前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的分析化学论文主题范文,仅供参考,欢迎阅读并收藏。
1.1特殊的教学对象
1)目前多数学生是独生子女,自我为中心的意识很强,他们渴望成功却又缺乏吃苦耐劳的精神,心里想学习却又不具备自我约束的能力;2)基础课程的上课方式多为同专业、甚至是不同专业的多个班级的合班课,学生人数较多,化学基础知识层次不齐,任课教师在课堂上很难做到照顾每一个学生的学习情况,再加上学时数的压缩,学生的学习效果直接面临一些困惑和难题:听课效果不好、抄作业现象常有发生、考试结果不尽如人意、无法与后续专业课程衔接等等;3)非化学专业学生对化学基础课的学习较被动,创新的主动性与积极性不强[3].以某高校园艺专业为例,在大一学年的第二学期,“分析化学”课程往往与英语及一些专业课程同时开课,相比而言,分析化学知识零碎,各类公式多,且抽象、难以理解,学生学习起来有枯燥无味之感,普遍反应记不住,因而缺乏兴趣,积极主动性不高,甚至出现畏惧心理;同时“重专业知识,轻基础知识”的现象也普遍存在.因此如何激发学生学习基础课的兴趣与主动性,最大程度地发挥他们的潜能,是摆在大学基础课教师面前的一个新课题.
1.2繁杂的课程内容
“分析化学”学科在整个学习阶段起着承上启下的作用.它由一系列分析方法所构成,主要包括化学分析法和仪器分析法,经典的化学分析法又可分为重量分析法和滴定分析法;仪器分析法主要有光学分析法、电化学分析法、色谱分析法等等,其中每一种分析方法因响应信号机制不同还可进一步细分.不同的分析方法具有不同的原理、条件、仪器、特点和适用范围等,既相互联系又各自成体系,涉及的知识很广,并且还在以日新月异的速度向前发展,各种新理论、新方法和新技术层出不穷.因此在这样的大背景下,如何在“分析化学”学科的教学中营造一种活跃思维、主动学习、充分体现学生主体地位的氛围,真正地提高课堂的教学效率,是每一位承担这门课程的教师值得思考和探讨的问题.
1.3机械的实验教学
在实验设计方面,简单的验证性实验多,综合设计的研究性实验较少[4],实验内容不能及时反映分析化学的发展现状与相关学科间的渗透交叉,并且多数实验都是在教师的“精心安排”下进行“照方抓药”,学生只需按部就班地跟着教材走就能完成实验,独立思考的机会不多,严重缺乏在方案设计、样品前处理及数据处理等方面的创造性锻炼.在实验授课方面,多数实验课程仍采用传统的“教师先讲解原理———学生接受,然后动手实验”的模式.教师“倾囊相授”,希望将所有的知识点都传授于学生,但与教师的教学热情相反,学生的积极性却往往不高,无动于衷,对实验内容的理解与设计基本依赖于教师的讲解,缺乏对未知知识的探求精神以及独立进行实践操作的能力.在实验操作方面,对于移液、称量等基本操作,虽然教师已详细讲解并演示,学生操作仍不规范,如在减量法称量时直接用手接触称量瓶,未用纸条和纸片;滴定时不注意观察标准溶液滴落点周围的颜色变化,却不时地抬头观察滴定管的读数;未进行半滴操作等.还有一些仪器较为精密、贵重,数量偏少,不能保证每个学生都能掌握所有实验细节,再加上操作步骤较多,一些学生怕操作不当得不到理想的数据,只简单做一些辅助的配合工作,甚至站在旁边“冷眼观看”,基本上是学无所获.综上所述,不难看出,目前“分析化学”实验教学相对比较机械.所以,如何建立新型的分析化学实验课程体系,采用新颖的教学方法,赋予学生更广阔、更自主的学习空间,使学生在知识和能力上获得双丰收,是一个巨大的挑战.
1.4单一的评价方式
多年来,“分析化学”课程的考核方式为期末闭卷考试这种单一的考核形式,课程最终成绩为期末考试的卷面成绩、实验成绩和平时成绩加权后的总评成绩.成绩高的学生可能是“临时抱佛脚”即考前几天突击复习的结果.这种考核方式虽然能较好地考察学生对“分析化学”课程基础知识的储备情况,却不能很好地反映出他们综合分析问题、解决问题的能力.因此,要使学生的创新能力、综合运用知识能力得到真正的提高,必须要建立一套科学的评价方式.
2“分析化学”课程教学改革的主要措施
2.1激发学生兴趣
美国教育家杜威指出:教育不是一件“告诉”和“被告诉”的事情,而是一个主动建设的过程.因此,在教学过程中应充分调动学生的积极性,激发他们的学习兴趣.为此,可采取在传统授课方式的基础上,增加图片、动画效果、视频等多样化的多媒体内容帮助学生理解晦涩难懂的理论内容,并注重与相关学科之间的衔接与联系,适时地把一些化学史、应用实例或社会热点问题引入课堂,使学生认识到理论源于实践,又能指导实践.对于食品类专业的学生,在讲解色谱分析法时,可介绍2008年我国发生的非法添加三聚氰胺的毒奶粉事件,进而向学生提出可用高效液相色谱法测定饲料和植物蛋白粉中的三聚氰胺,此外还可介绍引起社会广泛关注的二噁英、苏丹红、瘦肉精等食品安全事件及奥运会期间兴奋剂的检测;针对生物学专业的学生,在介绍绪论“分析化学”课程的重要性及应用性时,如果只是泛泛地说分析化学在生物医学领域有着非常重要的作用,学生其实并没有深刻的体会,这时可列举在生物大分子研究领域做出重大贡献而获得2002年诺贝尔化学奖的三位分析化学家约翰•芬恩、田中耕一和库尔特•维特里希,紧接着介绍分析化学在他们熟知的领域,如基因组学、蛋白质组学和代谢组学中发挥的重要作用.这种讲授方法不但会使学生进一步认识到“分析化学”课程在其所学专业的重要地位和作用,而且还能开拓他们的视野,最大程度地激发他们的求知欲和创新性,进而参与到分析化学的科研工作中来.另一方面,还应在现代教学理论的指导下,以“教师为主导、学生为主体,并凸显主体”为研究突破口,发挥学生主观能动性,把教师的“教”和学生的“学”统一起来,探索以学生为主体的教学模式,改变现在普遍存在的学生学得枯燥,教师教得艰难,大家都感到无所适从的局面,以达到在教学过程中,学生真正成为学习的主人,“快乐学习”、“学会学习”,最终达到提高人才培养质量的目标.例如,在教学实践中可采取学生参与的方式,先由教师提出分析任务,如水环境中As含量的测定、重要药物溶菌酶的测定[5]等,学生依据兴趣自由分组,先完成综述小论文,再由教师指导讨论各种分析方法的优缺点.这样,学生先是对这些分析任务产生浓厚兴趣,水环境中As的含量究竟是多少?国家标准允许的含量是多少?经常饮用超标水,会对当地人、畜产生怎样的不良后果?在此基础上,深刻认识到准确测定的重要性.通过查阅文献资料,了解到As的测定方法有滴定分析法、原子吸收光度法、电分析方法及紫外-可见吸收光谱法等,最后根据环境水样中As的含量范围及实验室现有的仪器资源,确定选用紫外-可见分光光度法.在此过程中,学生可将课堂中学到的分析方法的评价指标及各种分析方法的原理用于解决实际问题,逐步形成为达到分析目的而应采取的分析化学专业思维的方式和方法.
2.2优化教学内容
“分析化学”课程教材难度大、内容多、学时少,因此,教学改革首先要以优化教学内容为核心,重点突出专业性和实用性:
1)对课程内容进一步优化和精简,压缩同其他基础课程中相同或相近的内容,如氢离子浓度的计算等,这些在普通化学部分章节已经提到,可略讲甚至不讲,让学生自己去复习.
2)对于相似的知识点,应培养学生归纳、比较和触类旁通的能力.在滴定分析法中,可精讲酸碱滴定法,包括滴定分析法的共性(基本原理、滴定曲线、突跃范围及影响因素、指示剂、终点误差和应用等),然后通过对比和归纳手段,讲解配位滴定法和氧化还原滴定法;在讲授紫外-可见分光光度法时,可以给学生列举蛋白质含量测定的光度方法,如考马斯亮蓝染色法、双缩脲法(Biuret法),并将这些方法和之前学习的凯式定氮法相比较,使学生了解各种方法的优缺点.通过这样前后知识的贯通融合,达到了以点带面、以小见大、触类旁通的作用,不但大大节约了课时,也培养了学生自主学习的能力.
3)对于仪器分析内容,应把握教学重点,理清知识主线,突出方法间的联系与区别[6].仪器分析的主要内容实际上就是响应信号与被测物性质(与结构有关)、浓度之间的关系,教师应让学生彻底理解并掌握“利用峰位置可进行定性分析,峰高或峰面积可进行定量分析”这一基本规律.在三大类分析中(包括光谱分析、电分析和色谱分析),利用各自的峰位置可推断被测物的结构信息,而峰面积或峰高则可以反映被测物的含量或浓度信息.这种讲授方法会使学生对仪器分析知识有一整体性的认识,在此基础上再对不同方法进行比较.这样不仅可以收到较好的教学效果,还能帮助学生掌握学习知识的方法,最终达到双赢的目的.
4)将学科的前沿发展动态引入课堂教学.徐光宪院士指出,应把21世纪分析化学生龙活虎、立体多维的形象展示给学生,引起学生对该课程的极大兴趣.因此在实际教学中,应结合课程进度,适度地把学科最前沿的知识和最新的研究动态介绍给学生,注重知识面的补充和延伸.例如,在讲解分光光度法时,可引进现今发展最为迅速的碳纳米材料.碳材料的基本组成元素虽然相同,但由于这些元素的空间排布不同继而可形成不同的形态,有零维的碳点、一维的碳纳米管、二维的石墨烯等,不同的碳材料在紫外-可见光区域有不同的吸收峰,根据吸收峰(尤其是最大吸收波长)的位置可进行定性分析,区分不同的碳材料,根据吸光度的大小可进行定量分析,确定碳材料的浓度或含量.同时可利用透射电镜、原子力显微镜等进一步确定碳材料内部的精确结构,用共聚焦显微成像仪可观察其在细胞内的成像情况,为将其进一步应用在重大疾病的诊断和治疗方面提供理论依据.另外,对于现代分析化学中单细胞实时分析、单分子检测等前沿技术,可以专题的形式介绍给学生.最后,还可以让学生通过图书馆的网络资源(如中文的CNKI和英文的WebofScience)追踪相关领域的最新动态,这样不仅为课堂注入了新鲜血液,而且能激发学生探索科学的兴趣,有利于创新能力的培养.
2.3强化实验环节
“分析化学”是一门以实验为基础的学科,实验教学起着课堂教学不可替代的特殊作用,它不仅能使学生验证和巩固理论知识,而且能培养学生观察、分析和解决问题的能力,养成严谨、细致、实事求是的科学态度.因此,如何使学生的实验效率最大化,用“心”体会实验内容,一直是“分析化学”教育工作者长期以来不断追求的目标.最近几年,有关实验教学的改革如火如荼,笔者所在的学校也积极响应号召,针对“分析化学”实验教学进行改革.
1)在实验内容的安排上,保留具有代表性的经典实验,通过这些实验的练习,使学生规范地掌握基础实验的分析方法和操作要领.除此之外,增加一些与实际生活有紧密联系的综合设计性实验,内容的选择注重各专业的通用性,如食醋中总酸度的测定、日用卫生纸中荧光增白剂的检测,并让学生自行提供样品.这些实验很好地锻炼了学生在文献检索、实验方案设计、样品前处理、仪器操作及用计算机软件处理数据等方面的能力,大大地提高了学生的参与感和成就感,全方位地培养学生的化学素养.
2)在实验讲授和学生的操作训练方面,摒弃教师“一切包办”的理念和“老师讲,学生听”的单一模式.对于分析天平、滴定管等常规仪器,在课前预习的基础上,教师对每一项基本操作技能(包括操作规范、操作要点和技巧、注意事项及影响实验成败的关键因素等)边讲边示范,让学生先在感官上对基本操作技能有初步的印象,然后再通过大量的独立操作练习得以强化;对于一些涉及到精密贵重仪器的实验内容,可采用“虚拟实验”的方式,通过图片、视频等多媒体仿真动画教学,将仪器工作原理和实验过程通过三维虚拟动画的模式直观展现出来,教师要适时地对操作中可能出现的问题进行讲解与引导,尽可能提示操作可能出错的地方以及出错所导致的不良结果,增强学生的感性认识,减少实验中由于操作不当等造成的不必要的损失和浪费.
2.4科学评价学生成绩
要培养适应社会发展需要的多元化创新人才,必须要有科学的评价方式.基于此,要改变以“考试分数论英雄”的做法,强化对学习过程、学习能力的评价,构建多元评价体系.笔者在授课过程中均采用结构评分来组成课程的总成绩,即总成绩=平时成绩(10%)+实验成绩(30%)+期末考试成绩(60%)综合考察学生学习情况,其中平时成绩改变以往所用的点名或签到次数计算的方式,而是通过对学生在课前预习、随堂练习、课堂讨论及课后复习的总体表现来确定;实验成绩采用综合评定标准,包括预习报告、实验操作、实验报告、纪律清洁四部分,学生编造实验数据及结果的不良风气得以纠正.实践证明,这种成绩评定方式有利于调动学生学习的主动性,激发其学习热情,真实地反映了学生对“分析化学”课程“三基”知识的掌握情况,最终达到提高教学质量的目的.
3结语
碱基的组成和排列顺序不同是DNA核苷酸之间存在差别的主要原因,因此,研究DNA分子中碱基的电化学性质也具有十分重要的意义。本文仅对DNA链中的碱基在单壁碳纳米管复合聚吖啶橙(SWNTs/POAO)电极上的电化学行为进行研究。
(一)碱基对的氧化现象SWNTs/POAO电极既具有较大的比表面积大的π电子体系及大量的活性电位特点,又具有导电聚合物地性能。因此,在SWNTs/POAO电极上,嘌呤碱基和嘧啶碱基的氧化电位都随着其结构环系上的取代基增多而产生反向移动,且氧化的峰电流会随着浓度增加而出现线性增长。由于嘌呤碱基是由嘧啶和咪唑酬和而成的环系,多π芳杂环系和缺π芳杂环系都在其结构中存在,所以鸟嘌呤(GUA)和腺嘌呤(ADE)容易发生氧化,且氧化电流较大;而嘧啶碱基结构中只有缺π芳杂环,致使其比嘌呤碱基的氧化电位较正,氧化电流较小。由上所述,可以得出嘧啶碱基电氧化反应的灵敏度比嘌呤碱基低的结论。
(二)嘌呤碱基氧化过程分析以ADE和GUA为研究对象,分别分析研究了其在不同电极的反应(见图2)。在图中可以发现,只有嘌呤碱基对的氧化电流峰,而没有还原峰,由此可以得知嘌呤碱基的电极反应是不可逆的过程。在图中还可以看出,ADE和GUA的氧化峰电流在GCE(玻碳电极)和POAO(聚吖啶橙电极)上基本相同且都较小;而在SWNTs修屎电极上比在GCE上有明显增加,这表明碳单壁纳米管增加了GCE电极的有效面积,且其自身带有的—COOH、—OH基团给电极提供了更多的反应点,催化了GUA、ADE的反应,峰电流明显增大。而在SWNTs/POAO电极上,嘌呤碱基的氧化电流增加更加明显。
二、DNA碱基与金属离子的相互作用
脱氧核糖核酸与金属离子的相互作用,主要有其对金属离子的吸附作用以及核糖核酸上特点结合点与金属离子发生配位作用。本文仅对DNA嘧啶碱基与汞、银离子的相互作用进行分析。
(一)汞离子与胸腺嘧啶的相互作用汞离子与DNA的相互作用在1952年时就已经被Katz发现,但其观点是汞离子与DNA链中的磷酸骨架发生了互相作用,到后来Thomas用紫外光谱证实汞离子是与DNA中的碱基发生作用。在这个发现之后,Katz于1963年又提出了T-Hg-T的假设,这个假设内容是汞离子与T碱基是以1:2的比例形成新配合物。近年来,日本人Ono等人通过溶解曲线、质谱以及核磁共振等手段进一步证实了T-Hg-T的假设[2]。由于有毒性是汞离子的具备的特点,利用DNA能够与汞离子结合发生反应的特性,可以来进行环境汞离子含量的检测。
(二)核糖核酸与胞嘧啶的相互作用银离子与胞嘧啶的相互作用是在2002年才由Tanaka小组开始研究,他们通过研究银离子与人工合成DNA双链(含有嘧啶(Pyridine)修饰碱基形成的P-P错配)发生特异性结合的现象,证实了银离子与嘧啶反应能够形成稳定的P-Ag-P结构。2008年,One小组提出了银离子可以与胞嘧啶形成稳定的C-Ag-C结构,并通过变温紫外的研究手段证实了银离子具有能够使错配的DNA双链更加稳定。根据银离子的这种特性,可以将其设计成分子信标,应用在医学诊断、生物工程研究等各个领域。
三、结语
BrukerAV-300,AV-500型核磁共振光谱仪;X4型数字显示显微熔点测定仪(温度未校正);Agilent1100LC/MSDSL;LABCONCO冷冻干燥仪;JASCOP-1020旋光测定仪半制备型高效液相色谱仪Waters600型;检测器Waters2487紫外双波长检测器;Agilent-1100高效液相色谱仪;柱色谱材料为硅胶(200-300目)、RP-C18(YMC;12nm)及SephadexLH-20(AmershamBiosciences);柱色谱试剂均为分析纯,高效液相色谱试剂均为色谱纯。
白芷根于200403采自江苏省盐城市洋马镇,经江苏省中国科学院植物研究所袁昌齐研究员鉴定,凭证标本现存放于江苏省中国科学院植物研究所标本馆内。
2提取与分离
白芷根(38kg)用95%的乙醇提取3次,合并提取液,减压浓缩至无醇味。提取液依次用石油醚、醋酸乙酯萃取,剩余部分为水部分。将水部分上样于D101大孔树脂柱,水-乙醇梯度洗脱,分为6个部分。其中50%洗脱部分分别进行硅胶柱层析,氯仿-甲醇(10∶1~7∶3)梯度洗脱,各流分采用薄层或高效液相检识,合并相类似组分,反复反相柱层析分离,凝胶纯化,得到6个化合物。
3结构鉴定
3.1化合物1
白色无定形粉末(冻干),mp170~172℃,[α]21.7D=-52.40(c=0.065甲醇:水=40:60),紫外灯365,254nm下均显示蓝绿色荧光。ESI-MSm/z:509[M+Na]+,示其分子量为486,结合1H-NMR,13C-NMR谱数据推断分子式为C21H26O13。化合物的1H-NMR,13C-NMR,HMQC及HMBC谱数据详见表1。综合各谱数据及与文献[1]对照鉴定化合物为7-O-β-D-Apiofuranosyl-(16)-β-D-Glucopyranosyl-Scopoletin(xeroboside)。表1化合物1的1H-NMR,13C-NMR,HMQC及HMBC谱数据(略)
3.2化合物2
白色无定形粉末(冻干),[α]21.7D=-55.20(c=0.065甲醇∶水=40∶60),紫外灯365nm及254nm下均显示蓝绿色荧光,ESI-MSm/z:495[M+Na]+,示其分子量为472,结合1H-NMR,13C-NMR谱数据推断分子式为C20H24O13。化合物的1H-NMR,13C-NMR,HMQC及HMBC谱数据见表2。综合以上各谱数据及与已知文献[2]对照鉴定化合物为aesculetin-6-O-β-D-apiofuranosyl-(16)-O-β-D-glucopyranoside。
3.3化合物3白色无定形粉末(氯仿-甲醇),mp207℃,[α]21.7D=+47.75(c=0.07甲醇∶水=40∶60),紫外灯365,254nm下均显示蓝色荧光。ESI-MSm/z∶407[M+Na]+示其分子量为384,结合1H-NMR,13C-NMR谱数据推断分子式为C17H20O10。化合物的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据详见表3。综合各谱数据[3]鉴定化合物为tomenin。表2化合物2的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据(略)表3化合物3的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据(略)
3.4化合物4
白色无定形粉末(冻干),mp140~141℃,[α]19.4d=-52.30(c=0.06甲醇∶水=40∶60),紫外灯365及254nm下均显示蓝色荧光,结合1H-NMR,13C-NMR谱数据推断分子式为C16H18O9。1H-NMR(Pyridine-d5500MHz)δ:6.27(1H,d,J=9.5Hz,3-H),7.56(1H,d,J=9.5Hz,4-H),7.62(1H,s,5-H),6.90(1H,s,8-H),3.70(3H,s,OCH3),5.65(1H,d,J=7.1Hz,1-H-Glc)。综合以上数据及与已知文献[4]对照鉴定化合物为isoscopolin。
3.5化合物5
白色无定形粉末(冻干),[α]21.7D=-55.20(c=0.065甲醇∶水=40∶60),ESI-MSm/z:455[M+Na]+,示其分子量为432,结合1H-NMR,13C-NMR谱数据推断分子式为C19H28O11。1H-NMR(Pyridine-d5500MHz)δ:7.07(2H,d,J=8.5Hz,3-H和5-H),7.19(2H,d,J=8.6Hz,2-H和6-H),2.96(2H,t,J=7.4Hz,β-H),4.34(1H,dd,J=7.5,11.2Hz,3''''a-α),3.88(1H,dd,J=7.4,11.2Hz,3''''a-α),4.82(1H,d,J=7.1Hz,1-H-Glc),5.75(1H,d,J=2.6Hz,1-H-Api)。13C-NMR(Pyridine-d5125MHz)δ:129.53(C-1),130.50(C-2),116.13(C-3),157.23(C-4),116.13(C-5),130.50(C-6),71.12(C-α),35.88(C-β),104.58(C-1-Glc),74.95(C-2-Glc),78.45(C-3-Glc),71.12(C-4-Glc),77.08(C-5-Glc),68.87(C-6-Glc),111.07(C-1-Api),77.74(C-2-Api),80.37(C-3-Api),75.00(C-4-Api),65.48(C-5-Api)。综合以上数据及与文献[5]对照鉴定化合物为OsmanthusideH。
4结果与讨论
前人从茜草科植物山石榴Xeromphisspinosa[1]以及Xeromphisobovata[6]中分到过此化合物1,故此次为首次从伞形科中分离得到。但化合物的熔点有文献[1]报道为238~234℃,有文献[2]报道为192~197℃,而本次实验测得的熔点为170~172℃,具体原因有待进一步确定。
前人从忍冬科植物Loniceragracilipes[3]中分得化合物2,但是只报道了1H-NMR,13C-NMR谱数据,且C-6和C-7的归属颠倒了。本文通过对其进行HSQC,HMBC等二维谱的研究,纠正了前人的错误,丰富了该化合物的波谱数据。
日本学者Hasegawa[3]最早从蔷薇科植物Prunustomentosa中分离得到化合物3,但没有报道核磁数据,以后未见此化合物的报道。本文完善了该化合物的核磁数据,并且用二维谱进行了全归属,丰富了该化合物的波谱数据,并首次报道了此化合物的旋光值。
化合物6在自然界植物中分布广泛,但在伞形科植物中此类化合物较少见。
【参考文献】
[1]S.P.Sati,D.C.Chaukiyal,O.P.Sati[J].JounalofNaturalProducts,1989,52(2):376.
[2]T.Iossifova,B.Vogler,I.Kostova.Escuside,anewcoumarin-secoiridoidfromFraxinusornusbark[J].Fitoterapia,2002,(73):386.
[3]Hasegawa,Masao.FlavonoidsofvariousPrunusspecies.X.WoodconstituentsofPrunustomentosa[J].ShokubutsugakuZasshi,1969,82(978):458.
[4]Komissarenko.N.F,Derkach.A.I,Komissarenko.A.N.CoumarinsofAesculushippocastanumL[J].FitochemistryRastitel''''nyeResursy,1994,30(3):53.
[5]Warashina.Tsutomu,Nagatani.Yoshimi,Noro,Tadataka.ConstituentsfromthebarkofTabebuiaimpetiginosa[J].ChemicalPharmaceuticalBulletin,2006,54(1):14.
[6]S.Sibanda,B.Ndengu,G.Multari.ACoumaringlucosidesfromXeromphisobav-ata[J].Phytochemistry,1989,28(5):1550.
一、化学科学知识水平
九年义务教育初中化学教学大纲,对初中化学教学的四大知识板块分别提出了不同层次的教学要求,以确保学生在毕业时达到素质教育所要求的知识水平。
1.对化学基本概念和原理、元素化合物这两大知识内容,按照学生的认知水平以及在初中化学中的重要性,教学要求分为常识性介绍、了解、理解、掌握四个不同层次;2.对化学基本计算教学要求的层次是掌握。要求学生熟练掌握有关化学式、化学方程式、溶液等方面的基本计算;3.对化学实验的教学要求分为练习、初步学会两个层次。在教学中,教师应按要求认真做好每个演示实验,对于学生实验,要积极创造条件,力争使每个学生都有动手做的机会。
新教材在编排上遵循大纲规定“初级中学的化学教学是化学教育的启蒙阶段”的原则,适当降低了理论要求和精减了一些次要概念。为了配合素质教育,培养学生面向未来的适应力,增加了一些金属、有机物(包括高分子化合物)以及保护生态环境、“温室效应”、硬水、氢能源、水和人类的关系、金属和人体的关系、化肥、农药等内容,体现了化学与生活,化学与社会,化学与生产、科技的紧密联系,为学生达到规定的化学科学知识水平创造了条件。应该明确,在构成化学科学素质的诸多要素中,化学科学知识水平始终处于基础和核心的地位。
二、化学科学能力
化学科学能力是指学生在学习化学知识、应用化学知识解决实际问题的过程中,表现出的心理与个性特征。它包括对物质形态与变化的观察和感知;化学知识的记忆和想象;对微观世界和化学现象的理解、概括、抽象、推理和论证;应用化学科学知识解释客观世界和解决实际问题的能力。对于处在化学教育启蒙阶段的初中学生,应从观察能力、实验能力、思维能力、自学能力等方面,培养和提高他们的化学科学能力。
1.观察能力。观察能力是知觉的特殊形式,是一种有目的、有计划、主动的、持久的知觉过程,是和思维紧密结合的主动知觉活动。观察能力是智力三要素(观察、思维、创造)之一,是智力发展的基矗化学是一门以实验为基础的学科。观察和实验是化学最基本的研究方法。通过能动的、客观的、定性、定量的综合观察,从实验的宏观现象入手,揭示和认识微观变化的本质。观察能力不是单一的知觉感知,而是诸多因素综合性的智力过程。新教材增加了多幅彩图、插图、章头图和多项演示实验,并在学生实验前增设了思考题,启发学生养成自觉观察的良好习惯。教师除应做好每一个演示实验外,还应在课堂教学、课外活动中,激发学生的观察兴趣,教会他们如何观察。通过学生动手动脑,由表及里,去粗取精,去伪存真的观察和思考,不断提高他们的观察能力,避免只看“热闹”,不看“门道”的不良习惯。
2.实验能力。实验能力是有目的地在人为控制条件下进行化学反应,认识和发现化学变化规律的能力。实验能力既包括实验操作能力,又包括推理、计算、对数据分析处理以及对实验结论归纳总结、准确表述的能力。
教师应从以下几个方面培养和提高学生的实验能力:①能正确操作实验仪器和设备;②明确实验目的;③了解实验原理;④掌握实验方法;⑤对实验现象进行准确的观察和记录;⑤对实验结果进行分析处理,导出结论,写出实验报告。
教师应积极创设实验条件,努力完成全部必做实验。有条件的适当做一些选做实验,鼓励和指导学生做一些家庭小实验,克服“教师黑板上讲实验,学生考试背实验”,只注重理论学习,不重视实验教学的弊端。充分发挥学生的独立性和创造性,培养和提高他们动手、动脑能力,以及实事求是的科学态度和严肃认真的工作作风。
3.思维能力。思维是人类在事物表象、概念的基础上进行分析、综合、判断、推理等认识活动的过程。其中分析和综合是思维的最基本的过程。新教材正确处理了知识的逻辑顺序和学生生理、心理发展顺序的关系,在叙述方法和行文方面,注意调动学生主动学习、思考的积极性,以提高他们的抽象思维能力和自学能力。例如,在介绍物质结构的初步知识时,通过实验和类比,引导学生从宏观现象深入到微观结构的本质,通过提出问题,引发思考,然后再概括出结论或概念,使学生从感性认识上升到理性认识。
4.自学能力。自学能力就是在已有知识水平和技能的基础上,不断获取新知识并运用这些知识的能力。化学教学的重要目的之一不仅是使学生“学会”,更重要是使学生“会学”。现代科学技术发展迅速,知识更新周期缩短,如果不“会学”,就无法适应日新月异的社会发展需要。因此,现代教育的一个重要特点,就是培养学生不断摄取新知识的自学能力,使学生受益终身。
三、化学科学思想水平
学生的化学科学思想水平包括以下几个方面:
1.辩证唯物主义思想水平。?化学作为一门自然科学,本身就具有丰富的辩证唯物主义素材。在化学教学中进行辩证唯物主义观点的教育,应结合教学内容,通过有机渗透,使学生逐步树立起辩证唯物主义的世界观和方法论,用对立统一、事物发展的矛盾性和统一性、量变到质变等观点学习和认识化学问题,提高学生应用辩证唯物主义观点观察问题和认识问题的能力。
2.实事求是的科学态度。?初中化学启蒙教育阶段,应结合教学内容、化学史教学,对学生进行坚忍不拔的精神、实事求是的态度、严肃认真的作风等方面的教育。通过多种方法与途径培养学生的科学思维、研究方法和严谨求实的治学精神。使学生认识到一切科学知识都来源于实践,又反过来指导实践的道理。
3.爱国主义的思想水平。新教材结合教学内容,注意对学生进行爱国主义教育。如教材中介绍了祖国在化学科技方面取得的卓越成就,以增强学生的民族自豪感和自信心。密切结合能源、材料、资源等教学内容,进行国情教育和爱国主义教育,使学生树立起为建设社会主义祖国而努力学习的使命感和远大目标。
加里宁说,“我没有看到一门不能教育青年热爱祖国,并培养他们具有最好的公民情感的科目。”化学也不应例外。
4,环境保护意识水平。人类赖以生存的水圈、大气圈、生物圈、岩石圈的物质在不断运动变化,并按一定程序循环着,组成了环境物质的平衡体系。而人类在生产、生活中产生的污染却破坏着人类赖以生存的环境。新教材的有关章节注意结合教学内容,对学生进行防止污染、保护环境的教育。教师应通过“我们只有一个地球”的教育,让学生认识到环境保护的紧迫性和重要性,使学生从小养成爱护环境,保护环境的良好意识和习惯。
四、化学科学品质
化学科学品质指学生学习化学的动机、兴趣、情感和意志等。化学科学品质是一种非智力因素,在一定条件下对学生的学习水平起着十分重要的作用。
1.化学学习动机。学习动机是指引起和维持学生进行学习活动,达到预定目的的意念。使学生明确学习目的是培养和激发学生学习动机的最有效的方法。化学是一门非常重要的自然科学。现代社会,不管是高科技或日常生活,都与化学科学息息相关。学好化学是我国四化建设的需要,是科学发展和人类进步的需要。
在教学中应始终贯穿理想教育这一主线,通过具体的实例,生动有趣的教学,使学生明确学习目的,强化学生的学习动机。
2.化学学习兴趣。化学学习兴趣是指学生对化学力求认识、趋近的一种心理倾向。兴趣是学生学习的主要动力。学习兴趣使学生始终对学习保持良好的心理状态,并在其中得到乐趣和满足。化学教学中丰富多采的实验为培养学生的学习兴趣创造了得天独厚的教学情境。此外,使学生明确学习目的,采取有效的教学方法,教师渊博的知识等,都是激发和培养学生学习兴趣的有效因素。
3.情感。情感是人们在认识客观世界时所表现出的不同的心理反应和态度。学生在学习过程中的愉快、热情的良好情感,可使学生产生积极向上的心理状态。悲伤、灰心、冷漠、烦躁等不良情感可给学生的学习带来消极的影响。因此,在教学中对学生(尤其对差生)的热爱、信任和尊重,教师高尚的人格,以及生动有趣、形式多样的教学方法,都是培养学生良好情感的重要因素。
4.意志。意志是人们在有意识、有目的的行动中表现出的一种契而不舍、克服困难的心理过程。任何学习过程都是复杂而艰辛的。学生在学习中会遇到不少困难与挫折,如深奥的原理难以理解,习题难懂难做,不良情绪的干扰等。如果没有坚强的学习意志是不可能长期坚持单调学习并取得优秀成绩的。在化学教学中,教师应通过多种方法和途径培养和锻炼学生的意志。如设计一项对环境污染进行监测的任务,让学生长期坚持去做。还可结合化学史教学,介绍有关科学研究工作者为人类进步不畏艰险、奋勇登攀的优秀品质。
学生的化学科学素质的“四要素”既有区别,又相互影响和促进。在教学中,教师要处理好知识、技能和能力的关系。知识和技能是学生形成能力的基础,而能力是学生掌握知识和技能的必要条件,是促进他们提高学习水平的重要因素。
一、造成分化的原因
(一)缺乏学习数学的兴趣和学习意志薄弱是造成分化的主要内在心理因素。
对于初中学生来说,学习的积极性主要取决于学习兴趣和克服学习困难的毅力。笔者对四处初中的抽样调查表明,284名被调查学生中,对学习数学有兴趣的占51%,其中有直接兴趣的47人,占15%;有间接兴趣的85人,占30%;原来不感兴趣,后因更换老师等原因而产主兴趣的17人,占6%;对数学不感兴趣或兴趣软弱的占49%,其中直接不感兴趣的20人,占7%,原来有兴趣,后来兴趣减退的118人,占42%。调查中还发现,学习数学兴趣比较淡薄的学生数学学习成绩也比较差,学习成绩与学习兴趣有着密切的联系。
学习意志是为了实现学习目标而努力克服困难的心理活动,是学习能动性的重要体现。学习活动总是与不断克服学习困难相联系的,与小学阶段的学习相比,初中数学难度加深,教学方式的变化也比较大,教师辅导减少,学生学习的独立性增强。在中小衔接过程中有的学生适应性强,有的学生适应性差,表现出学习情感脆弱、意志不够坚强,在学习中,一遇到困难和挫折就退缩,甚至丧失信心,导致学习成绩下降。
(二)掌握知识、技能不系统,没有形成较好的数学认知结构,不能为连续学习提供必要的认知基础。
相比小学数学而言,初中数学教材结构的逻辑性、系统性更强。首先表现在教材知识的衔接上,前面所学的知识往往是后边学习的基础;其次还表现在掌握数学知识的技能技巧上,新的技能技巧形成都必须借助于已有的技能技巧。因此,如果学生对前面所学的内容达不到规定的要求,不能及时掌握知识,形成技能,就造成了连续学习过程中的薄弱环节,跟不上集体学习的进程,导致学习分化。
(三)思维方式和学习方法不适应数学学习要求。
初二阶段是数学学习分化最明显的阶段。一个重要原因是初中阶段数学课程对学生抽象逻辑思维能力要求有了明显提高。而初二学生正处于由直观形象思维为主向以抽象逻辑思维为主过渡的又一个关键期,没有形成比较成熟的抽象逻辑思维方式,而且学生个体差异也比较大,有的抽象逻辑思维能力发展快一些,有的则慢一些,因此表现出数学学习接受能力的差异。除了年龄特征因素以外,更重要的是教师没有很好地根据学生的实际和教学要求去组织教
二、减少学习分化的教学对策
(一)培养学生学习数学的兴趣
兴趣是推动学生学习的动力,学生如果能在学习数学中产生兴趣,就会形成较强的求知欲,就能积极主动地学习。培养学生数学学习兴趣的途径很多,如让学生积极参与教学活动,并让其体验到成功的愉悦;创设一个适度的学习竞赛环境;发挥趣味数学的作用;提高教师自身的教学艺术等等。
(二)教会学生学习
有一部分后进生在数学上费工夫不少,但学习成绩总不理想,这是学习不适应性的重要表现之一。教师要加强对学生的学习指导,一方面要有意识地培养学生正确的数学学习观念;另一方面是在教学过程中加强学法指导和学习心理辅导。
(三)在数学教学过程中加强抽象逻辑思维的训练和培养。
要针对后进生抽象逻辑思维能力不适应数学学习的问题,从初一代数教学开始就加强抽象逻辑能力训练,始终把教学过程设计成学生在教师指导下主动探求知识的过程。这样学生不仅学会了知识,还学到了数学的基本思想和基本方法,培养了学生逻辑思维能力,为进一步学习奠定较好的基础。
(四)建立和谐的师生关系
一、溶胶是怎样的概念
胶体从外观上看貌似均匀,与溶液没什么差异,因此胶体常称为溶胶。溶胶与胶体是同一个概念。
二、对淀粉、蛋白质等高分子溶于水形成的分散系,为什么有时称其为溶液,有时又称其为胶体
教材中是按分散质微粒直径的大小来给分散系分类的。淀粉、蛋白质等高分子溶于水形成的分散系可称为胶体。但是判断一种分散系是属于胶体还是溶液,单从分散质微粒直径的大小这一方面来考察,其结论是不全面的,甚至是错误的。正确判断一种分散系是溶液还是胶体,还要看分散质微粒的结构。如果分散质微粒的结构简单,比如是单个的分子或较小聚合度的分子或离子,那么这样的分散系应称为溶液。由于淀粉、蛋白质溶于水后都是以单个分子的形式分散在水中的,因此,尽管这些高分子很大,这些分散系仍应称为溶液。只是因为高分子的大小与胶粒相仿,高分子溶液才具有胶体的一些特性,如扩散慢、不通过半透膜、有丁达尔现象等。化学上常把Fe(OH)3,AgI等难溶于水的物质形成的胶体称为憎液胶体,简称溶胶;而把淀粉、蛋白质等易溶于水的物质形成的分散系称为亲液胶体,更多地是称为高分子溶液。
三、溶液是均一的,胶体也均一吗
憎液溶胶的分散质微粒是由很大数目的分子构成,因此是不均一的;高分子溶液中的分散质微粒是单个的分子,因此是均一的。
四、胶体能在较长时间内稳定存在的原因是什么
憎液溶胶的胶粒带有相同的电荷,由于同性电荷的排斥作用而使憎液胶体可以稳定存在。淀粉、蛋白质等高分子中含有多个极性基团(如—COOH,—OH,—NH2等),可以与水高度溶剂化(高分子表面形成水膜),因此也可较长时间稳定存在。很明显,这两类胶体稳定存在的原因是不同的。
五、溶液中的溶质微粒也作布朗运动吗
胶体微粒在各个方向上都受到分散剂分子的撞击,由于这些作用力不同,所以胶体微粒作布朗运动。溶液中的溶质微粒和分散剂分子大小相仿,因此溶质微粒的运动状况与胶体的胶粒运动状况是有差别的。由于胶体的丁达尔现象,用超显微镜才可以观察到胶粒的布朗运动。溶液无丁达尔现象,因此用超显微镜观察不到溶质微粒的运动状况。
六、凝聚与盐析有何差别
凝聚是憎液(水)胶体的性质,胶体的凝聚过程就是胶粒聚集成较大颗粒的过程。由于憎液(水)胶体的分散质都难溶于水,因此,再采用一般的溶解方法用水来溶解胶体的凝聚物是不可能的,也就是说,胶体的凝聚是不可逆的。盐析实际上就是加入电解质使分散质溶解度减小而使其析出的过程。盐析不是憎液胶体的性质,它是高分子溶液或普通溶液的性质,能发生盐析的分散质都是易溶的,如淀粉溶液、蛋白质溶液、肥皂的甘油溶液,由于分散质都是易溶的,所以盐析是可逆的。
七、蔗糖溶于水形成的分散系是溶液,为什么在生物课的渗透实验中,蔗糖分子却不能通过半透膜
不同的半透膜,如羊皮纸、动物膀胱膜、玻璃纸等,其细孔的直径是不同的,也就是说,不同的半透膜,其通透性是不一样的。显然,笼统地讲半透膜能使离子或分子通过,而不能使胶体微粒通过是不恰当的。
八、憎液胶体与高分子溶液在性质上有何异同
憎液胶体全面地表现出胶体的特性,高分子溶液则不然。这两种分散系中的分散质微粒都作布朗运动,都有丁达尔现象;憎液胶体有电泳现象,淀粉溶液无电泳现象,而蛋白质溶液则较为复杂;使憎液胶体凝聚的方法有:加入电解质、给胶体加热、加入带相反电荷的胶体,使高分子溶液中的分散质沉淀,主要是破坏高子分与分散剂间的相互作用,如加入大量的电解质也能使淀粉、蛋白质沉淀,这一现象称为盐析,它是可逆的。
九、有没有溶液能产生类似于胶体的电泳现象
由于溶液是均一的,不存在“界面”,因此,给溶液通电不会产生界面移动现象(即一极液面高,另一极液面低),但是有些溶液通电后却可以产生一极溶液颜色加深,另一极溶液颜色变浅的现象。比如,给紫红色KMnO4溶液通电一段时间后,阳极附近溶液的颜色就会变深,阴极附近溶液的颜色就会变浅。这是由于通电后,紫红色的MnO4-向阳极移动,但却不会在阳极放电(MnO4-远比OH-难放电)的缘故。CuSO4溶液就不会产生类似的现象,因为Cu2+会在阴极放电。
现代医学研究表明,花锚属植物的主要化学成分为(口山)酮及(口山)酮苷类、裂环烯醚萜类、三萜类、黄酮类以及一些生物碱类化合物等。
1.1(口山)酮及(口山)酮苷孙洪发等[4]从椭圆叶花锚中得到五种(口山)酮成分,分别为1,7-二羟基-2,3,4,5-四甲氧基(口山)酮,1,5-二羟基-2,3,7-三甲氧基(口山)酮,1,2-二羟基-3,4,5-三甲氧基(口山)酮,1,5-二羟基-2,3-二甲氧基(口山)酮和1,7-二羟基-2,3-二甲氧基(口山)酮。
孙洪发等[5]又从椭圆叶花锚中得到3种(口山)酮苷成分,分别为1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5,7-四甲氧基(口山)酮,1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5-三甲氧基(口山)酮和1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖[-2,3,4,5-四甲氧基(口山)酮。其中1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5,7-四甲氧基(口山)酮(花锚苷)和1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖[-2,3,5-三甲氧基(口山)酮(去甲氧基花锚苷)为该属植物抗肝炎的两种有效成分。
张德等[6]采用元素分析(EA)、核磁共振波谱(NMR)、质谱(MS)、红外光谱(IR)、紫外光谱(UV)、差示扫描量热(DSC)等分析方法首次从藏药花锚中分离得到两种针状结晶化合物,分别为1-羟基-3,7,8-三甲氧基(口山)酮(1-hydroxy-3,7,8-trimethoxyxanthone)和1,7-二羟基-3,8-二甲氧基((口山))酮(1,7-dihydroxy-3,8-dimethoxyxanthone)。
高洁等[7]从椭叶花锚乙醇提取物醋酸乙酯萃取部分分离得到8个(口山)酮化合物,分别为1,7-二羟基-2,3,5-三甲氧基(口山)酮,1-羟基-2,3,4,7-四甲氧基(口山)酮,1,7-二羟基-2,3,4,5-四甲氧基(口山)酮,1,7-二羟基-2,3-二甲氧基(口山)酮,1,5-二羟基-2,3-二甲氧基(口山)酮,1-羟基-2,3,5-三甲氧基(口山)酮,1-羟基-2,3,4,5-四甲氧基(口山)酮和1-羟基-2,3,5,7-四甲氧基(口山)酮。
1.2其它成分Rodrigaez等[8]从花锚中分离得到了一种的黄酮类葡萄糖苷;高光跃等[9]从椭圆叶花锚全草中测出含有獐牙菜苦苷和当药苷;Dhasmana等[10]从椭圆叶花锚全草中分离得到齐墩果酸和谷甾醇葡萄糖苷;Rodrigaez等[11]从花锚中分离得到了一种二糖酯裂环烯醚萜。
2药理活性
花锚为藏蒙药中治疗肝胆系统疾病的常用药物,其主要分布于我国的、青海、四川、甘肃等地藏民族地区,目前对花锚药理活性的研究报道较少,有待进一步深入研究。
2.1保肝降酶作用张经明等[12]采用花锚煎剂(含花锚苷)对CCl4造成的肝损伤模型的研究表明,花锚苷可明显增加核糖核酸;药理实验证明,花锚中的花锚苷和去甲氧基花锚苷具有明显的保肝作用,可增加核糖核酸,增加肝糖元,促进蛋白质的合成,促进肝细胞的再生,加速坏死组织的修复,是该植物抗肝炎的主要有效成分。周富强[13]通过不同剂量西宁花锚对CCl4实验性肝损伤后肝糖元的含量的研究,发现西宁花锚对CCl4损伤后小鼠肝糖元的储存的恢复有一定的药效,可显著提高肝糖元的含量。
马学惠等[14]在齐墩果酸防治CCl4引起的大鼠急性肝损伤作用的研究中,发现该药物能使血清GPT明显下降,肝内甘油三酯积累量减少;同时,能使肝细胞变性、坏死明显减轻,糖原蓄积增加,具有明显的保肝降酶作用。宫新江等[15]的齐墩果酸对环磷酰胺所致大鼠肝细胞损伤的保护作用的研究表明,齐墩果酸能抑制环磷酰胺所致的肝细胞上清液ALT,AST及LDH活力升高,肝细胞MTT值减小,说明齐墩果酸可抗环磷酰胺所致肝细胞损伤。
王晓峰等[16]采用原代培养的小鼠肝细胞,以3H-胸腺嘧啶和3H-亮氨酸掺入的方法,研究经齐墩果酸预处理后的小鼠的肝细胞DNA和蛋白质合成速率的变化,结果发现齐墩果酸能促进肝细胞DNA及蛋白质合成,且合成速率明显增高,具有保肝作用。另外王晓峰等[17]报道齐墩果酸在对小鼠肝内谷丙转氨酶及谷草转氨酶的直接作用时,小鼠血清样品与不同浓度的齐墩果酸分别作用后,谷丙转氨酶活性则显著降低,说明齐墩果酸对谷丙转氨酶活性具有明显抑制作用。
2.2降血糖作用苗德田等[18]研究了齐墩果酸对大鼠血糖的影响,结果显示,齐墩果酸对化学性高血糖模型大鼠有显著的降血糖作用。柳占彪等[19]用齐墩果酸对高血糖大鼠治疗,结果发现单一的齐墩果酸具有降低高血糖的作用,同时在血糖降低时肝糖原和血清胰岛素均有明显升高。
2.3抗炎作用戴岳等[20]采用多种实验性炎症模型证实齐墩果酸对二甲苯与乙酸引起的小鼠皮肤和腹腔毛细血管通透性增高及对角叉菜胶等多种致炎物引起的大量足垫肿胀都具有明显抑制作用。
2.4抗氧化活性肝细胞膜的脂质过氧化是造成肝损伤的重要原因之一,高洁等[7]在研究藏药花锚中(口山)酮类成分及其抗氧化活性时,从椭叶花锚乙醇提取物醋酸乙酯萃取部分分离得到8个(口山)酮化合物,且该类化合物在一定程度上能显著抑制Fe2+-Cys诱导大鼠肝微粒体丙二醛的生成,有效降低肝微粒体膜的氧化损伤。因此,具有一定的抗氧化活性。
2.5其他作用椭圆叶花锚的干浸膏可提高单核-巨噬细胞吞噬功能,具有调节体液免疫的作用,使降低的血清溶血素及脾细胞免疫溶血活性提高到正常水平[21]。另有报道椭圆叶花锚全草的氯仿可溶部分(富含口山酮葡萄糖苷)具有抗阿米巴作用[22]。
3人工栽培
高原野生重要植物资源的持续发展必须建立在生物资源可持续利用和生态环境保护的基础上,培育地道地产中藏药材是实现高原地区中藏药资源可持续利用的主要途径之一,也是保证中藏药产业持续发展的必然选择。
3.1人工栽培的重要意义花锚属与獐牙菜属植物等同属于藏茵陈类药物,被称为“藏药中的奇葩”,是治疗肝中毒、肝炎的最佳药物之一。但是这种药物资源一般生长在人迹罕至的高寒缺氧环境中,其再生周期较长甚至不能再生,藏茵陈供需矛盾也由此变得越来越突出。
尽管野生椭圆叶花锚在青藏高原地区分布广泛,资源较为丰富。但是近十多年来,随着我国民族医药特别是藏药事业的迅速发展,越来越多的企业开始投资藏医药领域,椭圆叶花锚的药用资源需求量快速增加。但是,藏药产业一度出现重成品生产轻药材来源、重开发轻保护的问题,造成过度的采挖及收购现象,特别是在植物生长阶段的花期大量采收导致资源量锐减,野生植物资源日益枯竭。因此,对作为原料植物药的椭圆叶花锚进行人工栽培的研究具有十分重要的意义。
3.2人工引种栽培为了解决藏茵陈类药材资源严重短缺的实际问题,中国科学院西北高原生物研究所经过3年的栽培与试验,成功地解决了以往藏茵陈种子萌发率低、出苗率低、人工栽培难以成活等关键技术问题。3种藏茵陈类药用植物——川西獐牙菜、抱茎獐牙菜和花锚人工种植成功,并通过鉴定。经过专家的监测和对比分析,这次人工栽培的3种植物,其主要有效成分齐墩果酸和芒果苷的含量基本接近于天然野生资源,川西獐牙菜的有效成分含量甚至显著高于野生资源,人工条件下栽培藏茵陈类药用植物的质量及其本身的药用价值完全可以得到保证。随着青海省产业结构的调整,椭圆叶花锚人工引种栽培技术的开发研究,青海省椭圆叶花锚人工种植规模逐渐扩大。椭圆叶花锚人工引种栽培试验在该省也初见成效。陈桂琛等[23]对椭圆叶花锚的引种栽培的研究表明,栽培的椭圆叶花锚植株在植株高度、分枝数量、单株生物量等生长状况指标明显高于野生植株,其有效化学成分接近野生状态的水平,说明野生椭圆叶花锚的人工栽培是可行的。吉文鹤等[24]运用RP-HPLC建立了花锚中青兰苷、去甲氧基花锚苷和花锚苷的含量分析方法,为栽培花锚替代野生花锚入药提供一定的科学依据。研究表明,栽培花锚中花锚苷和去甲氧基花锚苷的含量和在野生花锚中的含量相比无明显差别,可以初步证明栽培花锚可以替代野生花锚入药。纪兰菊等[25]在研究栽培花锚的品质能否代替野生花锚入药时,通过指纹图谱的相似度分析,得出结论:同一产地的野生与栽培花锚药材色谱分离图叠加比较,显示了良好的相似度。证明栽培花锚中的主要化学成分及数量符合花锚药材的指纹特征,可以代替野生花锚药材入药。
3.3组织培养随着对花锚属植物药用成分不断深入的研究,药用潜力的挖掘,该属植物的需求量大大增加,造成了该属植物野生资源的日益匮乏且面临枯竭。该属植物的人工引种栽培技术在一定程度上已经可行,但是,还需要通过多种途径来提高对其的培育效率。
药用植物的组织培养技术及应用已有多年的发展历史,但还有相当多的植物目前尚没有相应的离体培养技术。目前,花锚属植物的组织培养技术至今尚未见成功的报道,仍然是个空缺。因此,建立该属药用植物的离体快繁技术的需求日渐增加,它也是实现高原地区中藏药资源可持续利用的主要途径之一。
4最佳采集时期
从生物量的角度考虑,花期的生物量高于果期,更高于其他时期。杨慧玲等[26]在研究不同地区和生长物候期藏药花锚有效成分齐墩果酸的含量变化实验中,比较了野生状态下不同海拔、栽培条件下不同生长时期花锚的齐墩果酸含量,为确定该药材的采收时期、不同地区药材的质量以及栽培地点的选择提供理论依据。该研究发现花锚花期齐墩果酸含量最高,而幼苗期、蕾期和果期都低于花期的含量。因此,花期得到的药材最多质量也最好。
吉文鹤等[24]研究了花锚中去甲氧基花锚苷和花锚苷的含量随着不同生长期的变化趋势,为药材的合理栽培和采收提供科学依据。该研究表明,去甲氧基花锚苷和花锚苷含量在营养期含量最高,从6~9月逐渐降低,从抗肝炎活性成分的含量角度考虑,6月份(营养期)为花锚的最佳采收期。
5结语
花锚属植物是藏蒙药中治疗肝炎类疾病的常用药物,全草入药,具有重要的药用价值。该属植物的主要有效成分为(口山)酮及(口山)酮苷、裂环烯醚萜类、三萜类化合物及其它黄酮苷等,具有抗肝炎、抗氧化活性和降血糖等功效。在我国,该属植物药用历史较长,故具有很高的药理研究价值,特别是有关抗肝炎方面的研究显示出较大的市场潜力,值得进一步深入研究;其降血糖作用、抗氧化活性和调节体液免疫的药理活性研究报道较少,这些研究工作都亟待进一步的深入;另外对野生植物的过度采挖造成资源贫乏,采用人工的方法达到该药物资源的可持续利用也已成为目前及今后对该属植物重点研究的目标。
【参考文献】
[1]包保全,孙启时,包巴根那.花锚属植物化学成分及生物活性研究进展[J].中药材,2003,26(5):382.
[2]何廷农,刘尚武,吴庆如.中国植物志(第62卷)[M].北京:科学出版社,1988:291.
[3]黄燕,郁韶明.16种药用植物种子发芽的研究[J].山东中医杂志,2006,25(2):124.
[4]孙洪发,胡柏林,樊淑芬,等.花锚的三个新口山酮[J].植物学报,1983,25(5):460.
[5]孙洪发,胡柏林,等.花锚的三个新口山酮苷[J].植物学报,1987,29(4):422.
1脂类
1.1多烯炔类成分
Aratake等[2]从印度尼西亚海绵Haliclonasp.中分离得到一种多元不饱和溴代脂肪酸6-bromo-icosa-3Z,5E,8Z,13E,15E-pentaene-11,19-diynoicacid(1),并通过核磁数据确定了其结构。将分离得到的该化合物纯化后进行细胞实验,研究表明其对NBT-T2大鼠膀胱上皮细胞有细胞毒性,半数抑制浓度(IC50)值为36μg/mL。Watanabe等[3]从Strongylophora属海绵中分离得到3个多烯炔类成分strongylodiolA、B、C,它们对Molt-4肿瘤细胞有非常显著的细胞毒活性,IC50值分别为0.35、0.85、0.80μg/mL。
1.2过氧化物
Plakinidae类过氧化物在海绵中比较常见,该类成分在C-3、6位存在过氧桥,同时在C-3、4、6位有烷基链取代。Ernesto等[4]从中国南海简易扁板海绵Plakortissimplex中分离得到plakortideH(2)、I、J,运用波谱学和化学的方法解析了其平面结构,并利用改良的Mosher法确定C-3、4、6手性位点的绝对构型。plakortideH、I、J对鼠纤维肉瘤细胞WEHI164显示出较强的活性,其IC50值分别为7.1、9.5、8.2μg/mL。并阐述了该类化合物的构效关系,认为过氧环是其具有细胞毒活性的活性位点,若过氧环被破坏,其细胞毒活性则会消失。Dai等[5]通过活性筛选及分离手段从海绵Diacarnuslevii中分离得到4种结构新颖的norsesterterpene过氧化物diacarnoxidesA~D,其中diacarnoxideB(3)显示出显著的活性,可以抑制低氧状态下肿瘤细胞的生长。海绵中分离得到的脂类化合物的结构见图1。
2大环内酯类
来自海绵的大环内酯类化合物结构新颖、药理活性多样,其已经引起越来越多的海洋药物研究人员的关注。Johnson等[6]从海绵Cacospongiamycofijiensis中分离得到大环内酯类聚酮化合物fijianolidesA(4)、B(5),及6种新型的fijianolidesD~I。fijianolidesA、B具有类似于紫杉醇的微管稳定作用,其中fijianolidesB的作用强于fijianolidesA,且在严重联合免疫缺陷(SCID)小鼠肿瘤细胞体内评价中发现:fijianolidesB可持续阻断HCT-116肿瘤细胞的生长长达28d。fijianolidesD~I在体外实验中也显示了一定的抗HCT-116和MDA-MB-435细胞系活性,其中fijianolidesE、H可以阻断细胞的有丝分裂。Chevallier等[7]从巴布亚新及利亚海绵Irciniasp.中分离得到一种有强细胞毒性的大环内脂类化合物tedanolideC及其类似物。体外试验表明该化合物对HCT-116细胞有强的细胞毒性,从细胞周期分析中发现其可使细胞分裂停留在S期。Singh等[8]从新西兰海绵Mycalehentscheli中分离得到亚微克级的大环内酯类化合物pelorusideA、B。其中pelorusideB可以促进微管的聚合,同紫杉醇一样可以阻断细胞的有丝分裂在G2期。
3肽类
在近30年中,研究人员从海绵中发现了大量结构新颖且药理活性强的肽类成分,部分化合物结构见图3。海绵肽类化合物的研究能够取得如此大的进展,主要有以下几个原因:(1)制备型高效液相色谱等分离纯化技术的快速发展与应用;(2)结构54132鉴定方面,波谱解析技术的进展,特别是2D-NMR和质谱等技术在海洋肽类结构测定方面的巨大推动作用。很多海绵环肽类成分由于N-端的封闭、β-或γ-氨基酸残基以及D-型氨基酸等新氨基酸存在,已经不能通过Edman降解来获取氨基酸序列的分析结果;(3)手性分离技术的发展,使研究人员能够用极少量的样品就可以确定某一氨基酸的绝对构型。Ebada等[9]从印度尼西亚的加里曼丹岛海绵Jaspissplendens中分离得到化合物jaspamide(6)和其两个衍生物jaspamideQ、R。通过1D和2DNMR核磁数据、质谱分析比较得到了jaspamide的准确结构。jaspamideQ、R可以抑制小鼠淋巴瘤L5178Y细胞的增殖,IC50值<0.1μg/mL。Plaza等[10]从帕劳群岛深水水域海绵Theonellaswinhoei中分离得到3种新的类似于anabaenopeptin的多肽类化合物paltolidesA、B、C。paltolidesA、B、C在细胞实验中并没有显示出抗HIV-1活性或细胞毒性,但在亚微摩尔级显示出对羧肽酶的选择性抑制。Plaza等[11]从海绵Siliquariaspongiamirabilis中分离得到6种新的环肽化合物,它们分属于celebesidesA、B、C(7~9)和theopapuamidesB、C、D。celebesidesA在单轮传染性实验中抗HIV-1活性的IC50值为(1.9±0.4)μg/mL,而在非磷酸化的模拟实验中,celebesidesA即使在50μg/mL这样的高浓度下仍无活性。theopapuamidesA、B、C对人体结肠癌细胞HCT-116显示出细胞毒性,IC50值为2.1~4.0μg/mL,并且有强的抗真菌活性。Ratnayake等[12]从巴布亚新几内亚的海绵Theonellaswinhoei中分离得到一种结构新颖的环肽theopapuamide,该化合物对CEM-TART和HCT-116细胞系均具有强的细胞毒性,半最大效应浓度(EC50)值分别为0.5、0.9μmol/L。Robinson等[13]从两种海绵Aulettasp.和Jaspissplendens中分离得到jasplakinolide和11个jasplakinolide类似物,其中有7个化合物为新化合物。jasplakinolideB显示出非常强的细胞毒性,对人体直肠结肠恶性腺瘤细胞HCT-116的IC50值<1nmol/L,但是在细胞微丝试验中,即使IC50值为80nmol/L时也没有显示出微丝破坏活性。
4生物碱类
生物碱类成分是海绵化学成分研究的一个非常重要的领域。该类成分结构独特,其中许多化合物具有抗肿瘤、降压、广谱抗菌、抗病毒等生物活性。因此药物开发人员对从中寻找治疗人类重大疾病的特效药物寄予了厚望。
4.1吲哚类生物碱Dai等[14]从海绵Smenospongiacerebriformis中分离得到2个新化合物dictazolineA(10)、B(11),以及2个已知化合物tubastrindoleA、B,活性筛选结果表明该类化合物既没有显示出明显的细胞毒性,也没有抗菌活性。
4.2β-咔啉类生物碱Inman等[15]从巴布亚新几内亚海绵Hyrtiosreticulates中分离得到1个β-咔啉生物碱hyrtiocarboline(12),该化合物可选择性抑制H522-T1肺非小细胞、MDA-MB-435黑素瘤细胞、U937淋巴癌细胞系的增殖。同时在该属海绵中还分离得到dragmacidonamineA(13)、B。
4.3异喹啉类生物碱异喹啉类生物碱具有很好的抗微生物、抗肿瘤等药理活性。ecteinascidin743(14)的开发成功使我们认识到了该类化合物具有广阔的新药开发前景[16]。Pettit等[17]从海绵Cribrochalinasp.中分离得到了3个异喹啉生物碱cribrostatin3(15)、4、5,并通过X单晶衍射确定了其立体构型。cribrostatin3、4、5显示出很强的抑制卵巢癌细胞Ovcar-3增殖的活性,其IC50值分别为0.77、2.20、0.18μmol/L,对鼠白血病细胞P388也有很好的抑制增殖的活性,IC50值为2.49、24.6、0.045μg/mL。另外,这3个化合物还具有一定的抗微生物活性。
4.4溴代酪氨酸类生物碱溴代酪氨酸类生物碱是一类生物活性广泛的成分。Carney等[18]从海绵Pasammaplysillapurpurea中分离得到bastadine(16),其对多种肿瘤细胞均表7R1=PO3H2R2=C2H58R1=PO3H2R2=C2H59R1=PO3H2R2=C2H56·1436·现出较弱的细胞毒性,在2μg/mL时,对结肠腺癌、人肺癌细胞A5499、鼠淋巴白血病细胞P388和人体肿瘤细胞HT-2有毒性;当浓度为2.5μg/mL时,其对无肿瘤CV-1猴肾细胞有一定的毒性。另外,bastadine对拓扑异构酶II(IC50值为2.0μg/mL)及脱氢叶酸盐还原酶(IC50值为2.5μg/mL)有抑制作用。Galeano等[19]从加勒比海绵Verongularigida分离得到9种bromotyrosine衍生的化合物,其中purealidinB(17)、11-hydroxyaerothionin(18)在10、5μmol/L时对利什曼原虫和疟原虫显示出选择性抗寄生虫活性。
4.5吡咯类生物碱Mao等[20]从海绵Mycalesp.中分离得到18个结构新颖的脂溶性的2,5-二取代吡咯类成分(19)。这些化合物具有一定的阻断缺氧诱导因子-1(HIF-1)活性的作用,IC50值<10μmol/L。作用机制研究表明,该类化合物在一定浓度下可通过阻断NADH-泛醌氧化还原酶(复合物I)来抑制线粒体的呼吸作用,以此来阻断HIF-1的活性。Liu等[21]通过活性追踪及色谱方法从海绵Dendrillanigra中分离得到4个结构新颖的具有分子靶向抗肿瘤活性的片罗素类成分neolamellarinA、neolamellarinB、5-hydroxyneolamellarinB和7-hydroxyneolamellarinA(20)。7-hydroxyneolamellarinA可以阻断低氧诱导下T47D细胞中的HIF-1活性,IC50值为1.9μmol/L,也可以抑制血管内皮生长因子(VEGF),使其停留在分泌蛋白水平。季红等[22]从中国南海海绵Iotrochotasp.中分离得到purpurone(21),它是该属海绵中的特征性成分和主要抗氧化活性成分,其清除DPPH自由基的IC50值为19μg/mL。
4.6其他Morgana等[23]从海绵Petrosaspongiamycofijiensis中分离得到mycothiazole及类似物8-O-acetylmycothiazole、4,19-dihydroxy-4,19-dihydromycothiazole;mycothiazole可以抑制低氧诱导下肿瘤细胞中HIF-1的生成,IC50值为1nmol/L,抑制体外低氧刺激下肿瘤血管的生成,并在体外实验中还表现出一定的神经毒性。Coello等[24]从肯尼亚的拉姆岛海绵Mycalesp.中分离得到一种环状二胺1,5-diazacyclohenicosane(22),并运用HR-ESI-MS和1D、2D-NMR等波谱学方法确定了其结构。该化合物对A549、HT29和MDA-MB-231肿瘤细胞株显示出中等强度的抑制增殖活性,IC50值分别为5.41、5.07、5.74μmol/L。Hermawan等[25]从海绵Leucettasp.中分离得到一种新型聚炔类生物碱2-(hexadec-13-ene-9,11-diynyl-methyl-amino)-ethanol(23),并通过核磁数据确定其结构。该生物碱对NBT-T2细胞具有较强的细胞毒性,IC50值为2.5μg/mL。张浩等[26]从中国南海海绵Axinellasp.中分离得到hymenialdisine(24)和debromohymenialdisine(25)。这两种化合物为吡咯烷生物碱成分,都是MAPK途径抑制剂,其中hymenialdisine可以有效抑制影响丝裂原激活的蛋白激酶1的活性,其IC50值为6nmol/L,对GSK-3激酶以及CDK家族也显示出很强的抑制活性,其IC50值为10~700nmol/L。debromohymenialdisine能够具有抑制G2期DNA损伤检查点、检查点激酶1(Chk1)和2(Chk2)的活性,IC50值分别为8、3、315μmol/L。海绵中分离得到的生物碱类成分的结构见图4。
5甾醇
甾醇是一类分子中环戊烷骈多菲甾核的化学成分,是某些激素的前体,也是生物膜的重要组成部分。甾醇是存在于任何一种生物体内的化学成分。目前在海洋生物中发现了200多种单羟基甾醇,大部分在海绵中都可以找到。另外,从海绵中还分离得到了大量的多羟基甾醇类成分,这些成分大都具有显著的生理活性。Whitson等[27]从菲律宾海绵Spheciospongiasp.中分离得到3种新的甾醇硫酸盐spheciosterolsulfatesA(26)、B、C,通过1D、2D-NMR和HR-ESI-MS等波谱方法确定了它们的结构。这些化合物都可以阻断蛋白激酶Cζ(PKCζ)的活性,IC50值分别为1.59、0.53、0.11μmol/L;在细胞实验中显示其也可以阻断NF-κB的活性,EC50值为12~64μmol/L。黄孝春等[28]从我国南海的蓖麻海绵BiemnafortisTopsent中分离得到9个甾体。这些化合物均为首次从蓖麻海绵中分离得到,其中化合物cholest-4-ene-3,6-dione(27)在淋巴细胞转移实验中对T和B淋巴细胞的增殖显示出显著的抑制活性。另外,对蛋白质酪氨酸磷酸酯酶PTP1B也有显著的抑制活性,其IC50值为1.6μmol/L。Morinaka等[29]从海绵Phorbasamaranthus中分离得到5种新的甾体咪唑类化合物amaranzoleB(28)~F和已知结构的amaranzoleA(29)。amaranzoleB~F属于含有不同羟苯咪唑基侧链的类似物。amaranzoleA、C、D中C24位的C-N被C-O键取代分别得到化合物amaranzoleB、E和F。这两类咪唑类类似物很可能是因为烯丙基的重排,即C24-N和C24-O交换,同时伴随CO2的脱去而形成的。人结肠癌细胞HTC-116细胞毒活性测试结果表明,amaranzoleA无显著毒性(IC50>32μg/mL)。Whitson等[30]从菲律宾的科隆岛海绵Lissodendoryx(Acanthodoryx)fibrosa样品中分离得到3个新的硫酸取代的甾醇的二聚体化合物fibrosterolsulfatesA、B、C,其中化合物fibrosterolsulfatesA(30)、B(31)具有较强的蛋白激酶CPKCζ抑制活性,IC50值分别为16.4、5.6μmol/L。Fattorusso等[31]从Clionanigricans中分离得到两个结构骨架异常奇特的甾体clionastatinsA(32)、B(33)。clionastatinsA、B为首次发现在自然界中存在的多卤代androstane类甾体,它们对鼠纤维肉瘤细胞WEHI164、鼠巨噬细胞RAW264-7和人单核细胞THP-1显示出中等强度的细胞毒活性,其IC50值为0.8~2.0μg/mL。Lu等[32]从昆士兰北部海床收集得到的海绵Sollasellamoretonensis中分离得到两种A环为芳香环的胆汁酸3-hydroxy-19-nor-1,3,5(10),22-cholatetraen-24-oicacid和3-hydroxy-19-nor-1,3,5(10)-cholatrien-24-oicacid。从海绵中分离得到的部分甾醇类成分的结构见图5。
6萜类
萜类化合物是一类分子结构中具有(C5H8)n单元的不饱和烷烃及其衍生物。海绵中的萜类化合物结构类型多种多样,并且具有强烈生理活性。
6.1倍半萜Xu等[33]从海绵Hyrtiossp.中分离得到一种新的倍半萜–二氢醌puupehanol(35)及已知的化合物puupehenone和chloropuupehenone。puupehenone显示出强的抗新隐球菌和念珠菌活性,最低杀真菌浓度(MFC)值分别为1.25、2.50μg/mL。
6.2二倍半萜黄孝春等[34]从南海倔海绵属海绵Dysideavillosa中分离得到5种scalarane型二倍半萜化合物。抗肿瘤活性筛选结果表明,scalaradial对HL-60、BEL-7402、MDA-MB-435等肿瘤细胞株具有显著的抑制活性,IC50值分别为3.4、5.8、4.8μmol/L。邱彦等[35]从中国南海海绵Hyrtioserectus中分离得到8个二倍半萜类化学成分,通过采用多种色谱手段进行分离纯化,应用多种波谱分析技术,并结合文献对照,对所分离到的化合物进行了结构鉴定。其结构分别为furoscalarol、12-O-deacetyl-furoscalarol、16-deacetyl-12-epi-scalarafuranacetate、isoscalarafuran-A、scalarin(37)、12-O-deacetyl-19-deoxyscalarin、12-epi-deoxoscalarin、21-hydroxy-deoxoscalarin。印度尼西亚海绵Lendenfeldiasp.的脂类提取物可以抑制低氧诱导的T47D胸腺瘤细胞中hypoxiainduciblefactor-1的活性。Dai等[36]通过色谱分离技术分离得到结构已知的homoscalarane型二倍半萜16β,22-dihydroxy-24-methyl-24-oxoscalaran-25,12β-olactone(38)、24-methyl-12,24,25-trioxoscalar-16-en-22-oicacid、12,16-dihydroxy-24-methylscalaran-25,24-olide、PHC-4andscalarherbacinA。它们不仅能够抑制低氧诱导的HIF-1的活性(IC50值为0.64~6.9μmol/L),还有抑制T47D和MDA-MDA-MB-231胸腺肿瘤细胞的增殖活性。
6.3三萜海绵中三萜的种类和数量都相对较少,主要可以分为异臭椿型、siphonella型和羊毛甾烷型3大类。Dai等[37]通过活性筛选及多种分离手段从南非海绵Axinellasp.中分离得到7个结构新颖的sodwanone三萜类化合物3-epi-sodwanoneK(39)、3-epi-sodwanoneK-3-acetate、10,11-dihydrosodwanoneB、sodwanonesT~W和结构新颖的yardenone三萜类化合物12R-hydroxyyardenone,以及结构已知的化合物sodwanoneA、sodwanoneB、yardenone。sodwanoneV可同时阻断低氧诱导和铁离子螯合剂(1,10-邻二氮杂菲)诱导下T47D胸腺肿瘤细胞中HIF-1的活性(IC50值为15μmol/L)。化合物3-epi-sodwanoneK、sodwanonesT、10,11-dihydro-sodwanoneB和sodwanoneA可以抑制T47D细胞中HIF-1的活性。化合物3-epi-sodwanoneK-3-acetate对T47D细胞有一定的细胞毒性(IC50值为22μmol/L),化合物sodwanonesV对MDA-MB-231胸腺肿瘤细胞有一定的细胞毒性(IC50值为23μmol/L)。唐生安等[38]采用多种色谱手段对中国南海海绵Jaspissp.的化学成分进行了分离纯化,应用波谱分析技术(包括IR、MS、2D-NMR等),并结合文献对照,对所分离到的化合物进行了结构鉴定,分别为异臭椿类三萜化合物stellettinA(40)~D、H、I、rhabdastrellicacidA和geoditinB。该类化合物具有很强的抗肿瘤、抗病毒等生理活性,所以极具研究开发和应用价值。
7展望
1.1仪器岛津GCMS-QP-5000型气质联用仪。
1.2试剂乙醚、无水Na2SO4(均为AR)。
1.3药材金针菇样品由广东省蚕桑研究所提供,经该所所员刘学铭研究鉴定,为白蘑科菌类植物金针菇Flammulinavelutipes。
2方法
2.1供试品溶液的制备药材切成约1.5~2cm的段,取约80g,按照《中国药典》附录XD挥发油测定法——甲法[4]操作,加蒸馏水800ml,加热4h,收取挥发油提取器中油层和部分芳香水层,乙醚萃取,萃取液用无水Na2SO4脱水后备用。
2.2GC-MS分析
2.2.1色谱条件GC:DB-1石英毛细管色谱柱(30m×0.25mm),样口温度250℃;接口温度230℃;载气为氦气;流速1.3ml·min-1;柱压80kPa;分流比10∶1;进样量为1.0μl。升温程序:初始柱温60℃,保持1min,以10℃·min-1的速率升到280℃,保持5min。
2.2.2质谱条件EI源(70ev),350V,双灯丝;质量范围m/z40~450全程扫描,扫描间歇1.0s。检测电子倍增器电压1.4kV。检索谱库名称NIST。
3结果
依法操作,得到挥发性成分的总离子流图。扣除乙醚溶剂本底后分离得到30个组分,对相对含量较高的组分进行质谱分析,通过计算机检索并与标准谱图对照,鉴定出其中的6个组分。以扣除溶剂峰的色谱图的全部峰面积作为100%,用归一化法确定了各组分在挥发油中的相对含量。分析结果见表1,总离子流图见图1。表1金针菇挥发性成分中的化学成分及相对百分含量(略)
4讨论
从GC-MS总离子流图及GC-MS检测结果可以看出,金针菇挥发性成分以亚麻酸为主,其相对含量达到32.74%。亚麻酸具有增长智力、延缓衰老、降低血压和胆固醇、抗菌、抗炎、抗肿瘤等活性[5~7],是降血压、降血脂药物和保健品的重要原料之一,应进一步研究,加以利用。
本研究首次从金针菇挥发性成分中鉴定出亚麻酸(32.74%)、软脂酸(6.41%)、邻苯二甲酸异丁酯(5.23%)、软脂酸乙酯(4.96%)、邻苯二甲酸丁酯(3.07%)、苯乙醛(1.95%)等成分,占其挥发性成分相对含量的54.36%,但还有24个组分尚未能鉴定出其结构,可能是由于金针菇挥发性成分属首次研究,其中一些成分尚未收入NIST检索谱库,有待于今后深入研究。
【参考文献】
[1]国家中医药管理局《中华本草》编委会.中华本草,第1册[M].上海:上海科学技术出版社,1999:570.
[2]魏华,谢俊杰,吴凌伟,等.金针菇营养保健作用[J].天然产物研究与开发,1997,9(2):92.
[3]黄毅.食用菌栽培[M].北京:高等教育出版社,1993:132,258.
[4]国家药典委员会.中国药典,Ⅰ部[S].北京:化学工业出版社,2005:57.
[5]王威,闰嘉英,王永奇.紫苏油药理活性研究进展[J].时珍国医国药,2000,11(3):283.
[6]董杰明,吴瑞华,袁昌鲁,等.γ-亚麻酸的保健作用[J].卫生研究,2003,32(3):299.
[7]Fukushima,OhhashiM,OhnoT,etc.Effectsofdietsenrichedinn-6orn-3fattyacidsoncholesterolmetabolismolderratschronicallyfedacholesterol-enricheddiet[J].Lipids,2001,36(3):261.