前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的cdma技术论文主题范文,仅供参考,欢迎阅读并收藏。
关键词:多用户检测,串行干扰删除
多址干扰(MAI)是限制cdma系统容量的一个关键因素。为了减小MAI的影响,多用户检测(Multi-User Detection,MUD)技术应运而生。其中一种重要的算法就是干扰删除多用户检测算法,该算法是根据各个用户已判决的信号再生多址干扰,并在总接收信号中将各类多址干扰相消。串行干扰删除(Successive Interference Cancellation, SIC)利用已判决的用户信号再生干扰然后相消以有利于其他未判决用户的检测。
(一) 串行干扰删除多用户检测原理
步骤:
1、 按照用户信号功率从大到小进行排列,分别编号为用户1、用户2、用户3……;
2、 用常规的解调方法(如:匹配滤波)将用户1解调出来;
3、 从总的接收信号总减去用户1重构的最强用户干扰,将用户2解调出来;
4、 用户3的信号减掉用户1、用户2的干扰,
……
按此顺序下去恢复所有的用户
【文献1】其原理结构图如下
图1:SICMUD基本原理图
通过上述过程可以看出,
1)串行干扰消除按信号功率从大到小依次相消,其性能很大程度上取决于用户接收信号的功率分布,用户接收信号的功率分布差别越大,性能提高就越明显。首先,信号最强的用户解调得到的可靠性最高;其次,从总信号中将最强用户信号先检测出来,对其他用户的收益最大,这是由CDMA系统的特性决定的。CDMA是自干扰系统,因此,把信号最强的用户检测出来的同时也减小了对其他用户的干扰。这种算法的结构导致最强用户在抗多址干扰方面没有得到任何改善,而对最弱的用户来说,它在抗多址干扰方面获得很大改善。同时这也导致SIC检测有一个显著的缺陷,就是它的性能在很大程度上取决于初始数据估计的可靠性。也就是说如果用户1和用户2功率差别不大,或者对用户1的估计值与真实值差别比较大,则会使系统误差较大。此外,每一级的检测错误将会在以下各级中累加,它会严重影响整个系统的检测性能。
2)在串行干扰删除检测器中,由于每解调一个用户便会引入一定的处理时延,当用户较多时,时延将累积到系统难以忍受的地步。因此,在SIC方案中,每个分组的用户不宜取太多,一般取4个用户即可。SIC可用于同步CDMA,也可用于异步CDMA中。
3)串行干扰删除需要对用户的功率进行排序。在无线衰落信道中,用户信号功率是变化的,此时需要重新排序。因此,必须在信号功率排序的速度和能够接收的运算复杂度之间进行权衡。
4)串行干扰删除需要估计用户信号的延时、幅度和相位。
5)串行干扰删除结构简单,运算复杂度与用户数呈线性关系。
多用户检测中的干扰删除算法充分利用了多个用户的信息,并且工程实现相对简单。存在的问题是:对干扰的估计要求相当准确,否则干扰删除的效果会大大削弱甚至使系统恶化。
参考文献:
【1】 牛凯等 编著. 移动通信原理.电子工业出版社,2006.
【2】 彭岳星. 宽带CDMA移动通信中的联合检测技术.东南大学博士论文,2004.
【3】 刘向东、顾学迈. 第三代移动通信系统中非线性多用户检测技术.华北航天工业学院学报 Vol.14 No.1 Mar.2004.
由于WCDMA和CDMA2000这两种技术都是将CDMA技术用于蜂窝系统,许多的思想都是源于CDMA系统,因此WCDMA和CDMA2000有许多相试之处:从双工方式上看,WCDMA和CDMA2000属于FDD模式。WCDMA和CDMA2000都满足IMT-2000提出的技术要求,支持高速多媒体业务、分组数据和IP接入等。但它们在技术实现、规范标准化、网络演进等方面都存在较大差异。
WCDMA和CDMA2000各有优势和缺点。WCDMA技术较成熟,能同广泛使用的GSM系统兼容;相比第二代通信系统能提供更加灵活的服务;而且WCDMA能灵活处理不同速率的业务。其缺点是只能共用现有GSM系统的核心网部分,无线侧设备可以共用的很少。
CDMA2000的优势是可以和窄带CDMA的基站设备很好地兼容,能够从窄带CDMA系统平滑升级,只需增加新的信道单元,升级成本较低,核心网和大部分的无线设备都可用。容量也比IS-95A增加了两倍,手机待机时间也增加了两倍。缺点是CDMA2000系统无法和GSM系统兼容。
1.WCDMA与CDMA2000的物理层技术比较
WCDMA和CDMA2000物理层技术细节上有相似也有差异,由于考虑出发点不同,造成了不同的技术特点。WCDMA技术规范充分考虑了与第二代GSM移动通信系统的互操作性和对GSM核心网的兼容性;CDMA2000的开发策略是对以IS-95标准为蓝本的窄带CDMA的平滑升级。
(1)这两个标准的物理层技术相似点可以归纳为以下几点:
①内环均采用快速功率控制。CDMA系统是干扰受限系统,因此为了提高系统容量,应尽可能的降低系统的干扰。功率控制技术可以减少一系列的干扰,这意味着同一小区内可容纳更多的用户数,即小区的容量增加。因此CDMA系统中引入功率控制技术是非常必要的。
②系统都支持开环发射分集,信道编码采用卷积码和Turbo码。
③系统均采用软切换技术。所谓软切换是指移动台需要切换时,先与新的基站连通再与原基站切断联系,而不是先切断与原基站的联系再与新的基站连通。软切换只能在同一频率的信道间进行,因此模拟系统、TDMA系统不具有这种功能。软切换可以有效地提高切换的可靠性,大大减少切换造成的掉话。
④WCDMA工作频段:1900~2025MHz频段分配给FDD上行链路使用,2110~2170MHz频段分配给FDD下行链路使用,2110~2170MHz频段分配给TDD双工方式使用。其中WCDMA和CDMA2000利用1900~2025MHz频段(上行),2110~2170MHz(下行)。
(2)两个标准的物理层技术差异可以归纳为以下几点:
①扩频码片速率和射频带宽。WCDMA根据ITU关于5MHz信道基本带宽的划分规则,将基本码片速率定为3.84Mcps。WCDMA使用带宽和码片速率是CDMA2000-1X的3倍以上,能提供更大的多路径分集、更高的中继增益和更小的信号开销。CDMA2000分两个方案,即CDMA2000-1X和CDMA2000-3X两个阶段。CDMA2000系统可支持话音、分组数据等业务,并且可实现QoS的协商。室内最高数据速率达2Mbit/s,步行环境384kb/s,车载环境144kb/s。CDMA2000在前向和反向CDMA信道在单载波上采用码片速率1.2288Mcps的直接序列扩频,射频带宽为1.25MHz。
②支持不同的核心网标准。WCDMA要求实现与GSM网络的兼容,所以它把GSMMAP协议作为上层核心网络议;CDMA2000要求兼容窄带CDMA,因此它把ANSI-41作为自己的核心网络协议。
③WCDMA进行功率控制的速度是CDMA2000的2倍,能保证更好的信号质量,并支持多用户。
④为了使支持基于GSM的GPRS业务而部署的所有业务也支持WCDMA业务,为了完善新的数据话音网络,CDMA2000-1x需要添加额外的网元或进行功能升级。
2.WCDMA与CDMA2000网络接口的比较
3G标准的基本目标是能在车载、步行和静止各种不同环境下为多个用户分别提供最高为144kbit/s、384kbit/s和2048kbit/s的无线接入数据速率。为多个用户提供可变的无线接入数率是3G标准的核心要求。CDMA2000可分别用于900MHZ和2GHZ两个频段CDMA2000的码片速率与IS-95相同,两系统可以兼容。WCDMA的码片速率为3.84Mcps,显然WCDMA系统中低速率用户或语音用户的移动台成本会大幅上升,在CDMA2000系统中则不会如此。
WCDMA的接口标准规范、制定严谨、组织严密,而CDMA2000的接口标准严谨性有待加强。IS-95厂家设备难以互通,给运营商设备选型带来了较大问题;3G许诺的高速无线数据服务必须可以和话音一样实现无缝的漫游,这是至关重要的。多媒体信息要漫游、视频通话也要漫游,没有这些基本要素,3G就不能称其为3G。漫游涉及到的不仅仅是技术问题,更重要的是商业利益。在这方面WCDMA显然更胜一筹,它支持全球漫游,全球移动用户均有唯一标识,而CDMA2000尚不能很好做到这一点。
3.WCDMA和CDMA2000网络演进的比较
(1)WCDMA的网络演进技术
现有的GSM系统利用单一时隙可提供9.6kbit/s的数据服务。如果复用多个时隙就能升级为HSCSD(高速电路交换数据)方式;此后出现了GPRS(通用分组无线业务),首次在核心网中引入了分组交换的方式,可提供144kbit/s的数据速率。接着继续升级采用8PSK调制,这样传输速率可以上升至384kbit/s这就是EDGE;WCDMA的数据传输速率将高达2M/s。
(2)CDMA2000网络演进技术
主要的CDMA2000运营商将来自现在的窄带CDMA运营商。窄带CDMA向CDMA2000过渡的方式为IS-95AIS95BIS-95CIMT2000。IS-95A的数据传输速率为14.4kbit/s,为了提供更高的速率,1999年部分厂商开始采用IS-95B标准,理论上支持115.2kbit/s的速率。IS-95C进一步使容量加倍,最后升级为CDMA2000。
窄带CDMA系统向CDMA2000系统的演进分为空中接口、网络接口及核心网络演进等方面。
①目前窄带CDMA系统的空中接口是基于IS295A,其支持的数据速率为14.4kbit/s,由IS295A升级到IS295B,可支持64kbit/s。
②窄带CDMA网络接口的演进主要指窄带CDMA系统A接口的升级和演进。对于窄带CDMA系统,以前其A接口不是规范接口(即不是开放接口),窄带CDMA和GSM的A接口的规范相比较,GSM是先有A接口标准,然后厂家依据标准开发;窄带CDMA是厂家各自开发,然后广泛宣传,最后凭借自身影响修改标准。
③窄带CDMA的核心网在美国经过多年发展后,从IS241A到IS241B到IS241C,我国CDMA试验网和红皮书以IS241C为基础,IS241D规范在1999年底,目前IS241E规范还未正式。
二、WCDMA和CDMA2000在我国的前景
对3G标准的选择不仅要看其技术原理及成熟程度,还要结合本国国情、市场运作状况等因素进行考虑。按目前的进展来看,两种标准最后不能融合成一种,但可以共存。
在我国,GSMMAP网络已形成巨大的规模,欧洲标准的WCDMA在网络上充分考虑到与第二代的GSM的兼容性,在技术上也考虑了与GSM的双模切换兼容,向WCDMA体制的第三代系统演进,从一开始就解决了全网覆盖的问题。而且CDMA2000采用GPS系统,对GPS依赖较大;在小区站点同步方面,CDMA2000基站通过GPS实现同步,将造成室内和城市小区部署的困难,而WCDMA设计可以使用异步基站,运营者独立性强;对于电信设备制造行业,我国在GSM蜂窝移动通信方面发展成熟,而窄带CDMA系统尚未形成规模和产业。
WCDMA采用全新的CDMA多址技术,并且使用新的频段及话音编码技术等。因此GSM网络虽然可采用一些临时的替代方案提供中等速率的数据服务,却不能提供一种相对平滑的路径以过渡到WCDMA。而CDMA2000的设计是以IS-95系统的丰富经验为依据的,因此窄带CDMA向CDMA2000的演进无论从无线还是网络部分都更为平滑。在基站方面只需更新信道板,并将系统软件升级,即可将IS-95基站升级为CDMA2000基站。
由此可见,WCDMA和CDMA2000还将长时间在我国共存,鹿死谁手?尚未分晓。
参考文献:
[1]TeroOjanpera,RamjeePrasad.朱旭红译.宽带CDMA:第三代移动通信技术.北京:人民邮电出版社.
[2]杨大成.CDMA2000-1X移动通信系统.北京:机械工业出版社,2003.
[3]罗凌,焦元媛,陆冰.第三代移动通信技术与业务.北京:人民邮电出版社,2005.
【关键词】空口质量;载干比;导频污染;异频邻区
移动通信网络是一个动态的多维系统,尤其是CDMA1X&EVDO网络,它会随着用户数量、运行环境变化、技术的更新等而不断发生变化。这些变化都会影响到网络指标的变化和网络性能,因此必须持之以恒地对网络进行监测和优化。同时,为了充分利用现有的网络设备资源,最大限度地提高网络的平均服务质量、提高效益,也需要不断地进行网络优化工作。因此,网络优化工作是非常重要的。
1 CDMA 1X&EVDO技术
1.1 CDMA技术优势
CDMA系统采用码分多址的技术,利用扩频通信的原理,在系统中使用多种先进的信号处理技术,使CDMA系统具有许多优点。
(1)大容量
根据理论计算及现场试验表明,CDMA系统的信道容量是模拟系统的10--20倍,是TDMA系统的4倍。CDMA系统的高容量很大一部分因素是因为它的频率复用系数远远超过其它制式的蜂窝系统,同时CDMA使用了话音激活和扇区化,快速功率控制等技术。
(2)软容量
在FDMA、TDMA系统中,当小区服务的用户数达到最大信道数,已满载的系统再无法增添一个信号,此时若有新的呼叫,该用户只能听到忙音。而在CDMA系统中,用户数目和服务质量之间可以相互折中,灵活确定。例如系统运营者可以在话务量高峰期将某些参数进行调整,例如可以将目标误帧率稍稍提高,从而增加可用信道数。同时,在相邻小区的负荷较轻时,本小区受到的干扰较小,容量就可以适当增加。
(3)软切换
所谓软切换是指移动台需要切换时,先与新的基站连通再与原基站切断联系,而不是先切断与原基站的联系再与新的基站连通。软切换只能在同一频率的信道间进行,因此,模拟系统、TDMA系统不具有这种功能。软切换可以有效地提高切换的可靠性,大大减少切换造成的掉话,因为据统计,模拟系统、TDMA系统无线信道上的掉话90%发生在切换中。
1.2 CDMA EVDO网络架构
无线接入网(Radio Access Network,RAN)主要包含接入网(Access Network,AN)、分组控制功能(Packet Ccontrol Function,PCF)和接入网鉴权/认证/计费服务器(AN-Authentication, Authorization and ccounting,AN-AAA)等功能实体。AN 完成基站收发及其控制器的功能。其中,PCF 完成A8 和A10 连接的建立以及分组数据业务节点(Packet Data Service Node,PDSN)的选择功能。AN-AAA 存储接入鉴权的算法和参数,执行接入鉴权功能。
2 CDMA 1X&EVDO优化研究
2.1 无线网络优化目的
CDMA系统是一个自干扰系统,某个用户相对于其他用户来说就是干扰,每个小区也会对其它小区构成干扰,尤其是同载频的邻区。同时,小区具有呼吸功能,网络负载越高,干扰越大,覆盖范围越小;反之网络负载越小,干扰越小,覆盖范围越广,网络的覆盖范围与容量都是随时变化的,每个扇区的容量是一种软容量。因此基于CDMA技术的网规网优相比基于GSM技术的网规网优要复杂的多,不是增加几个基站就可以提高系统性能。因此,功率控制在CDMA网络中显得尤为重要,也是CDMA的核心,通过功控,有效地解决“远近效应”。因此从另外一个概念来讲,CDMA系统本身就是一个功率控制的系统,链路性能和系统容量取决于干扰功率的控制程度。但是由于各种因素相互制约,往往牵一发而动全身。比如软切换,它虽然能够降低用户切换过程中的掉话率,但是当某个用户在进行软切换时,同时可以与激活集中的多个基站建立业务信道,这样也就占用了多个基站的资源,即浪费了网络容量。
无线网络优化分为两个阶段,一是工程优化,即建网时的优化,主要是网络建设初期以及扩容后的初期的优化,它注重全网的整体性能;二是运维优化,是在网络运行的过程中的优化,即日常优化,通过整合OMC、现场测试、投诉等各方面的信息,综合分析定位影响网络质量的各种问题和原因,着重于局部地区的故障排除和单站性能的提高。
2.2 系统相关参数设定
(1)系统参数
系统参数是指用来分析的系统的参数,例如码片速率、寻呼速率、载频邻区和邻接小区、ROT(反向符合控制门限)、DRCSupervision Timer(DRC监视定时器)、DRCChannelGain(DRC信道增益)等。
邻区列表参数:20个
(2)移动台参数
移动台参数是指基于主要手机生产厂家设置的一些参数,如噪声系数、前向链路Eb/No等。移动台参数有:
最大发射功率:23dBrn(0.2 Watt)
移动台设备噪音指标:8dB
人体损耗:3dB
Eb/No:7dB
3 CDMA EVDO优化策略设计
3.1 基础优化
网络基础优化主要是评估现网存在的网络基础性问题,主要包括无线网络覆盖、信号空口质量、邻区配置、RSSI异常、设备状态健康检查、全网配置参数核查,定位原因并提出解决方案,实施方案并验证。EVDO网络存在用户接入失败、掉线、速率慢、扇区吞吐效率低等性能差的问题,在做好站点优化基础工作上从端到端进行深入分析,制定解决方案,实施方案并验证性能提升效果。同时协助处理因工程遗留问题引起或VIP用户投诉的EVDO性能差问题。
3.2 无线环境优化
无线环境包含前向链路和反向链路,优化重点为前向覆盖、覆盖区域应用层下载速率。反向链路是建立在前向链路的基础之上,反向上传到那个基站、上传速率等都与基站距离(干扰和传输除外)有关。所以无线的优化重点为前向链路和覆盖的优化。现网中主要反映现网的问题有导频污染、弱覆盖、越区覆盖、路段C/I差等,根据实际的情况制定相应的网络优化方案。
4 结语
CDMA EVDO网络优化工作是一种持续性的工作,要不断地对正在运行的网络进行优化。在网络运行初期,由于用户数较少,需要通过路测进行优化,这种过程一般需要重复多次。随着用户数的增多,可以通过网络维护中心记录的数据对网络进行优化。
参考文献:
[1](美)Vijay K.Garg.第三代移动通信系统原理与工程设计―IS95 CDMA和CDMA2000[M].电子工业出版社,2002.
关键词:时分双工-码分多址,自适应调制编码
一、 简介
在过去几年里,第三代无线通信已经普及到世界各地。3G通信主要处理多媒体数据,这就通常要求下行链路传输中的容量要比上行传输的更大,例如,电影下载。对高速率数据通信,时分双工-码分多址(TDD-CDMA)是一项有前景的技术[1]。TDD系统主要能改变分配到下行链路和上行链路的时隙数目,从而更灵活的适应在业务通信量不平衡基础上分配的DL/UL容量。这在频分双工系统是不容易实现的;一旦被分配好,下行链路和上行链路频率便不能再分配。另一个使数据通信变得容易的技术是自适应调制编码(AMC),在第二部分有所介绍。尽管AMC大部分假定在FDD系统这一点上,但它在TDD系统的使用是更加有效的,因为这两项技术都是面向数据的。
由于有面向数据这一特性,TDD-CDMA在建设覆盖网络中有着有利条件。覆盖网络能补充性的覆盖一些主要网络覆盖不到的区域,同时又能增加系统的吞吐量。在TDD-CDMA中,这些改善在没有扩大系统带宽的情况下就可以得到,因此每个网络都分享相同频带。TDD系统其他一些主要优点在[1]中有总结。
另一方面,如果TDD系统设置了独立蜂窝时隙配置:一个交叉时隙问题(见第二部分),就可能引起临近蜂窝间的强干扰,。在[2]中,一个有交叉时隙的TDD-CDMA系统的容量是使用双蜂窝模型进行数学分析的。另有一些论文设想用多蜂窝模型和使用计算机仿真获得系统性能。这些大都降低了通过监控干扰电平,分割传输区域或使用自适应排列天线而造成的交叉时隙影响。在本论文中,我们不只避免了由于交叉时隙引起的强干扰,也建设性地利用它们增加TDD-CDMA覆盖系统的下行链路吞吐量。
二、 背景简述
(一)、交叉时隙
正如前部分所示,TDD系统可能由交叉时隙的问题构成。图1说明了交叉时隙情况。在第三个时隙,左侧蜂窝的基站成为右侧接收基站的强干扰,右侧的移动台可能成为左侧临近移动台的强干扰。特别的是,如果两个基站有视距(LOS)信道,基站的干扰就会变得过大。
(二)、自适应调制编码
我们在系统中考虑四个AMC电平,如表1所示。表中的数据速率每时隙计算一次,并与所有发散码被使用的情况相对应。为了利于AMC的效应,使用[6]中的注水算法。
(三)、 系统描述
在这一部分,描述了包括所提出的时隙配置在内的仿真系统的不同方面。
1、所提出的时隙配置
当AMC有利于平均使用者吞吐量的有效提高时,高的使用者吞吐量只在基站周围区域受限。因此,蜂窝边缘附加网络的调配有效增加了网络容量。我们指定附属网络为微区基站。注意到微区基站与基站在同一频率运行,因此他们能获得高效的频带使用,但是互相有干扰。
在均匀时隙配置中,12个下行链路被定位在前12个时隙中,四个上行链路被定位在余下的4个时隙中。在常规TDD系统中,覆盖网络的所有分层同时选择均匀时隙分配,以避免交叉时隙情况。在本论文中,基站采取了均匀时隙分配。另一方面,提出的时隙分配指的是一个倒置时隙配置。在倒置时隙配置中,在一个TDD帧内一组下行链路和一组上行链路的所有四隙位置进行交换(即,前四个时隙作为上行链路和的另12个时隙为下行链路)。微区基站采取倒置时隙配置。
2、系统布局
我们的分析使用七个六边形蜂窝模型,包括在中心的一个蜂窝。移动台统一分配在整个系统中(我们能仿真在基站和微区基站上通过操纵活化因子而引起的通信量不平衡的这一情况)。一个移动台与一个基站或一个有最小传播损耗的微区基站相连接。因为微区基站应该覆盖住蜂窝边缘传播和受限的区域,微区基站的使用可能用于建造一条大街或一组建筑物。因此,在我们的模型中微区基站要考虑到天线方向性。
一个有三扇区的微区基站装上了60°定向角的定向天线,只覆盖蜂窝边缘区域。每个微区基站不能直接干扰临近基站,基站与临近微区基站是隔离开的。这意味着微区基站的方向不只将覆盖范围集中在密集传播区域,并且防止了与附近基站的强干扰。目前来说,微区基站的方向还不能指向临近基站,它的位置或角度相比我们的研究情况可以有所变化。
一个基站通常安装在大型建筑物的屋顶上,此时微区基站安装在大型建筑物的墙上,或者在一个小或中等建筑物的屋顶上。因此,基站和微区基站彼此间有视距路径的概率是很低的。 实际上,微区基站没有考虑到迅速将使用范围从一侧移到另一侧的使用者。这是因为那些使用者只预期留在微区基站覆盖范围一小段时间,因此可能引起大量切换。研究中,并没有在上述的规则中考虑到移动台的流动性。
假定基站和微区基站在每一TDD帧都有16个时隙。也同时假定所有的时隙在每对网络中都是完全同步的。基站和微区基站的可用扩展码的数量是16个。相同的频带和相同的信道化编码的设置在每个网络都是可重复使用的,此时在每个网络中不同的量化编玛是信道化编玛的几倍。
3、所提方案的目标
所提的时隙配置的有利之处特别在于它与AMC的结合。对接收移动台来说,来自于附近发送基站的一个干扰功率通常大于来自发送移动台的干扰功率之和,这些移动台由于传播条件和可允许最大传送功率的不同在相关的蜂窝内部。这意味着被上行链路蜂窝环绕着的下行链路中的接收移动台,通常相比被下行链路环绕的接收移动台可以获得更高的次序电平(即,更高的下行链路吞吐量)。当基站采取均匀时隙分配和微区基站采取倒置时隙分配时,这种下行链路吞吐量的提高是能实现的(即,所提方案)。本论文中,我们说的这种影响指的是在所提时隙配置和AMC之间的一种最佳协同作用。
正如前面小节所提及的,微区基站的方向显著地减少了基站-微区基站交叉时隙强干扰的影响。本论文中,我们固定整个系统的一个TDD帧内下行链路和上行链路数量的比值,因此基站-基站间和微区基站-微区基站间的干扰就不会发生了。
4、仿真参数
仿真参数在表3中有所概括。在上行链路,功率控制方案代替AMC使用。其他重要参数如表1和表2中所示。因为系统主要目的在于高速下行链路的接入上,所以我们将焦点集中在大文件的下载上(如,电影下载),因此,我们设DL/UL的比为12:4。
活化因子用来平衡基站和微区基站的使用。我们假定一个蜂窝中使用者的数量是60,基站活化因子为1.0。如果我们设基站和微区基站的活化因子都为1.0,微区基站平均使用者吞吐量变得是基站的10倍大(也就是,相同的应用在微区基站覆盖范围内结止比在基站覆盖范围内结止快10倍)。另外,微区基站正常情况下在密集传播区调配,因此假定在该地方的业务量比正常地方大4倍。因此,当基站活化因子为1.0时,设定微区基站的活化因子为1.0*4/10=0.4。
在下行链路,所有的资源单元,即时隙和码字都被充分使用,而不管支持移动台的数量是多少。另一方面,在上行链路,每个TDD帧只有一个编码时隙分配给各移动台。如果任一时隙仍然被留下而未使用,时隙中的一个码字就会分配给支持的使用者其中之一。
(四)、仿真结果
我们完成了用计算机仿真来研究网络吞吐量和所提系统的使用者吞吐量。网络吞吐量指出了在有用蜂窝(即,中心蜂窝)中所有的总体吞吐量。在图例中,uni和rev分别代表在微区基站中均匀时隙配置和倒置时隙配置的情况(基站采取均匀时隙配置)。我们同样仿真了这种情况,所有的微区基站都装了无向天线代替定向天线。在图例中,direc和omni分别代表微区基站带定向天线的系统和带无向天线的系统。
基站中的网络吞吐量同样不考虑时隙配置方案和天线方向的选择。然而带定向天线的倒置时隙配置显示了微区基站中最高的吞吐量,比带定向天线的均匀时隙配置近似大1.8倍,比带无向天线的倒置时隙配置大2.5倍,比带无向天线的统均匀时隙配置大5倍。这种倾向也是DL使用者吞吐量的情况:对带定向天线的倒置时隙配置来说在微区基站有最大的使用者吞吐量。
微区基站中使用者吞吐量比基站中的更大的原因是,由于方程1和方程2传播条件的不同,大部分使用者被分配给基站而不是微区基站。因此,由于被支持使用者的数量较小,一帧内的大部分时隙和码字被分配给微区基站的单个使用者。在微区基站,与均匀时隙配置相比,倒置时隙配置可获得更大的网络和使用者吞吐量,这可以通过前边所提到的在所提时隙配置和AMC之间的最佳协同作用实现。
UL网络和使用者吞吐量随着基站和微区基站间的LOS比例增加而减小,这时微区基站采取倒置时隙配置。另一方面,当微区基站采取统均匀时隙配置时,吞吐量随着LOS比例的变化是一个常量,因为基站-微区基站间的干扰不再发生。当看到微区基站上用定向天线时一般吞吐量衰退时,吞吐量随着LOS比例增加而迅速下降,此时微区基站装了无向天线。这是因为一个基站和6个环绕其的微区基站直接产生干扰,当微区基站安装了定向天线时,由于定向性这类干扰大大减轻。注意到基站-基站和微区基站-微区基站干扰不会发生,因为在两个基站或微区基站间是对称时隙配置。
高建筑物隔离了基站和微区基站间的视距路径。此外,通过定向和无向天线这两钟情况的对比,微区基站的方向在阻止UL吞吐量大量衰减方面有重要作用。为了减轻UL吞吐量的降低,应该采取未在研究中考虑到的另一种动态信道。
三、结论
本论文中,为了高速的下行链路接入,我们提出了一个在TDD-CDMA覆盖网络上的新的时隙配置方案。在我们提出的时隙配置中,微区基站采取反倒置时隙配置,基站采取均匀时隙配置。另外,微区基站装上了定向天线以减轻基站-微区基站的强干扰,AMC用来获得在所提时隙配置和AMC间的最佳协同作用。在计算机仿真结果中,我们看到在所提时隙配置下的DL网络和使用者吞吐量大大超过传统系统。然而,在所提时隙配置随基站和微区基站出现LOS的概率逐渐变大时,UL网络和使用者吞吐量在减小。这说明了所提系统在城市地区是更合适的,因为这里有高建筑物隔绝了基站和微区基站的视距路径。
参考文献
[1] 张英海,王卫东,周博. TDD/CDMA系统交又时隙干扰的解决方案[J].北京邮电大学学报,2007,30(2):19-23.
[2] 钱雨,范斌,郑侃.TDD/CDMA上行系统多业务接人容量[J].北京邮电大学学报,2007,30(4):88-92.
【论文关键词】战略管理资本运作企业文化治理结构
【论文摘要】经过20多年的发展,中兴和华为等中国电信设备制造企业通过不懈的努力,已经在很多重要技术领域取得重大突破。中国的电信设备制造企业在成功地实现了从优秀企业到卓越企业的跨越之后,下一个关键的挑战是如何使企业基业常青。本文认为,要想获得长久的发展,中国的电信设备制造企业必须进一步加强技术实力、市场运营能力和资本运营能力。
华为在20年前还是作坊式的小企业,如今销售额达到160亿美元;中兴通讯由一间300万元成立的小公司成长为年收入510亿元人民币的大型企业。为什么这两个曾经不起眼的企业却创造了惊人的业绩?如何能使这些初步获得成功的企业基业常青?本文对此进行了分析和探讨。
一、中国通讯设备制造企业成功的因素分析
1、华为技术。(1)清晰的战略定位。从华为公司的发展历程可以看出,华为多年来一直坚持专业化战略,在产品开发上一直实施业内闻名的“压强战略”,在决定成功的关键技术上“以超过主要竞争对手的强度配置资源,要么不做,要做就极大地集中人力、物力和财力,实现重点突破”。20多年的发展中,“压强战略”始终贯穿于华为的研发、营销和企业文化建设等多各环节,这种清晰的专业化发展战略定位让华为心无旁鹜地致力于基础通讯设备的研发,最终被思科列为未来最具竞争力的对手。
(2)强大的技术研发能力。中国没有哪一家通信企业能像华为这样每年都拿出超过销售额10%的资金用于专门的产品研发,对一个前途未卜的3G持续投资上百亿美元进行开发。华为这个在中国土生土长的民营企业在NGN网络的研发上达到世界领先水平,顺利实现由中低端路由器向高端路由器的转换,最终拥有和国际通讯巨头同场竞技的实力。
(3)强势企业文化。华为公司奉行的是“狼性文化”,狼的三大特性:敏锐的嗅觉;不屈不挠、奋不顾身的进攻精神;群体奋斗。“狼性文化”的主要表现是:华为在产品研发上大手笔投入,为开发产品而不计成本;为了企业持续发展,积极进行像狼一样的市场攻伐。《华为基本法》第一条就写道:“通过无依赖的市场压力传递,使内部机制永远处于激活状态”。狼性文化促使华为始终为了自身的进步不停奋斗着。
(4)强大的市场营销能力。华为的营销战在业界历来以快、狠、准著称,不管是在创业初期推行的“农村包围城市”还是在发展过程中令对手叹为观止的客户关系经营,华为的目标只有一个:拿到订单,占领市场。作为公认的“营销帝国”,华为总能采用最有效的营销模式快速占领市场。
2、中兴通讯。(1)明确的战略定位。与华为的专业化发展战略不同,中兴一贯将自己的战略定位在多元化、差异化上。20多年来中兴通讯一向采取低成本稳定发展战略,至今成为惟一拥有全套自主开发、自主品牌基站及交换系统的中国厂商。在研发与营销投入上,中兴并不像华为那么大手笔,中兴租用的办公楼都是不显眼的办公楼。
(2)市场导向,而非产品导向。2003年中兴的销售额曾历史性地超过了华为。中兴超越华为主要在CDMA和小灵通两个产品上,表面上这只是两个产品的问题,但实际却是战略的问题。中国联通最开始选择IS-95A增强型CDMA技术而放弃CDMA1X这种更为先进的技术,其重要原因是建设经营CDMA网络的国家大都采用IS-95A技术。中兴认准中国必然会采用成熟的技术而非最先进的技术才能保证网络的安全可靠。
中兴通讯开发小灵通产品可说是运用了“蓝海战略”。虽然小灵通被认为是被淘汰的技术,但中兴通讯还是决定专门从事小灵通产品的设计和研发。在中兴看来,中国农村面积广阔,固定电话需求较少,用户分布零散,但仍然需要铺设大量的线路,缆线维护成本较高,小灵通通信可以解决有线通信实施过程中的难题。事实证明中兴通讯公司的决策是正确的,小灵通为中兴创造了丰厚的利润。
(3)“中庸之道”的企业文化。从中兴的发展历程可以看出,中兴一直采取稳中求进、低成本开发的战略,这与中兴的“中庸文化”有着密切关系。首先,中兴能够把握国内市场的每一个热点。从GSM、CDMA到小灵通以及到现在的TD-SCDMA,中兴几乎能够把握每一个国内市场的热点。如在手机终端产品呈爆发性增长的2002年,中兴通讯也没被落下。中兴通讯是国内唯一提供GSM、CDMA和PHS三大系列产品的手机生产企业,在CDMA、PHS手机上获利丰厚。其次,中兴拥有齐全的产品线。据说中兴拥有世界上最齐全的产品线,“不将鸡蛋都放在一个篮子里”是中兴始终坚持的做法。
二、中国电信设备制造企业可持续发展中的问题分析
1、性价比优势丧失。华为、中兴在海外市场的成功,很大程度上归于利用国内的人力成本优势,向电信市场提供更具性价比的电信解决方案,挑战成本极限。据统计,欧洲企业研发人员的年均工作时间只有1300—1400小时,而华为研发人员的年均工作时间却达到了2750小时,是欧洲同行的两倍。与此同时,华为研发的人均费用只有2.5万美元/年,而欧洲企业研发的人均费用大约为12—15万美元/年,是华为的6倍。正是依靠不计多干、苦干,华为在产品响应速度和客户服务方面反应较快,研发投入产出比接近大多数西方公司的10倍,这就是华为低成本的核心所在。
电信设备企业的几次大兼并,爱立信兼并马可尼、阿尔卡特与朗讯合并、诺基亚与西门子合并,除了增强产品线和扩大市场覆盖范围的考虑以外,最大的希望还是节省成本。当华为还在奋力追赶北电、朗讯等二流电信设备商时,全球的电信设备市场只剩下爱立信、阿尔卡特—朗讯、诺基亚—西门子、思科和摩托罗拉等五大玩家,华为以前产品的性价比优势逐步消失,而完成整合的巨头们下一步的目标则必然会对准华为。2、缺乏市场应变的战略管理能力。国际电信巨头在短时间内完成合并使我们看到了他们优秀的战略管理和实施的能力。这种能力体现在对市场的清晰和完整的认识,对行业发展趋势的有效把握,对市场挑战和威胁的及时预警,对企业自身定位和战略的理性的思考。
中国企业刚刚进入国际化竞争,在灵敏度和企业战略应变上还需要加强。虽然华为也曾与马可尼谈判过收购,也曾同西门子商量过兼并,但是都没有成功。由于中国企业应对变化的战略不够明确和肯定,在落实的细节上过多地纠缠、犹豫不定,并且缺少跨国并购经验的经验,导致了落实行动的迟缓。
3、技术研发能力不足。由于外国企业申请的专利太多,目前在许多领域已经形成了坚实的技术壁垒,如当前移动通信领域大部分专利仍掌握在日、美、韩等国手中,而且这些国家都拥有移动通信领域的世界级企业,如三星、松下、爱立信、日本电气、高通等,专利的申请人也多是这些企业。现在由中国提交并被采纳为国际标准的数量较少,领域狭窄。在20世纪90年代以前,国外的大制造企业的科研投入一般为年销售额的4%左右,进入90年代后这种投入明显加大,为10%左右。近年为了研究和开发3G移动技术和其他新技术,国外有的大公司对移动通信的科技投入提升到16%。就科研投入的比例而言,中国一些大的通信设备制造商的科研投入比例也相当大,但由于中国通信设备制造商的生产规模无法与国外大型制造商相比,所以从绝对值看,目前国内通信设备制造商的科研投入仍然很少,与国外存在较大的差距。科技投入低导致了中国通信制造企业自主开发创新能力的薄弱,
三、结论
经过20多年的发展,中兴和华为这样的中国电信设备制造企业通过自己不懈的努力,已经在很多重要技术领域取得重大突破,但在规模、技术、品牌等方面与跨国企业的差距依然很大。中国的电信设备制造企业在成功地实现了优秀到卓越的跨越之后,下一个关键的挑战是如何使企业能基业常青。中国的电信设备制造企业必须进一步加强技术实力、市场运营能力和资本运营能力,这样才能在激烈的国际市场竞争中保证企业的长久生存和发展。
【参考文献】
[1]钱悦:世界主流通信制造企业整合对中国通信业的影响的研究[D].北京邮电大学,2007.
[2]成媛:我国通信设备企业发展战略比较研究[D].华东师范大学,2007.
[3]王学人:以资本经营战略推动我国电信企业国际化[J].WORLDTELECOMMUNICATIONS,2006(5).
[4]文跃然:华为的软肋[J].企业管理,2003(10).
关键词:TDD/CDMA;动态信道分配;智能天线;时隙
中图分类号:TP393文献标识码:A 文章编号:1009-3044(2008)36-2591-03
Investigation of Dynamic Channel Allocation Technology in TDD/CDMA Systems
JIANG Lun, HUI Xiao-wei,WU Hong-rui
(Electronics and Information Engineering Department, Liaoning Technical University Liaoning, Huludao 125105,China)
Abstract: In this paper, we systematic discuss the dynamic channel assignment algorithms base on the TD-SCDMA system radio resource management strategy. We first summarize and compare the exiting dynamic channel assignment methods in TDD-CDMA system. Base on the TD-SCDMA system, the slow DCA algorithm, fast DCA algorithm and space distributing DCA algorithm are proposed,and their features and applicabilities are respectivelv illuminated. In this paper, the problem of how to improve the channel usability of TDD CDMA system is discussed.
Key words: TDD/CDMA; dynamic channel allocation;smart antenna;time slot
1 引言
目前,TD-SCDMA己经成为国际电联(ITU)采纳的第三代移动通信三个标准之一。TD-SCDMA系统是基于同步码分多址技术(SCDMA },使用时分双工(TDD)方式的未来通信系统。该系统采用了联合检测、智能天线、上行同步、接力切换、动态信道分配等技术。
其中动态信道分配是TDD/CDMA系统中重要的研究领域之一。TD-SCDMA系统中的任何一条物理信道都是通过它的载频/时隙/扩频码的组合来标记的,采用动态分配信道(DCA)的方式将信道资源分配给用户。在DCA技术中,信道并不是固定地分给某个小区,而是被集中在一起进行分配。只要能提供足够的链路质量,任何小区都可以将空闲信道分给呼叫。在实际运行中,无线网络控制器(RNC)集中管理一些小区的可用资源,根据各个小区的网络性能参数、系统负荷情况和业务的QoS参数,动态地将信道分配给用户。因此,要充分发挥TDD技术的优势,关键在于其信道分配算法的有效性。
2 动态信道分配技术全过程
TD-SCDMA中的DCA可分为两个实施阶段,一个阶段是慢速DCA,指对小区的资源分配,包括对不同小区的时隙分配以及在上/下行之间的时隙分配和预先为各小区按照时隙优先级排列的时隙优先级列表。另一个阶段是快速DCA,快速DCA算法就是将时隙、扩频码、频率这些信道资源分配给具体不同业务呼叫的用户,并根据系统对已分配的信道资源进行调整或重新分配。整个动态信道分配过程见图1。
慢速DCA主要根据小区内业务不对称性的变化,动态地划分上下行时隙,使上下行时隙的比例和上下行业务负载的比例关系相匹配,以获得最佳的频谱效率。TD-SCDMA系统可以灵活地划分上下行时隙,从而提升系统容量,但是交叉时隙干扰较大时(即一个小区处于上行同时邻近小区处于下行传输的时隙),会导致系统容量损失。这就需要综合考虑业务量之比动态分配各个小区上下行的资源,产生最小呼损率,又要使系统的容量最大化。
图1 TD-SCDMA系统动态信道分配实现全过程
信道优先级排队算法是为接入控制算法做准备的,一般根据各时隙的干扰水平的不同来设置各时隙的优先级,当新呼叫到来时,通过查找时隙的优先级列表(上下行分开),按优先级从高到低的时隙顺序开始接入系统。
信道选择即为承载业务选择频率/时隙和码道。当用户终端申请一项业务或者需要进行切换时用户根据小区选定频率,然后根据信道优先级排队算法找到优先级最高的时隙,如果时隙的空余资源满足呼叫业务的资源要求,且通过了接纳控制过程,则接入此时隙;如果此时隙不满足资源要求,刚检测优先级次之的时隙;如果所有的时隙均不满足时,则触发资源整合过程。当频率、时隙都确定好后,就调用码分配算法进行扩频码的选择,扩频码的选择还要综合考虑扩频码的利用效率和本时隙已用扩频码之间的相关性,对于同频组网的系统还要考虑与相邻小区的同时隙上所用扩频码的相关性。
信道调整过程是指RNC根据承载业务的要求、终端的移动和干扰的变化等因素,在链路质量恶化、系统负荷过大,不满足用户业务服务质量的情况下,触发DCA算法执行信道调整过程,调整用户占用的时隙和码道,以均衡负荷、避免强干扰的出现、维持链路质量、减少掉话率,从而保证服务质量。
资源整合过程通过信道调整或压缩低优先级业务占用的信道等于段把可用的资源单元(RU)尽量集中在一个时隙,目的是提高系统的资源利用率、业务(尤其是高速率业务)接入成功率和切换成功率。
3动态信道分配技术研究现状
当前对TD-SCDMA系统中的DCA的算法多种多样,但多数算法都是围绕着以下几个研究关键问题进行:支持上下行不对称的多种业务;小区上/下行时隙比例的确定;合适地分配时隙,提高时隙的利用率;尽量地降低各种干扰,提高系统容量。为了解决以上问题,TD-SCDMA系统采用了包括慢速信道分配算法、快速信道分配算法以及考虑空间分布信息的信道分配方案三种分配方式。但每种方法都只是一种所谓的理想信道分配方案,只存在某种特定环境下,满足某种要求的最优信道分配方案。
3.1基于慢速DCA分配方式
慢速DCA主要的目的是根据业务量之比,提高系统容量利用率,降低交叉时隙干扰。一种方法是采用小区簇分配方法避免交叉时隙干扰[1],每一簇推选一个业务量最高的小区为“热点小区”,热点小区根据自身的业务状况调整上/下行比例,整个簇采用和热点小区相同的上/下行比例分配。即使存在交叉时隙干扰,那么也发生在话务量较小的边缘小区,不会太大的影响系统性能。文献[1]仿真表明小区簇个数为7,系统仿真性能最佳。另一种方式所有小区上/下行时隙分配都不同的DCA[2]。每个小区都可以根据自身的业务情况来改变上/下行时隙的分配比例,使单小区的性能理论上可能达到最大。这种方法明显优于前面相同上/下行时隙分配的方案,但是由于引入了交叉时隙的干扰,系统的总容量达不到最佳。
文献[3]结合了热点小区方案和非热点小区方案各自的优点,充分考虑了交叉时隙干扰和系统单向时隙资源受限问题,找到了一个非热点小区是否服从热点小区时隙比例分配的不等式条件。基于此条件,提出了一种改进的热点小区慢速DCA方案,在满足不等式条件时采用热点小区方案,如果不满足不等式,采用无热点小区方案。由此,可以保证在任何业务场景的情况下都可以得到较高的系统资源利用率。
3.2基于快速DCA分配方式
对于快速DCA,主要的方法有时隙优先权法[4],可变边界法[5]等。时隙优先权法是按照各时隙干扰值的大小进行优先级排序,按照业务要求分配资源,并且优先级列表应能够连续地进行更新。但由于3G网络支持的各种业务有不同的QoS要求,仅仅依靠时隙所受干扰大小还不能够很好地反映时隙所能提供的通信质量。一个改进方案是按时隙内承载的不同业务的QoS要求,计算时隙内所能容忍的干扰极限,把这个干扰极限称作干扰容量,减去时隙现在所受的干扰得到剩余干扰容量,按照剩余干扰容量的大小为时隙赋不同的优先权,按优先权的大小对时隙进行排队。此种方案能更准确的提供通信链路质量。
图2 小区间的交叉时隙干扰
移动边界策略和资源预留策略是在混合业务固定资源分配的算法之上,动态的调整用于语音业务和用于数据业务的资源单元数在传输过程中,如果语音业务信道有空闲而数据业务信道满负荷时,将语音信道借用给数据信道,在新的语音业务到达时还给语音业务,从而提高资源利用率,改善系统性能。另外,在不同业务资源分配时,考虑用户所占用的资源如果在一个时隙下能够得到满足尽量不占用多时隙资源的原则,需要为具有高优先级的业务预留资源。分配码资源也采用预留的方法,而不把某时隙下的资源全预分配给相同业务。从而更灵活的分配系统资源,提高资源利用率。
3.3 考虑空间分布信息的信道分配算法
TD-SCDMA是基于智能天线技术而设计的,对智能天线技术与信道分配算法结合的研究是TD-SCDMA系统的特色,也是我们将来研究的重点。采用智能天线进行波束赋形后,只有来自主瓣和较大旁瓣方向的干扰才会对用户产生干扰,因此信道可以进行复用。
文献[6]中介绍了一种基于均匀空间分布的快速DCA算法,改进了传统DCA方法,它不但要考虑干扰的大小,还要考虑同时隙中用户空间分布的情况。DCA在进行信道分配时,能够尽量地把相同方向上的用户分散到不同的时隙中,使得在一个时隙内的用户分布在不同的方向上,这样可以充分智能天线的空分功效,使多址干扰降到最小。具体算法是首先通过干扰测量,动态的确立几个具有相同或相似干扰强度的时隙,然后将这几个时隙按方位角划分,如果对4个时隙进行划分,当有新用户提出信道需求时,首先测量用户方位,然后按照时隙的方位划分分配相应的时隙信道。例如,4个时隙有32个用户接入,如果系统不采用这种DCA方法,用户随机接入,同一时隙码分用户的分布也是随机的;采用这种DCA方法后,同时隙用户的空间分布将得到明显改善。此种改进方法,无论实际组网还是仿真验证,系统链路性能都有一定的改善
另外,基于智能天线的交叉时隙分配法可以提高信道资源利用率。文献[7]中基于小区分区的慢速DCA方案利用智能天线的定位作用,将小区分为内小区和外小区两层区域,只将交叉时隙分配给靠近基站的内小区用户,外小区的业务将不再受交叉时隙的干扰,从而减小系统中的交叉时隙干扰,提高系统容量。根据传播损耗和交叉时隙占总时隙比例分区的方法,祢补了由BS-BS,MS-MS交叉时隙干扰所带来的时隙资源损失。但相对于BS-BS,MS-MS交叉时隙干扰发生概率小(只有在业务量大,小区业务差别较大时发生),传播损耗大,移动台发射功率小等原因,MS-MS交叉时隙干扰容易克服;而基站发射功率大,基站间的无线传播环境较好,路径损耗指数较小,那么需要设置的隔离距离达到几十公里,才能保证基
站间干扰在可接受的范围内,这显然是不实际的。文献[8]利用智能天线特点,可以巧妙地解决相邻基站间干扰过大的问题,通过合理设置具有基站间干扰的两个小区的时隙优先级,避免把交叉时隙分配给处于两基站连线附近的移动台。
4 结束语
总之,TD-SCDMA系统的动态信道分配以及整个无线资源管理的算法研究是第三代移动通信系统中的关键技术。目前提出的任何一种解决方案总是不同矛盾折中的结果,在实际的组网中到底采用何种方案才是合理、可行,要根据具体的情况而定。而且现在关于TDD模式的无线资源管理的研究相对于FDD模式来说还很少,要给出TDD模式下无线资源管理算法完备的解决方案,还需要不断深入研究,另外如何在优化分配方案的是同时,提高算法的执行效率,还是进一步研究的主要课题。随着3G移动通信系统的不断发展,TD-SCDMA标准的发牌和商用,无线资源管理必将获得更广泛的关注和更深入的发展。
参考文献
[1] T Kriengchaiyapruk, et al. Adaptive switching point allocation in TD/CDMA systems. Proc, VTC 2002:1456-1460.
[2] 毛磊,谢永斌,李楠.TD-SCDMA系统中的慢速动态信道分配技术.数据通信.2004 (1):11-13.
[3] 殷传涛,范平志.TD-SCMDA系统动态信道资源分配研究.硕士学位论文.西南交通大学.2006.
[4] 刘洋,马军.TD-SCDMA系统中的动态信道分配.无线电工程.2002 (10):38-41,45.
[5] Y. Cao, et al. Dynamic channel allocation in TD-SCDMA. Proc, ICCT 2003:1129-1132.
[6] 昆仑,李世鹤,张中兆.一种对TD-SCDMA系统动态信道分配方法的改进.通信技术.2003(5) :50-51,54.
论文摘 要:随着因特网、多媒体和无线通讯技术的发展,人们与信息网络已经密不可分。当今无线通讯在人们的生活中扮演着越来越重要的角色,低功耗、微型化是用户对当前无线通讯产品尤其是便携产品的强烈追求,作为无线通讯技术一个重要分支的短距离无线通讯技术正逐渐引起越来越广泛的关注。本文通过Bluetooth和UWB的技术对比及多角度的分析,证实了蓝牙+UWB作为下一代高速无线通讯技术的可能。
前言
目前,我国大型石化企业在厂内的通讯方式,一般仍然采用传统的有线传输方式,即依靠有线通讯电缆来传输信号,配合以传统的程控交换机和防爆电话,防爆扬声器等等设备终端来实现在防爆区与非防爆区之间的通讯。这样的通讯系统庞大,线缆众多不易于人员维护,加之厂区内部腐蚀性气体,工作环境,自然环境等经年累月极容易造成设备的线缆损坏,影响通讯,由于是有线电缆连接在事故发生时更加容易遭受破坏。一旦通讯中断,对企业的事故救援,员工的人身安全,都造成巨大的损失。所以要大力发展无线通讯网络在企业的应用。 1、无线通讯技术的重要作用
石化工厂厂区面积大,人员分布散,防爆区内移动作业人员和零散作业人员众多。无线通讯系统对满足人员通讯需要,加强防爆区内分布人员的动态管理,优化厂区网路结构,实现企业安全生产,调度指挥的有线,无线互联互通,相互结合的信息传递,保证企业安全高效的生产具有十分重大的现实意义。
2、常用的无线通讯技术分析
目前广泛应用的无线通讯技术主要有GPRS/CDMA、数传电台、扩频微波、无线网桥及卫星通信、短波通信技术等。 2.1 数字电台用于点对点或点对多点的工作环境,能够提供标准RS-232接口,可直接与计算机、RTU、PLC等数据终端连接,实现透明传输。数传电台的传输速率从1200~19.2Kbit,传输距离20~50公里。具有抗干扰能力强、接收灵敏度高等特点。数传电台技术比较成熟,标准统一。但随着GPRS/CDMA技术的日渐成熟,相应的设备价格的降低,使得在很多应用场合中数传电台被GPRS/CDMA所取代。但同时,数传电台的相关技术也在不断发展,智能化、网络化、高带宽的数传电台也不断涌现。
2.2 扩频微波和无线网桥技术是近几年兴起的一门数据传输技术。扩频微波最大优点在于较强的抗干扰能力,以及保密、多址、组网、抗多径等,同时具有传输距离远、覆盖面广等特点,特别适合野外联网应用。而无线网桥是无线射频技术和传统的有线网桥技术相结合的产物。无线网桥是为使用无线(微波)进行远距离数据传输的点对点网间互联而设计。它是一种在链路层实现LAN互联的存储转发设备,可用于固定数字设备与其他固定数字设备之间的远距离(可达50km)、高速(可达百Mbps)无线组网。这两项技术都可以用来传输对带宽要求相当高的视频监控等大数据量信号传输业务。
3、短距离无线通讯技术简介
“蓝牙(Bluetooth)”是一个开放性的、短距离无线通讯技术标准,也是目前国际上最新的一种公开的无线通讯技术规范。它可以在较小的范围内,通过无线连接的方式安全、低成本、低功耗的网络互联,使得近距离内各种通讯设备能够实现无缝资源共享,也可以实现在各种数字设备之间的语音和数据通讯。由于蓝牙技术可以方便地嵌入到单一的CMOS芯片中,因此特别适用于小型的移动通讯设备,使设备去掉了连接电缆的不便,通过无线建立通讯。 蓝牙技术以低成本的近距离无线连接为基础,采用高速跳频(Frequency Hopping)和时分多址(Time Division Multi-access—TDMA)等先进技术,为固定与移动设备通讯环境建立一个特别连接。作为一个新兴技术,蓝牙技术的应用还存在许多问题和不足之处,如成本过高、有效距离短及速度和安全性能也不令人满意等。但毫无疑问,蓝牙技术已成为近年应用最快的无线通讯技术,它必将在不久的将来渗透到生活的各个方面。
4、超宽带(UWB)技术研究
超宽带(Ultra-wideband—UWB)技术起源于20世纪50年代末,此前主要作为军事技术在雷达等通讯设备中使用。随着无线通讯的飞速发展,人们对高速无线通讯提出了更高的要求,超宽带技术又被重新提出,并倍受关注。UWB是指信号带宽大于500MHz或者是信号带宽与中心频率之比大于25%的无线通讯方案。与常见的使用连续载波通讯方式不同,UWB采用极短的脉冲信号来传送信息,通常每个脉冲持续的时间只有几十皮秒到几纳秒的时间。因此脉冲所占用的带宽甚至高达几GHz,因此最大数据传输速率可以达到几百分之一。在高速通讯的同时,UWB设备的发射功率却很小,仅仅是现有设备的几百分之一,对于普通的非UWB接收机来说近似于噪声,因此从理论上讲,UWB可以与现有无线电设备共享带宽。UWB是一种高速而又低功耗的数据通讯方式,它有望在无线通讯领域得到广泛的应用。UWB的特点如下:
4.1 抗干扰性能强:UWB采用跳时扩频信号,系统具有较大的处理增益,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。 4.2 传输速率高:UWB的数据速率可以达到几十Mbit/s到几百Mbit/s,有望高于蓝牙100倍。 4.3 带宽极宽:UWB使用的带宽在1GHz以上,高达几个GHz。超宽带系统容量大,并且可以和目前的窄带通讯系统同时工作而互不干扰。 4.4 消耗电能少:通常情况下,无线通讯系统在通讯时需要连续发射载波,因此要消耗一定电能。而UWB不使用载波,只是发出瞬间脉冲电波,也就是直接按0和1发送出去,并且在需要时才发送脉冲电波,所以消耗电能少。 4.5 保密性好:UWB保密性表现在两方面:一方面是采用跳时扩频,接收机只有已知发送端扩频码时才能解出发射数据;另一方面是系统的发射功率谱密度极低,用传统的接收机无法接收。 4.6 发送功率非常小:UWB系统发射功率非常小,通讯设备可以用小于1mW的发射功率就能实现通讯。低发射功率大大延长了系统电源工作时间。 4.7 成本低,适合于便携型使用:由于UWB技术使用基带传输,无需进行射频调制和解调,所以不需要混频器、过滤器、RF/TF转换器及本地振荡器等复杂元件,系统结构简化,成本大大降低,同时更容易集成到CMOS电路中。
5、结束语
总之,无线通讯方式由于其建立物理链路简单易行,成本低,可以根据现场需求及时调整项目方案,灵活性好,系统的功能扩展方便,因此特别适合石化行业对通信链路的要求。
参考文献
[1]方旭明,何蓉.短距离无线与移动通讯网络[M].北京:人民邮电出版社,2004.
[2]刘乃安.无线局域网(WLAN)—原理、技术与应用[M].西安电子科技大学出版社,2004.
论文摘要:21世纪移动通信技术和市场飞速发展,在新技术和市场需求的共同作用下,未来移动通信技术将呈现以下几大趋势:网络业务数据化、分组化,移动互联网逐步形成;网络技术数字化、宽带化;网络设备智能化、小型化;应用于更高的频段,有效利用频率;移动网络的综合化、全球化、个人化;各种网络的融合;高速率、高质量、低费用。这正是第四代(4G)移动通信技术发展的方向和目标。
一、引言
移动通信是指移动用户之间,或移动用户与固定用户之间的通信。随着电子技术的发展,特别是半导体、集
成电路和计算机技术的发展,移动通信得到了迅速的发展。随着其应用领域的扩大和对性能要求的提高,促使移动通信在技术上和理论上向更高水平发展。20世纪80年代以来,移动通信已成为现代通信网中不可缺少并发展最快的通信方式之一。
回顾移动通信的发展历程,移动通信的发展大致经历了几个发展阶段:第一代移动通信技术主要指蜂窝式模拟移动通信,技术特征是蜂窝网络结构克服了大区制容量低、活动范围受限的问题。第二代移动通信是蜂窝数字移动通信,使蜂窝系统具有数字传输所能提供的综合业务等种种优点。第三代移动通信的主要特征是除了能提供第二代移动通信系统所拥有的各种优点,克服了其缺点外,还能够提供宽带多媒体业务,能提供高质量的视频宽带多媒体综合业务,并能实现全球漫游。现在用的大多是第二代技术,第三代技术还不太成功,但已有了第四代技术的设想。第四代移动通信系统(4G)标准比第三代具有更多的功能。
二、4G移动通信简介
第四代移动通信技术的概念可称为宽带接入和分布网络,具有非对称的超过2Mbit/s的数据传输能力。它包括宽带无线固定接入、宽带无线局域网、移动宽带系统和交互式广播网络。第四代移动通信标准比第三代标准拥有更多的功能。第四代移动通信可以在不同的固定、无线平台和跨越不同的频带的网络中提供无线服务,可以在任何地方用宽带接入互联网(包括卫星通信和平流层通信),能够提供定位定时、数据采集、远程控制等综合功能。此外,第四代移动通信系统是集成多功能的宽带移动通信系统,是宽带接入IP系统。目前正在开发和研制中的4G通信将具有以下特征:
(一)通信速度更快
由于人们研究4G通信的最初目的就是提高蜂窝电话和其他移动装置无线访问Internet的速率,因此4G通信的特征莫过于它具有更快的无线通信速度。专家预估,第四代移动通信系统的速度可达到10-20Mbit/s,最高可以达到100Mbit/s。
(二)网络频谱更宽
要想使4G通信达到100Mbit/s的传输速度,通信运营商必须在3G通信网络的基础上对其进行大幅度的改造,以便使4G网络在通信带宽上比3G网络的带宽高出许多。据研究,每个4G信道将占有100MHz的频谱,相当于W-CDMA3G网络的20倍。
(三)多种业务的完整融合
个人通信、信息系统、广播、娱乐等业务无缝连接为一个整体,满足用户的各种需求。4G应能集成不同模式的无线通信——从无线局域网和蓝牙等室内网络、蜂窝信号、广播电视到卫星通信,移动用户可以自由地从一个标准漫游到另一个标准。各种业务应用、各种系统平台间的互联更便捷、安全,面向不同用户要求,更富有个性化。而且4G手机从外观和式样上看将有更惊人的突破,可以想象的是,眼镜、手表、化妆盒、旅游鞋都有可能成为4G终端。
(四)智能性能更高
第四代移动通信的智能性更高,不仅表现在4G通信的终端设备的设计和操作具有智能化,更重要的是4G手机可以实现许多难以想象的功能。例如,4G手机将能根据环境、时间以及其他因素来适时提醒手机的主人。
(五)兼容性能更平滑
要使4G通信尽快地被人们接受,还应该考虑到让更多的用户在投资最少的情况下轻易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能跟多种网络互联、终端多样化以及能从2G、3G平稳过渡等特点。
(六)实现更高质量的多媒体通信
4G通信提供的无线多媒体通信服务将包括语音、数据、影像等,大量信息透过宽频的信道传送出去,为此4G也称为“多媒体移动通信”。
(七)通信费用更加便宜
由于4G通信不仅解决了与3G的兼容性问题,让更多的现有通信用户能轻易地升级到4G通信,而且4G通信引入了许多尖端通信技术,因此,相对其他技术来说,4G通信部署起来就容易、迅速得多。同时在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,这样就能够有效地降低运营成本。
三、4G移动通信的接入系统
4G移动通信接入系统的显著特点是,智能化多模式终端(multi-modeterminal)基于公共平台,通过各种接技术,在各种网络系统(平台)之间实现无缝连接和协作。在4G移动通信中,各种专门的接入系统都基于一个公共平台,相互协作,以最优化的方式工作,来满足不同用户的通信需求。当多模式终端接入系统时,网络会自适应分配频带、给出最优化路由,以达到最佳通信效果。目前,4G移动通信的主要接入技术有:无线蜂窝移动通信系统(例如2G、3G);无绳系统(如DECT);短距离连接系统(如蓝牙);WLAN系统;固定无线接入系统;卫星系统;平流层通信(STS);广播电视接入系统(如DAB、DVB-T、CATV)。随着技术发展和市场需求变化,新的接入技术将不断出现。
不同类型的接入技术针对不同业务而设计,因此,我们根据接入技术的适用领域、移动小区半径和工作环境,对接入技术进行分层。
分配层:主要由平流层通信、卫星通信和广播电视通信组成,服务范围覆盖面积大。
蜂窝层:主要由2G、3G通信系统组成,服务范围覆盖面积较大。
热点小区层:主要由WLAN网络组成,服务范围集中在校园、社区、会议中心等,移动通信能力很有限。
个人网络层:主要应用于家庭、办公室等场所,服务范围覆盖面积很小。移动通信能力有限,但可通过网络接入系统连接其他网络层。
固定网络层:主要指双绞线、同轴电缆、光纤组成的固定通信系统。
网络接入系统在整个移动网络中处于十分重要的位置。未来的接入系统将主要在以下三个方面进行技术革新和突破:为最大限度开发利用有限的频率资源,在接入系统的物理层,优化调制、信道编码和信号传输技术,提高信号处理算法、信号检测和数据压缩技术,并在频谱共享和新型天线方面做进一步研究。为提高网络性能,在接入系统的高层协议方面,研究网络自我优化和自动重构技术,动态频谱分配和资源分配技术,网络管理和不同接入系统间协作。提高和扩展IP技术在移动网络中的应用;加强软件无线电技术;优化无线电传输技术,如支持实时和非实时业务、无缝连接和网络安全。
四、4G移动通信系统中的关键技术
(一)定位技术
定位是指移动终端位置的测量方法和计算方法。它主要分为基于移动终端定位、基于移动网络定位或者混合定位三种方式。在4G移动通信系统中,移动终端可能在不同系统(平台)间进行移动通信。因此,对移动终端的定位和跟踪,是实现移动终端在不同系统(平台)间无缝连接和系统中高速率和高质量的移动通信的前提和保障。
(二)切换技术
切换技术适用于移动终端在不同移动小区之间、不同频率之间通信或者信号降低信道选择等情况。切换技术是未来移动终端在众多通信系统、移动小区之间建立可靠移动通信的基础和重要技术。它主要有软切换和硬切换。在4G通信系统中,切换技术的适用范围更为广泛,并朝着软切换和硬切换相结合的方向发展。
(三)软件无线电技术
在4G移动通信系统中,软件将会变得非常繁杂。为此,专家们提议引入软件无线电技术,将其作为从第二代移动通信通向第三代和第四代移动通信的桥梁。软件无线电技术能够将模拟信号的数字化过程尽可能地接近天线,即将A/D和D/A转换器尽可能地靠近RF前端,利用DSP进行信道分离、调制解调和信道编译码等工作。它旨在建立一个无线电通信平台,在平台上运行各种软件系统,以实现多通路、多层次和多模式的无线通信。因此,应用软件无线电技术,一个移动终端,就可以实现在不同系统和平台之间,畅通无阻的使用。目前比较成熟的软件无线电技术有参数控制软件无线电系统。
(四)智能天线技术
智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,能满足数据中心、移动IP网络的性能要求。智能天线成形波束能在空间域内抑制交互干扰,增强特殊范围内想要的信号,这种技术既能改善信号质量又能增加传输容量。
(五)交互干扰抑制和多用户识别
待开发的交互干扰抑制和多用户识别技术应成为4G的组成部分,它们以交互干扰抑制的方式引入到基站和移动电话系统,消除不必要的邻近和共信道用户的交互干扰,确保接收机的高质量接收信号。这种组合将满足更大用户容量的需求,还能增加覆盖范围。交互干扰抑制和多用户识别两种技术的组合将大大减少网络基础设施的部署,确保业务质量的改善。
(六)新的调制和信号传输技术
在高频段进行高速移动通信,将面临严重的选频衰落(frequency-selectivefading)。为提高信号性能,研究和发展智能调制和解调技术,来有效抑制这种衰落。例如正交频分复用技术(OFDM)、自适应均衡器等。另一方面,采用TPC、Rake扩频接收、跳频、FEC(如AQR和Turbo编码)等技术,来获取更好的信号能量噪声比。
五、OFDM技术在4G中的应用
若以技术层面来看,第三代移动通信系统主要是以CDMA为核心技术,第四代移动通信系统技术则以正交频分复用(OrthogonalFreqencyDivisionMultiplexer,OFDM)最受瞩目,特别是有不少专家学者针对OFDM技术在移动通信技术上的应用,提出相关的理论基础。例如无线区域环路(WLL)、数字音讯广播(DAB)等,都将在未来采用OFDM技术,而第四代移动通信系统则计划以OFDM为核心技术,提供增值服务。
在时代交替之际,旧有系统之整合与升级是产业关心的话题,目前大家谈的是GSM如何升级到第三代移动通信系统;而未来则是CDMA如何与OFDM技术相结合。可以预计,CDMA绝对不会在第四代移动通信系统中消失,而是成为其应用技术的一部份,或许未来也会有新的整合技术如OFDM/CDMA产生,前文所提到的数字音讯广播,其实它真正运用的技术是OFDM/FDMA的整合技术,同样是利用两种技术的结合。因此未来以OFDM为核心技术的第四代移动通信系统,也将会结合两项技术的优点,一部份将是以CDMA的延伸技术。
六、结束语
对于现在的人来说,未来的4G通信的确显得很神秘,不少人都认为第四代无线通信网络系统是人类有史以来最复杂的技术系统。总的来说,要顺利、全面地实施4G通信,还将可能遇到一些困难。
首先,人们对未来的4G通信的需求是它的通信传输速度将会得到极大提升,从理论上说最高可达到100Mbit/s,但手机的速度将受到通信系统容量的限制。据有关行家分析,4G手机将很难达到其理论速度。
其次,4G的发展还将面临极大的市场压力。有专家预测,在10年以后,2G的多媒体服务将进入第三个发展阶段,此时覆盖全球的3G网络已经基本建成,全球25%以上的人口使用3G,到那时,整个行业正在消化吸收第三代技术,对于4G技术的接受还需要一个逐步过渡的过程。
因此,在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,使移动通信从3G逐步向4G过渡。
参考文献:
1、谢显忠等.基于TDD的第四代移动通信技术[M].电子工业出版社,2005.
在构建通信及其相关专业的专业基础实践教学体系中,我们紧扣教育部“卓越工程师培养计划”和我校通信与信息类工程应用型人才的培养目标,根据不同专业、不同层次的教学要求,深化教学改革,既保留并规范了原有的基础实验项目,同时,将传统实验与现代信息技术相结合,增加设计性、创新性实验内容,开发了一系列与现代技术相适应的先进的高水平实验项目[3-4],构建了“基础型、应用型、综合型、设计型、创新型”的分层次、循序渐进的实验课程教学体系,相应设置了“基础实验”、“系统仿真实验”、“应用型实验”的实验教学模块,重新制定了课程教学大纲,进行了课程内容的优化与重组,编写了多部实验教材,形成了模块化管理、软硬结合、层次分明、结构完善的实验课程体系,实验内容和实验水平都有了飞跃式的发展。
1实践教学体系的设计思想
在实践教学体系的构建中,设计了分层渐进的体系结构,遵循“基础知识的学习—能力培养—竞赛强化”的实践教学培养思路,即:首先是扎实的基础知识的学习,在此基础上强化能力的培养,最后通过参加各种学科竞赛提升学生的实践动手和创新能力。针对基础知识的学习,设计了基础实验模块,有基于“通信原理综合实验箱”验证性实验、分别利用DSP、ARM和FPGA的设计性实验,通过通信原理实验箱让学生验证点对点通信系统中的基本的调制解调原理、编译码技术、系统性能分析等理论知识,并通过DSP、FPGA和ARM开发系统实现;针对强化能力的培养,设计了系统仿真实验模块,包括基于SystemView的通信系统仿真实验[5]、双语教学的基于Matlab的通信系统仿真实验[6],通过软件仿真平台自行设计由简单到复杂的通信系统,明确各个具体模块的实现方法以及相互之间的关联,从而真正了解整个通信系统的组成及工作原理,在应用型实验模块,包括软件无线电实验和CDMA移动通信系统实验,软件无线电系统中实现较为复杂的调制解调和编译码技术,在CDMA移动通信系统实验中,可以接触到实际系统的构造和工作过程,锻炼动手能力;最后,选拔优秀的学生,参加各种竞赛,提高学生的科技创新能力。
在实践教学体系的设计中,重点突出了以下几点:
(1)各模块之间既相互联系,同时也自成体系,支撑相应的理论教学内容,将基础实验与综合性、设计性实验相结合,将多媒体技术、虚拟技术、网络技术等现代化教学方法与手段相结合,充分利用先进的、丰富多彩的实验教学资源[7];
(2)在实验项目设计中,结合指导学生电子设计竞赛和自制仪器设备,将讲授、讨论、自主实验、课内外实验相结合,开拓学生思路,培养创新精神;
(3)在课程架构设计中,各模块循序渐进,从简单到复杂、从基础到综合、从设计到创新,同时,兼顾和辐射其它的相关专业,如非电类专业的学生建议选做基础实验模块和系统仿真模块中的验证性实验,电类非通信专业的学生建议选做基础和系统仿真实验模块,通信类专业的学生3个模块均可依次选做,外语程度好的学生可以选双语教学“Matlab与通信仿真实验”,也可作为开放实验和研究生实验项目。
(4)实验内容设计紧扣应用型人才培养目标,突出对学生工程实践能力和业务能力的培养。
2实践教学体系的目标
首先,通过构建的分层渐进的体系结构,帮助学生建立通信系统的整体概念;其次,通过验证性、设计性和综合性实验帮助学生对通信系统上至整体架构下至具体模块以及相应的关键技术建立全方位、多层面的认识,对培养学生的工程实践能力和业务能力起到积极的促进作用[8];最后,培养学生综合运用通信基础知识和实验技术的能力,以满足培养通信与信息类高素质工程应用型人才的需要[9]。例如,在基础实验模块中的第1个实验就是借助通信原理综合实验系统实现两部电话机之间的正常通话,让学生对语音信号是如何在两部话机间进行传递的?需要哪些模块?如何连接这些模块?需要哪些关键技术等有一个初步的直观的认识;接下来通过后续的硬件验证性实验对具体的模块(如HDB3模块、PAM模块等)再做进一步的测试,从而验证最初的结论,帮助学生建立通信系统的整体架构和工作流程。在DSP和FPGA开发系统实验中,学生可以通过设计通信系统中的核心功能模块(如FIR滤波器、2FSK模块等),并有选择的搭建基本的通信系统,将理论知识与实践能力有机的结合起来。在系统仿真中,学生可以借助SystemView软件仿真平台自行设计通信系统(如FM系统、PSK系统等),或者借助Matlab软件仿真平台具体分析系统的性能(如AM系统、PCM系统等),从而进一步加深对通信系统的认识。在软件无线电系统中,可以实现较为复杂的通信技术,如:GMSK解调技术、无线多径信道特性实验等,在CDMA移动通信系统上通过工程实践深入理解实际移动通信系统的架构和工作流程。最后,通过组织学生参加各类的竞赛活动,让学生将学到的各方面知识和实践技能得到应用和强化[10-11],从而最终实现教学的目标。
3实践教学体系的效果
(1)激发了学生的创新意识,提高学生的综合实践能力和科研素质,成为科学研究的启蒙教育。学生在进入毕业论文和研究生阶段后,其科研能力表现普遍受到导师们的好评。
(2)激发学生对通信基础实验及系统实验的兴趣。近年来,越来越多的非通信专业学生选修本课程,有些学生在修完本课程后还利用课余时间或暑假进入实验室进一步拓展实验。
(3)多名学生在全国大学生电子设计竞赛、挑战杯大赛中获全国、省级奖:①2007年,参加全国大学生电子设计竞赛,获陕西赛区一等奖1项、三等奖4项;②2008年,参加陕西省数模混合设计竞赛,获陕西赛区一等奖1项;参加全国“博创杯”全国嵌入式竞赛获全国二等奖1项;③2009年,参加全国挑战杯竞赛,获全国二等奖1项、陕西一等奖和二等奖各1项;参加NOC大学生科技创新竞赛,获全国一等奖1项,并捧得最高奖杯;参加全国大学生电子设计竞赛,获陕西赛区二等奖1项。