言具有不同一般语言的特殊性,也就是具有科学性、简洁性、相通性。对数学语言的研究,不仅能促进数学及数学教育的发展,而且也能对人类精神文明和物质文明的进步起到积极作用。

正因为数学语言是一种特殊的语言,那它在数学教育中也具有重要的作用:

1、掌握数学语言是学习数学知识的基矗一方面,数学语言既是数学知识的重要组成部分,又是数学知识的载体。各种定义、定理、公式、法则和性质等无不是通过数学语言来表述的。离开了数学语言,数学知识就成了“水中月,镜中花”。另一方面,数学知识是数学语言的内涵,学生对数学知识的理解、掌握,实质是对数学语言的理解、掌握。一个对数学语言不能理解的人是绝对谈不上对数学知识有什么理解的。因此,从一定意义上讲。掌握数学语言是学习数学知识的基础,数学语言教学是数学教学的关键。

2、掌握数学语言,有助于发展逻辑思维能力。

逻辑思维是思维的高级形式。在各种能力中,逻辑思维能力处于核心地位。

因此,培养学生的逻辑思维能力是数学教学的中心任务。语言是思维的物质外壳,什么样的思维依赖于什么样的语言。具体形象语言有助于具体形象思维的形成;严谨缜密、具有高度逻辑性的数学语言则是发展逻辑思维的“培养液”。

3、掌握数学语言是解决数学问题的前提。

培养学生运用所学知识解决数学问题的能力,是数学教学的最终目的。“对一个问题能清楚地说一遍,等于解决了问题的一半。”解决问题的过程是一个严密的推理和论证的过程,正确地理解题意,画出符合要求的图形。寻找已知条件,分析条件与结论之间的关系,有关知识的映象,解题判断的形成,直至解答过程的表述等,处处离不开数学语言。

4、掌握数学语言,有利于思维品质的形成。

数学语言的特点决定了数学语言对思维品质的形成有重要作用。严谨、准确是培养思维的逻辑性、周密性与批判性的“良方”;清晰、精练对培养思维的独立性与深刻性有特效。

5、掌握数学语言,能激起学习数学的兴趣。

数学的语言美具有自己的特点,它是一种内在的美,表面显得枯燥乏味,其实却蕴藏着丰富的内涵。充分理解、掌握它,就能领略其中的微妙之处,感受其中的美的意境,从而激起学习、探究的兴趣。

数学语言作为一种表达科学思想的通用语言和数学思维的最佳载体,包含着多方面的内容;其中较为突出的是叙述语言、符号语言及图形语言,其特点是准确、严密、简明。由于数学语言是一种高度抽象的人工符号系统,因此,它常成为数学教学的难点。一些学生之所以害怕数学,一方面在于数学语言难懂难学,另一方面是教师对数学语言的教学不够重视,缺少训练,以致不能准确、熟练地驾驭数学语言。

接下来根据数学语言的特点及数学要求,谈谈教学中的实践与认识。

首先,注重普通语言与数学语言的互译普通语言即日常生活中所用语言,这是学生熟悉的,用它来表达的事物,学生感到亲切,也容易理解。其他任何一种语言的学习,都必须以普通语言为解释系统。数学语言也是如此,通过两种语言的互译,就可以使抽象的数学语言在现实生活中找到借鉴,从而能透彻理解,运用自如。“互译”含有两方面的意思:一是将普通语言译为数学符号语言,也就是通常所说的“数学化”,例如方程是把文字表达的条件改用数学符号,这是利用数学知识来解决实际问题的必要程序。二是将数学语言译为普通语言。数学实践告诉我们,凡是学生能用普通语言复述概念的定义和解释概念所揭示的本质属性,那么他们对概念的理解就深刻。由于数学语言是一种抽象的人工符号系统,不适于口头表达,因此也只有翻译成普通语言使之“通俗化”才便于交流。

其次,注重数学语言学习的过程,合理安排教学

数学概念和数学符号的形成一般包括逻辑过程、心理过程和教学过程三个环节。逻辑过程能够揭示概念之间的各种逻辑关系,便于对数学结构从整体上理解,有助于学生对数学本质的理解与认识。心理过程是指学生从学习数学语言到掌握数学语言的过程,这种过程往往是因人而异。数学符号和规则从现实世界得到其意义,又在更大的范围内作用于现实。学生只有在理解数学语言的来龙去脉及意义,而且熟练地掌握他们的各种用法,从而得到理性的认识之后,在数学学习中才能灵活地对它们进行各种等价叙述,并在一个抽象的符号系统中正确应用,从而达到对数学符号语言学习的最高水平。教学过程则是教师具体对某个数学符号进行讲解、分析、举例、考查的过程,教师在教学中要善于驾驭数学语言。

1.善于推敲叙述语言的关键词句。

叙述语言是介绍数学概念的最基本的表达形式,其中每一个关键的字和词都有确切的意义,须仔细推敲,明确关键词句之间的依存和制约关系。例如平行线的概念“在同一平面内不相交的两条直线叫做平行线”中的关键词句有:“在同一平面内”,“不相交”,“两条直线”。教学时要着重说明平行线是反映直线之间的相互位置关系的,不能孤立地说某一条直线是平行线;要强调“在同一平面内”这个前提,可让学生观察不在同一平面内的两条直线也不相交;通过延长直线使学生理解“不相交”的正确含义。这样通过对关键词句的推敲、变更、删简,使学生认识到“在同一平面内”、“不相交的两条直线”这些关键词句不可欠缺,从而加深对平行线的理解。

2.深入探究符号语言的数学意义。

符号语言是叙述语言的符号化,在引进一个新的数学符号时,首先要向学生介绍各种有代表性的具体模型,形成一定的感性认识;然后再根据定义,离开具体的模型对符号的实质进行理性的分析,使学生在抽象的水平上真正掌握概念(内涵和外延);最后又重新回到具体的模型,这里具体的模型在数学符号的教学中具有双重意义:一是作为一般化的起点,为引进抽象符号作准备,二是作为特殊化的途径,便于符号的应用。

数学符号语言,由于其高度的集约性、抽象性、内涵的丰富性,往往难以读懂。这就要求学生对符号语言具有相当的理解能力,善于将简约的符号语言译成一般的数学语言,从而有利于问题的转化与处理。

3.合理破译图形语言的数形关系。

第6篇:数学分析论文范文

一、教学内容的广度、深度不够

幼儿园数学普遍存在内容浅、容量少的问题,在广度和深度上远远不能满足幼儿智能发展的需要。由于现代社会信息的增大,幼儿受多种信息的刺激,其智能水平有了较大的提高,学习《纲要》所规定的内容是轻而易举的事,他们有足够的能力学习《纲要》以外的知识。例如:学前班数学课本上只有简单的5以内的组成分解、加减法、序数及简单的形体内容。原来半年学完的课本,现在幼儿园只用几个活动就学完了,而且全都能领会。再就是各年龄班存在着重复教学。如中班讲了5以内的组成分解,到了大班还要学习5以内的组成分解,学前班也还得如此。这种无深度的反复教学,不但激发不了幼儿的求知欲,反而阻碍了幼儿的思维发展。

二、教学目标单一

幼儿园数学教育中存在着教师只为传授知识而传授,幼儿只为学知识而学的现象,教学的目标只是数学知识单方面的目标。如中班“排数卡”教学活动的目标是:①练习1—10的数数;②巩固10以内的数的认识。大班认数活动学习“5”的组成分解的活动目标是:①认识“5”可以分成1和4、2和3、3和2、4和1;②书写数字“5”。从中不难看出,教师对幼儿数学教育的目标缺乏全面的认识,活动中仅以学习数学知识为唯一目标,而忽视了诸如思维能力的发展、数学兴趣的培养等其它目标。

三、操作材料乏味

幼儿对外界事物的好奇心极强,在学习中他们往往以兴趣为出发点,十分容易为新的刺激所吸引。这就要求给幼儿提供的操作材料必须新颖、鲜艳、丰富多彩,材料的大小,要根据幼儿的年龄特点而定。然而,由于有的教师对操作材料在教学中所起作用的认识不够,加上怕麻烦等原因,教学中老是几套操作材料反复使用,当教师给幼儿发材料时,幼儿就会马上产生出“还是这个”的抱怨。陈旧单调的操作材料,极易使幼儿产生厌倦情绪,影响操作活动的效果。

四、教学方法单调

教师在考虑幼儿园数学教育的方法和组织形式时,习惯于仅以幼儿认识事物是从具体到抽象这一特点为依据,只强调数学教育的直观性,片面依靠演示,把答案强加给幼儿。如几支铅笔、几个苹果的演示就讲一节课。再是,忽视幼儿的学习规律,甚至过高估计幼儿的接受能力,教学效果不理想。如教幼儿学习“6”的加减法时,教师直接出示分合式,让幼儿看着分合式列出算式,即1+5=6、2+4=6、3+3=6、4+2=6、5+1=6,然后逐一指着算式让幼儿创编应用题,大量的时间花在编应用题上。三是采取“灌输式教学”。即老师讲,幼儿听,老师问,幼儿答,老师演示,幼儿看。不管是否能消化,硬往幼儿的小脑子里灌死知识,死灌知识,造成幼儿对知识的“被动接受”,而不是根据幼儿的年龄特点,多采用一些幼儿喜爱的、丰富多彩的教学方法,如游戏法、实物教学法、比较法等等。而且整个活动采用单一的教学方法,造成课堂气氛不活跃,激发不起幼儿学习数学的兴趣和求知欲望。

鉴于以上问题,建议:

一、改革数学教育内容

根据幼儿的年龄特点扩大各年龄班的知识面,加深数学知识的难度。各个年龄班要按统一部署,由浅入深地完成教学任务,避免重复无效教育。(1)集合数:除《纲要》中规定的10以内的数字书写、认读、计数与取物外,应延伸到20以内的书写、认读、计数与取物,增加数群计数、目测数群、数量层次认知等(2)相邻数:在相邻数的认知中应重视规律、方法的渗透教育,引伸到对相邻数本质的认知,延伸到100以内的相邻数。(3)单、双数:由10以内的单、双数顺数、倒数认知扩大到100以内的顺数、倒数及单双数的认知,并会判断多位数的单双数,并应增设数列的认知(单序数列、双序数列)。(4)组成分解:除学习10以内的加减运算、分解组成、创编应用题外,还应注重多项思维能力的训练和迁移能力的培养。另外,从时空观念、逻辑观念等方面也应扩大知识面,增加难度,注重幼儿分析、综合推理的技能、数学语言的运用、表达的技能及多项思维技能的培养与训练。

二、注重幼儿素质的全面提高

《纲要》中明确提出了数学教育的四个方面的目标:(1)教幼儿掌握一些初浅的数学知识;(2)培养幼儿初步的逻辑思维能力;(3)培养幼儿的学习兴趣;(4)培养幼儿正确的学习态度和良好的学习习惯。要通过数学教育激发幼儿的兴趣和求知欲,发展幼儿的逻辑思维能力和空间想象能力,训练幼儿做事认真、细致,具有主动性、条理性、坚持性和创造性,教育幼儿勇于克服困难,培养幼儿学习的毅力和自信心,为幼儿今后的发展打下坚实的基础。教师在对幼儿进行数学教育时,要把这些目标渗透到教学活动中,多从培养幼儿的逻辑思维能力、学习兴趣及良好的学习态度和学习习惯几方面考虑,既让幼儿学到知识,又促进其整体素质的全面提高。

三、增强操作材料的趣味性

教师要掌握幼儿的心理特点,哪一年龄段的幼儿喜欢用什么样的操作材料,某一活动该采用什么样的操作材料要做到心中有数。如幼儿智能学具、多功能插板、珠算器、插塑雪花片、沙盘教具、游戏卡、圆点卡等操作材料颜色鲜艳,很受幼儿的喜爱。除此之外教师要多下功夫,巧选材料,为幼儿制作出适合其特点的操作材料。还要充分调动家长及幼儿的积极性,亲子共同制作。由于幼儿亲自参与,他们对操作材料会倍感亲切、倍加喜欢、倍加爱护,从而提高教学效果。

第7篇:数学分析论文范文

简单的说,数学直觉是具有意识的人脑对数学对象(结构及其关系)的某种直接的领悟和洞察。

对于直觉作以下说明:

(1)直觉与直观、直感的区别

直观与直感都是以真实的事物为对象,通过各种感觉器官直接获得的感觉或感知。例如等腰三角形的两个底角相等,两个角相等的三角形是等腰三角形等概念、性质的界定并没有一个严格的证明,只是一种直观形象的感知。而直觉的研究对象则是抽象的数学结构及其关系。庞加莱说:"直觉不必建立在感觉明白之上.感觉不久便会变的无能为力。例如,我们仍无法想象千角形,但我们能够通过直觉一般地思考多角形,多角形把千角形作为一个特例包括进来。"由此可见直觉是一种深层次的心理活动,没有具体的直观形象和可操作的逻辑顺序作思考的背景。正如迪瓦多内所说:"这些富有创造性的科学家与众不同的地方,在于他们对研究的对象有一个活全生的构想和深刻的了解,这些构想和了解结合起来,就是所谓''''直觉''''……,因为它适用的对象,一般说来,在我们的感官世界中是看不见的。"

(2)直觉与逻辑的关系

从思维方式上来看,思维可以分为逻辑思维和直觉思维。长期以来人们刻意的把两者分离开来,其实这是一种误解,逻辑思维与直觉思维从来就不是割离的。有一种观点认为逻辑重于演绎,而直观重于分析,从侧重角度来看,此话不无道理,但侧重并不等于完全,数学逻辑中是否会有直觉成分?数学直觉是否具有逻辑性?比如在日常生活中有许多说不清道不明的东西,人们对各种事件作出判断与猜想离不开直觉,甚至可以说直觉无时无刻不在起作用。数学也是对客观世界的反映,它是人们对生活现象与世界运行的秩序直觉的体现,再以数学的形式将思考的理性过程格式化。数学最初的概念都是基于直觉,数学在一定程度上就是在问题解决中得到发展的,问题解决也离不开直觉,下面我们就以数学问题的证明为例,来考察直觉在证明过程中所起的作用。

一个数学证明可以分解为许多基本运算或许多"演绎推理元素",一个成功的数学证明是这些基本运算或"演绎推理元素"的一个成功的组合,仿佛是一条从出发点到目的地的通道,一个个基本运算和"演绎推理元素"就是这条通道的一个个路段,当一个成功的证明摆在我们面前开始,逻辑可以帮助我们确信沿着这条路必定能顺利的到达目的地,但是逻辑却不能告诉我们,为什么这些路径的选取与这样的组合可以构成一条通道。事实上,出发不久就会遇上叉路口,也就是遇上了正确选择构成通道的路段的问题。庞加莱认为,即使能复写出一个成功的数学证明,但不知道是什么东西造成了证明的一致性,……,这些元素安置的顺序比元素本身更加重要。笛卡尔认为在数学推理中的每一步,直觉力都是不可缺少的。就好似我们平时打篮球,要靠球感一样,在快速运动中来不及去作逻辑判断,动作只是下意识的,而下意识的动作正是在平时训练产生的一种直觉。

在教育过程中,老师由于把证明过程过分的严格化、程序化。学生只是见到一具僵硬的逻辑外壳,直觉的光环被掩盖住了,而把成功往往归功于逻辑的功劳,对自己的直觉反而不觉得。学生的内在潜能没有被激发出来,学习的兴趣没有被调动起来,得不到思维的真正乐趣。《中国青年报》曾报道,"约30%的初中生学习了平面几何推理之后,丧失了对数学学习的兴趣",这种现象应该引起数学教育者的重视与反思。

二、直觉思维的主要特点

直觉思维具有自由性、灵活性、自发性、偶然性、不可靠性等特点,从培养直觉思维的必要性来看,笔者以为直觉思维有以下三个主要特点:

(1)简约性

直觉思维是对思维对象从整体上考察,调动自己的全部知识经验,通过丰富的想象作出的敏锐而迅速的假设,猜想或判断,它省去了一步一步分析推理的中间环节,而采取了"跳跃式"的形式。它是一瞬间的思维火花,是长期积累上的一种升华,是思维者的灵感和顿悟,是思维过程的高度简化,但是它却清晰的触及到事物的"本质"。

(2)创造性

现代社会需要创造性的人才,我国的教材由于长期以来借鉴国外的经验,过多的注重培养逻辑思维,培养的人才大多数习惯于按部就班、墨守成规,缺乏创造能力和开拓精神。直觉思维是基于研究对象整体上的把握,不专意于细节的推敲,是思维的大手笔。正是由于思维的无意识性,它的想象才是丰富的,发散的,使人的认知结构向外无限扩展,因而具有反常规律的独创性。

伊恩.斯图加特说:"直觉是真正的数学家赖以生存的东西",许多重大的发现都是基于直觉。欧几里得几何学的五个公设都是基于直觉,从而建立起欧几里得几何学这栋辉煌的大厦;哈密顿在散步的路上进发了构造四元素的火花;阿基米德在浴室里找到了辨别王冠真假的方法;凯库勒发现苯分了环状结构更是一个直觉思维的成功典范。

(3)自信力

学生对数学产生兴趣的原因有两种,一种是教师的人格魅力,其二是来自数学本身的魅力。不可否认情感的重要作用,但笔者的观点是,兴趣更多来自数学本身。成功可以培养一个人的自信,直觉发现伴随着很强的"自信心"。相比其它的物资奖励和情感激励,这种自信更稳定、更持久。当一个问题不用通过逻辑证明的形式而是通过自己的直觉获得,那么成功带给他的震撼是巨大的,内心将会产生一种强大的学习钻研动力,从而更加相信自己的能力。

高斯在小学时就能解决问题"1+2+……+99+100=?",这是基于他对数的敏感性的超常把握,这对他一生的成功产生了不可磨灭的影响。而现在的中学生极少具有直觉意识,对有限的直觉也半信半疑,不能从整体上驾驭问题,也就无法形成自信。

三、直觉思维的培养

一个人的数学思维,判断能力的高低主要取决于直觉思维能力的高低。徐利治教授指出:"数学直觉是可以后天培养的,实际上每个人的数学直觉也是不断提高的。"数学直觉是可以通过训练提高的。

(!)扎实的基础是产生直觉的源泉

直觉不是靠"机遇",直觉的获得虽然具有偶然性,但决不是无缘无故的凭空臆想,而是以扎实的知识为基础。若没有深厚的功底,是不会进发出思维的火花的。阿提雅说:"一旦你真正感到弄懂一样东西,而且你通过大量例子以及通过与其它东两的联系取得了处理那个问题的足够多的经验.对此你就会产生一种关于正在发展的过程是怎么回事以及什么结论应该是正确的直觉。"阿达玛曾风趣的说:"难道一只猴了也能应机遇而打印成整部美国宪法吗?"

(2)渗透数学的哲学观点及审美观念

直觉的产生是基于对研究对象整体的把握,而哲学观点有利于高屋建邻的把握事物的本质。这些哲学观点包括数学中普遍存在的对立统一、运动变化、相互转化、对称性等。例如(a+b)2=a2+2ab-b2,即使没有学过完全平方公式,也可以运用对称的观点判断结论的真伪。

美感和美的意识是数学直觉的本质,提高审美能力有利于培养数学事物间所有存在着的和谐关系及秩序的直觉意识,审美能力越强,则数学直觉能力也越强。狄拉克于1931年从数学对称的角度考虑,大胆的提出了反物质的假说,他认为真空中的反电子就是正电子。他还对麦克斯韦方程组提出质疑,他曾经说,如果一个物理方程在数学上看上去不美,那么这个方程的正确性是可疑的。

(3)重视解题教学

教学中选择适当的题目类型,有利于培养,考察学生的直觉思维。

例如选择题,由于只要求从四个选择支中挑选出来,省略解题过程,容许合理的猜想,有利于直觉思维的发展。实施开放性问题教学,也是培养直觉思维的有效方法。开放性问题的条件或结论不够明确,可以从多个角度由果寻因,由因索果,提出猜想,由于答案的发散性,有利于直觉思维能力的培养。

(4)设置直觉思维的意境和动机诱导

这就要求教师转变教学观念,把主动权还给学生。对于学生的大胆设想给予充分肯定,对其合理成分及时给予鼓励,爱护、扶植学生的自发性直觉思维,以免挫伤学生直觉思维的积极性和学生直觉思维的悟性。教师应及时因势利导,解除学生心中的疑惑,使学生对自己的直觉产生成功的喜悦感。

"跟着感觉走"是教师经常讲的一句话,其实这句话里已蕴涵着直觉思维的萌芽,只不过没有把它上升为一种思维观念。教师应该把直觉思维冠冕堂皇的在课堂教学中明确的提出,制定相应的活动策略,从整体上分析问题的特征;重视数学思维方法的教学,诸如:换元、数形结合、归纳猜想、反证法等,对渗透直觉观念与思维能力的发展大有稗益。

第8篇:数学分析论文范文

一、高一数学成绩大面积下降的原因

1.初、高中教材间梯度过大。

初中教材偏重于实数集内的运算,缺少对概念的严格定义或对概念的定义不全,如函数的定义,三角函数的定义就是如此;对不少数学定理没有严格论证,或用公理形式给出而回避了证明,比如不等式的许多性质就是这样处理的;教材坡度较缓,直观性强,对每一个概念都配备了足够的例题和习题。而高一教材第一章就是集合、映射等近世代数知识,紧接着就是幂函数的分类问题(在幂函数中,由于指数不同,具有不同的性质和图象)。函数单调性的证明又是一个难点,立体几何对空间想象能力的要求又很高。教材概念多、符号多、定义严格,论证要求又高,高一新生学起来相当困难。此外,内容也多,每节课容量远大于初中数学。这些都是高一数学成绩大面积下降的客观原因。

2.高一新生普遍不适应高中数学教师的教学方法。

笔者曾在二届高一召开过学生座谈会,同学们普遍反映数学课能听懂但作业不会做。不少学生说,平时自认为学得不错,考试成绩就是上不去。带着问题笔者多次听了初、高中数学教师的课堂教学,发现初中教师重视直观、形象教学,老师每讲完一道例题后,都要布置相应的练习,学生到黑板表演的机会相当多。为了提高合格率,不少初中教师把题型分类,让学生死记解题方法和步骤。在初三,重点题目反复做过多次。而高中教师在授课时强调数学思想和方法,注重举一反三,在严格的论证和推理上下功夫。又由于高中搞小循环,接高一课程的教师刚带完高三,他们往往用高三复习时应达到的难度来对待高一教学。因此造成初、高中教师教学方法上的巨大差距,中间又缺乏过渡过程,至使高中新生普遍适应不了高中教师的教学方法。

3.高一学生的学习方法不适应高中数学学习。

高一学生在初中三年已形成了固定的学习方法和学习习惯。他们上课注意听讲,尽力完成老师布置的作业。但课堂上满足于听,没有做笔记的习惯,缺乏积极思维;遇到难题不是动脑子思考,而是希望老师讲解整个解题过程;不会科学地安排时间,缺乏自学、看书的能力,还有些学生考上了高中后,认为可以松口气了,放松了对自己的要求。上述的学习方法,不适应高中阶段的正常学习。

二、搞好高一数学教学的对策及方法

针对上述问题,笔者认为要想大面积提高高一数学成绩,应采取如下措施。

1.高一教师要钻研初中大纲和教材。

高中教师应听初中数学课,了解初中教师的授课特点。开学初,要通过摸底测验和开学生座谈会,了解学生掌握知识的程度和学生的学习习惯。在摸清三个底(初中知识体系,初中教师授课特点,学生状况)的前提下,根据高一教材和大纲,制订出相当的教学计划,确定应采取的教学方法,做到有的放矢。

2.新高一要放慢进度,降低难度,注意教学内容和方法的衔接。

根据笔者实践,新高一第一章课时数要增加。要加强基本概念、基础知识的教学。教学时注意形象、直观。如讲映射时可举“某班50名学生安排到50张单人桌上的分配方法”等直观例子,为引人映射概念创造阶梯。由于新高一学生缺乏严格的论证能力,所以证明函数单调性时可进行系列训练,开始时可搞模仿性的证明。要增加学生到黑板上演练的次数,从而及时发现问题,解决问题,章节考试难度不能大。通过上述方法,降低教材难度,提高学生的可接受性,增强学生学习信心,让学生逐步适应高中数学的正常教学。

3.严格要求,打好基础。

开学第一节课,教师就应对学习的五大环节提出具体、可行要求。如:作业的规范化,独立完成,订正错题等等。对学生在学习上存在的弊病,应限期改正。严格要求贵在持之以恒,贯穿在学生学习的全过程,成为学生的习惯。考试的密度要增加,如第一章可分为三块进行教学,每讲完一块都要复习、测验及格率不到70%应重新复习、测验,课前5分钟小条测验,应经常化,用以督促、检查、巩固所学知识。实践表明,教好课与严要求,是提高教学质量的主要环节。

第9篇:数学分析论文范文

随着我国改革开放的深入、科技的进步和社会的发展,人们愈来愈清醒地认识到:未来世界的竞争是人才的竞争。党和国家实施“科教兴国”战略,对基础教育提出了更高的要求。目前素质教育受到人们普遍重视。数学作为自然科学最基础的学科,“是研究客观世界数量关系和空间形式的科学,具有很强的概括性、抽象性和逻辑性”[1],是中小学教育必不可少的的基础学科,对发展学生智力,培养学生能力,“特别是在培养人的思维方面,具有其它任何一门学科都无法替代的特殊功能”[2]。我们研究中学生数学学习的心理障碍与消除的目的是:(1)便于对数学教学活动进行较为全面系统的回顾和反思,以总结经验,找准问题,发扬成绩,纠正错误;(2)把握中学生学习数学的心理状态,加强教学活动的针对性,提高数学课程教学的质量和效益;(3)试图探讨影响数学教学质量的因素及与素质教育相悖的有关问题,使数学学科价值能够在教育过程中得到充分展现和有效发挥,更好地为实施“科教兴国”战略和现代化建设服务。

中学生数学学习的心理障碍,是指影响、制约、阻碍中学生积极主动和持久有效地学习数学知识、训练创造性思维、发展智力、培养数学自学能力和自学习惯的一种心理状态,也即是中学生在数学学习过程中因“困惑”、“曲解”或“误会”而产生的一种消极心理现象。其主要表现有以下几个方面:

1.依赖心理

数学教学中,学生普遍对教师存有依赖心理,缺乏学习的主动钻研和创造精神。一是期望教师对数学问题进行归纳概括并分门别类地一一讲述,突出重点难点和关键;二是期望教师提供详尽的解题示范,习惯于一步一步地模仿硬套。事实上,我们大多数数学教师也乐于此道,课前不布置学生预习教材,上课不要求学生阅读教材,课后也不布置学生复习教材;习惯于一块黑板、一道例题和演算几道练习题。长此以往,学生的钻研精神被压抑,创造潜能遭扼杀,学习的积极性和主动性逐渐丧失。在这种情况下,学生就不可能产生“学习的高峰体验”——高涨的激励情绪,也不可能在“学习中意识和感觉到自己的智慧力量,体验到创造的乐趣”[3]。

2.急躁心理

急功近利,急于求成,盲目下笔,导致解题出错。一是未弄清题意,未认真读题、审题,没弄清哪些是已知条件,哪些是未知条件,哪些是直接条件,哪些是间接条件,需要回答什么问题等;二是未进行条件选择,没有“从贮存的记忆材料中去提缺题设问题所需要的材料进行对比、筛选,就“急于猜解题方案和盲目尝试解题”[4];三是被题设假象蒙蔽,未能采用多层次的抽象、概括、判断和准确的逻辑推理;四是忽视对数学问题解题后的整体思考、回顾和反思,包括“该数学问题解题方案是否正确?是否最佳?是否可找出另外的方案?该方案有什么独到之处?能否推广和做到智能迁移等等”[5]。

3.定势心理

定势心理即人们分析问题、思考问题的思维定势。在较长时期的数学教学过程中,在教师习惯性教学程序影响下,学生形成一个比较稳固的习惯性思考和解答数学问题程序化、意向化、规律化的个性思维策略的连续系统——解决数学问题所遵循的某种思维格式和惯性。不可否认,这种解决数学问题的思维格式和思维惯性是数学知识的积累和解题经验、技能的汇聚,它一方面有利于学生按照一定的程序思考数学问题,比较顺利地求得一般同类数学问题的最终答案;另一方面这种定势思维的单一深化和习惯性增长又带来许多负面影响,如使学生的思维向固定模式方面发展,解题适应能力提高缓慢,分析问题和解决问题的能力得不到应有的提高等。

4.偏重结论

偏重数学结论而忽视数学过程,这是数学教学过程中长期存在的问题。从学生方面来讲,同学间的相互交流也仅是对答案,比分数,很少见同学间有对数学问题过程的深层次讨论和对解题方法的创造性研究,至于思维变式、问题变式更难见有涉及。从教师方面来讲,也存在自觉不自觉地忽视数学问题的解决过程,忽视结论的形成过程,忽视解题方法的探索,对学生的评价也一般只看“结论”评分,很少顾及“数学过程”。从家长方面来讲,更是注重结论和分数,从不过问“过程”。教师、家长的这些做法无疑助长了中学生数学学习的偏重结论心理。发展下去的结果是,学生对定义、公式、定理、法则的来龙去脉不清楚,知识理解不透彻,不能从本质上认识数学问题,无法形成正确的概念,难以深刻领会结论,致使其智慧得不到启迪,思维的方法和习惯得不到训练和养成,观察、分析、综合等能力得不到提高。

此外,还有自卑心理、自谅心理、迷惘心理、厌学心理、封闭心理等等。这些心理障碍都不同程度地影响、制约、阻碍着中学生学习数学的积极性和主动性,使数学教学效益降低,教学质量得不到应有的提高。

中学生产生数学学习心理障碍的原因是复杂的,既有教师、家长、社会方面的因素,也有中学生自身的因素。具体地讲,存在的影响因素有如下一些:①“应试教育”大气候影响,片面追求升学率、题海战术使得教师和学生都忙于应付;②对素质教育缺乏科学的全面的理解;③教育质量评估体系和标准有待于进一步完善;④数学学科价值还未真正被广大教师和学生所认识;⑤教法单调死板,缺乏针对性、趣味性和灵活性;⑥学法指导不够,学生学习方法不对头;等等。

如何引导中学生克服数学学习的心理障碍,增强数学教学的吸引力?这是数学教法研究的重要课题。笔者认为,必须转变教学观念,从“应试教育”转到素质教育的轨道上来,坚持“四重、三到、八引导”,把握学生的心理状态,调动学生学习数学的积极性和创造性,使学生真正领悟和体会到学习数学的无穷乐趣,进而爱学、乐学、会学、学好。

“四重”,即重基储重实际、重过程、重方法。

1.重基础

就是教师要认真钻研大纲和教材,严格按照大纲提取知识点,突出重点和难点,让学生清楚教学内容的知识结构体系及其各自在结构体系中的地位和作用。

2.重实际

一是指教师要深入调查研究,了解学生实际,包括学生学习、生活、家庭环境,兴趣爱好,特长优势,学习策略和水平等等;二是指数学教学内容要尽量联系生产生活实际;三是要加强实践,使学生在理论学习过程中初步体验到数学的实用价值。

3.重过程

揭示数学过程,既是数学学科体系的要求也是人类认识规律的要求,同时也是培养学生能力的需要。“从一定意义上讲,学生利用‘数学过程’来学习方法和训练技能,较之掌握知识本身更具有重要的意义”[6]。一是要揭示数学问题的提出或产生过程;二是要揭示新旧知识的衔接、联系和区别;三是要揭示解决问题的思维过程和思维方法;四是要对解题思路、解题方法、解题规律进行概括和总结。总之,要“以启发诱导为基幢,“通过学生自己的活动来揭示获取数学知识的思维过程,进而达到发展学生能力的目的”[7]。

4.重方法

“数学方法是在数学活动中解决数学问题的具体途径、手段和方式的总称。”[8]所谓重方法,一是要重视教法研究,既要有利于学生接受理解,又不包办代替,让学生充分动脑、动口、动手,掌握数学知识,掌握数学过程,掌握解题方法;二是要重视学法指导,即重视数学方法教学。数学学法指导范围广泛,内容丰富,它包括指导学生阅读数学教材,审题答题,进行知识体系的概括总结,进行自我检查和自我评定,对解题过程和数学知识体系、技能训练进行回顾和反思,等等。

“三到”,即教师要做到心到、情到、人到。“能够真正做到想学生所想,想学生所疑,想学生所难,想学生所错,想学生所忘,想学生所会,想学生所乐,从而以高度娴熟的教育技巧和机智,灵活自如、出神入化地带领学生在知识的海洋遨游,用自己的思路引导学生的思路,用自己的智慧启迪学生的智慧,用自己的情感激发学生的情感,用自己的意志调节学生的意志,用自己的个性影响学生的个性,用自己的心灵呼应学生的心灵,使师生心心相印,肝胆相照。课堂步入一个相容而微妙的世界,教学成为一种赏心悦目、最富有创造性、最激动人心的‘精神解放’运动”[9]。

“八引导”,即学科价值引导、爱心引导、兴趣引导、目标引导、竞赛引导、环境引导、榜样引导、方法引导。

1.学科价值引导

就是要让学生明白数学的学科价值,懂得为什么要学习数学知识。一是要让学生明白数学的悠久历史;二是要让学生明白数学与各门学科的关系,特别是它在自然科学中的地位和作用;三是要让学生明白数学在工农业生产、现代化建设和现代科学技术中的地位和作用;四是要让学生明白当前的数学学习与自己以后的进一步学习和能力增长的关系,使其增强克服数学学习心理障碍的自觉性,主动积极地投入学习。

2.爱心引导

关心学生、爱护学生、理解学生、尊重学生,帮助学生克服学习上的困难。特别是对于数学成绩较差的学生,教师更应主动关心他们,征询他们的意见,想方设法让他们体验到学数学的乐趣,向他们奉献一片挚诚的爱心。

3.兴趣引导

一是问题激趣。“问题具有相当难度,但并非高不可攀,经努力可以克服困难,但并非轻而易举;可以创造条件寻得解决问题的途径,但并非一蹴而就”[10];二是情景激趣,把教学内容和学生实际结合起来、创设生动形象、直观典型的情景,激起学生的学习兴趣。此外,还有语言激趣、变式激趣、新异激趣、迁移激趣、活动激趣等等。

4.目标引导

数学教师要有一个教学目标体系,包括班级目标、小组目标、优等生目标和后进生目标,面向全体学生,使优等生、中等生和后进生都有前进的目标和努力的方向。其目标要既有长期性的又有短期性的,既有总体性的又有阶段性的,既有现实性的又有超前性的。对于学生个体,特别是后进生和尖子生,要努力通过“暗示”和“个别交谈”使他们明确目标,给他们加油鼓劲。

5.环境引导

加强校风、班风和学风建设,优化学习环境;开展“一帮一”、“互助互学”活动;加强家访,和家长经常保持联系,征求家长的意见和要求,使学生有一个“关心互助、理解、鼓励”的良好学习环境。

6.榜样引导

数学教师要引导学生树立自己心中的榜样,一是要在教学中适度地介绍国内外著名的数学家,引导学生向他们学习;二是要引导学生向班级中刻苦学习的同学学习,充分发挥榜样的“近体效应”;三是教师以身示范,以人育人。

7.竞争引导

开展各种竞赛活动,建立竞争机制,引导学生自觉抵制和排除不健康的心理因素,比、学、赶、帮争先进。