前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数字农业主题范文,仅供参考,欢迎阅读并收藏。
[中图分类号]F32[文献标识码]A[文章编号]1003-8353(2010)02-0070-04
“数字农业”作为“数字地球”技术体系在农业领域的具体体现,是农业信息化的核心,也是21世纪农业的重要标志。发展“数字农业”及相关技术,是发展现代农业必然选择的支撑技术,主导着农业现代化的方向。我国是一个人口大国,保障食物安全事关国家安全大计。我国是世界上人均资源非常短缺的国家,耕地、水等农业资源的人均占有量远低于世界平均水平,农业的可持续发展面临诸多严峻挑战。根本出路在于依靠科技进步,大力发展“数字农业”,以最少的资源占用和资源消耗获取最大的优质产出,突破瓶颈制约,实现农业可持续发展。
一、“数字农业”的含义
1997年,美国正式提出了“数字农业”的概念,它是指在地学空间和信息技术支撑下的集约化和信息化的农业技术。1998年,美国副总统阿尔・戈尔再次把“数字农业”定义为:数字地球与智能农机技术相结合产生的农业生产和管理技术。
我国比较统一的认识为,“数字农业”(DigitalAgricul-ture)是“数字化农业”简称,是指运用数字地球技术,包括各种分辨率的遥感、遥测技术、地理信息技术、全球定位技术、计算机技术、通讯和网络技术、自动化技术等技术与现代农业技术相结合的农业生产管理高新技术系统。具有以下特点:
1、“数字农业”要求对农业各个方面(包括种植业、畜牧业、水产业、林业)的各种过程(生物的、环境的、经济的)全面实现数字化,即各种农业过程都要应用二进制的数字以及数字模型加以表达。
2、“数字农业”数据库中存储的数字具有多源、多维、时态性和海量的特点。
3、对于涉农的多维、海量数据的组织和管理,特别是对时态数据的组织与管理,需要研究新一代时态数据库管理系统,并进而形成时态空间信息系统。不仅可以有效地存储空间数据,同时能够形象地显示多维数据和时空分析后的结果。
4、“数字农业”要在大量的时空数据基础上,对农业某一自然现象或生产、经济过程进行模拟仿真和虚拟现实。如农作物生长、农业自然灾害的虚拟现实。
二、“数字农业”的主要内容
1、农业要素的数字信息化任何农业系统都会有四大要素,即生物、环境、技术和社会经济要素。每个要素中又包含多个因素,如生物要素中,在作物方面有小麦、水稻、玉米、棉花等要素;而同一种作物的生长发育,又含有光合、呼吸、蒸腾、营养等因素。所有这些因素,按照“数字农业”的数字信息化的要求,都需用二进制数字表达。
2、农业过程的数字信息化各种农业过程的内在规律及外部联系,可以利用农业数学模型予以揭示、表达。农业模型将农业过程数字化,使农业科学从经验的认知提高到理论的概括,是20世纪农业科学发展的一项重要成就,也是“数字农业”中一项十分关键的技术。
3、农业管理的数字信息化农业管理大致包括农业行政管理、农业生产管理、农业科技管理及农业企业管理。按照数字信息化的要求,目前已经形成由农业信息技术支撑的各类农业管理系统。如农业数据库系统,对各级各类农业数据进行科学、集中的管理,包括农业生物数据库、农业环境数据库及农业经济数据库;农业规划系统,应用各种数学规划方法对农业问题进行辅助决策;农业专家系统,充分利用专家经验对某些农业决策提供支持;农业模拟优化决策系统,将农业过程的模拟与农业的优化原理相结合,提供农业决策的支持。
4、农业生产的数字化现代农业已经由过去的手工操作走向现代的机械化和现代化操作,数字农业要求农业的生产和管理实现自动化,即从播种、育苗、灌溉、施肥、撒药、收割等过程全部实现精准化、自动化和智能化。
三、“数字农业”的技术体系
1、农田信息快速采集技术
(1)遥感技术(RemoteSensing)
遥感是由卫星上的传感器、传输系统和地面上的接收系统组成的一种不通过直接接触目标物而获取其信息的一种技术。RS是未来“数字农业”技术体系中获得田间数据的重要来源。RS技术是“数字农业”技术体系中获得农业动态信息的重要来源。农业的生产和管理是一个动态的过程,要求及时摸清农业资源的现状,了解农作物田间生产状况,监测其变化并预测其发展。遥感技术具有速度快、信息真、现势性强、多时相、更新快、效益高等特点,是农业生产管理和决策的重要手段。农业资源分布在广阔的地理空间,农业生产也在广阔的地域上展开,遥感技术在解决我国资源与环境问题,促进农业和农村的可持续发展中起着相当重要的作用。如农业资源调查及动态监测,大面积农作物长势监测与估产,农业灾害遥感监测和损失评估等方面。
(2)全球定位系统(GlobalPositionSystem)技术
GPS作为新一代卫星导航与定位系统,不仅具有全球性、全天候、连续的精密三维导航与定位能力,而且具有良好的抗干扰性和保密性。GPS的空间部分使用24颗卫星组成卫星星座,每天24小时为全球陆、海、空用户全天候提供三维位置、速度和时站。它由空中卫星,地面跟踪检测站,地面卫星数据注入站,地面数据处理中心和数据通讯网络等部分组成。
GPS在“数字农业”中的关键作用即是提供相关要素的准确的空间位置信息,一方面使农业的管理具有更强的空间针对性、实用性,发挥更大效益;另一方面,通过GPS实时地对土壤水分、肥力、杂草和病虫害、作物苗情及产量等进行描述,对各要素进行跟踪,从而实现田间的精准化操作。因此,GPS技术的精确定位功能为“数字农业”的实施提供了切实可行的技术手段。
2、农业信息贮存、管理技术
(1)数据库系统(Databasesystem)
农业数据库是一种有组织地动态地存储、管理、重复利用、分析预测一系列有密切联系的农业方面的数据集合(数据库)的计算机系统,它是信息存储、管理、传递的最有效手段,也是“数字农业”最基础的工作。农业数据库包括农业资源数据库、农业生产资源数据库、农业技术数据库、农产品市场数据库、农业政策法规数据库、农业机构数据库等。
(2)数字化图书馆(DigitalLibrary)
数字化图书馆是一个系统工程,主要包括馆藏数字化、信息传输数字化与网络化、资源共享化、信息服务终端化等,其优势在于不受时空、地理位置的限制。
(3)地理信息系统(GeographicInformationSystem)
GIS技术是以地理空间数据为核心,是存储和处理分析空间数据的最佳工具。农业及其各相关要素空间位置数据是农业生产管理的重要信息,也是“数字农业”中各类空间数据库建立的重要基础之一。GIS是一种采集、处理、传输、存储、管理、查询检索、分析、表达和应用地理信息的计算机系统,是分析、处理和挖掘海量地量数据的通用技术。主要包括空间数据输入子系统、空间数据存储与管理子系统、数据处理和分析子系统、输出子系统。
(4)农业管理信息系统(MIS)
管理信息系统是收集和加工系统管理过程中有关信息,为管理决策过程提供帮助的一种信息处理系统。
3、农业信息应用技术
(1)农业自动控制技术(AutoControl)
农业自动控制技术的发展是农业信息化的基本特征,是信息农业的核心技术。利用传感器通过计算机和自动控制系统实现农业生产和管理的自动化,对农业的增产增质产生了巨大的经济效益和社会效应。
(2)农业专家系统(ExpertSystem)
ES是以知识为基础,在一定领域内模拟人类专家解决复杂实际问题的计算机系统。是一种智能的农业信息技术,不仅可以保存、传播各类农业信息和农业知识,而且能把分散的局部的单项农业技术综合集成起来,经过智能化信息处理,针对不同的条件,给出系统性和应变性强的各类农业问题的解决方案,为农业生产全过程提供高水平服务。农业生产管理专家系统涉及农作物生产管理、畜禽养殖、市场管理、农业经济分析等多种领域。
(3)决策支持系统(DecisionSupportSystem)
DSS是利用系统知识和数学模型,通过计算机分析或模拟,协助解决多样化和不确定性的问题以进行辅助决策的软件系统,是一种人机对话式的计算机系统。一般包括以下四个部分:对话生成及其管理系统,模型库及其管理系统,数据库及其管理系统,知识库及其管理系统。农业生产中采用决策支持系统后可以感受到更高的决策质量、沟通的改进、成本削减、生产率的提高及节约时间等方面的改善。
4、农业信息传播技术
(1)计算机网络和通讯技术
“数字农业”的建立是以海量的数字化的农业信息为基础,因此信息的交换和传播将是“数字农业”的重要环节。计算机网络和通讯技术为“数字农业”信息的顺畅交流提供了重要的技术支撑,从而实现信息的交换和共享,发挥信息的最大作用。主要包括农业信息互联网络、卫星数据传输系统等技术。
(2)多媒体技术(Multimedia)
多媒体是20世纪90年代以来应用计算机把图、文、声、像综合集成技术,是新时期农业知识、技术推广应用的重要手段。
(3)虚拟现实(VirtualReality)技术
VR技术是指创建一个能让参与者具有身临其境感,具有完善的交互作用能力的虚拟现实系统。虚拟现实技术是二十世纪末才兴起的一门崭新的综合性信息技术,它融合了数字图像处理、计算机图形学、多媒体技术、传感器技术等多个信息技术分支,从而大大推进了计算机技术的发展。由此延伸而得到现在的虚拟农业的概念。
四、“数字农业”对农业可持续发展的作用
可持续发展是指既满足当前需要又不削弱子孙后代满足其需要之能力的发展,可持续发展作为一种新的社会发展模式,为越来越多的国家所理解和接受,并且正在逐步深入地影响到人类社会生产和生活的各个领域。农业可持续发展是整个社会可持续发展的基础。改革开放以来我国农业取得了举世瞩目的成就,但是,影响农业可持续发展的诸多矛盾并没有得到根本性的缓解。在经济全球化的环境中,农业发展越来越受到资源和市场的双重约束,传统农业面临巨大的竞争压力,农民在生产经营中承受着自然的风险和市场的风险,而且市场风险给农民的影响又远远大于自然的风险:在工业化、城镇化加速发展阶段,耕地资源呈逐年下降趋势,持续增长的人口对农业的压力不断增大,水资源短缺与农业用水浪费并存,过量施用化肥农药及养殖业的废弃物排放,导致严重的农业面源污染;农业科技转化为实际生产力的比重低,农业科学技术创新能力尤其是原始创新能力不足。这一切都制约着农业的可持续发展。数字农业是突破制约农业可持续发展瓶颈的有效途径。
1、数字农业促进传统农业向现代农业跨越
我国广大农村地区相对落后,交通不便,信息闭塞,导致农业生产经营的重复性、盲目性,农业生产技术落后且更新速度慢。而数字农业可以通过电子商务、电子政务等促进农业经济活动的信息化。实行信息服务手段多样化,重点加强农业信息网络建设,建立以农业信息网络为依托,互联网与电信、电视等其他现代媒体相结合的应用模式,把计算机网络信息量大与电视、电话、手机普及率高的优势结合起来,拓宽信息覆盖范围。农业领域的市场信息、生产信息、管理信息的广泛交换和共享,可以大大增加农业的开放度,降低农业活动的交易成本,加强农业生产者与农产品加工、市场流通、农业生产资料供应等部门的联系,进一步促进农业科研和技术推广,使农业生产经营突破地域限制,日益走向国际化、全球化,使传统农业向现代农业转变。
2、数字农业有助于农业产业结构调整
改革开放以来,我国一直在调整农业产业结构,经过30余年的努力,农业产业结构已经大为改善,其合理化程度有了明显的提高,对发展农业生产、增加农民收入、保证市场供给发挥了重要的作用。但从目前来看,我国农业产业结构仍然存在不少问题和矛盾。随着城乡居民生活的逐步提高,市场需求结构发生了很大变化,农业产业结构的缺陷也日趋暴露出来,主要表现在农业结构趋同现象严重,农业产业结构层次低,农业产业链不完整,农业比较效益差等。而过去的调整多在数量上做适应性的调整,不能适应当前日益国际化、市场化的国民经济对农业发展提出的新要求。加入WTO为战略性经济结构调整和技术进步乃至现代农业发展提供了难得的机遇,迫切需要“数字农业”来缩小与发达国家的差距。
“数字农业”具有指导农业发展、加强市场监管和促进农民增收、更好的服务“三农”功能,实现农业产前、产中、产后的整个产业链条的一体化决策服务,更好地指导农业生产;建立的农产品网上推介展示系统,实现全国各级现有的龙头企业、名优特新农产品全部上网,集中展示,实现网上交易。“数字农业”将现代信息技术与农业的融合,能够实现在数字水平上应用前沿技术对农业的生产、农产品管理、储运、流通、市场配送、乡镇加工业、信息服务以及农业资源环境等整个农业产业链、产业群进行改造和重构,通过信息链改造产业链,更加合理地配置农业资源,加快现代农业产业结构调整的进程。
3、数字农业提高农业产品竞争力农产品要取得竞争优势,必然要在农业信息技术研究和应用上取得重大突破,促使先进的信息技术及时充分地应用到农业生产中去,加速数字农业全面向农业渗透,大幅度提高农业信息化整体水平,实现农业生产力水平、农产品质量的飞跃。发展数字农业,可以优化农村资源配置,降低生产成本,减少环境污染,增加农民收入,使农业向精确化、环保型和可持续方面发展,不仅可以加速实现农业现代化,而且可以提高农业的市场竞争力。只有不断提高农业技术水平,在关键领域达到并保持世界先进水平,才能迅速提高农业的国际竞争力。
4、数字农业保护农业生态环境
数字农业的根本目的就是强调最大限度地节省资源,以最少的投入,获得最高的经济收益和最佳的环境效益,重视环境保护和生态均衡,实现精准农业生产,以保持农业的可持续发展。数字农业不仅为大规模有效监测农业、资源、生态环境和灾害提供了基本的技术框架,可对农业生产的资源环境、生产状况、气象和生物性灾害等进行有效测报,有利于实现农业的减灾、防灾、农作物病虫害和畜禽疫病测报与防治,而且能够实现农业生产的自动化精确控制,根据各种变异情况实时实地采取相应的农事操作,可实现智能化的科学管理,提高农业的可控程度,从根本上减少了对非再生资源的利用和对化肥、农药的依赖,有利于节约各种农业物质资源,同时也能够减少消耗和农业对环境的污染,促进生态农业的发展,提高资源的利用效率,最大限度的提高经济收益和环境效益。
五、基于农业可持续发展的数字农业优先行动领域
在发展“数字农业”方面,要本着“有所为,有所不为”的原则,首先集中力量解决数字农业实现过程中的关键技术难点,在现阶段主要是完成必要的技术储备和相关软硬件的开发,保证“数字农业”持续稳步发展。
1、进行精准农业技术集成与示范
发展精准农业是数字农业的核心部分。精准农业作为一种数字、信息和知识管理农业生产系统的新理念,它的实践运用将对于推动应用现代数字技术、信息技术改造和提升我国传统农业科学技术与农业装备技术水平,倡导科学管理与经营农业生产过程的新思路,实现农业的跨越和可持续发展,都具有革命性的意义。精准农业主要是运用现代数字技术、信息技术、农业高新技术,并将其三者科学地相结合,致力于实现农业资源的高效利用,提高产出,节约投入,降本增效,采用高新技术,提高生产率,减少环境污染,实施可持续发展,适应当今建立农产品品质保障与食物链安全生产跟踪与产品安全认证技术体系的新要求,实现粮食的安全生产。主要进行地理空间信息技术的农业应用、农田空间分布信息快速采集先进传感技术与高效实时信息处理技术、农田土壤与作物生产精细化管理决策支撑技术、智能化变量作业与农业装备技术和系统集成与分析技术等科学技术的集成创新。精准农业不仅包括应用地理信息系统(GIS)技术绘制出田块内要素(如土壤养分、土壤水分、病虫草的数量及严重度等)的分布状况,农业机械根据图中要素值的大小调整操作;而且农业机械在田间操作时,应用传感器直接测定要素值,同时自动地通过农业模型确定施肥量和用药量等,再由农业机械自动化地调整操作。这样施肥、灌溉、用药等操作用量更为准确,可同时达到高产、优质、高效,并将对环境的污染减到最低程度。精准农业需要一系列现代高新技术的集成,我国尚处于探索“精准农业”实践的起步阶段,因此,必须建立试验基地,搞好精准农业生产技术的集成和示范。
2、制定统一的规范标准,重点解决元数据规范化
数字共享是“数字农业”科学工程的关键,也是当前“数字农业”中面临的主要问题,信息共享要首先解决数据标准化,同时要有一个适合中国国情的数据共享政策,在保护知识产权的前提下,应优先实现数据共享。而要实现数据共享就必须首先解决元数据管理和共享机制,进行总体统一设计。
元数据是关于数据集的数据,是数据集的说明或描述。元数据是一种数据共享机制,通过它可以起到提高系统的查询检索速度、提高系统分析效率的作用。在“数字农业”科学工程的实施过程中,通过元数据可以清晰有序地组织异地数据,元数据的建设、管理成功与否关系着“数字农业”科学工程建设的效率问题,甚至决定着“数字农业”科学工程成败。
3、建设农业数据仓库
农业数据仓库是实施数字农业科学工程的核心和基础。计算机农业数据库的广泛建立,是数字农业最基础的工作。农业数据仓库中包括基础数据库、数字农业专业数据库和其它数据库。基础数据库中包括基础地形数据库、专题图件数据库、DEM数据库以及遥感影像数据库等,多可以在数字地球框架下,以共享方式从国家公用数据库中获取。数字农业专业数据库包括标准法规数据库、农业生物数据库、农业环境资源数据库、农业经济数据库和收费数据库等。其它数据库包括代码数据库、社会经济统计数据库、多媒体数据库以及模型数据库、元数据库等。
4、加强“数字农业”基础设施建设,鼓励发展网络项目
在国家信息基础设施的基础上,以各级农业部门为依托,建设中央-省-市-县信息骨干高速宽带网络系统。即以省级农业信息中心为核心,上可与全国农业信息网对接,以各地(市)为枢纽,县(市)为网点,具有统一的数据规范和共享标准,无缝连接,可任意漫游和放大,通过因特网、局域网等信息网络技术,建立一个功能完善、性能优异、可拓展的农业综合信息网络系统并与其它网络互联,形成全方位的农业资源和经济信息网络系统,开辟数字化农业市场为全国农业服务的大平台。
支持、引导、鼓励企业或协会,以产品为基础,以市场为目标,进行销售网络建设,在开发过程中要坚持“以产养网”的道路,使数字农业能走向良性发展的轨道。
当前,随着我国工业化、信息化、城镇化和农业现代化的迅猛的发展,工业化和和信息化已步入深入融合阶段,信息化与农业现代化也进入蓬勃发展期,经济全球化、贸易自由化和社会信息化倒逼我国农业现代化,现代农业机械只有通过信息化的手段进一步提高设计水平、降低生产成本,才能在激烈的市场竞争中取胜。如何有效的农机产品开发周期,如何达到最优农机产品质量,如何有效降低农业机械的成本与价格,如何完善农业机械的售后服务等,这一系列的问题不断的拷问我国农业的现代化进程,信息化与数字化是解决上述的问题的有效手段。通过信息化与数字化的手段可以有效提高农业机械的设计水平,通过数字化设备能有效的调控农业机械的精密的制造与加工,通过企业信息化与数字化的管理手段能否实现严格的生产管理与用户反馈。本文主要对农业机械产品研发的研究现状及其发展趋势,以及农业机械的数字化设计方法与技术,并结合从事农机产品多年的设计与制造经验和数字化设计特点,以及 CAD/CAM/CAE、虚拟样机、虚拟测试等新技术的应用加以深入的讨论与研究。
一、数字化驱动下农业机械设计研发
农业机械是衡量一国农业现代化发展的水平的主要指标之一,因而提供数字化手段提高我国农业装备的设计水平,对于在贸易全球化背景下提升农业装备制造业企业在国际上的竞争力具有不言而喻的历史意义。随着信息技术与数字化技术的迅猛发展,数字化设计已经全方位多层次的渗透到农业机械设计、生产中的方方面面,也给农业设计带来了巨大的变化。
1)信息技术与数字化的应用极大降低设计成本。
农业机械的产品创新设计涉及到数据开采、知识发现及其重用技术、知识的表达与组织、知识数据库的开发、基于知识的决策技术等。农业机械的设计可以在线上进行互动设计,企业可以与用户进行反馈论证与修改。设计者可以在线农业机械的设计效果,用户可以在线反馈设计过程中存在的问题,相比于以前农业机械设计都在纸质上进行绘图,在线农业机械设计的极大的促进农业机械设计与实践; 以往产品创新主要集中于具体设计过程,如今从产品的概念设计到详细设计的各个阶段均强调创新设计。如基于蓝牙技术的变量施肥机速度采集系统设计、温室环境下黄瓜采摘机器人信息获取设计、基于RFID 的农机安全监理现场巡检系统设计、基于资源管理和Silverlight技术的农业装备信息网络平台,以及Ajax 技术在农业装备信息网中的应用。均是信息技术与数字化技术在农业设计领域中应用的典范
2)数字化技术强调产品协同设计。
农业现代化的发展催生了许多新需求,这些新需求也亟需新的设计的方法,就目前农业机械数字化设计水平来看主要三种主流的设计方法,一是德国设计理论的系统化设计方法,二是TRIZ(Theory of Inventive Problem Solving)三是公理设计(AxiomaticDesign,AD),对于目前我国而言,需要对先进的设计方法进行引进、消化、吸收再创新。更需要产品设计师跨区域的进行交流互动,跨部门甚至跨企业共同协作进行产品设计与制造等。数字化的设计平台能够为设计者之间提供实时的交流平台。基于互联网信息技术进行学习,可实现跨实现跨部门、跨行业、跨区域的设计者之间的沟通与交流。数字化虚拟设计实现了设计与需求的协同统一,锻炼设计者虚拟想象空间,提升农业机械的设计水平,有效实现零污染的设计理念,促进绿色设计理念的形成与发展。如基于离散元法的数字化设计、精密播种机数字化设计、拖拉机队列自动控制系统、秧盘育秧精准播种的穴孔同步对中装置及其控制系统,以及基于力控组态软件的温室监控系统均是农业机械协同设计的样例。
3)虚拟现实便捷了农业机械设计与展示。
虚拟现实技术独特魅力之处在于能将农业机械的设计构思、实施及展现都表现为多媒体如三维图形、语音和视频,能然设计者和未来的潜在使用者身临其境地体验产品的设计整体过程。通过多媒体技术、互联网技术来实现可以实现海量、实时、丰富的农业接卸虚拟设计素材。面向某些特色农业机械,其结构复杂、设计困难、设计周期长大大影响了农业现代化的进程。然而如果采用虚拟现实技术,可以有效的克服以上缺点,一方面可以利用虚拟现实技术模拟产品的某些性能,另外一方面也便于设计人员对产品的修改与调整。大大缩短了农机产品的设计、生产周期。满足变化莫测的市场需求。如虚拟样机技术在畜牧机械设计、基于ADAMS 的莲藕切片虚拟样机建模与仿真、基于Pro/E三轴卧式TMR 饲料车的建模及运动仿真、SPH 在土壤高速切削仿真系统开发中的应用、莲藕切片机惯性力平衡仿真优化、大型中空轴式静压轴承流固耦合数值模拟,以及电涡流缓速器制动力矩影响因素的仿真均是虚拟现实技术在农业机械化设计中的应用。
结论
本文首先细致的分析了农业机械设计特点与需求,以及存在的问题,针对数字化与信息技术的发展趋势与特点,如CAD/CAE/CAM虚拟现实设计等技术的飞速发展深刻的改变了农业机械化设计的格局与模式,本文首先详细梳理虚拟设计技术与理论研究现状及发展趋势,结合分析了农机产品设计制造现状,进而细致深入地分析基于数字化技术农业机械产品设计的未来的发展趋势,针对信息技术如互联网、虚拟现实等技术对农业机械的数字化发展提供的历史机遇,研究面向农机产品开发过程的数字化设计平台体系与设计模式,采用数字化对农业机械产品进行设计所带来的优点即在产品开发的不同阶段运用数字化模型描述产品,并对产品进行设计、开发、评价、修改,通过这方面的讨论,以期为我国农业机械的数字化设计探索提供有益参考的新途径与新思路。
参考文献
[1] 夏红霞;面向通用类机械产品虚拟装配的工程数据库管理系统研究[D];合肥工业大学;2010年.
[2] 阎楚良,杨方飞.农业机械数字化设计技术研究与展望[J],农业机械化与新农村建设――中国农业机械学会2006年学术年会论文集(下册),2006.
论文摘要阐述数字农业的概念及其作用,指出数字农业建设中存在的问题,包括农业信息化水平低、信息化意识及利用信息能力不强、管理和标准化工作有待进一步加强等,并对数字农业的建设进行了展望和设想。
在我国2000年的《农业科技发展纲要》中,将数字农业放在农业信息技术的首要位置,引起了人们的普遍关注。本文试图谈谈对数字农业的认识、存在的问题和建设数字农业的基本设想,以供参考。
1对数字农业的认识
数字农业(digitalagriculture)就是用数字化技术,按人类需要的目标,对农业所涉及的对象和全过程进行数字化和可视化的表达、设计、控制和管理。其本质是把信息技术作为农业生产力要素,将工业可控生产和计算机辅助设计的思想引入农业,通过计算机、地学空间、网络通讯、电子工程技术与农业的融合,在数字水平上对农业生产、管理、经营、流通、服务以及农业资源环境等领域进行数字化设计、可视化表达和智能化控制,使农业按照人类的需求目标发展[1]。
有的学者认为[2],数字农业是“数字地球”在农业领域的延伸。正如“数字地球”的概念一样,数字农业这一概念体现了数据和技术的综合集成。数字农业可以有广义和狭义之分。广义的数字农业,即信息化农业,包括农业要素(生物要素、环境要素、技术要素、社会经济要素等)、农业过程(生产、管理、储运、流通等)的数字化、网络化、自动化以及智能化,形成数字驱动的农业生产管理体系。狭义的数字农业,是以农业空间信息机理为基础的、以“3S”技术为支撑的农业系统空间信息技术体系。
事实上数字农业是一个学术性很强的综合概念。近年来,与数字农业技术体系有关的理论基础和应用技术研究,已经成为主要发达国家发展高新技术农业的侧重点,成为极其活跃的科技创新领域。数字农业是一项集农业科学、地球科学、信息科学、计算机科学、空间对地观测、数字通讯、环境科学等众多学科理论与技术于一体的现代科学体系,是由理论、技术和工程构成的三位一体的庞大系统工程。数字农业是对有关农业资源(植物、动物、土地等)、技术(品种、栽培、病虫害防治、开发利用等)、环境、经济等各类数据的获取、存贮、处理、分析、查询、预测与决策支持系统的总称。数字农业是信息技术在农业中应用的高级阶段,是农业信息化的必由之路;农业信息化、智能化、精确化与数字化将是信息技术在农业中应用的结果。实现农业农村现代化、保障我国的食物安全、全面建设小康社会的关键在于推动农业科技的发展,创造条件进行一次新的技术革命,促使传统农业向现代农业转变,促使粗放生产向集约化经营转变。可以预言,数字农业及其相关技术的快速发展和推广应用,必将成为新世纪农业科技革命不可缺少的重要内容,必将推动农业向高产、优质、高效及可持续方向发展,在带动广大农民致富和全面建设小康社会中发挥越来越重要的作用[3]。
2存在的问题
2.1农业信息化水平较低
收集信息、处理信息、传播信息的软硬件设备与网络体系不健全;已开发的大量农业经济信息系统、农作物病虫害数据库、作物品种资源管理数据库系统、农业土壤系统分类数据库系统等大多不涉及空间维度,难以适应当前对空间数据信息的需求;对于来源多种多样、格式也不尽相同的各种数据的实时性、地域性、综合性处理还需作出很多努力。
2.2农业信息化意识和利用信息的能力不强
一方面,许多基层农技人员和广大农业从业者,知识老化,整体素质有待进一步提高,对于利用现代技术,收集、处理、利用农业信息的意识和能力不强;另一方面,农业信息加工处理的技术人员缺乏,当前,就连最基本的能够及时、准确地提供农产品供需信息,对网络信息进行收集、整理,分析市场形势,回复网络用户的电子邮件,解答疑问等方面的人才也不多,更谈不上能够满足数字农业发展对于人才的需求。2.3农业信息化效益不明显
数字农业还刚刚起步,在国内总体上尚处于探索阶段,实用性、普遍性的技术应用还很少,直接带来的经济效益还没有很好地显现出来。
2.4农业信息数据的管理和标准化工作有待进一步加强
地理信息系统(GIS)以及其他农业信息管理系统为了完成某种分析工作所要求的各种农业数据往往格式与结构不同,而且往往掌握在不同的管理部门或研究机构中。因此,未来建立在网络上的农业地理信息系统要具备获取和分析分布式存储数据的能力,也就是说我们要使所谓的WebGIS能够协同处理来自不同组织和机构的农业数据[2]。
3建设数字农业的基本设想
随着经济社会的快速发展和科技进步,台州在数字网络建设、原始数字化数据积累、数字化信息采集及其处理等
方面的工作已有一定的基础,起动发展数字农业不仅是必要的,而且是可行的。借鉴许多学者的研究结果[4,5],提出建设台州数字农业的基本设想,就是要在台州已有农业信息化建设成果基础上,建立可视化的台州农业地理信息系统,构建直观形象的农业信息管理与辅助决策视频体系,实现农业信息的现代化综合管理、分析、共享和,彻底改造台州传统的农业管理模式,全面提升台州农业工作的信息化和现代化水平。
3.1整合已有的农业信息
在国家、省级信息基础设施建设的基础上,以各级农业部门为依托,建设中央一省一市县信息骨干网络系统,形成一个功能完善、性能优良的农业综合信息网络系统,并与其他网络互联,成为一个全方位的农业资源和经济信息网络系统。
3.2信息表达要直观、形象,并要实现信息系统的联网
把市内的地形、地貌、交通、村镇、行政区划等基础地理信息以及耕地分布、土壤类型、种植结构、水肥状况、农作物生长发育、气象、病虫害、农民知识、乡镇企业、农业法律法规等各种农业信息以图形图像等直观形象的可视化电子地图与相关信息的形式在投影视频系统上进行显示和表达,随着数字农业的发展,逐步做到与省级、国家级类似的信息系统进行交互式查询等。
3.3强化对科研、管理等的服务工作
通过对基础地理信息和农业专题信息的空间分析、网络分析和追踪分析等,实现农业科研、管理和决策人员在全市三维农业电子模型上,对农业生产中的现象、过程进行模拟,高效、直观、形象地为农业工作的规划、设计、建设、经营、管理、服务、决策等提供科学依据。
4参考文献
[1]蒋建科.“数字农业”带动农业现代化[J].农资科技,2003(5):41.
[2]薛领,雪燕.数字农业与我国农业空间信息网格(Grid)技术的发展[J].农业网络信息,2004(4):4-7.
[3]曹宏鑫,王家利,郑宏伟.发展“数字农业”推动农村信息化[J].农业网络信息,2004(1):17-20.
关键词:数字农业;时空推理;专家系统
0引言
数字农业应用涉及大量的气象、环境、水文、地质、土壤等领域的时空数据。这些时空数据分散在异构系统中,有着不同的数据格式和规范,采用不同的概念和术语,基于不同的数学模型和分析推理方法。这些多领域时空信息对农业生产、决策均起着重要作用。但是以前由于缺乏高效、合理的技术手段,即使付出很高的代价,也很难将这些时空信息完整无损地共享和融合集成到数字农业应用中,在很大程度上制约了数字农业的应用发展。同时GIS等商业软件平台成本较高也不利于大规模应用推广。
为此,本文基于自主版权GIS、专家系统等系统软件,应用时空推理、本体论、语义Web、关系数据挖掘和专家系统等技术,建立一个数字农业时空信息智能管理平台,对多源、异构的数字农业时空数据和推理分析方法进行集中统一的规范化管理,便于在实际应用中进行融合、集成和共享。基于该平台快速建立起了数字化测土施肥系统、大豆种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批智能应用系统。这些应用系统精确控制农田每一地块种子、化肥和农药的施用量,在提高作物产量的同时,能够实现精确控制农业生产过程,有效降低成本,充分保证农业资源科学地综合开发利用,减少和防止对环境和生态的污染破坏,保持农业生态环境的良性循环,是实现“绿色农业”的重要途径。
1主要关键技术研究现状
1.1数字农业
数字农业是在“数字地球”的基础上提出并发展的,是21世纪新型的农业模式和挑战性的国家目标,包括精准农业、虚拟农业等内容,其核心是精准农业。以3S技术应用为核心的数字农业空间信息管理平台开发研究是数字农业研究的突破口[1,2]。美国于20世纪80年代初提出数字农业的概念,它是针对农业生产稳定性差、技术措施差异程度大等情况,运用卫星全球定位系统控制位置,用计算机精确定量,把农业技术措施的差异从地块水平精确到平方厘米水平,从而极大地提高种子、化肥、农药等农业资源的利用率,提高农产量,减少环境污染。法国农业部植保总局建立了全国范围内的病虫测报计算机网络系统。日本农林水产省建立了水稻、大豆、大麦等多种作物品种、品系的数据库系统。新西兰农牧研究院利用信息技术向农场主提供土地肥力测定、动物接种免疫、草场建设、饲料质量分析等各种信息服务。同时,我国紧跟国际研究的前沿,开展了系统工程、数据库与信息管理系统、遥感、专家系统、决策支持系统、地理信息系统等技术在农业、资源、环境和灾害方面的应用研究。
1.2时空推理
近年来,时空推理(Spatio-temporal Reasoning)已成为十分活跃的研究方向,在军事、航天、能源、交通、农业、环境等领域有着广泛的应用。近十年来我国国家基础地理信息中心、清华大学、解放军信息大学、中国科学院、武汉测绘科技大学、武汉大学、吉林大学等单位在时态GIS、时空数据模型、时空拓扑、时空数据库等时空推理相关领域开展了大量研究工作。
1.3时空数据标准与共享
不同领域和应用环境对时空数据的理解存在很大差异,这造成了异构时空系统集成的困难,因此时空数据共享、互操作和标准化的研究具有重要意义。这方面研究最初从空间数据入手,近期开始向时间数据和时空结合数据发展。时空数据的共享有以下方式:
(1)空间数据交换
空间数据交换的基本思想是各系统使用自身的数据格式,通过标准格式进行数据交换。目前空间数据交换标准有:SDTS、DIGEST、RINEX等国际标准; 以色列的IEF、英国的MOEPSTD、加拿大的SAIF、我国的CNSDTF等国家标准;AutoDesk的DXF、ESRI的E00、MapInfo的MIF等厂商标准。尽管各 GIS 软件厂商提供了公开的交换文件格式来进行空间数据的转换,但由于底层数据模型的不同,最终导致不同的GIS的空间数据不能无损的共享。虽然空间数据交换仍然在使用,但效果并不理想。空间数据互操作标准是当前国际公认的,比空间数据交换标准更有前途的数据标准。
(2)基于GML的空间数据互操作
开放式地理信息系统协会 (OpenGIS Consortium,OGC)提出了简单要素实现规范和地理标记语言( Geography Markup Language,GML)。OGC 相继推出了一整套GIS互操作的抽象规范,包括地理几何要素、要素集、OGIS 要素、要素之间的关系、空间参考系统、定位几何结构、存储函数和插值、覆盖类型及地球影像等17个抽象规范,2003年1月推出GML 3.10版[3]。近年来,国内外众多学者基于GML在空间数据共享等方面开展了大量研究。2001年 Rancourt等人[4]将GML与先前所定义的空间标准进行比较,认为GML能有效地满足空间数据交换标准。2002年,Zhang Jianting等人[5]提出了一种基于GML的Internet地理信息搜索引擎。2003年,Zhang Chuanrong等人[6]在网络环境下以GML作为异构空间数据库交换共享空间数据的格式,成功实现数据的互操作。2003年,崔希民等人[7]提出了GIS数据集成和互操作的系统架构,在数据层次上实现GIS 数据的集成和互操作。2003年,张霞等人[8]提出一种基于GML 构造WebGIS 的框架结构, 给出实现框架技术。其中采用GML 作为空间数据集成格式。2004年,朱前飞等人[9]提出了一种新的基于GML 的数据共享解决方案。2005年,陈传彬等人[10]提出了基于GML 的多源异构空间数据集成框架。GML数据类型较完整,支持厂家较多,相关研究丰富,是目前最有前景的时空数据标准。本文选择GML作为农业时空数据标准。
1.4时空本体
1.4.1本体、语义Web和OWL
本体方法目前已经成为计算机科学中的一种重要方法,在语义Web、搜索引擎、知识处理平台、异构系统集成、电子商务、自然语言理解、知识工程等领域有着重要应用。尤其是目前随着对语义Web研究的深入,本体论方法受到了越来越多的关注,人们普遍认为它是建立语义Web的核心技术。OWL是当前最有发展前景的本体表示语言。2002年7月29日,W3C组织公布了本体描述语言(Web Ontology Language, OWL)的工作草案1.0版。目前工作草案的最新更新为2004年2月10日的版本[11]。
1.4.2时空本体
基于本体方法对时空建模的相关研究工作如下:
1998 年,Roberto 考虑了作为地理表示基础的某些本体问题,给出了关于一般空间表示理论的某些建议[12]。2000年Zhou Q.和Fikes R.定义了一种考虑时间点和时段的时间本体[13]。2000年,Córcoles基于XML定义了一个类似SQL的时空查询语言,该语言包含八种空间算子和三种时态算子用于表达时空关系[14]。2003年,Grenon基于一阶谓词逻辑定义了时空本体,使用斯坦福大学的Protégé环境实现[15]。2003年,Bittner等人[16]提出了用于描述复杂时空过程和其中的持续实体的形式化本体。以上工作中Grenon的时空本体研究相对完整,相关研究成果已经在网上共享,本文在此基础上开展研究,建立农业时空本体。
2主要研究内容
(1) 农业时空数据规范
现阶段我国还没有公认的农业时空数据标准出台。本文基于时空推理技术,研究通用性更强的时空数据表示模型,能表示气象、土壤、环境、水文、地质等各领域的农业时空数据。GML是目前公认的时空数据标准,利用上述模型扩充GML,兼容中国农业科学院的“农业资源空间信息元数据的分类及编码体系草案”等国内现有的地方性标准,构建针对数字农业中时空数据的DA-GML标准,作为数字农业基础时空数据的规范。现有的土壤、环境等基础空间数据库均支持到GML格式的转换。
(2) 农业基础时空数据库
基于笔者自主开发的GIS平台建立农业基础时空数据库,该平台具有运行稳定、资源占用少、结构灵活、功能可裁减、成本较低、便于移植等特点。采用了时空推理技术,支持对空间和时空信息的表示和推理。通过DA-GML能够直接从现有系统中获取领域农业基础时空数据,主要包括土壤数据库、环境数据库、气象资料数据库、农业生产条件数据库、林业信息数据库、影像数据库等。
(3) 农业时空分析方法库与农业时空知识库
时空推理是研究时间、空间及时空结合信息本质的技术,通过时空推理技术将现有面向农业领域的时空分析技术进行整合和规范化表示,形成农业时空分析方法库。对领域农业时空知识进行归纳、整理,同时通过数据挖掘方法从基础数据中提炼知识,建立农业时空知识库。
(4)农业时空本体库
在(2)、(3)中存储的数据、方法和知识需要一个有效的机制进行组织和管理。就目前技术而言,本体是表达一个领域内完整的体系(概念层次、概念之间的关联等)的最有效工具,所以本文选择建立农业时空本体库。具体包括本体获取、本体管理、本体服务与展示三个模块。使用Protégé做本体开发环境编辑。Protégé是斯坦福大学开发的基于Java的本体编辑与知识获取工具,带有OWL插件的Protégé可以支持OWL格式的本体编辑与输出。
以上三个库通过Web Service方式提供基于Internet的服务,可以在线对库中信息进行维护和检索,并能无缝集成到应用系统中。
(5) 系统体系结构
系统工作原理如图1所示。首先,外部系统的时空数据转换成GML格式(现在绝大多数系统支持该数据标准),进入农业基础时空数据库。通过本体获取与编辑模块将时空数据和时空知识整理,形成本体库。外部系统的请求通过Web Ser-vices发给仲裁者,仲裁者区分各类情况调用三个库调用服务、提取数据和执行操作,结果返回给用户。
(6) 基于平台开发农业生产智能应用系统
基于数字农业时空信息管理平台建立数字化测土施肥系统、作物种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批农业生产智能应用系统,解决实际问题。
3相关系统对比分析
3.1数字农业空间信息管理平台
平台基于信息和知识支持的现代农业管理的集成技术,对农田信息进行动态采集、分析、处理和输出,从而根据农田区域差异、农事安排进行模拟分析、决策支持管理和指挥控制,并对农业生产过程的区域差异进行精确定位、动态控制等定量操作[17]。
3.2全国农业资源空间信息管理系统
全国农业资源空间信息管理系统(NASIS)实现对全国农业资源空间信息的查询分发,具有系统管理、动态数据字典、数据检索、查询、数据分发、制图、报表统计、数据分发等功能。该系统已经用于全国农作物遥感监测、农业资源调查、农业科研和农业政策信息支持服务等方面[18]。
3.3中国西部农业空间信息服务系统
计算机技术、互联网技术的迅速发展为建立基于Web的中国西部农业空间信息服务系统提供技术支撑。本文从西部农业空间信息服务系统的数据库构建开始,全面地介绍了系统的运行模式和数据库访问技术,详细论述了系统的总体结构、平台环境和开发实现等。
(1)基于平台提供的开发框架,能方便、高效地建立大量的数字农业智能应用系统,基层农业科技人员也能快速开发出技术含量高的应用系统,各应用系统能互通、共享,便于升级维护。
(2)由于大量的底层服务、数据、知识和方法由平台集中统一提供,简化了开发数字农业应用软件的工作,节约了成本。
4结束语
数字农业时空信息管理平台从系统目标、适用范围、采用技术、系统接口等方面不同于任何现有的基础农业空间数据管理平台,是一个概念全新的系统,定位于基础农业空间数据管理平台的上层,更便于开发数字农业应用。其中的本体库等机制为将来建立农业时空数据网格奠定了良好的基础。
参考文献:
[1]于淑惠.数字农业及其实现技术[J ] .农业图书情报学刊,2004,15(7):5-8.
[2]唐世浩,朱启疆,闫广建,等.关于数字农业的基本构想[J ].农业现代化研究,2002,23(3):183 -187.
[3]Geography markup language (GML)[EB/OL].(2003).opengis.org/techno/specs/002029PGML.html.
[4]RANCOURT M. GML:spatial data exchange for the internet age[D].New Brunswick:Department of Geodesy and Geomatics Engineering , University of New Brunswick,2001.
[5]ZHANG Jianting,GRUENWALD L. A GML 2 based open architecture for building a geographical information search engine over the internet [DB/OL].(2002).cs.ou.edu/database/documents/zg01.pdf.
关键词 数字化技术;农业机械;生产力
中图分类号TH16 文献标识码A 文章编号 1674-6708(2013)92-0074-02
随着科技的进步和国家对高效农业的支持,我国的农业生产正在想着“数字化”、“精确化”发展。数字农业的快速发展,将大大地提高我国的农业生产力,将有效地实行精确化、远程化操作,这也会彻底地改变传统农业的生产模式,在不就的未来,我们面对的将是以信息化、智能化的农业机械装备来作业的生态。
我国的农业机械化的水平完全不能够适应建设和发展农业产业的具体要求。尤其是农业机械化的技术条件,技术运用能力和技术科研能力。这些都是制约农业发展的重要因素。随着信息化科技化的到来,我们面临着又是新一轮的机遇和挑战。农业产业结构的调整,经济发达地区开始重视和扶持农业生产,加大资金投入和农业机械化的普及。这都为我国农业机械化的发展增加了一把熊熊烈火。数字化技术在农业机械中的运用将极大的将农业机械推向另一个农业发展的新顶峰。下面笔者就来结合自己对数字化技术在农业机械中的应用理解来谈一下自己的看法,希望能起到抛砖引玉的效果。
1就当今农业机械设计的特点进行分析探讨
传统型的农业机械设计根深蒂固,如果不积极地应对当今的发展潮流,我国的农业机械只会停滞不前的。因此就要是时候抓住机会,迎接挑战积极发展。这样才能将农业发展提上日程,将农业产品优化,提高农业产品的质量,解放生产力,提高企业的效益。
1)农业机械产品结构单一,复杂程度小。一般的农业播种机都是由简单的轴轮,机件,传动系统,开沟器和镇压器等基本的零件组成。虽然不同性能的播种机有差别,但是基本的机器结构是大同小异的。这样就非常有利于数字模块化的设计。这种播种机器的结构也非常适用于数字参数的设计;
2)农业机械产品结构类型繁多。例如播种机的运用。在不同的农耕地中农作物的不同就不能之运用一台机器,而是需要根据不同作物的特点,设计出符合农作物播种的机器。通过这些特点,就发明出了很多类型的播种机。例如有精密的播种机,条播机和穴播机等特种机器。还有按工作原理而分类的播种机和按作业量而分类的播种机。就此看来,农业机械以播种机为例的机械种类还是相当多的;
3)农业机械产品受农产品成熟季节的不同,农业机械的试验也就会随着季节的变化而变得不同。这就需要在研究农业机械的同时,充分考虑农作物的季节性,调整科研时间,有效地降低科研成本。
2剖析农业机械中的数字化技术
1)数字化技术指的是用多媒体计算机技术及网络实现产品的科研和开发的一种新型信息化的技术。就是利用计算机和网络的有利环境,对产品进行设计,分析和研发。建立一个产品模型,通过对产品模型的不断分析检验,达到产品最终的最优化;
2)数字化技术在农业机械中的应用,极大地提高了农业机械的开发水平和科研时间,还降低了研究成本和研究所花费的时间等。运用数字化的技术,还能使我国农业机械产品设计更加现代化和自动化。在设计的同时,还可以增加企业间的技术交流和技术能力,取长补短,积极吸取先进的数字化技术知识,提高整体的数字化知识水平,增加企业竞争力,还增进同企业间的团结协作精神。
3数字化技术的具体应用
1)计算机作为数字化技术应用的重要工具,对数字化的阐述是很重要的。通过对计算机的操作,最大化的将数字技术运用起来。其中,CAD/CAPP/CAM/CAE分别是计算机的辅助设计,计算机辅助工艺设计,计算机辅助制造和计算机辅助工程的英文缩写。这些技术是现代计算机技术的核心。他们的不同作用为产品的设计和研发具有重要意义;
2)可以将产品设计过程需要的用的知识资源进行综合,融入到CAD中去。将计算机的辅助设计作为开发的重要工具。设计出产品知识中的设计原理,设计经验和设计手册。帮助了解产品的基本信息和合理运用;
3)虚拟设计和创造。通过对产品的初步设计,就可以开始综合知识和资源,建立基础模型。利用建立模型,分析研讨,仿真实验等虚拟技术对产品进行完善。在连接网络的前提下,可以和业内人士一起交流讨论。通过模型来评估产品的综合实用性。在产品的功能,性能上加以研究,达到产品的最优化。对产品的设计,加工,质检都能够进一步的调节和掌控;
4)概念化设计就是在设计产品的过程的早期阶段,有一个清晰地设计结构和产品的基本模式。也就是说,在产品设计的时候,要将产品的需求到运用进行一个总结化的分析。从产品的功能设计,产品的原理设计和布局设计等方面进行一个基础性的规划。在产品设计的过程中,将人的具体构思加入到产品的设计中去也是很重要的。比如对产品色彩的选择等人性化方面进行合理添加。把设计员的创造性思维和审美与产品设计相结合,是产品更具有创新性;
5)绿色环保设计。它是针对资源的优化和能源的节约,防止污染的一项新型的绿色环保设计。主要就是应对在研发产品的过程中,对于产品资源的优化,对于污染的防止和对于资源循环利用废物的处理等设计。因此在进行产品设计的同时,还是要以绿色环保为主,这样才符合可持续发展的战略。
总而言之,随着社会的进步,信息化的普及。我国对数字化技术也有了一定的了解和一定的发展。虽然对比其他产业领域,我国农业发展相对来说有些落后。但是有些发达地区早已经开始了数字化的农业机械设计,并且也取得了很大的成效。这就说明数字化技术在我国农业机械中还是具有很广阔的发展前景的。
参考文献
[1]孙筠,王志民.传感器技术在机电一体化系统中的应用及其发展[J].湖北教育学院学报,2006(8)
[关键词]农业科技信息;网络化;数字化
现代网络发展的速度十分迅猛,信息的传递也越来越便捷和流畅,所以农业的发展也应该与时俱进,将传统农业技术信息与现代高速发展的互联网相结合起来,运用网络化信息资源来丰富农业科技,并且由于现代数字化网络的兴起,网络消息的传播速度大幅度提升,而对于农业的发展来说信息资源的更新速度是至关重要的,因此想要发展现代化农业科技就必须将其网络化和数字化,以此来保证农业的高速发展。
1建立和完善农业科技信息网络数字化体系
农业发展的重要辅助要素是科学化技术管理,因为科学的农业技术能为农业的发展提供最合理的规划和指导,让管理者在进行农业管理操作时少走弯路,从而使农业更好地发展,所以想要发展好农业就必须先发展农业科技信息技术。[1]现代互联网以及信息数字化的发展越来越快,对现实生活的影响也越来越大,因此农业科技信息技术的发展,要及时发现这一点,找到合适的时机将传统的农业科技技术与现代化网络技术以及数字化信息技术相结合,运用现代科技技术的优势来发展农业,改变传统上的单一化农业信息技术,使农业管理者可以随时利用网络上的丰富信息资源库调取所需要的农业技术资源。另外在农业的发展中,信息资源的传播至关重要,因为管理者需要及时了解大环境的变化,根据大环境的变化来调整对农业的管理,而数字化信息传播技术就能做到信息快速传播这一点,故而管理者应当及时将农业科技信息数字化,并建立和完善农业科技信息网络数字体系,以促进农业的良好发展。以苹果套袋技术为例,苹果套袋是发生在苹果刚刚定果之后,管理者利用苹果袋将幼果进行密封,减少幼果与外界的接触,这样一来就减少了苹果病虫害的发生。但是在对苹果进行套袋时,袋子的不同对苹果保护的程度也就不同,所以这时管理者就可以利用网络信息资源库和数字化信息传播技术,在第一时间得知外界已有的苹果袋子的品种,然后根据网上对每一种袋子的评测数据来进行选择,最终选择出最适合苹果生长的苹果袋。这就是农业科技信息网络数字化体系的优势,利用丰富的网络资源和数字化信息传播技术,在最短的时间内通过大数据对比与筛选,来选择出最优秀的农业技术,促进农业的不断发展。
2加强建设农业数据资源库
农业技术的良好发展是一个长期累积的过程,以此在不断地对各种农业难题的克服中,才能逐渐探索出最适合农业发展的科学农业技术,但是由于以往的信息技术过于落后的原因,很多农业科技并没有很好地保存下来,最终导致大量农业科技不知所踪,所以在农业技术的发展中建立完善农业技术数据资源库是十分有必要的。另外,传统的农业技术发展很多都是依靠管理者的个人经验进行,所以这在很大程度上就缺少了一定的科学性,尤其是在发生突况时,管理者的个人经验有时并不能对其进行解决,最终只能是导致农作物大面积减产以及死亡,对农业生产造成极大的损失[2]。故而利用现代化网络技术以及数字化技术建立起一个完善的农业数据资源库是十分有必要的,管理者运用现代化网络技术以及数字化信息传播技术,在进行农业技术研发之后,能迅速将这些技术进行文字与视频记录,并上传到网络资源库中,这样一来就能够使每一项农业技术在被研发出来之后不会出现丢失,从而造成不可挽回的损失。以苹果树施肥技术为例,管理者对苹果树进行施肥时,每次施肥的时间和种类都是不同的,俗话说“氮长叶子,磷长杆”,以往很多管理者在苹果即将成熟之时会给苹果树施氮肥,以促进果实和树叶的生长,但是有管理者发现,这个时期对果树施氮肥会造成果实返青的现象发生,所以管理者在研究之后,将传统的氮肥改进成新型复合肥,这样一来既保证了苹果的生长,又不会使苹果在成熟时发生返青现象。之后管理者运用网络技术和数字化传播技术将这项研究发现进行记录,并上传到网络资源库,这样一来就保证了这项技术不会被遗漏,而且上传到网络上之后,也能使其他管理者在第一时间内发现并利用,以保证苹果的良好生长。
3实现网络化农业技术学习
农业技术的发展十分迅速,所以农业管理者应当及时把自己的农业技术进行更新学习,将最新的农业技术学习并运用到农业生产管理中去,以此在利用网络技术发展农业技术的同时,也要加强利用网络技术来发展农业技术教育。[3]现代视频网络的发展日渐良好,所以在发展农业技术教学时,可以将这一技术运用进其中,通过网络视频将农业科学技术制作成网络课程,以供农业管理者进行学习,并且因为网络农业资源非常的丰富,所以管理者在利用网课学习时,也能以丰富的网络农业技术资源为依托,将农业网课与其相结合,从而进行全面系统的学习,提高管理者的农业技术。另外,还可以利用农业网课建立起一个农业管理者之间的交流互动平台,各农业管理者在这个平台中可以进行农业技术学习交流,实时解决一些农业管理中的问题,从而促进各管理者更好地学习农业科学技术。例如发展苹果管理农业技术网络学习平台,系统可以将苹果树管理技术制作成网络视频课程,然后向各大苹果种植管理基地进行推广,让各管理者在网络上通过网课进行学习,在管理者学习的过程中,系统还可以对管理者推荐一些农业资源信息网,让其在学习网课之后可以再结合其他网站上的苹果管理技术进行综合学习,丰富管理者的农业技术知识。另外各管理者在进行苹果管理技术学习时,也可以通过平台上的交流系统,与全国各地的苹果种植管理者进行实时沟通,互相交流学习心得,并且管理者还可以将一些自己平时在进行果树管理时遇到的问题发到交流平台中,集思广益让各管理者一起帮助其解决问题,这样一来管理者不仅能加深对网课学习内容的记忆,还能通过实时交流将所学知识进行现场运用,以促进管理者的学习。
论文摘要:本文探讨了数字农业空间管治信息质量指标。提出数字农业空间管治起源于农业发展中土地结构的更新改造,任何一项农业更新改造规划与实施,都需要对更新项目进行空间准人审批和空间管制决策评价。基于对农业更新改造的评价,建立了空间准入评价与空间管制决策指标体系。通过分析影响数据质量的因素,构建数字农业空间管治质量指标体系。
1.前言
农业空间管治是强调控制和协调,对农业地域空间资源的计划性配置的新理念川。跨人21世纪,国家正在建设信息高速公路、构筑数字农业。农业空间管治面临着发展的机遇和挑战。一方面,数字农业可为农业空间管治提供多元、分散、网络型和多样性的农业管理和控制决策支持信息流,利用数字农业信息高速公路网络构建农业管治决策支持系统,实现科学化的最佳决策。对现代农业这一规模庞大、结构复杂、功能综合的自然与系统施行科学管理,对农业问题做出全面、准确地分析和评价,对农业未来发展进行科学、合理的推断与预测,使其协调可持续发展,并对农业空间管治决策进行科学论证。另一方面,经济的网络化、全球化,使农业空间格局发生变化,农业构造单元的活动已不再局限于本物理空间。若不采取新的农业空间管治模式,即没有数字化、网络化信息平台支持,农业空间管治就会失控失调。
农业空间管治是以农业空间资源分配为核心,将经济、社会、生态等可持续发展,以及资本、土地、劳动力、技术、信息、知识等生产要素,在虚拟四维时空中的数字化实现。数字农业空间管治可为政府部门和非组织管治决策提供多要素、多层次、多时态的农业自然、生产、社会与经济信息,使其能更好、更有效地实现农业空间管治目标。
数字农业空间管治信息是农业空间管治最基本和最重要的数据组成部分。农业空间管治所涉及的信息须按一定的标准和规范置于统一管理之下,使农业空间管治工作有一个规范标准化的高质量数据基础。信息数据质量的好坏,直接影响着空间管治分析评价与决策结果的可靠程度和空间管治目标的真正实现。对于农业空间管治,由于其操作对象具体,功能目标明确,应用范围集中于农业区域,空间信息的尺度变化较大,数据质量对应用结果的影响非常明显,在数据质量方面的要求也就更高。因此,在数字农业空间管治研究中,信息数据质量体系研究是一项十分重要的基础研究工作。
2数字农业空间管治信息数据质量的影响因素
数字农业空间管治信息数据主要有图形数据和属性数据两大类。图形数据包括基础数据和专题数据,如土地测量数据、地图数据和遥感图像数据等。这些数据的各种数据源都带有一定的误差因素,并将之引人数字农业空间管治信息管理的数据库中。另外,数据源在时间精度(即现势性)和数据空间范围与数据内容方面,若不能满足农业空间管治应用的需要,也会严重影响农业信息数据应用的质量。
数字农业空间管治信息数据的质量问题,实际上是伴随着数据的采集、处理与应用过程而产生并表现出来的。第一个阶段是空间管治信息数据的采集和保存;第二个阶段是数字农业空间管治信息系统数据库的建立,包括数字化、数据录人和必要的数据转换、数据处理;第三个阶段则是在数字农业空间管治决策支持信息系统中对数据的操作、分析评价和决策。每一个阶段都包含前一个阶段所带来的原有误差,并增加了本阶段所引人的新的误差因素。因而,数据质量的影响因素可以数据获取和应用过程的这三个阶段为线索来考查。
(1)数字城市空间管治数据源影响数据质量的因素
数字农业空间管治的数据源,通常包括外业测量、勘丈、调查记录的数字化数据、图纸、图像和文档材料等。数字农业空间管治数据源的质量问题,包括这些数据源的采集和生成过程中产生的误差,如测量中由测量方法、仪器及人员操作带来的误差,遥感的系统误差及干扰误差,文档材料在社会调查和统计时产生的误差,地图本身固有的误差(包括数学基础的展绘、编绘、清绘、制图综合、地图复制以及套色误差),遥感解译过程中产生的定位和分类误差等等,以及数据源在保存过程中产生的误差,如图纸变形误差等。
(2)数字农业空间管治决策支持数据库建立中对数据质量产生影响的因素
根据目前的技术方法和设备条件限制,数字农业空间管治决策支持信息系统所采用的数据源,主要还是来自土地利用规划图、外业测量和调查、统计资料等。这类数据源,必须经过数字化和数据录人以及二者之间的连接配准,也许还要经过一定的格式转换,才能进人空间管治决策支持系统,成为数字农业空间管治决策支持信息系统数据库中的原始数据。
这一部分数据质量问题,包括决策支持信息系统数据获取、数字化和数据录人以及数据格式转换所引起的质量问题。影响这部分数据质量的因素主要在于数字化采集仪器的精度、数字化方法以及数字化操作精度、统计数据录人中的差错等。这类数据质量问题相对比较简单,影响因素容易发现,可控制程度相对较高。
(3)数字农业空间管治分析和处理过程产生的数据质量问题
在数字农业空间管治评价和决策过程中,运用农业空间管治决策支持信息系统分析和处理,可能影响其数据质量问题的因素包括计算、拓扑、叠加。这一部分的数据质量问题,是由数字农业空间管治决策支持系统的分析和处理过程引人的问题比较复杂,影响因素较隐蔽,产生的误差也比较难估计。
3数字农业空间管治信息的质量指标
3.1数字农业空间管治评价与决策指标体系
数字农业空间管治是一项起源于农业发展中土地结构的更新改造活动,促进农业可持续发展的工作。从任何一项农业更新改造规划开始,到更新方案实施,农业空间管治都需要依据国家的各种法规对更新项目进行空间准人审批和空间管制决策评价。从规划控制的系统结构来看,评价对农业更新改造有着十分重要的意义。
(1)农业空间管治评价类型与结构。根据农业空间管治评价对象和方法的不同,农业空间管治的评价可分为三种不同的类型:
现状评价:分析和评价土地利用、农业生产结构和环境质量优劣程序,确定现状综合评定值。对现状息信进行评价是农业更新规划控制的起点。一方面,总体上根据现状评价的结果在整个农业区划范围内界定更新的对象,排列土地结构更新的先后次序。另一方面,针对具体更新区域的不良因素进行罚分评价,为下一步制定更新目标提供充分的现状信息。
空间准人评价:针对农业发展目标,评判农业更新改造项目对现状的改进程度,确定更新方案的综合评定值,是确立正确的土地利用规划目标所依靠的有力手段,它不仅可以对单一的目标进行评价,以确定它是否符合农业区划建设,社会、经济、环境发展的原则和农业更新的实际需要,而且可以对多种土地利用方案和目标进行比较和优选,从中选出最为合理的方案和目标。
空间管制评价:评价土地利用规划目标的实现程度,确定更新后的综合评定值,是对于更新以后的土地利用所进行的检测。它一方面对前一阶段的土地利用规划目标进行检验,另一方面为下一步的土地利用规划控制提供新的决策信息。
其评价体系主要由两大部分构成,即评价指标体系和评价方法体系。指标体系是整个评价程序的框架和基础,也是建立科学的评价方法的必要前提。因此,我们有必要建立一套较为完善的农业空间管治评价指标体系,使农业空间管治的评价在内容上趋于客观和全面.在结构上趋于系统和严密,使得农业空间管治的决策更为科学和合理。
(2)农业空间管治评价指标体系的建立
影响因素分析:影响农业空间管治的因素很多,诸如国家对国土资源开发利用、耕地保护、建设社会主义新农村的农业政策,国家的经济实力,农业的整体结构和功能,社会对土地利用规划更新的期望值,以及更新区域的社会物质条件等等。其中,对农业空间管治最具直接影响的因素是土地结构更新区域的物质和社会状况,农业的社会物质条件所包含的内容极为丰富,既包括土地结构、建筑建造、农业基本设施、道路交通等,也包括社会组织、历史文化、人文景观、农民收人等经济文化因素。它是土地结构更新地区农民生活质量和农业现代化的尺度和标志,也是农业土地结构更新评价指标的原始素材。因此,需要根据国家现行的各类相关法规和规程规范,全面综合地考虑农业空间管治的各种影响因素,建立评价指标体系。评价指标体系:根据其不同内容将其分为两大类。即空间准人评价体系和空间管制评价体系。
评价体系均以统一标准的位置(坐标)、高程、面积三种几何物理量作为评价指标。无缝镶嵌于数字农业空间管治信息分类体系中。图1为空间准人评价指标体系之一:农业生产控制评价指标体系。
3. 2数字农业空间管治信息数据质量指标确定
数据质量指标是农业空间管治数据质量控制的重要依据。根据对数据误差来源、性质、类型和大小以及产生的原因的分析。提出数据质量控制指标确定思路。
首先,数据质量是一个相对的概念,甚至衡量数据质量的标准也会随具体应用的特点和要求而变化。其次,数据质量本身具有不确定性,除了可度量的空间和属性误差外,许多质量因素是很不明显或是很难确定的。因此,数据质量问题中,有可以减小甚至消除的误差,也有很难检测和控制的因素。本文研究数字农业空间管治信息的数据质量控制,先仅针对其中可度量和可控制的质量问题而言,主要集中在数据源的信息采集、数字化处理和过程部分。数据质量不确定性另设专题研究。例如土地使用与管理单项空间管治数据质量指标确定,土地资源调查质量指标确定如图2所示。
根据上述确定的空间管治信息质量分类指标,可将空间管治信息质量分类指标归纳统计于表1.
从表1可确定出数字农业空间管治各种信息质量需求及数据采集所适宜的必要精度、方法与等级。
【关键词】农业信息技术 数字图像处理 教学模式
【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2014)35-0065-02
随着现代农业向精准化、信息化、智能化的不断发展,信息技术及图像处理技术在现代农业中的应用日益广泛,这就要求从事现代农业的技术型人才要具备农业信息处理的相关知识和技能,并对发展趋势有一定的掌握,以适应现代农业发展的人才需求。数字图像处理课程是在掌握工程数学、线性代数及编程语言的基础上,将上述知识应用到农业信息的采集和处理中,体现了农业信息技术专业的专业课程特征,实现了“农非贯通”的专业形态的形成,以及对农业信息化复合型特色人才的培养。
一 数字图像处理课程设计的思路
数字图像处理是农业信息技术专业的专业课程,是一门综合性学科,内容多、跨度大、覆盖面广,本课程以培养能力和拓展专业素养为课程内容的定位和目标,课程内容的选择以专业知识拓展为依托,要求学生掌握数字图像处理的基本概念、基础理论、典型方法,掌握一定的编程实践技能。结合由易到难、循序渐进的原则进行教学内容和教学组织模式的设计,以此促进学生对知识的掌握和应用能力的提高。教师通过企业调研等形式总结归纳现今数字图像处理技术在农业应用中的实际案例,从而提高学生的专业知识修养。多元化学生的考核方式,形成一个全面的考核标准。
二 数字图像处理课程设计的实施
1.教学内容的设计
本课程以“农非贯通”的专业形态为出发点,采用项目化教学和任务驱动的方式组织教学内容,使学生在掌握数字图像处理知识的基础上,了解此项技术在农业中的广泛应用。本课程的教学内容主要划分为六个项目。
项目一:图像的预处理,包括图像平滑、图像锐化、图像复原等知识点。
项目二:单目标果实识别,以机器人采摘苹果中单个苹果目标识别模块为例,根据单个目标识别的分析思路,将颜色特征的分析及提取、阈值分割方法、去噪处理、果实的形状特征提取等知识点划分成多个小任务,每个任务之间相互承接,逐一完成才能实现单个苹果的目标识别。
项目三:多目标果实识别,承接项目二,不同的是以多个苹果果实为识别目标,增加了hough变换、边缘检测、分水岭算法等知识点,此项目是对项目二的补充。
以上三个项目使学生能在完成具体任务的同时,掌握数字图像处理的基础知识。
项目四:纹理特征识别,以黄瓜识别为例,项目二和项目三中的目标识别都是基于目标与背景色差大的原理进行分析实施,对于目标与背景颜色相近的情况并不适用,因此,关于纹理特征的知识点,将在此项目中补充。
项目五:综合实训,此项目的设计是对以上内容掌握程度进行整合并测试,给出两个选题:柑橘、棉花的自动识别技术及特征提取,农间杂草识别。两个选题分析思路与前面项目的分析思路方法相似,但是操作对象不同,需要做一些调整,因此,此项目既可以锻炼学生的思维能力及举一反三的能力,又能测试出学生对基础知识的掌握程度。
项目六:专业知识拓展,数字图像处理应用广泛,在此模块中以讲座的形式向学生讲授数字图像处理技术在现代农业及其他行业中的应用,提升学生的学习兴趣、拓展专业知识、提升专业素养。
2.教学组织模式的实施
本门课程具有理论性强、实际应用性较弱的特点,结合该特点将本门课程划分为三大主要模块,分别为理论基础、综合实训、知识拓展。根据这三个模块的不同特点,本门课将结合项目化教学、任务驱动、角色体验法、讨论式教学方法进行教学。
对于本门课程的基础知识和算法,采用“小任务为引导,大项目为目标”的教学方法,将每个知识点作为小任务,每个小任务之间能承接并结合成大项目,实现学生对基础知识的掌握。
综合实训是考验学生对本门课程知识的掌握程度,此模块以任务驱动为主要教学方法,先提出问题,引起学生的学习兴趣,培养学生的自学能力和逻辑思考能力,以小组为单位,通过团队合作选择合适的算法实现最终目标,并以答辩的方式汇报。
知识拓展是结合本门课程的特点,向学生拓展数字图像处理技术在现代农业中的应用案例,这需要大量地收集资料和文献整理,但是专业性较弱,因此本模块可采用角色体验、讨论教学法等教学方法,培养学生的自学能力。
3.考核方式
考核过程中要注意学生的学习态度、动手能力,培养学生的自我评价能力,增强自主学习意识。根据本门课程的内容设置,考核主要分为三个方面:过程考核、能力素质考核、汇报考核。具体见下图:考核方式及所占比重
三 数字图像处理课程设计应注意的问题
1.加强师资队伍建设
教师的知识结构、知识创新能力和师德风貌直接决定着课程的质量和水平,要培养出高科技的应用型人才,必须建立一支综合素质强的“双师型”教师队伍。要根据课程改革和建设要求,有目的,按计划地加强对教师的培训,鼓励教师通过各种实践活动,提高教学水平和教学质量。
2.加强教材建设
围绕培养目标,按照教学计划和教学大纲的要求,由主讲教师自行编写、制作相关教材,并保持教材的先进性和前沿性。
3.重视校企合作
校企合作是解决时间教育缺失的根本途径。企业参与到高校实践教学过程中,可以在教学计划和教学内容上广泛征
询及适当采纳相关业内专家的意见;另外增加学生在企业进行专业技能训练和专业拓展的学习机会,使理论联系实际,开阔视野,拓宽思路,促进学生的创新意识与创新灵感,为课程设计与建设提供强有力的实践平台。与相关企业建立长期合作关系,校企可以培养“适销对路”的应用型人才。
四 结束语
课程设计是一项涉及师资、学生、教材、教学思想、教学内容、教学方式、教学手段等多方面的综合系统工程,建设工程中要明确目标、遵守课程内在的逻辑与规律,才能提高教学质量。
参考文献
[1]朱高峰.中国工程教育的现状和展望[J].高等工程教育研究,2011(6):1~4
[2]宋生瑛.高校精品课程建设中应注意的几个问题[J].黄河科技大学学报,2008(3)
关键词:自动控制技术农业自动化
中图分类号: DF413.1文献标识码: A
由于历史、观念和技术等方面的原因, 我国传统农业机械与发达国家相比有很大差距, 已远远不能适应农业的科技进步。近些年来, 自动化的研究逐渐被人们所认识, 自动控制在农业上的应用越来越受到重视。例如,把计算机技术、微处理技术、传感与检测技术、信息处理技术结合起来, 应用于传统农业机械, 极大地促进了产品性能的提高。我国农业部门总结了一些地区的农业自动化先进经验(如台湾地区的农业生产自动化、渔业生产自动化、畜牧业生产自动化及农产品贸易自动化)的开发与应用情况, 同时也汲取了国外一些国家的先进经验、技术, 如日本的四行半喂人联合收割机是计算机控制的自动化装置在半喂人联合收割机中的应用,英国通过对施肥机散播肥料的动力测量来控制肥料的精确使用量。这些技术和方法是我国农业机械的自动化装置得到了补充和新的发展, 从而形成了一系列适合我国农业特点的自动化控制技术。
一、已有的农业机械及装置的部分自动化控制
自动化技术提高了已有农业机械及装置的作业性能和操作性能。浙江省把自动化技术应用于茶叶机械上, 成功研制出6CRK-55型可编程控制加压茶叶揉捻机, 它利用计算机控制电功加压机构, 能根据茶叶的具体情况编制最佳揉捻程序实现揉捻过程的自动控制, 是机电一体化技术在茶叶机械上的首次成功应用。
1.应用于拖拉机
在农用拖拉机上已广泛使用了机械油压式三点联结的位调节和力调节系统装置, 现又在开发和采用性能更完善的电子油压式三点联结装置。
2.应用于施肥播种机
根据行驶速度和检测种子粒数来确定播种量是否符合要求的装置, 以及将马铃薯种子割成瓣后播种的装置等。
3.应用于谷物干燥机
不受外界条件干扰, 能自动维持热风温度的装置停电或干燥机过热引起火灾时, 自动掐断燃料供给的装置。
二、微灌自动控制技术
我国从20世纪年50代就开始进行节水灌溉的研究与推广据统计。到1992年, 全国共有节水灌溉工程面积0.133亿m2, 其中喷灌面积80万m2, 农业节水工程取得了巨大的进展。灌溉管理自动化是发展高效农业的重要手段, 高效农业和精细农业要求必须实现水资源的高效利用。采用遥感遥测等新技术监测土壤墒性和作物生长情况, 对灌溉用水进行动态监测预报, 实现灌溉用水管理的自动化和动态管理。在微灌技术领域, 我国先后研制和改进了等流量滴灌设备、微喷灌设备、微灌带、孔口滴头、压力补偿式滴头、折射式和旋转式微喷头、过滤器和进排气阀等设备, 总结出了一套基本适合我国国情的微灌设计参数和计算方法, 建立了一批新的试验示范基地。在一些地区实现了自动化灌溉系统, 可以长时间地自动启闭水泵和自动按一定的轮灌顺序进行灌溉。这种系统中应用了灌水器、土壤水分传感器、温度传感器、压力传感器、水位传感器和雨量传感器、电线等。
三、自动控制技术在精准农业中的应用
精准农业是在传统农业与农业机装备技术上, 运用高新技术进行农业生产管理。精准农业较传统农业其先进之处主要是应用全球定位系统(GPS)、地理信息技术、计算机控制技术、专家与决策知识系统, 实现农业生产的定位、定量、定时, 做到精耕细作和由于农业水土管理区管理点较为分散, 用传统方法进行数据采集和信息传输精度差、速度慢。把电子技术、微电子技术和通信技术紧密结合起来, 采用现代方法进行自动化监控和管理非常必要, 如在渠系、灌水、泵站等方面实现自动化监控与管理。农业自动化向智能化方向发展, 进一步发展精准农业重点发展节水、节肥精准农业技术体系的自动化控制, 实施精准灌溉、精准施肥, 提高水资源和化肥资源的利用率。精细设施农业主要发展以温室为主的自动控制系统智能化研究, 从而现降低成本、提高作物产量、提高农产品品质。这有助于我国农业资源的高效利用和农业环境保护, 是发展持续农业的重要途径。将计算机视觉技术应用于农业自动化领域计算机视觉技术是一个相当新且发展十分迅速的研究领域, 日本、美国等发达国家已在农业计算机视觉方面进行了广泛而深入的研究, 如农业种质资源管理、获取作物生长状态信息、农产品自动收获、农产品品质鉴定等。英国开发研制的采摘蘑菇机器人, 在定位蘑菇采摘点和测量时, 已经利用了计算机视觉和图像处理技术。计算机视觉技术在我国农业生产和农业现代化方面已开始应用, 但在设施农业、虚拟农业中的应用尚处于起步阶段, 应进一步加强、加快该领域的研究与应用。
我国农业自动化已在设施农业中的温室自动化控制、排灌机械自动化、部分农业机械装置自动化等方面得到一定的发展, 尤其精准农业的发展越来越得到重视。电子技术和计算机技术的迅速发展推动了农业机器向自动化方向发展。随着智能化技术的发展, 人工智能将是世纪农业工程发展的重点。各种农业机器人或智能化系统将在农业自动化控制中不断涌现, 继续推动和实现农业自动化是农业机械化工程技术工作者所面临的长远课题和挑战, 并进一步促进农业自动化控制技术向智能化技术发展。
四、自动控制技术在精准农业中的应用
精准农业是在传统农业与农业机装备技术上, 运用高新技术进行农业生产管理。精准农业较传统农业其先进之处主要是应用全球定位系统(GPS)、地理信息技术、计算机控制技术、专家与决策知识系统, 实现农业生产的定位、定量、定时, 做到精耕细作和由于农业水土管理区管理点较为分散, 用传统方法进行数据采集和信息传输精度差、速度慢。把电子技术、微电子技术和通信技术紧密结合起来, 采用现代方法进行自动化监控和管理非常必要, 如在渠系、灌水、泵站等方面实现自动化监控与管理。农业自动化向智能化方向发展, 进一步发展精准农业重点发展节水、节肥精准农业技术体系的自动化控制, 实施精准灌溉、精准施肥, 提高水资源和化肥资源的利用率。精细设施农业主要发展以温室为主的自动控制系统智能化研究, 从而现降低成本、提高作物产量、提高农产品品质。这有助于我国农业资源的高效利用和农业环境保护, 是发展持续农业的重要途径。将计算机视觉技术应用于农业自动化领域计算机视觉技术是一个相当新且发展十分迅速的研究领域, 日本、美国等发达国家已在农业计算机视觉方面进行了广泛而深入的研究, 如农业种质资源管理、获取作物生长状态信息、农产品自动收获、农产品品质鉴定等。英国开发研制的采摘蘑菇机器人, 在定位蘑菇采摘点和测量时, 已经利用了计算机视觉和图像处理技术。计算机视觉技术在我国农业生产和农业现代化方面已开始应用, 但在设施农业、虚拟农业中的应用尚处于起步阶段, 应进一步加强、加快该领域的研究与应用。
我国农业自动化已在设施农业中的温室自动化控制、排灌机械自动化、部分农业机械装置自动化等方面得到一定的发展, 尤其精准农业的发展越来越得到重视。电子技术和计算机技术的迅速发展推动了农业机器向自动化方向发展。随着智能化技术的发展, 人工智能将是世纪农业工程发展的重点。各种农业机器人或智能化系统将在农业自动化控制中不断涌现, 继续推动和实现农业自动化是农业机械化工程技术工作者所面临的长远课题和挑战, 并进一步促进农业自动化控制技术向智能化技术发展。
【参考文献】
[1]马玉敏等.工业以太网的最新发展.自动化系统工程,2006(2):2.