公务员期刊网 精选范文 无线通讯技术论文范文

无线通讯技术论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的无线通讯技术论文主题范文,仅供参考,欢迎阅读并收藏。

无线通讯技术论文

第1篇:无线通讯技术论文范文

论文摘 要:随着因特网、多媒体和无线通讯技术的发展,人们与信息网络已经密不可分。当今无线通讯在人们的生活中扮演着越来越重要的角色,低功耗、微型化是用户对当前无线通讯产品尤其是便携产品的强烈追求,作为无线通讯技术一个重要分支的短距离无线通讯技术正逐渐引起越来越广泛的关注。本文通过Bluetooth和UWB的技术对比及多角度的分析,证实了蓝牙+UWB作为下一代高速无线通讯技术的可能。

前言

目前,我国大型石化企业在厂内的通讯方式,一般仍然采用传统的有线传输方式,即依靠有线通讯电缆来传输信号,配合以传统的程控交换机和防爆电话,防爆扬声器等等设备终端来实现在防爆区与非防爆区之间的通讯。这样的通讯系统庞大,线缆众多不易于人员维护,加之厂区内部腐蚀性气体,工作环境,自然环境等经年累月极容易造成设备的线缆损坏,影响通讯,由于是有线电缆连接在事故发生时更加容易遭受破坏。一旦通讯中断,对企业的事故救援,员工的人身安全,都造成巨大的损失。所以要大力发展无线通讯网络在企业的应用。 1、无线通讯技术的重要作用

石化工厂厂区面积大,人员分布散,防爆区内移动作业人员和零散作业人员众多。无线通讯系统对满足人员通讯需要,加强防爆区内分布人员的动态管理,优化厂区网路结构,实现企业安全生产,调度指挥的有线,无线互联互通,相互结合的信息传递,保证企业安全高效的生产具有十分重大的现实意义。

2、常用的无线通讯技术分析

目前广泛应用的无线通讯技术主要有GPRS/CDMA、数传电台、扩频微波、无线网桥及卫星通信、短波通信技术等。 2.1 数字电台用于点对点或点对多点的工作环境,能够提供标准RS-232接口,可直接与计算机、RTU、PLC等数据终端连接,实现透明传输。数传电台的传输速率从1200~19.2Kbit,传输距离20~50公里。具有抗干扰能力强、接收灵敏度高等特点。数传电台技术比较成熟,标准统一。但随着GPRS/CDMA技术的日渐成熟,相应的设备价格的降低,使得在很多应用场合中数传电台被GPRS/CDMA所取代。但同时,数传电台的相关技术也在不断发展,智能化、网络化、高带宽的数传电台也不断涌现。

2.2 扩频微波和无线网桥技术是近几年兴起的一门数据传输技术。扩频微波最大优点在于较强的抗干扰能力,以及保密、多址、组网、抗多径等,同时具有传输距离远、覆盖面广等特点,特别适合野外联网应用。而无线网桥是无线射频技术和传统的有线网桥技术相结合的产物。无线网桥是为使用无线(微波)进行远距离数据传输的点对点网间互联而设计。它是一种在链路层实现LAN互联的存储转发设备,可用于固定数字设备与其他固定数字设备之间的远距离(可达50km)、高速(可达百Mbps)无线组网。这两项技术都可以用来传输对带宽要求相当高的视频监控等大数据量信号传输业务。

3、短距离无线通讯技术简介

“蓝牙(Bluetooth)”是一个开放性的、短距离无线通讯技术标准,也是目前国际上最新的一种公开的无线通讯技术规范。它可以在较小的范围内,通过无线连接的方式安全、低成本、低功耗的网络互联,使得近距离内各种通讯设备能够实现无缝资源共享,也可以实现在各种数字设备之间的语音和数据通讯。由于蓝牙技术可以方便地嵌入到单一的CMOS芯片中,因此特别适用于小型的移动通讯设备,使设备去掉了连接电缆的不便,通过无线建立通讯。 蓝牙技术以低成本的近距离无线连接为基础,采用高速跳频(Frequency Hopping)和时分多址(Time Division Multi-access—TDMA)等先进技术,为固定与移动设备通讯环境建立一个特别连接。作为一个新兴技术,蓝牙技术的应用还存在许多问题和不足之处,如成本过高、有效距离短及速度和安全性能也不令人满意等。但毫无疑问,蓝牙技术已成为近年应用最快的无线通讯技术,它必将在不久的将来渗透到生活的各个方面。

4、超宽带(UWB)技术研究

超宽带(Ultra-wideband—UWB)技术起源于20世纪50年代末,此前主要作为军事技术在雷达等通讯设备中使用。随着无线通讯的飞速发展,人们对高速无线通讯提出了更高的要求,超宽带技术又被重新提出,并倍受关注。UWB是指信号带宽大于500MHz或者是信号带宽与中心频率之比大于25%的无线通讯方案。与常见的使用连续载波通讯方式不同,UWB采用极短的脉冲信号来传送信息,通常每个脉冲持续的时间只有几十皮秒到几纳秒的时间。因此脉冲所占用的带宽甚至高达几GHz,因此最大数据传输速率可以达到几百分之一。在高速通讯的同时,UWB设备的发射功率却很小,仅仅是现有设备的几百分之一,对于普通的非UWB接收机来说近似于噪声,因此从理论上讲,UWB可以与现有无线电设备共享带宽。UWB是一种高速而又低功耗的数据通讯方式,它有望在无线通讯领域得到广泛的应用。UWB的特点如下:

4.1 抗干扰性能强:UWB采用跳时扩频信号,系统具有较大的处理增益,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。 4.2 传输速率高:UWB的数据速率可以达到几十Mbit/s到几百Mbit/s,有望高于蓝牙100倍。 4.3 带宽极宽:UWB使用的带宽在1GHz以上,高达几个GHz。超宽带系统容量大,并且可以和目前的窄带通讯系统同时工作而互不干扰。 4.4 消耗电能少:通常情况下,无线通讯系统在通讯时需要连续发射载波,因此要消耗一定电能。而UWB不使用载波,只是发出瞬间脉冲电波,也就是直接按0和1发送出去,并且在需要时才发送脉冲电波,所以消耗电能少。 4.5 保密性好:UWB保密性表现在两方面:一方面是采用跳时扩频,接收机只有已知发送端扩频码时才能解出发射数据;另一方面是系统的发射功率谱密度极低,用传统的接收机无法接收。 4.6 发送功率非常小:UWB系统发射功率非常小,通讯设备可以用小于1mW的发射功率就能实现通讯。低发射功率大大延长了系统电源工作时间。 4.7 成本低,适合于便携型使用:由于UWB技术使用基带传输,无需进行射频调制和解调,所以不需要混频器、过滤器、RF/TF转换器及本地振荡器等复杂元件,系统结构简化,成本大大降低,同时更容易集成到CMOS电路中。

5、结束语

总之,无线通讯方式由于其建立物理链路简单易行,成本低,可以根据现场需求及时调整项目方案,灵活性好,系统的功能扩展方便,因此特别适合石化行业对通信链路的要求。

参考文献

[1]方旭明,何蓉.短距离无线与移动通讯网络[M].北京:人民邮电出版社,2004.

[2]刘乃安.无线局域网(WLAN)—原理、技术与应用[M].西安电子科技大学出版社,2004.

第2篇:无线通讯技术论文范文

关键词:CC2530;SIM900A;云服务器;桥梁稳定性

中图分类号:TP277.2 文献标识码:A 文章编号:2095-1302(2016)12-00-03

0 引 言

在桥梁工程领域,随着各类自然及人为灾害的增加,对桥梁稳定性监测和预警的要求也越来越高。目前,桥梁监测主要集中在桥面、桥墩等桥体的监测,而对于桥梁桥墩所在基质(基础地质条件)的监测却相对较少。基质是桥梁稳定的重要基础,当基质经过流水冲刷,地质条件发生变化时,桥墩的稳定性会随基质变化直接影响整个桥梁的稳定性。

本文设计了一个基于CC2530无线传感网络,利用GPRS通讯及云服务器的桥梁基质监测系统。实现了将监测所得的各桥墩基质高度数据上传至云服务器处理并预警的功能。

1 系统简介

系统设计包含物联网层、承载网络和应用层三个部分,其中物联网层将CC2530作为基础,设计监测基质高度的无线传感器,每个桥墩都安装一个传感器作为ZigBee无线网络的终端或中继设备。协调器与SIM900A通过串口进行数据通讯,控制SIM900A连接GPRS,通过GPRS网络发送数据至服务器或接收来自服务器的指令。系统基础结构如图1所示。

根据ZigBee网络的特点[1],网络内使用短地址进行通讯,而重新组网后短地址可能会发生变化,系统设计使用CC2530的长地址(IEEE地址)作为区分唯一设备的ID,长地址为64位全球唯一识别码,不会更改。服务器数据库保存桥墩的长地址,每次终端注册时数据库更新长地址对应的短地址。物联网层与服务器通讯简图如图2所示。

系统设计一座桥只有一个协调器和GSM模块,即一座桥只有一个确定的IP地址和端口。如图2所示,系统要与某座桥的某个桥墩进行通讯的步骤为:查询桥墩绑定的长地址――查询长地址对应的IP、端口及短地址――往IP和端口发送包含短地址的数据――IP对应的GSM模块收到数据――发送到协调器――通过短地址发送到终端。如此,系统即可实现服务器与多座桥不同桥墩传感器之间的通讯。

2 系统硬件设计

2.1 基质监测传感器设计

由于桥梁桥墩基质测量的特殊性,没有现成的即方便又经济的传感器可以使用,论文以CC2530为核心芯片设计了一款综合测量和无线通讯传感器。传感器采用磁环+普通的霍尔传感器作为测量部分[2],CC2530作为中控部分,磁环和塑料垫片相隔放置于一定长度的PVC管中,一个磁环和垫片的高度为5 mm,即测量的精度为5 mm。传感器样机如图3所示。

图中所示为横向放置,正常安装时为竖向安装,传感器底座和PVC管为一体,穿过CC2530电路板,两者之间可以相互移动,当有位移时,电路板上的霍尔传感器感应到变化则通知CC2530产生一次中断,每产生一次中断移动5 mm距离。传感器在桥墩上安装的示意图如图4所示。

由图4可知,无线传感器的CC2530部分与大钢管为一体,安装固定在桥墩上,底座、PVC管同小钢管固定,PVC管穿过CC2530的感应器,小钢管套入大钢管内,底座沉入水底与基质接触。当基质高度降低时,小钢管跟随降低,当降低高度达到分辨率5 mm时,CC2530产生一次中断,系统监测到高度变化后,传感器计算当前高度,将高度数据通过协调器发送到服务器。

2.2 协调器设计

协调器电路设计与常用CC2530电路设计类似,加入SIM900A模块,利用串口与协调器通讯。其样机如图5所示。

2.3 供电设计

考虑到设备都在户外运行,系统设计协调器和传感器都采用太阳能板+蓄电池的供电模式。

3 CC2530程序设计

根据系统功能,程序设计分为协调器程序和无线传感器程序两个部分。无线传感器可以作为终端或中继使用。

3.1 协调器程序设计

协调器主要用于数据处理,组建ZigBee网络,接收桥墩的监测数据并通过SIM900A发送到服务器,接收服务器的控制查询数据并将数据下发至终端或中继设备。程序主要分为组网、串口通讯、无线通讯三个模块。

在组网程序方面,协调器运行Z-Stack协议栈与终端或中继设备组网,该部分程序只需在Z-Stack协议栈[3]基础上稍做修改即可。

串口程序的设计主要使用AT指令与SIM900A模块进行通讯。通过程序设计,让CC2530根据AT指令模式发送和接收数据并判断命令类型,实现GPRS连接和数据传输。与服务器间的数据通讯通过UDP实现。

无线通讯程序主要接收处理桥墩终端上传的数据,包括注册、心跳、高度数据、报警等,将数据按照协议格式通过串口和GPRS发送至服务器。处理串口转换过来的相关指令并发送至桥墩终端。协调器端程序流程图如图6所示。

3.2 终端传感器程序设计

终端传感器的主要功能包括与协调器组网通讯,接收协调器指令进行查询、设置基质初始高度等,监测基质高度变化,并将变化后的高度数据发送至协调器。按照功能区分,将终端程序的设计分为组网程序、传感器程序和无线接收处理三个模块。传感器端程序流程如图7所示。

图7 传感器端程序流程

终端组网程序同样使用Z-Stack协议栈,在协议栈的基础上稍做修改,组网时读取短地址和长地址并发送到协调器。

传感器程序主要利用I/O口中断,每中断一次表明基质高度发生5 mm变化,程序根据初始设置高度值计算当前高度并上报至协调器,若短时间内高度变化过快则发送报警指令等。

无线数据处理模块主要处理来自协调器的指令,包括查询、设置高度等指令。程序接收到指令后,根据协议做相应的处理。此外,程序还设计了1分钟定时向服务器发送心跳的功能,以表明设备在网,方便服务器处理。

4 云服务器功能设计

云服务器是系统运行的核心部分,论文所用系统将阿里云的云服务器作为基础,设计数据库和应用,实现桥梁基质的实时监测。云服务器主要包含数据库设计,网络通讯设计和应用层设计三个模块。人机界面设计如图8所示。

数据库设计使用SQL Server2008进行数据管理,根据系统功能数据库保存桥梁各桥墩传感器的长地址和短地址,保存每座桥梁SIM900A的IP地址和端口及每个桥墩的高度数据等。

网络通讯设计主要用于服务器跟桥梁和桥墩传感器之间的通讯。论文使用UDP完成,根据设计的通信协议以及数据库功能保证通讯正常进行。通讯指令包含注册、心跳、高度数据、设置、报警等类型。

应用层设计主要是人机界面设计。论文采用地图供应商提供的接口[4],将监测的桥梁以地图模式显示,此外,还包括设备绑定、查询、报警等功能。

图中左侧为各桥梁以及桥墩的信息,中间为当前桥梁的地图位置,下方为桥梁各桥墩的基质高度信息。菜单包括绑定传感器、设置等功能。

5 结 语

本文设计了一种监测桥墩基质高度变化的传感器,利用ZigBee网络+云服务器实现了实时监测桥梁桥墩基质高度变化的功能,系统设计友好的人机界面将监测数据进行直观展现,系统无需人工值守即可实现远程实时监测、报警等功能。目前,该系统已在丽水市宣平港大桥投入测试阶段,测试期间系统稳定,各项功能均正常运行。

参考文献

[1]王东,张金荣,魏延,等.利用ZigBee技术构建无线传感器网络[J].重庆大学学报(自然版),2006,29(8):95-97.

[2]吴志红,管志华,朱元.基于Modbus协议的线性霍尔传感器编程器设计[J].物联网技术,2011,1(6):52-55.

[3]曾宝国.Z-STACK协议栈应用开发分析[J].物联网技术,2011,1(3):71-73.

[4]丁振中.利用百度地图接口建立人社自助服务一体机导航地图[J].电脑编程技巧与维护,2015(4):88-90.

[5]林元乖.基于物联网技术的休闲农业智能监测与培育系统[J].物联网技术,2014,4(5):78-79.

[6]吴昊,彭懋磊,张亦梅.基于STM32和ZigBee的台站观测环境监测系统设计[J].物联网技术,2016,6(11):54-56,60.

第3篇:无线通讯技术论文范文

[关键词]ARM7无线传输指纹辨识

中图分类号:TP2文献标识码:A文章编号:1671-7597(2009)1110048-01

一、发展背景

目前国内外的指纹识别系统设备大多停留在指纹采集器、和一台计算机的组合水平上,这样的系统有很多缺陷。针对于目前国内存在的一些不足,本项目拟以ARM芯片为核心的蓝牙通讯芯片硬件,以指纹识别系统为核心的软件,实现一个基于ARM的无线便携式指纹辨识系统平台,能实现无线通信传输。以此改进现有的指纹识别系统,并期望在应用方面得到推广。

二、研究意义

为了解决目前大多指纹识别系统的携带不方便,身份识别时间较长,工作效率低,且目前的系统都不具有通信交换功能和信息传递的及时性的缺点,有针对性的去设计和开发一种无线通信功能的便携式指纹识别系统。

三、创新点

与常见的产品模型相比,有如下优点:1.便携式:本项目拟设计以ARM9为平台的便携式指纹识别系统,该系统可以方便在室外使用,通过比较存储器内的指纹特征信息与现场采集的指纹信息可以完成身份确认;2. 速度快:通过相关人员的指纹能够马上确认身份,无需与计算机相连;3. 实现了无线通讯的模式:通过单片无线收发芯片可以完成与机构中心的信息交流。

四、硬件设计

本系统硬件设计主要包括指纹采集、无线通讯、和存储模块三个部分。先利用指纹采集模块采集指纹图像,再经ARM9模块进行算法处理,把相关的信息存储起来,并与存储模块的中的指纹比对确认身份,并通过无线通讯模块把相关信息发送至信息中心。1.指纹采集指纹采集传感器采用OV7620,并以I2C总线及DMA的数据传输方式实现与CPU的信息交互。当nXDREQ1输出由高电平变得低电平时,传感器便有数据输出,并且数据能够维持至下一个同样的过程的到来。这正好符合44B0的外部DMA请求的单步模式的要求。于是自然就可以采用DMA的方式来读取数据。最终的数据读取是通过片选锁存器来实现的。由于DMA的方式不干预CPU,因此也大大提高了读取的速度。2.电源管理。电源管理部分采用了1150mAh的LI电,通过DC-DC升压至5V,再通过LDO给系统所需要的3.3V和2.5V电压。具体的实现过程为:电池供电时,开关S9按下,TEST1点由高变低,Q0导通,NAND网络为高,系统开始供电,此时程序运转并给与SHDN引脚高电平信号,促使Q6导通,此时即使按键抬起TEST1点仍为低电平,维持Q0的导通。当插上U后,按键的按下使得Q4导通,Q0此时截至,系统由电池供电切换为U供电,其它道理相同。关机时按键按。系统可以实现图像的连续采集以及温度、湿度、照明亮度等的控制。其中图像采集是系统的核心,其工作流程如下:(1)默认情况下,系统工作在休眠状态。(2)工作人员通过PC管理软件发送命令开始采集图像,软件通过USB接口把命令发送给蓝牙适配器ARM命令。(3)接收到图像采集命令后,ARM控制CPLD开始采集图像数据。(4)CPLD把采集到的一帧图像数据写入一块SRAM中,把ARM的总线切换到该SRAM上,并通知ARM进行压缩;同时CPLD往另一块SRAM中继续采集下一帧图像,便于提高系统的吞吐率。(5)ARM通过蓝牙模块返回响应命令,并返回采集JPEG-LS图像的头信息。(6)PC管理软件发送命令接收下一行压缩图像,ARM压缩该行原始图像,并发送压缩数据;如果出错,可以重新发送。重复本步骤可以获取整帧压缩图像。(7)PC软件对压缩图像解码并显示,并提供其他附加功能,如图像处理、保存等。(8)重复步骤(2)~(7),获取下一帧压缩图像。由上述流程可以看出,JPEG-LS压缩以及无线信道传输决定整个系统的图像传输速率。无线传输采用蓝牙技术,其标称空中速率为1 Mbps,不易提高;因此,系统设计的核心是JPEG-LS的编码效率。3.ARM与蓝牙接口设计.蓝牙是无线数据和语音传输的开放式标准。它将各种通信设备、计算机及其终端设备、各种数字系统,甚至家用电器,采用无线方式连接起来。为了优化系统设计,我们采用性价比高的CSR BC2实现蓝牙无线串口。CSRBC2是一款高度整合的模块级蓝牙芯片,主要包括:基带控制器、2.4~2.5GHz的数字智能无线电和程序数据存储器。通过该模块,系统可以提供无线标准UART接口,支持多种波特率(如9.6 kbps、19.2 kbps、38.4 kbps、57.6kbps、115.2 1kbps、230.4 kbps、460.8 kbps、92l.6 kbps)。当速率为460.8 kbps时,蓝牙芯片能够正常工作;而在921.6kbps时,会有很高的误码率。

五、软件设计

本系统软件设计主要包括固定主程序,管理功能模块,指纹采集算法模块,指纹匹配算法模块,无线通信程序模块,硬件操作模块等。以下为各个模块所包含的函数:1.指纹采集算法模块:打开采集仪函数、关闭采集仪函数、设置参数函数、指纹探测函数;2.指纹匹配算法模块:指纹验证函数、指纹比对函数;3.无线通讯模块:协议层函数、控制层函数、网络层函数、链路层函数、驱动层函数;4.硬件操作模块:读写存储器函数、初始化函数、状态读取函数;5.管理功能模块:指纹的存储、删除、更新函数。

六、结语

本系统以ARM为核心,通过蓝牙传输,实现了数字化的无线指纹辨识功能。本系统具有良好的扩充性,可以使得系统更加微型化。首先,如果采用CSR公司更新的BC3系列芯片,则将融合ARM核以及蓝牙功能,可以更加减小整个系统的体积。最重要的是,如果发展自主产权的指纹识别芯片,那么以现有的SOPC技术,可以将ARM核、CPLD逻辑门以及蓝牙通信功能集成在一起,形成指纹识别的集成解决方案,从而使其产业化成为可能。

基金项目:本文为九江学院科研课题“《基于ARM7的无线便携式指纹辨识系统设计》09kj11的研究”研究成果之一

参考文献:

[1]费浙平,基于ARM的嵌入式系统程序开发要点(二),单片机与嵌入式系统应用,2003,9:80~83.

[2]张小田文,基于ARM7的无线内窥系统设计,单片机及嵌入式系统应用,2008.03.

[3]王波,ARM的三种中断调试方法的探讨.微计算机信息(嵌入式与SOC),2006,22~130~131.

[4]甘泉、杨健、陈永泰,ARM处理器启动代码的分析与设计,2004年全国第五层嵌入式系统学术交流会论文集,2004,151~154.

第4篇:无线通讯技术论文范文

本书一共收集了16篇论文,分成三个部分。第一部分人体监测,包括5篇论文:1.将生物学与电子线路相连接:量化与性能度测;2.用于神经信号记录的全集成系统:技术前景及低噪声前端设计;3.用于神经肌肉模拟的无线神经记录微系统的超大规模集成电路;4.使用无线电频率技术的健康保健装置;5.用于可植入医学应用的低功率数字集成系统的设计考虑。第二部分生物传感器与电子线路,包括6篇论文:6.基于亲和力的生物传感器:随机建模和品质因素;7.基于标准CMOS及微电子机械系统(MEMS)工艺的制造实例;8.用于芯片实验室应用的CMOS电容性生物接口;9.用于定点护理及远程医学应用的无透镜成像细胞仪及诊断学;10.用于生物微流体学实时监测与控制的高级技术;11.使用电化学生物传感器的干细胞培养过程的监测。第三部分新兴技术,包括5篇论文:12.建立用于培养细胞与有机物的接口:从靠机械装置维持生命的甲壳虫到合成生物学;13.用于阵列式单细胞生物学的技术;14.微流体学系统中细菌鞭毛发动机的应用;15.应用基于CMOS技术的遗传因子注射和操纵;16.低成本诊断学:射频设计师的方法。

本书编辑是一位在无线通讯、医学成像、半导体器件和纳米电子方面知名的新兴技术国际专家,他管理着一个初创公司――Redlen技术公司的研发部门,他同时也是CMOS新兴技术公司的执行主任。他曾在国际性专业杂志及会议上发表过100多篇论文,在各种国际场合中被邀请作为演讲者,他拥有美国、加拿大、法国、德国和日本授予的18项国际专利。

本书可用作电气工程、微电子学、CMOS线路设计及生物医学器件专业研究生课程的补充材料。

胡光华,

退休高工

(原中国科学院物理学研究所)

第5篇:无线通讯技术论文范文

国家“”青年拔尖人才、优秀青年科学基金项目的获得者、公安部第三研究所物联网技术研发中心副主任刘云淮博士认为,这些故障的“罪魁祸首”正是无线自组织网络中的“弱连接”。

多项原创成果

入选“”

早在香港科技大学读博期间,刘云淮就开始了弱连接条件下无线自组织网络架构和节点协同技术研究,迄今已逾十年。

众所周知,若无线通信弱,网络节点间连接特性则会发生改变,针对这一现状,刘云淮从概率式网络模型出发,通过探寻无线网络中的基本机理,设计出一系列拓扑控制方法,包括针对Sink节点到其他节点通讯模式的Conreap算法,以及针对节点间通讯模式的Brasp算法,得到欧美同行很高评价。美国佐治亚理工大学计算机工程系教授、可靠通信实验室主任Raheem Beyah认为“概率型网络模型更真实的反映无线通讯中的链路行为”,加拿大Alberta大学计算机科学系教授Mike MacGregor表示“概率型网络模型能更好的反映网络行为,为节点最优分布奠定了理论基础”。

基于概率型网络模型,刘云淮针对传统网络信息感知模型进行了大胆改革。在无线传感器网络中,传统感知模型为圆盘结构,存在确定半径,圆盘内的信息可以通过感知节点获取,但圆盘外的信息则无法感知,因此无法反映真实的传感器行为。反复实验下,刘云淮带领团队提出了基于链路的概率型感知模型,可以把链路性、概率性和多感知融合性这三个现实传感器的独特特性反映出来,并把误差缩小在百分之十以内。

网络是信息交换的载体。它的“四通八达”与否,直接影响着信息传输程度。

那么,清除一切网络传输中的障碍,是否就一定能够确保信息通畅呢?

针对这一问题,刘云淮认为恰恰相反,“少量干扰行为是激发网络传输性能的关键”。

利用干扰回避、干扰消除和干扰对齐等管理技术,他原创提出基于干扰的副信道通信模式,增加一些携带一定控制信息的干扰信号,制造可以最终被消除掉的主动干扰,在传输过程中反倒可以提高网络“活力”,增加网络传输量,提高传输效率,从而提高网络整体性能。

刘云淮并未满足于此,基于此模式,他充分扩展了数学中Quorom理论的成果,设计实现了高效低功耗的分布式节点协同机制,减少了传统中传输失败和网络丢包现象。从网络节点间的感知精度出发,在实验过程中,提出了频谱感知节点传感器网络,设计并实现了协同边界定界算法,大幅度提高了网络传输中精确信息的获取量。

真实的无线网络系统,要在一系列核心技术的支持下才能正常运转。在多径反射效应下的节点测距方法上,刘云淮开创了无线网络领域研究的先河。他以频率为突破口,通过相同节点在不同频率下的信号强度测量,经过数学模拟,采用傅里叶变换的方式求解,可以获得更精确的距离。同时,在网络热点的判断问题上,刘云淮首次提出了非密度的、基于移动性的网络热点分布模型,设计实现了移动节点的热点感知方法,为今后的数据挖掘和信息获取提供了有力支撑。并针对网络传输丢包的问题,设计了新的多信道分配算法,以均匀分布节点缓冲区,加大了网络传输速度。

凭借在弱连接条件下无线网络关键问题上的诸多创新性成果,刘云淮迄今为止已经在本领域最权威的国际期刊《IEEE Journal on Selected Areas in Communications》《IEEE Transactions on Mobile Computing》《IEEE Transactions on Parallel and Distributed Systems》以及著名国际学术会议如ACM Mobicom,ACM Sensys,ACM SIGKDD,IEEE INFOCOM,IEEE ICDCS等。并且在2008年获得IEEE ICDCS最佳论文奖,是638篇论文中唯一获奖论文。

在国际计算机网络研究领域,较高的科研天分与勤勉的科研态度让刘云淮很快声名鹊起,并在2015年成为国家“”青年拔尖人才中的一员。

关系国计民生

荣获“优秀青年科学基金”

科研,是为人类发展服务。刘云淮深谙此理。

近年来,以智能手机为代表的移动通讯设备加快了网络感知趋势的发展。以个人为中心,从海量数据中获取高精准信息的群智感知和群智计算开始成为目前移动网络的研究热点。

历经五年学习,2000年刘云淮于清华大学毕业后,即前往惠普做了一名工程师。两年一线工程师的经历,让他养成了一种与市场同步的科研理念,也敏锐地意识到无线网络的研发命脉。随后,他来到香港科技大学再次深造,开始在实验室里反复印证自己脑海中的系列想法,迅速打开了无线网络架构及节点协同技术领域的“大门”。

近十年弱连接条件下无线自组织网络架构和节点协同关键技术研究工作,让刘云淮积累了大量实战经验。来到公安部第三研究所物联网中心之后,顺应社会发展,为深入拓展这一研究,他开始把眼光瞄向移动群智感知网络层面。由他申请的项目课题,已经获得国家自然科学基金“优秀青年科学基金”支持。

传统由基站提供服务的有组织无线网络,单一节点间的链接能力较弱,在弱连接广泛存在的情况下,通信传输日渐艰难。因此,基于特定传感器的无线传感器网络越来越不适应信息大爆炸的现代社会,变革已经成必然。

正所谓一花独放不是春,百花齐放春满园。社会的快速发展,正要求群策群力。

群智感知的概念即发源于此,其关键是利用大量无意识协作,低干扰和低负担的非专业感知源来获取信息,具有广泛的应用性,国际社会纷纷迈开了群智感知网络研究的脚步。但很快发现,群智感知网络研究过程中,面临着网络差异性大、数据量大、数据质量低劣、数据异常等诸多难题。

基于此,刘云淮从移动群智感知网络的新特性出发,加入人类行为元素,探索弱连接下群智感知网络架构和拓扑控制方法,建立无意识协作的通信增强机制,创新恰当的节点协同技术,以实现可靠通信,以促进群智感知网络的大规模应用发展。此项课题的研究,将从宏观上满足大数据时代的发展需求,促进数据挖掘技术的快速进步,有利于信息安全及共享网络社会的长远发展。同时,在微观上也利于个人隐私信息的保护。

第6篇:无线通讯技术论文范文

关键词:机车,安全,导航

 

随着莱钢生产规模的扩大,莱钢运输部机车也随之增加,运输生产越来越繁忙,铁路线状况越来越复杂,为了对运输生产控制和监督,提高机车的行车安全,我部引进了机车安全导航系统,为调车作业的现代化管理提供先进、可靠的技术手段。

1.系统结构组成

本系统集调车作业计划无线传输、机车运行安全防护、无线调车机车信号和监控系统、机车速度及位置的动态跟踪、机车工况数据采集等功能于一体。

为保证地面中央处理系统与机车移动信息终端之间无线通讯的实时性,以及尽可能的减少无线通讯的盲点区域,在每个站场设置一套地面中央处理系统。设置在各个站场的地面中央处理系统之间通过光纤网络与货物车辆实时跟踪系统及接口机连接。论文格式。地面中央处理系统与安装在各机车上的机车移动信息终端之间实现无线双向通讯,用以传递站场画面信息、调车作业计划单、机车速度及位置等相关动态信息。

2.系统构成及主要设备组成

机车安全导航系统分为地面中央处理系统和机车移动信息终端两大部分组成。论文格式。

2.1地面中央处理系统

地面中央处理系统包括室内和室外两个部分。室内部分主要包括由两台运算能力较强的主机组成双机热备系统,UPS电源,一个数传电台及天线,一台GPS接收器及天线等。室外部分包括地面应答器和与之配套的连接线缆等设备组成,如图1所示。

2.2机车移动信息终端

机车移动信息终端由车载主机、数传电台、机车工况数据采集仪、10.4寸液晶显示屏、操作用小键盘、车载GPS接收器、录音话筒、车载无线调车等主要设备组成,如图2所示。

3.系统主要功能

3.1实时动态跟踪和定位功能(1)在机车显示屏上动态实时显示本机车位置信息;(2)在机车显示屏上动态实时显示前方信号状态和距离,当机车进入指定安全区域时,将会有语音信息提示前方信号灯状态和安全报警信息;(3)在机车显示屏上动态实时显示机车速度、柴机转速、总缸气压、列车管压、制动缸压、手柄位置等相关信息;(4)对机车驾驶室内环境进行实时录音,如:正、副驾驶的呼唤应答信息;司机与调车员、连接员、调度员之间的语音通讯信息等;(5)当有两辆(或以上)机车进入同一股道时,将向本股道所有机车实时传递相对距离,并以图形化显示机车相对位置,当机车距离小于指定安全距离时,将以语音提示安全警告信息;(6)在调监系统上动态实时显示全场机车位置信息3.2安全防护功能(1)防止调车作业时车列冒进禁止显示的阻挡信号机。论文格式。(2)防止调车作业时车列越过站场规定的停车点(一度停车位,分区点,站界等)。(3)控制车列在尽头线安全距离前方停车。4)防止调车作业车列运行速度超过道岔、线路、特殊车辆等允许的最高限速。(5)防止连挂作业时超过连挂作业允许的最高速度。3.3调车作业计划传输功能(1)自动读取并发送调车作业计划到相应机车上;(2)机车显示屏上可显示接收到的调车作业计划。

3.4人机交互功能(1)在车载显示器和车务终端上实时显示:在指定范围内实时显示同一股道上其他机车位置和本机位置。以站场图形方式实时显示行、调车作业状况。以图标方式实时跟踪显示调车车列在调车作业区的位置。以文本方式实时显示调车作业关键状态信息。(2)在车载显示器上实时显示本作业车列前方信号状态、调车限速、防护距离和平调信号控制命令。(3)司机通过小键盘实现调车作业单查询、勾作业确认等操作。(4)车务值班人员通过车务终端键盘或鼠标实现调车作业通知单录入、编辑和打印等功能。(5)通过车载主机喇叭向司机发出语音提示、报警音响。

3.5记录处理功能(1)在地面主机、车载主机和监控装置主机中分别记录并保存调车作业过程的实时信息。(2)通过转储设备可以将车载主机和监控装置主机中记录的数据转移到地面设备,进行分析处理。(3)在车务终端上可以对调车作业的历史记录进行回放和查询检索。4.主要功能实现的原理

4.1实时动态跟踪和定位功能(1)机车移动信息终端通过车载GPS接收器实时接收到本机车的坐标位置,并同时通过无线方式实时接收地面GPS的坐标位置,通过差分计算后可获得机车准确的坐标位置,并将此坐标位置由无线方式传回地面中央处理系统。(2)地面中央处理系统把从货车实时跟踪系统和接口机获取的相关数据合成加工后通过无线方式发送到机车移动信息终端,机车移动信息终端结合本机车的GPS坐标位置即可在显示屏上动态显示站场画面及机车位置、速度等相关信息。(3)在某些关键位置设置地面应答器。当机车经过地面应答器进入该股道时,从应答器获得机车所处的位置信息,系统从这个位置开始对机车随后的运行轨迹进行实时跟踪。当机车退出该股道并经过应答器时,系统结束实时跟踪,待机车再次经过地面应答器进入该股道时重新开始新一轮的实时跟踪。(4)地面中央处理系统实时接收各机车的位置、速度等相关信息,通过数据合成加工后可在调监系统上动态显示机车的相关信息。(5)系统可根据GPS、地面应答器、微机联锁及货车实时跟踪系统的相关信息等多方面实现机车的动态跟踪和定位。假如其中某一部分出现短暂故障,系统仍可对机车进行动态跟踪和定位。

4.2安全防护功能(1)同一股道机车防撞

①根据微机联锁系统传入的地面信号状况,判断有机车A和机车B进入同一股道作业,或是机车A和机车B同时进入干线,地面中央处理系统将把从机车A和机车B接收到的位置、速度等信息实通过无线方式实时发送给机车B和机车A ;②车A和机车B接收到本股道上其他机车的位置、速度等相关信息后,在显示屏上实时显示本机车及对方机车的位置,以及两机车之间距离和相对速度。

(2)防止调车作业时车列冒进禁止显示的阻挡信号机

当某机车在进入道岔指定的安全警戒区域后,地面中央处理系统会把机车前方地面信号和机车与信号机间距离等相关信息发送给机车移动信息终端,车载主机软件以图形界面和语音提示等来对司机提出友好警示,并根据公式算出车辆是否需要减速,如需要会给予语音和图形提示;当车辆需减速或停止时,但车辆还继续前进,车内自动安全系统将会报警,并根据情况自动停。

4.3调车作业计划传输功能(1)地面中央处理系统定时从数据库读取调度员下达的调车作业计划,并通过无线方式将调车作业计划发送到相应的机车上.(2)当机车上接收到调车作业计划时,会有语音提示司机确认接收,接收到的调车作业计划可直观的在显示屏上显示。(3)机车移动信息终端可将机车接收到调车作业计划的时间以及整张调车作业计划单的完成时间传回地面中央处理系统

5. 结束语

通过在莱钢轧钢站3台机车上安装机车安全导航系统后的使用情况来看,机车安全导航系统可以显著提高机车调车作业效率,增加机车作业人员在作业过程中的安全性,并大幅降低了机车的各项损耗,有效降低了生产成本。

参考文献

[1] 姚晓宁.基于GSM-R 的铁路通信网络设计[J]电子设计工程.2009,3.

[2] 段金辉.机车行车信息无线传输系统的研究[D]吉林大学硕士学位论文.2006,6.

[3]沈锋.无线电导航系统信号接收技术[M]国防工业出版社.2010.

[4]黄智刚.无线电导航原理与系统[M]北京航天航空大学出版社.2007.

第7篇:无线通讯技术论文范文

关键词:GPS卫星定位导航技术,飞播造林,应用

 

GPS通常称为“全球定位系统”,它能够实时测量地球表面点的座标。在飞播的设计、导航、及成苗成效调查中,有着广泛的应用。并具有如下优点:方法科学、应用方便、节省成本。论文参考网。

一、GPS在飞播调查设计中的应用

1、应用于县区播区的初选与踏勘

在县区年度拟播计划的基础上,利用拟播区域的地形图,根据图面地形与地类,在图上进行框选,算出框选播区各角点的大地坐标。

利用本地的GPS初始化数据,对拟用手持式GPS导航仪进行初始化。再到框选的拟播现地,利用地形及播区各角点的大地坐标数据,对播区实地查看,并最后选定播区。

2、飞播施工时用GPS仪做为飞行导航

在飞播施工中,以设计文件为依据,将拟播播区的各航点大地坐标输入到飞行用GPS导航仪中,飞播时,播区每架次每播带的压标飞行,就由该GPS导航。

3、飞播施工时在现地地面接种中的应用

飞播施工时,在播区现地,根据播区接种线位置,算出各架次各播带的拟设接种位置的大地坐标,并输入到现地用GPS仪中,根据地形及GPS仪找到相应位置,并放置好接种样布。从而更好地保证接种的质量及接种正常进行。

4、在播区成苗成效调查中的应用

用成数抽样法,先布置好播区调查线,再以播区调查线在图上的位置,以及调查样方数的多少,算出各调查样方的大地坐标,并输入到GPS仪中,再根据地形和GPS仪找点设样方查苗。论文参考网。

这样进行调查,点位正确、选点容易。有利于成苗成效的调查质量。

二、GPS卫星定位导航在飞播造林中应用前景

GPS在飞播造林中的应用,历经十年,已经取得了显著的效果。论文参考网。

随着GPS仪精度的提高,以及GPS仪与计算机接口的拓展、GPS仪本身存贮容量的进一步增加;计算机无线通讯技术的存在的发展。设想,机场、飞机上、接种地面三地实时控制飞播施工的时代即将到来!

第8篇:无线通讯技术论文范文

关键词:WISHBONE;FPGA;片上系统;IP核

中图分类号:TP302.2; TP338.1文献标识码:A文章编号:1009-3044(2009)31-0000-00

Design of Sensor Control System on Chip Based on Wishbone

HUANG Wang-hua1, LIU Yi-jun2

(1.Guangdong Textile Polytechnic,Foshan 528041,China;2.Guangdong University of Technology,Guangzhou 510006,China)

Abstract: The paper has designed a sensor control system IP core based on the analysis of traditional sensor node structure,which is under WISHBONE standard.This IP core has been carried out in Xilinx's Spantan 3 series FPGA chip successfully. First of all the paper designs the sensor node control system frame,in which SHT7X is a sensor module and CC2420 is a wireless communication module, and then it inrtoduces the detaile design of sub modules, including the MCU, interface modules and the system connecte module, all these modules are under WISHBONE Bus standard. Finally, after synthesizeing ,implementing and programming,the result shows that the IP core only uses 625 Slices, and its highest frequency is up to 78.740MHz.

Key words: WISHBONE;FPGA;SoC;IP core

无线传感器网络是当今国内外研究的热点之一,它是计算机技术、通信技术和传感器网络技术相结合的产物[1]。目前,传统的传感器节点由传感器、信号调理、ADC、微处理器、电源、无线通讯和天线组成。这种传感器节点最大的特点是电路模块化、体积较大、功耗也不低。近几年来,随着FPGA和SoC技术的发展,嵌入式系统逐渐由板级向芯片级设计过渡。本论文就在FPGA芯片上传感器控制系统进行了设计,设计采用了WISHBONE总线标准,通过调试功能达到了设计要求。

1 传感器网络节点和WISHBONE总线简介

传感器网络一般是由一定数量的传感器节点通过网络搭建起来,根据业务应用要求的不同选择监测不同数据的传感器。目前,传统的传感器节点由传感器、信号调理、ADC、微处理器、电源、无线通讯和天线组成。传感器主要完成数据采集,其类型由被监测的物理信号的形式决定。ADC主要完成模拟信号到数字信号的变换,通常市面上的传感器模块都集成了数模转换功能。微处理器主要完成数据处理和操作控制,通常采用低功耗的,如MicroChip公司的PIC系列等。通讯单元主要负责数据的网络传递,一般由低功耗、短距离的无线通信模块组成。

Wishbone[2]总线是一种开源的片上总线标准,现由OPENCODES组织维护。该总线采用了主/从结构,由主部件发起每次与从部件之间的数据传输,支持常见的四种IP核联接方式,包括:点对点、数据流、共享总线和交叉开关。

2 结构总体设计

因该设计所涉及的传感器节点主要以监测大气温度和湿度为目的,为了提高数据采集的准确度和减少功耗,节点采用了瑞士SENSIRION公司开发的数字温湿度传感器SHT7X系列传感器。该模块为插针型,方便传感器的安装和系统调试。同时为了方便自适应组建网络,本传感器节点采用CC2420作为无线通信模块。该无线通信模块可以通过4线SPI总线(SI、SO、SCLK、CSn)设置芯片的工作模式,并实现读/写缓存数据、读/写状态寄存器等。通过控制FIFO和FIFOP管脚接口的状态可设置发射/接收缓存器。

传感器节点控制模块的设计直接影响着整个无线传感器网络的质量。该文利用FPGA技术设计了节点的控制模块,模块系统结构图如图1所示。

该片上系统主要由一个8位的MCU,片内存储器数据RAM,WISHBONE总线控制器和各外设控制器IP核组成。其中MCU IP核主要负责整个片上系统的控制和数据处理,该MCU采用PIC16C5X系列的33条经典控制指令[3],根据FPGA芯片的特点和应用的需求设计相应的体系结构。RAM IP核主要用来存放监测数据,该IP核由FPGA芯片的RAM块组成。各外设控制器IP核,主要负责根据外设接口类型,将内部平行数据格式转换成相就的数据格式,比如LCD-WISHBONE接口IP核,将内部数据总线的数值根据数码管进行编码;UART-WISHBONE接口IP核将内部数据总线的平行数据转换成相应波特率的UART串行数据,等等。以上IP核不管是MCU IP核还是接口控制器IP核都用WISHBONE片上系统总线标准进行规格化。最后通过WISHBONE总线将各功能IP核模块连接起来,各IP核访问总线由总线控制模块控制。

3 系统各模块的设计

3.1 微控制器IP核

该IP核采用传统的LOAD/STORE结构,即指令操作数基本来自寄存器,运算结束后结果也放回寄存器中,指令执行前要先提取数据,指令结束后要结果存储好。整个系统由控制器根据指令控制其它单元的操作,如取址、取数,ALU运算等。

MCU IP核在Syscon模块时钟的驱动下,首先指令寄存器根据PC值取出指令,这就是取指阶段。接下来是译码器对指令进行译码,并从存储器中取出操作数。然后ALU根据译码结果对操作数进行运算,最后写回存储器或输出结果。IP核接口采用WISHBONE标准,其中地址标志位用于选择外设。

3.2 IIC-WISHBONE控制器IP核

IIC(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线标准,用于连接微控制器及其设备[4]。该控制器IP核主要用于连接湿温感应器SHT7X,通过本IP核将感应器的串行数据转换为8位并行数据。转换过程中,通过对一系列寄存器的操作,可以设置器件速度,控制操作,接收传输数据等。该IP核采用了字节传输控制模式,在感应器时钟的触发下,从感应器中读取采集的数据,当数据缓存器满时,即锁定,并通过命令寄存器,请求占用总线,直到MCU响应。这样就完成了以次数据采集。

3.3 SPI-WISHBONE接口

SPI(Serial Parallel Bus)总线是由Motorola公司提出的,可以允许外设以串得方式与MCU进行通信的一个总线[5]。总线是一种高速的、全双工、同步的通信总线,并且只由4条信号线组成,分别是:SCLK(时钟线)、/CS(片选线)、SDO(数据输出线)和SDI(数据输入线)。该IP核主要用于连接无线模块CC2420,将经MCU处理后的数据通过该IP核传递给CC2420。

3.4 UART-WISHBONE接口

UART(即Universal Asynchronous Receiver Transmitter 通用异步收发器)是广泛使用的串行数据传输协议。UART允许在串行链路上进行全双工的通信。在嵌入式系统设计中经常会用到UART接口来进行通信,将UART功能集成到SoC设计中从而简化了电路,缩小了面积,还充分利用芯片剩余逻辑单元。UART主要由UART内核、信号监测器、移位寄存器、波特率发生器、计数器、总线先择器和奇偶校验器总共七个模块组成。主要部分功能介绍如下:UART内核主要完成控制周围其它部分在收发数据时的操作;信号监测器对输入信号进行实时监测,一有新的数据立即通知UART内核;总线选择用于选择奇偶校验的输入是数据发送总线还是数据接收总线。

4 系统集成

通过前面个IP核的设计、测试和电路优化,接下来主要是将各IP核集成起来。在IP核设计过程中已对IP核接口进行WISHBONE标准化。为了将多个WISHBONE总线接口标准的各IP核连接成一个片上系统,WISHBONE总线标准主要有四种联接方式,包括端对端、数据流、共享和交叉总线。本设计主要考虑到系统外设数量较少,同时系统对数据的实时性要求不高,为了设计的简便,本设计采用共享式互联方式[6]。

总线控制模块根据主设备(MCU)输出的地址高四位进行选择从设备,在本系统中,从设备可以扩展到16个。主设备输出的低四位地址为各接口控制器IP核内的寄存器地址,用于暂存操作命令和数据。

5 系统综合/实现/调试

在完成系统集成的功能测试后,就可将设计进行综合实现。综合是指将电路的高级语言(VHDL、 Verilog、 SystemVerilog等)或原理图转换成低级的,可与CPLD/FPGA相映射的网表文件,就是按照某种规定描述电路的基本组成和如何相互连接的文件[7]。

综合前主要是设定设计的约束,包括引脚和时钟等。然后在ISE自带的高性能的综合工具中进行综合,最后综合结果显示该系统IP核只占用了625各Slice,仅用了器件3%的资源,同时时钟也达到了约束要求,具体情况如图2所示。

综合后占用FPGA资源情况如下:

Number of Slices: 625 out of166403%

Number of Slice Flip Flops:510 out of332801%

Number of 4 input LUTs:1115out of332803%

Number of bonded IOBs: 20 out of 519 3%

Number of BRAMs:3 out of84 3%

Number of GCLKs:4 out of2416%

IP核时序情况如下:

Minimum period: 12.700ns (Maximum Frequency: 78.740MHz)

Minimum input arrival time before clock: 5.166ns

Maximum output required time after clock: 11.848ns

随后进行实现,通过ISE自带工具查看布局布线情况,可以发现主要分布在BANK2,且较集中。然后利用Generate Programming File命令生成BIT位流文件,最后用编程工具iMPACT将位流文件直接下载到FPGA芯片中,通过对运行情况的分析,设计达到了预定要求。

6 小结

该文主要完成了基于WISHBOEN总线的片上传感器控制系统的设计,设计的内容包括MCU、IIC接口、ISP接口和URAT接口,以及对采用WISHBONE总线标准对其进行规范化。然后通过共享式总线控制模块将各IP核联接起来。最后将系统IP核下载到Spartan-3A DSP 1800A开发板进行了调试,设计基本达到要求。

参考文献:

[1] 敦旭峰,田丰,孙小平.无线传感器网络节点的研究与设计[J].沈阳航空工业学院学报,2007,24(5):61-64.

[2] Microchip Technology Inc.PIC16C5X Datasheet[Z].1998.

[3] 陈穗光,葛建华.I2C总线接口协议设计及FPGA的实现[J].山西电子技术,2006(6):37-38.

[4] 孙丰军,余春暄.SPI串行总线接口的VERILOG实现[J].现代电子技术,2005,16(20):105-107.

第9篇:无线通讯技术论文范文

机器人诞生于20世纪,发展比较快,而且应用极其广泛,应用于抗震救灾,机械加工生产,科学研究,国防中,对人们的生产生活起到了巨大的影响,在生活与生产中早就成为了必不可少的生产力,加快了人类的进步和社会的发展,促进了国家先进生产力的提高,智能机器人越来越成为机器人制造的主流,采用无线传播系统,超声波传感测距,无线技术传播系统,能够使机器人更加先进,越来越容易被人们应用,对生产起到很大的促进作用。

1 履带式移动机器人总体设计

1.1 履带式移动机器人的运动机构设计

履带机器人的运动机构由履带式移动机构和五自由度机械臂两部分组成。履带式移动机构由两台步进电机分别驱动两条履带。五自由度机械臂由大臂、小臂及手腕构成,所有关节都由步进电机经谐波减速器进行驱动。两自由度云台安装在机械臂上,云台上的摄像机可完成全方位图像采集作业。

1.2 履带式移动机器人的控制系统总体设计

该机器人的体系结构采用模块化结构,各个模块都是相对独立的运行,协调工作。

其中机器人微控制器系统主要是由多个单片机控制器组成,它们负责完成传感器的信息采集、电机控制以及与遥控计算机的通讯三大任务。机器人的运动控制及执行机构系统是机器人的动作执行部分,具体完成机器人的各个动作,如前进、后退、转弯等。

2 履带式移动机器人的硬件设计

2.1 移动机器人的微控制系统设计

机器人是由一个5自由度的关节式机械手和一个2自由度的履带组成,采用两级单片机控制,5个从单片机分别控制5个步进电机,作为关节控制驱动系统,接受主单片机的指令并执行指令,实现对各关节的运动控制等功能。同时两履带的两个步进电机需要两个从单片机控制,接受主单片机的指令,实现履带车转弯前进或后退等功能。从单片机还会接收极限位置传感器的信号,保证各驱动部件的运动在规定范围。

2.2 履带式移动机器人的超声波感知模块设计

超声波传感器具有成本低廉,采集信息速率快,距离分辨率高,质量轻、体积小、易于装卸等优点。并且超声波传感器在采集环境信息时不存在复杂的图像匹配技术,不需要通过大量的计算获得距离数据,因此其测距速度快,实时性好。超声波传感器测距模块的设计

超声波传感器系统主要由超声波发生电路、超声波接收电路等模块组成,整个系统主要是由主单片机来控制,从而完成超声波信号的发射与接收。另外本系统设有接近开关,接近开关的触发响应以及移动机器人发出紧急停车信号、控制通讯等功能也都是通过主单片机SPCE061A来完成的,在移动机器人中,SPCE061A的UART编程设置是可编程控制的接口,通过编程控制设置通信方式、校验方式、波特率等[1] 。为了对环境有充分的了解,获取足够的环境信息,建立有效的环境模型,必须采用多个传感器组成机器人的感知系统。该履带式移动机器人拟配备10个超声传感器,在机器人的前进方向按照15度的间隔配置7个,覆盖前方105度的区域,另外三个分别安装在正左方、正右方及正后方,可以用来探测穿过狭窄通道时的环境信息。激发换能器产生超声波信号[2] 。

这套遥控系统由遥控计算机、移动机器人、数据无线通信系统,图像无线传输系统组成。图像无线传输系统将移动机器人前方的摄像头图像传输到遥控计算机上,合成立体图像,提供给操作者分析。数据无线通信系统负责在移动机器人和遥控计算机之间传递移动机器人的状态参数以及控制命令。

2.3 数据无线通信系统设计

数据无线通信系统实现了遥控计算机和机器人双向数据交换。无线数据收发模块采用基于nRF401无线通信单片机的PTR2000微小型、低功耗、高速率19. 2K无线收发数传MODEM。

首先处于发射端的遥控计算机串行口RTS产生高电平,经过MAX232电平转换(将RS232电平转换成TTL电平),使PTR2000(1)的TXEN引脚置1,进入发射模式。接着由计算机串口TXD将控制指令按照一定的协议,经过电平转换,最后由无线通信模块DI端接入并发射。发射端的电平转换模块和PTR2000模块的电源为普通干电池组,因为开关电源会引起乱码和传送距离缩短。处于接收端的PTR2000(2)模块处于接收模式。收到信号后,PTR2000(2)模块通过DO引脚,将信号引入单片机SPCE061A的IOB7。主单片机是机器人控制单元与通信模块PTR2000 (2)的过渡部分。它负责将信号通过串口接收,从中提取控制命令及参数,最后控制各单元。数据无线通讯系统。图像无线传输系统及立体视频显示设计

图像无线传输系统是遥控系统中的重要模块,为操作人员提供可靠的视觉信息,我们采用了西安504所的MTVT-91G微波开路电视传输系统,此系统利用卫星通讯传输技术开发。履带式移动机器人控制系统软件设计

履带式移动机器人控制系统的软件编制主要是主单片机控制系统的编制。主要包括:主单片机与无线通信模块的通讯程序设计,主从单片机之间的多机通信程序设计以及超声波传感模块的程序设计。

2.4 主单片机与无线通信模块串行通讯程序设计

主单片机SPCE061A通过自带的通用串行异步收发器(UART)和无线传输模块PTR2000完成与遥控计算机的通信。串行通信可分为异步传送方式和同步传送方式。在此,采用单片机的异步通信方式。

2.5 通讯程序的设计

主单片SPCE061A与无线传输模块PTR2000的通信程序主要包括:主单片机SPCE061A的主程序和收发中断子程序。机器人串行 通讯收发编程

PTR2000模块与单片机的连接中,PTR2000模块的D0和DI分别与单片机RxD (IOB1)和TxD (IOB0)连接。单片机可直接通过将IOB8位置1或置0而将无线收发模块置于发射或接收状态.PTR2000的Pin6 (PWR)与SPCE061A的IOB6相连,PTR2000的Pin7(TXEN)与SPCE061A的IOB8相连,CS直接接地。

2.6 超声波感知系统软件设计

该超声波感知系统软件主要由主程序、中断服务程序和串行通讯程序等三部分组成。串行通讯程序在上节中己经介绍过,在此主要对系统软件的主程序进行详细的介绍。

3.结论

本文设计的履带式移动机器人采用了主从式控制系统结构,而且主单片机采用了目前性价比较高的凌阳16位单片机,相比于常用的8位单片机,16位单片机具有更快速的数据处理速度。机器人通过无线传输模块与遥控计算机进行通信,相比于仅仅用单片机控制的机器人该机器人能够利用遥控计算机的强大功能完成大量复杂的控制分析功能。而且无线传输系统使得该机器人能够有很大的工作空间。特别地,论文所采用的凌阳SPCE061A单片机相比于传统16位单片机具有更多的功能模块。

从经济性考虑,它能够在一些人类无法适应或者危险的工作条件下在遥控计算机的控制下完成工作任务。由于该机器人的机械手臂具有足够的自由度和转动角度,所以即使在恶劣的工作环境下也同样能够精确灵活的完成相应动作。该机器人以其灵活性和精确性能够有效的解决工作中的实际问题,在提高工作效率,减少原料浪费,保护劳动者安全等方面具有重大意义,

参考文献

[1] 谭家玉等.单片机原理及接口技术:凌阳16位及51系列8位单片机[M].第2期.哈尔滨工业大学出版社,2003.