公务员期刊网 精选范文 材料加工技术范文

材料加工技术精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的材料加工技术主题范文,仅供参考,欢迎阅读并收藏。

材料加工技术

第1篇:材料加工技术范文

关键词 脆性材料;工程陶瓷;陶瓷加工;特种加工

中图分类号TM28 文献标识码A 文章编号 1674-6708(2014)119-0119-02

0引言

陶瓷材料具有良好的耐高温耐腐蚀性能、强度高、硬度高,是优良的高性能材料。随着陶瓷材料学的发展,其制备技术也越来越多,陶瓷材料的性能也逐步得到提高。陶瓷材料可以用到空间探测、航空航天等高技术领域中。

陶瓷材料的原子通过共价键、离子键结合,而金属材料通过金属键相结合,所以陶瓷材料与金属材料有完全不同的性质。陶瓷材料在常温下对剪切应力的变形阻力很大,且硬度很高。由于陶瓷晶体是由阳离子和阴离子以及它们之间的化学键组成的,化学键具有方向性、原子堆积密度低、原子间距大,使陶瓷显示出很大的脆性,加工产生的缺陷多,所以是典型的难加工材料。发展高效低成本的加工技术十分重要。

1陶瓷材料的车磨削加工技术

陶瓷材料的脆性极高,似乎很难将陶瓷与车削联系起来,但是陶瓷材料的压痕实验表明如果选用合适的金刚石刀具角度和切削参数仍然可以实现陶瓷材料的延性加工。相关的实验也表明采用超硬刀具材料都可以加工陶瓷材料。李湘钒超精密车削陶瓷材料的实验表明采用W-Co类硬质合金可以加工陶瓷零件。日本的原昭夫曾采用聚晶金刚石刀具车削Al2O3和Si3N4陶瓷。目前车削陶瓷材料主要选用金刚石刀具。在刃磨性能上单晶金刚石刀具优于聚晶金刚石刀具,它们都属于微量切削,去除率较低,加工质量和精度难以保证,还有待于进一步的研究。

磨削可以满足硬金属的加工要求,因而也可以成为陶瓷材料的主要加工方法,其精度和效率比较适中。磨削陶瓷材料一般选用金刚石砂轮,金刚石砂轮磨削材料时磨粒切人工件,磨粒切削刃前方的陶瓷表面材料受到挤压,当压力值超过陶瓷材料承受极限时被压溃,形成碎屑。同时磨粒切人工件时,由于压应力和摩擦热的作用,磨粒下方的材料会产生局部塑性流动,形成变形层,当磨粒切出时,由于应力的消失,引起变形层从工件上脱离形成切屑。从成屑机理上看陶瓷

材料的去除方式仍然是脆性的。磨削加工后的表面残留了大量的加工缺陷,因此深加工就成为必然的工序。为了降低深加工的成本,近年来提出了延性域磨削的概念。延性域磨削以提高磨削表面质量为主要目标,采用调整磨粒排布方式以及精密修整等技术来实现陶瓷材料的高效精密加工。陶瓷材料的磨削还存在砂轮磨损堵塞以及加工效率低等问题,这些问题有待于进一步的研究。

2陶瓷材料的特种加工技术

超声加工是在加工工具或被加工材料上施加超声波振动,在工具与工件之间加入液体磨料或糊状磨料,并以较小的压力使工具贴压在工件上。加工时,由于工具与工件之间存在超声振动,迫使工作液中悬浮的磨粒以很大的速度和加速度不断撞击、抛磨被加工表面,加上加工区域内的空化、超压效应,从而产生材料去除效果。超声加工比较适合陶瓷材料表面脆性的特点,这种方法加工的表面质量较好,容易实现加工自动化。其缺点是加工效率较低,工具寿命较低。

激光加工陶瓷材料,是利用能量密度极高的激光束照射到陶瓷材料表面上,光能被陶瓷表面吸收,光能部分转化为热能,使局部温度迅速升高产生熔化以至气化并形成凹坑。随着能量的继续吸收,凹坑中的蒸气迅速膨胀,把熔融物高速喷射出来,同时产生一个方向性很强的冲击波,这样材料就在高温、熔融、气化和冲击作用下被蚀除。激光加工高效环保,但光斑表面的温度梯度容易形成陶瓷材料表面的微裂纹,而且激光设备昂贵,使用成本较高。

电火花加工主要是通过电极间放电产生高温熔化和汽化蚀除材料。电火花加工适合于导电材料的加工。因为陶瓷材料是电绝缘体,所以必须采取特殊工艺。一种高压电火花加工方法是在尖电极与平电极间放入绝缘的陶瓷材料工件。两电极间加以直流或交流高电压,使尖电极附近的介质被击穿,发生辉光放电蚀除。另一种加工方法是在薄片陶瓷工件上压放一块薄金属网作为辅助电极,辅助电极和工具电极分别与脉冲电源的正负极相连,并放在油类工作液中,当脉冲电压施加到两极间,便在工具与辅助电极间产生火花放电;当电火花穿过工件上的辅助电极时,由于金属材料的气化喷射或溅射等作用使陶瓷零件表面导电,加工得以持续。还有一种加工方法是在陶瓷的表面涂覆导电材料进行电火花加工。电火花加工仍面临加工效率低、加工表面质量难以保证等问题,这些有待于进一步的研究。

3特种加工辅助车磨削技术

车磨削加工的效率相对较高,但其对工具的要求非常高,而且陶瓷材料的表面质量难以保证,对于成形陶瓷零件的加工也较难。为了提高陶瓷材料的加工精度以及加工范围,在车磨削加工中引入特种加工技术将会同时获得较高的加工效率和表面质量。

超声磨削加工,是在磨削加工的同时,对工具或工件施加超声频率振动,充分利用超声波的高频振动和空化作用去除材料,超声磨削加工方式较适用于陶瓷材料的加工,其加工效率随着材料脆性的增大而逐渐提高。超声磨削技术可以明显降低磨削温度、增加砂轮使用寿命、提高加工精度和表面质量。

激光辅助车削技术是将激光照射到刀具附近的陶瓷材料,在车削陶瓷材料的过程中,材料剪切区域因激光产生高温软化,减小了陶瓷材料的切削阻力,增加了陶瓷材料的加工延性,从而达到了陶瓷材料的高效延性加工。

在线电解磨削技术是将电解技术引入到磨削过程中,通过连续有限量的电解作用来蚀除砂轮表面的金属结合剂从而对砂轮进行修整以达到微粉磨粒不断出露的目的。在线电解技术是日本理化研究所研究的成果,加工陶瓷材料可以达到超精密加工的水平。

4结论

陶瓷材料在高技术领域中应用的广泛性促进了其加工技术的研究。陶瓷材料硬度高脆性大,采用传统的车磨削技术进行加工难度比较大,而特种加工技术效率低成本高,所以采用传统的车磨削技术与特种加工技术相结合的方法将是以后陶瓷加工技术研究的趋势。

参考文献

[1]李湘钒.工程零件的车削工艺探讨[J].苏州大学学报工学版,2002,22(1): 70-73.

[2]中井哲男.切削完全烧结陶瓷的研究结果[J].工业材料,1983,16(2): 31-55.

[3]张贝.磨粒切厚可控的脆性材料延性域磨削基础研究[D].南京: 南京航空航天大学机电学院,2013.

第2篇:材料加工技术范文

1.1复合材料的类型

目前,复合材料的种类较多,通常可按照复合材料的结构分为4种类型。

1.2复合材料的性能

在全部复合材料中,应用范围比较广泛的是纤维增强材料。纤维增强材料的特点是比模量较大、比强度和比重比较小。本文主要分析碳纤维增强材料的机械加工技术,碳纤维复合型材料的切削加工的特点为:刀具磨损比较严重、会产生残余应力、材料会被分层破坏和切削温度较高。分层破坏是指复合材料铺层间的脱胶现象,而脱胶现象与切削参数紧密相连,如果参数不合理,则易导致脱胶现象的产生,甚至使材料性能受到较大影响,导致零件报废;在切削过程中,切削温度不宜过高,否则,易使增强复合纤维材料与基体树脂的膨胀系数相差过大,进而产生残余应力。此外,在刀具切削刃周围较窄的区域是切削温度较高的位置,加之碳纤维复合型材料的导热性较差,因此,这种热传向工件和刀具会破坏碳纤维复合材料。

2复合材料机械加工技术分析

2.1金属基的复合材料加工

金属基的复合材料是指基体为合金或纯金属,其增强体一般为颗粒、纤维与晶须复合的材料。这类复合材料的特点是剪切和横向强度较高,抗疲劳和韧性等综合性质较好。此外,还具有无污染、热膨胀的系数较小、不老化、导电、导热、不吸湿和耐磨等特点。在一些传统工艺中,通常将金属基的复合材料用于加工中,比如磨削、切割、铣削和车削等。但采用这类传统工艺会导致机械磨损,因此,需要选择镶含有金刚石、金刚石尖刀具、高速钢、碳化钨的工具,且相关人员要掌握好切削速度,加入剂或冷却剂等。只有这样,才可取得更好的加工效果。

2.2热塑性树脂基的复合材料加工

热塑树脂基的复合材料一般是指将热塑性树脂作为基体的一种复合型材料。在加工这种材料时,如果温度过高,则易使材料的基体烧焦或软化。为了避免加工过热的情况出现,要适当添加冷却剂;在切削过程中,要保证切削刀具的排削槽有足够的容量,并保持较快的切削速度;车刀刀具和刀头要锋利,尽可能地使用金刚砂或碳化钨刀具,部分特殊的塑料可使用高速钢刀具;车刀应磨成倾角,从而减小刀具的切削力,便于切削。

2.3玻璃钢的加工

玻璃钢的特点包括耐腐蚀、高硬度、易碎、耐高温、透明性较好等。玻璃钢种类较多,比如塔器、玻璃钢罐和玻璃钢管等,根据树脂成分可分为不饱和聚酯树脂基、环氧树脂基和酚醛树脂基等。玻璃钢的可切削性与树脂基紧密相关,通常情况下,树脂基的不同会影响玻璃钢的切削性能。从以往的试验中可发现,玻璃钢刀具在高速切削中的磨损非常严重。因此,在切削时,可换成立方氮化硼刀具或金刚石刀具,使用这些刀具切削玻璃钢可大大提高生产效率。在选择刀具的几何参数时,必须掌握科学规律,按照材料性质选择。

3复合材料机械的加工

通常情况下,复合材料机械加工的流程为:锯切磨削铣削车削切割仿形铣钻孔。而复合型材料具有更先进的加工方法,比如电化学加工、激光束加工、电子束加工、高压水切割、电火花加工和超声波加工等。在加工复合材料时,相关人员要高度重视复合材料切削的稳定性,科学、合理地选择切削温度,并深入分析、研究新型刀具高速切削的方式,从而提高复合型材料机械加工的质量。此外,还可采用电子显微镜观察碳纤维复合型材料的孔壁,以探究复合型材料机械加工的优化方式,确保碳纤维复合材料机械加工的顺利进行。

4结束语

第3篇:材料加工技术范文

关键词:金属材料;工艺加工;方法研讨

1 关于金属工艺的类型

在当前的工业活动中,广泛的使用金属,它被大量的用来生产各种类型的产品。由于产品的使用方向是不一样的,因此其采取的工艺也完全不同,作者具体的分析了几类常见的工艺。

1.1 铸造工艺

所谓的铸造,具体的说是把金属物质在加高温之后变为液态,进而结合工作的规定将其制造成所需状态的一类工艺。在使用时必须结合金属物质的特点来分析,当前干扰铸造水平的要素非常多,比如材料是否能够很好的流动,是否有较高的收缩水平等。干扰铸造物质特性的关键要素是其成分,以及浇筑的气温等,通常来讲,当碳的含量非常高时,它的流动性就会降低,此时铸造工作也无法有效的开展。

1.2 锻压工艺

在使用锻压工艺时,必须要掌控好材料的特性,要确保它们有很好的抗冲能力,而且对于变形也有较高的规定,而材料的特点是由其构成要素以及制作条件决定的,假如变形差就会导致其在压力的干扰之下,出现缝隙,此时就会无法得到我们所需的形状。

1.3 焊接工艺

所谓的焊接工艺,具体的说是将材料制作为合乎规定的产品而展开的一类活动。我们在评判该种措施是不是合理时,常会分析焊接以后的金属是不是有缝隙,或是有气孔,以及它能否长久的使用。在运用时必须要确保焊接头的力学特征明显,而且要确保其不会明显收缩。

1.4 切削工艺

切削工艺指的是结合工作规定,对需处理的金属切割或是削切。在运用时会受到很多要素干扰,比如材料导热能力,结构以及硬度等等,通常来说,如果硬度很大,此项技术产生的效果就越弱,就越无法获取我们所需的效益。

1.5 热处理性能

具体来讲,它指的是金属在接受热处理时体现出来的特性。比如它的淬透能力等。

2 金属材料加工方法

结合物质的不同性质以及产品生产的规定,可以使用不一样的措施开展加工工作。当前行业使用较多的措施有如下的一些,接下来具体分析。

2.1 热处理加工方法

关于其原理以及特征。具体来讲,该措施是把金属物质放到特定的介质里面,借助加热或是冷却的措施,将金属本身的结构变化,此时我们就可以将物质的特性进行改变,最终能够控制好它的性能。该措施在当前的工业生产工作中的应用几率非常大,而且还是一个不可或缺的措施,经由热处理将材料的特性改变,以此来获取完全不一样的使用要求。关于工艺。该措施涵盖三个具体的步骤,即加热以及保温和冷却。接下来具体分析,在加热时,零件处在大气里面,此时其会被氧化,这对处理以后的零件来讲负面效益会十分明显。所以我们经常将其放在可保护的环境中对其加热,或是采用包装的措施对其处理。在处理时还必须控制好气温。对于处理工作来讲,它的气温高低非常关键,只有确定好温度,才能够开展后续的工作。在实际的工作中,加热的气温并不是固定的,它会因为材料的不同以及工作目的的不同而表现的不一样,不过通常都将其最少加热超过相变气温。同时转变会利用很多的时间,所以如果零件的满足温度的规定,还要在这个温度状态之下持续一些时间,确保里外的气温是完全一样的,此时组织就可以很好的变化。对于冷却来讲,它是当前工作中非常关键的内容,具体的冷却措施会因为工艺的差异而有所差别,最主要是要掌控好速率。

2.2 高速切削加工方法

关于其原理以及特征。对于高速切削活动来讲,它不像是常见的处理方式,由于它的速度非常快,因此碎屑等还没有时间接触零件就被吹走了,此时零件就可以始终处在一种冷却的情形之中,不会导致它因为受热而出现形状改变。它所需的费用不多,但是零件的精确性非常好。

选择好刀具。高速切削加工方法会产生较高的温度,对切削率要求也很高,所以对刀具的选择要求很高,刀具必须满足硬度高、热硬性好的要求,一般使用比较多的是PCBN刀具、陶瓷刀具和新型硬质合金及涂层硬质合金刀具。

关于工艺。高速切削加工工艺不同于一般的切削工艺,特别对硬质金属材料的切削,它要求充分考虑到每道工序的协调问题,记录前道工序加工后的材料剩余量,以便指导后续的加工操作。所以在进行切削任务前需要把粗加工、半精加工和精加工作为一个整体来规划,并设计出合理的加工方案。

2.3 温挤压成形加工方法

温挤压成形加工方法是指利用金属材料的塑性成形特性,将金属材料放入到挤压模具的型腔内,再通过增加外挤压力的方式来使金属材料形成具有一定尺寸规格和力学性能的形状。

设计挤压模具。模具的作用是用来控制金属材料的流动的,为提高金属材料的塑性,需要向变形区内施加强大的压力,因此设计出尺寸、形状、精度符合要求的模具是核心关键所在。挤压成形模具的设计环节一般包括分析零件的工艺性、选择工艺方案、设计工序、计算挤压压力的大小、选择压力机、设计模具结构以及绘制模具图纸。

控制挤压温度。在对金属材料进行挤压的过程中,当挤压的温度越高时,变形抗力就会变得越低,也即是说可以降低挤压力,减少施加机械能。当挤压温度升高到一定程度时,金属材料的表面就会由于撕裂造成组织粗大。从经验实践中发现当进行复合挤压时,温度加到150-200℃时,所需要施加的挤压力会减少10%。在冷挤压难以成型的材料在热挤压时,即使变形达到60%到70%时,挤压压力也不会有太大的变化,大量的实践数据表明,用于温挤压的温度以400-500℃为宜。

热挤压冷却方法。挤压模具连续在高温下作业,强度和硬度都会明显下降,从而影响到模具的使用寿命。在小批量生产作业时,可以通过压缩空气的方法来冷去凸凹模部分,如果在大批量生产时则需通过以下方法冷却模具:各一次行程才送一个毛坯,以保证有足够的时间给模具冷却;在模具内开孔冷却;对模具进行喷雾冷却。

3 结束语

金属材料由于化学成分不一样,其所具有的力学特性、物理特性都不一样,其所对应的加工方法也不一样。所以,在对金属材料进行加工时要根据其本身固有的特性和加工目的而采取合适的加工,从而实现对金属材料的使用。

参考文献

[1]涂黎明.浅谈金属材料工艺性能的维持措施[J].企业技术开发,2012(26):36.

[2]王建平.硬质金属材料高速切削加工研究[J].机床与液压,2013(15):21.

[3]张立君.脆性金属材料的数控车削技术[J].机床与液压,2013(16):41.

[4]郑峰.常用金属材料手册[M].化学工业出版社,2007.

[5]胡宏楠,董明.颗粒增强金属基复合材料切削加工工艺的新进展[J].金属材料与冶金工程,2009(1).

第4篇:材料加工技术范文

关键词:材料;加工技术;性能

材料是普遍认为现代社会的(材料能源信息)三大支柱之一。随着科学技术的越来越快越高的发展能源日趋紧迫的需求,信息的突飞猛进的发展,在很大程度上又依赖于材料的进步,很多发达国家都把材料科学作为重点发展科学使之成为新技术革命的坚实基础。

材料性质直接反映着社会的文明水平,从石器、陶器、铁器时代到科学技术进步正进入到人工合成材料、复合材料、记忆功能材料的新时代。人们对材料的观察和研究进入微观领域,X射线衍射技术、电子显微镜,各种先进能谱仪,将人类对材料微观世界的认识带入了更深的层次。形成了踌学科的材料科学。随着原子能航空航天、电子住处海洋开发等现代工业的以展,对材料提出更好的严格的要求,出现了一大批相对密度更小强度更加工性能更好,并能满足特殊性能要求的新材料,像航空母舰上舰载飞机起降甲板他需要高性能的镁板材料,要求能具有极高的强度,能承受在几千度的高温下的冲击载荷,这就需要极好的综合性能。各种新型材料的研究和开发正在加速。新型材料的特点是高性能化、复合化,有机材料、无机材料的界限在消失科学发展的进步象有机材料,无机材料也均己出现异电性,复合材料更是融多种材料性能于一体,甚至出现一些与原来截然不同的性能。这些新型材料的出现扩大了各种不同层次的应用范围,极大地推动了高新技术的日新月异的飞速以展,特别是纳米材料的开发和应用,引起了世界各国政府科学技术界军界的重视,专家预测,纳米材料科学技术将成为21世纪信息时代的核心。

第5篇:材料加工技术范文

【关键字】高分子材料;成型加工技术;进展研究

中图分类号:O63 文献标识码:A 文章编号:

1前言

近些年来,随着科学技术的不断发展,高分子材料在众多领域中被广泛的应用。高分子材料主要是通过对商品的制造来凸显其价值所在。就目前而言,高分子材料成型加工技术也越来越受到广泛的关注,因此,要想充分的利用高分子材料,就要对其成型加工进行深入的研究和探讨。

2高分子材料成型加工技术的发展状况

近些年来,就高分子材料而言,其合成工业的发展有了很大的突破。其中取得进步最大的就是造粒用挤出机,通过对其结构的改进,使得其产量有了很大的提高。在20世纪60年代进行造粒主要采用的是单螺杆的结构挤出机,这样产量就相对较少;到了70年代到80年代的时候,有了一定的改善,主要采用的是连续混炼机和单螺杆挤出机相结合来进行造粒,这时的产量就有了一定的提高;在80年代中期之后,进行造粒主要采用的就是双螺杆挤出机和齿轮泵相结合的模式,这是的产量已经提升很大的一个高度;到了2010年的时候产量已经提升了3亿吨的产量。除此之外,通过对高分子材料合成技术的应用,可以对树脂的分子结构进行简单明了的控制,因此可以进行大规模的生产运作,并且还可以有效的降低生产成本。

就目前而言,高分子材料的成型加工技术主要追求的就是提高生产率、提高使用性能以及降低生产升本。而在制作的方面所追求的就是尺寸变小、质量变轻。在加工成型方面,主要追求的就是研发的周期逐渐变短,而且要注重环保。

3对于高分子材料成型加工技术的研究探析

3.1对聚合物的动态反应加工技术的探析

聚合物的反应加工技术是通过对双螺杆挤出机的发展基础而逐渐发展起来的。目前已经研发出一种能够进行连续反应和混炼相结合的螺杆挤出机,这种螺杆挤出机具有自己独特的优势,摆脱了传统挤出机运行是所存在的问题。随着我国经济的不断发展,对于聚合物反应成型加工技术也有了更大的需求。对于进行聚合物反应成型加工技术的主要反应挤出的主要设备,即PC连续化生产以及尼龙生产。近些年来,大多数国内外的企业所使用的反应加工设备都是较为传统的混合混炼相结合的设备来进行产品的改造。这样传统的模式存在很多的问题,比如说,在传热或者传质的过程当中,对于混炼和化学反应都很难进行控制,而且反应的产物分子数量和分布情况都具有不可控制性。除此之外,这种模式的设备话费量较大,耗能又较高,噪音比较大,这样也使得在进行加工的时候经常会出现问题。而聚合物动态反应加工过技术不同于传统的反应加工技术,无论在结构设计上还是在反应原理上都有了很大的改观和创新,这种技术主要是在聚合物反应基础的过程中引入电磁场并且引发机械振动场的作用,这样就可以对加工过程中发生的化学反应以及对反应所生成的物质的状态结构进行有效的控制。

聚合物的动态反应加工技术最重要的优点就是对聚合物的化学性能和预聚物混合混炼过程或者对停滞时间的分布进行可有效的控制,并且对聚合物在进行反应加工的过程中由于振动力场的作用其质量和能量的传递以及平衡问题进行了有效的保持和解决,与此同时,还在技术上有效的对设备的结构集成化进行了合理的解决。除此之外,这种新技术设备不但体积重量相对较小,耗能量还较小,噪音又小,而且其可靠性又高。正是由于这些优势,使得这种技术受到了广泛的欢迎。

3.2对基于动态反应加工技术的新材料制作技术研究

这种技术不同于以往的传统技术方式,其具有步骤简单、周期较短、耗能较低而且在储运过程中不易受到污染等优点,这种技术主要是将光盘级的PC树脂生产、中间的储运以及光盘盘基成型这三个步骤集合为一种新型的具有动态连续反应的成型技术。而这种新型的技术主要是进行对酯交换连续化生产技术的研究,并且对光盘注射成型的装备进行研发,从而能够有效的对生产产品的质量进行控制,并且能够达到节能低耗的作用。聚合物的这种新技术主要实在强大振动的剪切力场的作用之下,对高分子颗粒的表面特性以及功能结构进行具体的设计,并且在设计好的加工环境之下,可以选择不嫁或者少加化学改性剂的前提之下,充分的利用聚合物的性质,对高分子颗粒进行原位表面的改性、原位包覆以及强制的分散等环节。

4对于高分子材料成型方法的具体分析

4.1对于挤出成型的分析

这种方法主要是将塑化成型的高分子材料通过采用螺杆旋转加压的方式,通过挤出机进行连读的挤出成型。高分子熔融物就会通过挤出机的机口成型,并且通过相应的牵引装置将成型的产品从机口连续的引出,在这个过程中还要对其进行冷确定型,从而制作出所需要的产品。挤出成型这种方法主要是通过对高分子材料进行加料、塑化、成型以及冷却定型步骤来实现产品的制作。

4.2对于注塑成型技术的分析

4.2.1对于注塑成型技术的概括

这种技术主要用来生产结构复杂的塑料制品。因为这种技术的应用范围相对较广泛,成型的周期又相对较短,再加上产品生产的效率较高,对于尺寸较为精密,因此这种技术获得了广泛的应用,也是目前进行塑料加工使用最多的技术。就目前而言,绝大部分的塑料之所都可以使用注塑成型技术。如果想要使得制作出来的产品外观和内在的质量都达到标准,那么就要对原料的配方、挤出机的运行水准、对挤出机的设计和进行加工的精密程度都有着密切的关系。在进行成型的过程中,不但要注意过程的步骤和细节,而且还要注意成型的温度、挤出机工作的速度等等因素。

4.2.2对于注塑成型技术的技术组合分析

可以通过对不同材料进行不同的组合为特点的注塑成型技术;可以通过对惰性气体进行组合的注塑成型技术;可以通过对化学反应的整个过程为特点的注塑成型技术;可以通过压缩或者压制过程进行组合为特点的注塑成型技术;可以通过混合婚配进行组合为特点的注塑成型技术;可以通过对取向或者延伸的过程进行组合为特点的注塑成型技术;可以通过对模具移动或者加热进行组合为特点的注塑成型技术等等。

4.3对于吹塑成型技术的分析

这种技术主要通过气压的压力作用使得闭合在模具中的具有热熔性的分子材料进行吹塑,因此可以形成中空的制品。这种方法指目前发展最快的一种成型的方法。这种技术不仅设备的花费较低,适应性较强,而且可以制作较为复杂的制品。因此,这种方法也获得了广泛的应用。

5结束语

随着我国科学技术水平的不断提高,工业生产领域也随之有了很大的进步和发展,然而对于高分子材料的研究也有了进一步的突破,越来越多的领域也都随之投入到了对高分子材料研究的行列中。因此,对于高分子材料成型加工技术的研究也就变得越来越重要,只有不断的对高分子材料成型的加工技术进行深入的研究和分析,才能够有效的控制高分子材料成型的过程,因而才能够有效的促进对高分子材料的研究的发展和进步。

【参考文献】

[1]王勇,黄锐.炭黑复合导电高分子材料成型加工研究进展[J].工程塑料应用,2003(3).

[2]黄汉雄.高分子材料成型加工装备及技术的进展、趋势与对策(上)[J].橡塑技术与装备,2006(5).

第6篇:材料加工技术范文

关键词:钛合金 切削加工 车削 铣削

中图分类号:V261.2 文献标识码:A 文章编号:1674-098X(2013)03(c)-00-01

钛合金材料因比强度高、密度低、耐腐蚀和耐高温等优良性能而被广泛应用在航空航天领域中。但由于钛合金导热系数小、弹性模量低和化学活性大等特性,使得钛合金材料在加工时切削温度高,刀具磨损严重等,影响了钛合金的加工效率,因此如何提高钛合金的切削效率一直是航空航天行业迫切需要解决的难题。

1 钛合金材料的特性及加工性能

(1)比强度高:钛合金密度小,强度高,其强度大于超高强度钢。

(2)导热性差:钛合金导热、导温系数小,热量难以从产生切屑区转移出去,致使刀具切削刃的温度更高,对刀具有强烈的磨损作用,降低了刀具耐用度。

(3)化学性能活泼:钛合金在高温情况下,与空气中的O、N、H等元素起化学反应形成加工硬化层,使切削加工困难;同时钛合金在加工时与刀具材料很容易产生亲和作用,发生粘结和扩散现象,导致刀具磨损加快。

(4)弹性模量小:切削加工时工件回弹大,容易造成刀具后刀面磨损的加剧和工件变形。

(5)耐腐蚀:在550 ℃以下钛合金表面易形成致密的氧化膜,故不容易被进一步氧化,对大气、海水、蒸汽以及一些酸、碱、盐介质均有较高的抗蚀能力[1]。

2 钛合金材料切削加工的基本原则

在加工过程中,所选用的刀具材料、刀具几何角度以及切削参数等都会影响钛合金切削加工的效率和经济性,其加工原则如下。

2.1 刀具材料

刀具材料是影响切削加工重要因素,所以尽可能选用硬性好、耐磨性高的刀具材料,如硬质合金刀具、涂层刀具和高速钢刀具等,图1为硬质合金刀具和涂层刀具。

2.2 刀具几何角度

切削难加工材料时,合适的刀具几何角度有助于充分发挥刀具的切削性能,提高切削效率。切削钛合金时有三个变形区,如图2所示。

(1)基本变形区I:变形量大,切削力和切削热主要自该区域。通过保持刀刃锋利、刀尖圆弧过渡等,降低钛合金加工时的摩擦系数和切削温度,避免粘屑、崩刃。

(2)切屑与前刀面摩擦变形区II:直接影响刀具前刀面磨损。通过选择较小的前角,以增大切屑与前刀面的长度,减小前刀面磨损。

(3)工件已加工表面与后刀面磨损变形区III:对加工硬化和刀具后刀面磨损有较大影响。通过选择较大的后角,以减少后刀面与已加工表面之间的摩擦。

2.3 切削参数

切削速度对刀具寿命影响最大,切削速度越高,则切削刃温度越高,因此要选择低速切削;同时切削深度对刀具寿命影响较小,所以在零件和机床刚度允许的条件下,采用较大的切削深度。

2.4 冷却液

可以把刀刃的热量带走和冲走切屑,降低切削温度,有效提高生产率和改善被加工零件表面质量。一般切削液有三类,即水或碱性水溶液,水基可溶性油质溶液和非水溶性油质溶液[2]。

3 钛合金材料切削加工工艺

3.1 车削

钛合金车削易获得较好的表面粗糙度,加工硬化不严重,但切削温度高,刀具磨损快。针对这些特点车削钛合金时应注意的问题:(1)车削参数尽量选用低速切削,大切削深度。对于粗加工,切削速度45~70 m/min,进给量0.10~0.15 mm/r;对于精加工,切削速度80~100 m/min,进给量0.05~0.10 mm/r。(2)精加工时夹紧力不要太大,减小加工零件的变形量。(3)加工完后,对零件轮廓按最后一次走刀路线再加工一次,消除因切削力造成的零件变形及让刀。

3.2 铣削

钛合金铣削比车削困难,因为铣削是断续切削,并且切屑易与刀刃发生粘结,形成崩刃,极大地降低了刀具的耐用度。针对这些特点铣削钛合金时应注意的问题:(1)一般采用顺铣,顺铣时切削的深度由大变小,切屑由厚变薄,且总是薄的一边最后离开刀齿,切屑容易折断,提高了刀具寿命。(2)粗加工对加工质量的影响较小,应选择大切深、小进给、低转速;精加工应减少加工变形、提高表面质量,采用较高的转速、小切深。(3)钛合金加工后,在已加工表面会形成0.1~0.2 mm的硬化层,所以二次切深应大于0.2 mm;粗加工预留单边余量应大于0.2 mm。

4 结语

该文结合目前的一些研究成果和生产过程中的经验,主要从钛合金材料特性、刀具、切削参数和冷却液等方面进行阐述,总结了钛合金车削、铣削中通常应注意的问题及采取的工艺措施,希望对同行能起到一定参考作用。

参考文献

第7篇:材料加工技术范文

1碳纤维材料加固设计原则

一般地,在工业建筑中碳纤维材料的加固设计我们通常采取沿与构件主轴垂直方向粘贴碳纤维,主要目的是实现碳纤维与箍筋共同分担剪力以提高构件的抗剪承载力,另外是要实现沿与构件主轴垂直方向粘贴碳纤维布以改善加固部位的延性,提高其抗震性能以及提高构件的抗弯能力。表1是碳纤维材料与其他传统的加固方法技术的比较。所以来看,利用碳纤维材料优异的力学性能,通过约束混凝土的形式,改变原结构在地震反复荷载作用下的变形能力,达到补强加固的目的。

2碳纤维材料加固设计应用

随着经济一体化的发展和进步,我国对碳纤维材料的加固技术在工业建筑实际工程项目中的应用还是比较多的,主要用于钢筋混凝土梁的抗弯、抗剪加固、柱的抗震加固,以及楼面板的加固。它不但可以加固钢筋混凝土结构还对砌体结构、钢结构等也是可以的。

2.1注意事项。在加固中对涂刷找平时候需要注意的是,找平材料应该选取与底胶相同的调制,涂刷时要用滚筒将底胶涂刷的均匀,并且要无遗漏的仔细的涂刷在所需要补强的构件的混凝土表面,涂刷的边界应大于所粘贴的碳纤维复合材料的边界。等到底胶干燥后,再检查表面,如发现有缺损、凹凸等,用找平胶刮、填修补。在底胶凝结构以后,应检查其表面有无凹凸不平,如果有就用砂纸打磨光滑。在养护环节,养护应该在24h之后进行。施工完毕后应确保不要受到为例外界干扰和冲击。

2.2施工加固措施。首先要遵循表面处理涂刷底胶修补找平胶料配制粘贴碳纤维表面防护检验的施工工艺。其次是在干净的碳纤维板上涂刷厚度不小于2mm的粘结树脂,再把这个碳纤维板用手平稳压实,确保树脂从两边溢出。如果是平行粘贴多条碳纤维板时,它们两板间空隙应不小于5mm。第二,清除被加固的构件混凝土表面的缺陷混凝土及对混凝土构件表面存在较大的凸起用混凝土磨片打磨处理。第三,施工时要保证温度要求大于5℃、小于35℃,而且构件混凝土外表面的含水率小于等于4%、相对湿度要小于85%。

2.3混凝土处理。在施工之前要把混凝土基面打磨,露出完整的混凝土结构层;对屋架杆件的转角处施工时候必须打磨成R≥150mm的圆弧,同时用整平材料处理平滑;在冬季气温较低时施工,要先对混凝土表面进行预热再粘贴碳纤维,施工过程中要确保粘贴部位的温度在5℃以上。

2.4屋架端腹杆施工。先用加固量ρcfs代入本构关系,求出峰值应力σp,最后经复核在这种加固方式下R/γoS满足要求。考虑在端部下弦节点处沿水平和竖直两个方向各缠绕两层碳纤维,这样可以弥补配箍量的不足,

2.5屋架下弦杆件施工。在下弦底面通长粘贴一层碳纤维即可满足承载力要求,由于在两端节点处四面缠绕了碳纤维,使得碳纤维能发挥其抗拉强度高的特点,增加下弦杆的抗拉承载能力,提高了下弦杆件的耐久性,达到了双重补强加固的目的。

第8篇:材料加工技术范文

今年的“5.29”是人口与计划生育协会成立30周年纪念日,阳山计生办充分利用这个契机,结合今年开展的“以幸福进万家”为主题的 “幸福家庭,!”创建活动,早作谋划,精心部署,周密安排,充分提升计生协会的职能,在建设和谐阳山中进一步发挥生力军的作用。

第一,优化组织结构,提升协会职能。按照上级统一部署,认真开展基层协会评估调查工作,调整组织结构。镇计生协精心部署,及时制定基层计生协会评估调查实施办法,加强培训指导,对评估调查工作内容、方法及步骤等方面进行了详细讲解,并细化了协会的工作任务和要求。各村(社区)协会对照评估调查指标要求,逐项检查,制定整改措施,调整优化组织结构,强化“会员之家”等活动阵地建设,开展争先创优活动,基层协会组织的素质和水平有所提高。

第二、传播婚育新风,提升幸福家庭指数。我镇计生办组织基层计生专职于5月29日在阳山商贸城人口密集区设立宣传点,广泛宣传人口与计划生育政策、优生优育、避孕节育、生殖健康等知识,为过往群众进行计生咨询,发放宣传资料和宣传品,进行现场服务,传播婚育新风,促进乡风文明和生育文明,创建和谐、平安、幸福的家庭。

第9篇:材料加工技术范文

关键词: 专业资源库;专本衔接模式;高分子专业

中图分类号:G710文献标识码:A文章编号:1005-1422(2014)10-0044-03一、“专本衔接”问题提出的背景

《国家中长期教育改革和发展规划纲要2010-2020年)》已提出目标:建立具有中国特色的现代职业教育体系。现代职业教育体系应包括中等职业教育、高等职业(专科)教育、应用本科教育和专业学位教育等层次体系,即形成中职、高职专科、本科、研究生贯通、衔接的层次结构。从2010年开始广东省实施“3+2”中高职教育,取得一定的成效。从2013年开始试行高职和本科协同培养的“专协本衔接”的人才培养模式,2014年开始试行三二分段“专转本衔接”的人才培养模式。因此,我们认为以国家认可的统一职业标准为依据,建设专业资源库,优化高职、应用本科衔接,建立高职、应用本科一体化的人才培养模式,促进高等职业教育协调发展,构建职业教育立交桥是现代职业教育改革的重点。

二、“专本衔接”的现状分析

高分子材料加工技术专业是国家示范性建设重点专业,通过几年的努力,已建立中职、高职、应用本科一体化的人才培养模式。不管是中高衔接的人才培养模式,还是“专升本衔接”、“专协本衔接”的人才培养模式,都是与中职院校和本科院校合作,需要建设专业资源库,完善“专本衔接”人才培养方案,提高中、高、本一体化人才培养的质量。

(一) 高分子专业资源库建设现状

教育信息化是现代教育的重要标志,专业资源库建设是教育信息化的基础,大力推进优质资源的共建、共享和应用是教育信息化的重要内容。国外有很多专业资源库,不管是在读学生,还是已毕业的学生,可随时随地使用资源库进行学习,了解最新专业资讯。国内资源库建设发展最大障碍的资金问题,但一些示范院校,正逐步以重点建设专业为单位建立起专业资源库。高分子材料加工技术专业具有一定的宽泛性和专精要求,专业知识有一定的深度,本科院校开设较多;全国有二十多所高职院校(其中广东地区有四所高职院校)开设了高分子材料加工相关专业;虽然各所院校有相应的精品课程,但没有专业资源库,所以,整合优质资源,共建、共享和应用专业资源库非常有必要。

(二)“专本衔接”人才培养的现状

近些年,随着广东产业结构调整和技术结构升级,社会强烈要求高校提供大批本科层次的高级技术型人才。但是,在普通高等教育系统,很多高校都是按学术型人才模式进行培养,即便是本应定位培养技术型人才的5A2类高校却按学术型人才方向去办学,导致学术型人才过剩而技术型人才匮乏,高校人才培养与市场需求极不匹配;而高职院校由于学制短了一年,所培养的专科生在基础理论方面和思维提升锻炼方面存在不足,工作中自主创新能力和自我提升空间不足。因此,通过开展“专升本衔接”、“专协本衔接”和“专转本衔接”多种形式的高级技术型人才培养,可以完善我省高等职业教育层次,深化高职学生的内涵,提高本科生的动手和解决问题的实际应用能力,为构建广东现代产业提供更有力的高级技术人才保障。

三、专业资源库建设促进专本衔接模式的意义

(一)专业资源库建设促进专本衔接模式的研究

我校高分子专业是国家示范性专业,联合全国高职院校和相关应用本科院校共建专业资源库,具有先进性、实用性、开放性、通用性和标准化等特点,提供以就业为导向、符合人才市场需求、具有高职特色的人才培养方案、课程体系和教学模式,使各合作院校能够借助于资源共享平台,了解教学改革动态、学习教学改革经验、紧跟教学改革的步伐,建立起“专本衔接”的人才培养模式。

(二)能够满足区域产业需求,促进产业升级

・职教方略・专业资源库建设促进专本衔接模式的研究与实践随着广东省“三促进一保持以及产业和劳动力双转移战略的实施,广东的社会经济和产业结构都在发生急剧变化,对人才结构和素质也产生了新的需求。与社会经济发展联系密切的广东职业教育迎来前所未有的机遇和考验,实现高职、应用本科教育的有效衔接成为一个亟待解决的问题。高分子材料加工技术相关产业是广东省支柱产业,培养目标的定位要随着相关产业的发展不断更新。从广东省的人才培养来看,开设有高分子相关专业的有本科院校和四所高职院校,但本科院校偏重于科研,实训时间及条件严重不足,对加工生产线缺乏总体认识;而高职院校由于学制短了一年,在基础理论方面和思维提升锻炼方面存在不足。因此,目前的教育培养的人才出现了“本科的学生深入不下去,高职学生提升不上来”的尴尬局面,使技术型人才匮乏;教育发展的规律及生产力发展都要求双方改革目前的人才培养模式,实施资源互补,培养新型高级技术型人才。所以,我们选择与全国有开设高分子专业的相关高职院校和应用型本科院校合作,共建专业资源库,为培养高级技术型人才提供资源。这样,既能推进职业教育朝着终身教育的方向发展,又能解决高分子材料行业高级技术型人才人员严重缺失问题, 能够满足区域产业需求,促进产业升级。

(三)发挥高职、应用本科教育资源效益,构建广东特色现代职业教育体系

本科院校具有雄厚的学科优势及师资等资源,高职院院校具有丰富的校企合作等资源。根据国家中长期教育改革和发展规划纲要文件和广东省的相关文件,我们选择与应用型本科院校合作,探索“专升本衔接”、“专协本衔接”和“专转本衔接”多种形式并存的人才培养模式,共同培养高分子材料与工程专业(高分子材料加工技术方向)高级技术型人才,既符合教育改革的大方向要求,在获得政策支持的基础上也充分发挥了各院校的资源优势,实现资源共享,构建广东特色现代职业教育体系。

四、“专本衔接”模式的实践

(一)高分子材料加工技术专业“专升本衔接”模式的实践

我校高分子材料加工技术专业的毕业生,工作地点主要在珠三角,他们有些已走上企业技术与管理岗位,有进一步充实自己、提升学历以适应企业与行业发展的需求。2012年,我校开始与华南理工大学网络教育学院开办专科起点高分子材料与工程专业成教班,共同探讨“专升本衔接”模式,培养高分子材料与工程专业本科生,为高职生的提升学历提供培养渠道。专业资源库使学生能够通过资源共享平台,自主学习,灵活安排学习时间,再通过面授、考试获得本科学历,在为企业创造更好效应同时能提高自身知识文化水平、提升学历、为自己职业生涯进一步发展打下基础。

(二)高分子材料加工技术专业“专协本衔接”模式的实践

按《广东省教育厅关于2013年普通高校进行高级技术技能型人才培养试点工作的通知》,深入调研,确定了高分子材料加工技术专业与广东石油化工学院高分子材料科学与工程专业联合申报高级技术技能型人才培养试点工作。协同培养高分子材料与工程专业(高分子材料加工技术方向)高级技术技能型人才,满足高端装备制造、新材料等战略性新兴产业的高层次应用型人才的需求。经过论证,采用“2+1.5+0.5”的“专协本”培养模式,即:第1~4学期在广东石油化工学院就读,由广东石油化工学院教师承担教学任务;第5~7学期在广东轻工职业技术学院就读,由广东轻工职业技术学院教师承担教学任务;第8学期在企业进行顶岗学习,由广东石油化工学院教师、广东轻工职业技术学院教师以及企业兼职教师共同承担教学任务。专业资源库,在提供丰富、高效、先进的专业教学与岗位培训资源的同时,还将持续更新,有利于教师获取丰富教学案例,掌握行业技术发展的最新动态,提高教学质量;有利于学生学习课堂上教师没有讲到的内容,学习符合个性化要求的知识,了解个人职业生涯应具备的技能,在协作院校主动学习专业基础知识,从而具备良好的职业生涯发展基础。

(三)高分子材料加工技术专业“专转本衔接”模式的实践

教育部《面向21世纪教育振兴行动计划》中提出:要研究建立普通高等教育与职业技术教育之间立交桥,允许职业院校的毕业生接受高一级学历教育。“专转本”模式既满足高职高专学生的升学愿望,也满足家长让子女接受更高层次教育愿望。我校高分子专业在总结“专升本”、“专协本”衔接模式的经验上,积极探索“3+2专转本”衔接模式,即前三年在我校学习,后二年转入应用型本科院校学习,这种衔接模式由于培养目标的一致性,课程衔接较容易,能够节省资源,提高效益。而专业资源库,能将高分子材料加工行业最新的前沿技术资料展示于资源平台上,扩大专业教学资源库的受益面,最大限度地发挥效用。高分子材料加工行业既具有共性之处又具有不同材料用不同加工方法的特点,高分子专业资源库将共性特点与个性需求相结合,并针对专业相关技术应用及职业岗位要求,建设普适性的专业教学资源,通过拓展模块兼顾不同材料加工方法的特点,让学生在高职三年主攻塑料成型加工,进入应用性本科学习后,拓展学习合成纤维、橡胶等材料成型加工,既提升了学历,又拓宽了就业面。

参考文献:

[1]谢文静.广东省高职院校达标性考试加开放式招生模式的思考[J].高教探索,2008(4).

[2]胡兴福.高等职业教育建筑工程专业教学资源库建设的现实意义[J].中国教育技术装备,2011(29).

[3]方泽强.分类视角下高职本科与应用型本科探略[J].职业技术教育,2012(13).