公务员期刊网 精选范文 化学高分子材料与工程范文

化学高分子材料与工程精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的化学高分子材料与工程主题范文,仅供参考,欢迎阅读并收藏。

化学高分子材料与工程

第1篇:化学高分子材料与工程范文

关键词:教学―科研一体化;实践能力;创新精神

中图分类号:G647 文献标志码:A 文章编号:1674-9324(2017)15-0008-02

一、引言

高校本科实验教学是巩固理论知识、培养创新意识和高素质工程技术人员的重要环节,然而传统实验项目多以基础教学为主,即使是和专业知识最为紧密相关的专业综合实验等实践内容也仅涉及到基础的实验操作、简单合成方法和成形工艺实验,学生完全不能触及本专业发展的各个领域,更无法拓展对本专业深层次、系统地了解。实验教学缺乏引导性,无法激发学生自主探索和创新意识。为了改变实验教学现状,各个高校开展了对实验室教学模式的改革和探索,并取得了一定的成效[1-4]。

本校高分子材料工程专业经过几十年地发展,已形成了相对稳定的科研团队,如生物医用高分子材料、光电高分子材料、3D打印材料、凝胶高分子材料等,引领着本专业的不同发展领域。如何在公共实验室资源有限的条件下,按照学校发展和人才培养的总体需求,将科研项目和科研室纳入本科实验教学环节中,建立教学―科研一体化的综合实验室教学管理体系,以科研带动教学,使大学生都能涉及本专业发展的各个领域,了解本专业最新发展动态,从而激发潜能和创新精神的培养,是解决实验教学最积极有效的途径。

二、存在的问题分析

1.教学内容设置缺乏引导性、自主性和创新性。由于实验室建设的滞后性,高校本科教学中设置的实验多以基础性和验证性为主。传统实验项目的设置总是选取固定的几个实践操作项目让学生进行实际操作,实验内容局限且简单[5-7]。传统实验教学内容缺乏引导性、自主性和创新性的培养,因此将本专业各科研实验室研究项目纳入到本科实验教学,是目前迫在眉睫的事情。

2.实验室设置缺乏系统规划。由于缺乏统一规划,目前大部分高校的公共实验室和专业教师的科研室相对分散,科研室相对独立,大部分本科生很少接触到教师的科研项目和科研实验室,无法触及专业精密仪器和设备及专业发展的前沿领域。将科研实验室纳入到本科教学中,依据科研项目设计综合性、设计性、探索性等可行的教学实验项目,提高科研实验室专业精密仪器和设备利用率,提高学生对本专业研究领域的认识,从而引导学生的创新意识。因此,系统规划基础教学实验室和科研室的布局,起到了优势互补和综合利用的最佳效果[8]。

3.实验教学缺乏有效的管理和考查机制。目前,实验实践教学以学分制作为对学生的考查机制,学生按照规定时间参加安排的实验教学环节,并完成实验指定的内容即可获得学分。实验教师往往在实验前安排好所有的实验细节,学生被动的按要求做完实验,既没有对实验内容做相关了解,也没有进行前期的查阅资料等准备工作,更无法谈及探索和创新精神。无需思考和挑战的实验考查机制无法达到自主性和创新性的培养。

三、解决措施

1.建立教学―科研一体化的综合实验室。本着以科研带动教学、教学和科研相互促进的理念,并结合本专业的研究领域采用统筹的思想规划教学和科研实验室的安排,形成教学和科研室的有利结合。学校正在筹划整体搬迁事宜,新的实验大楼已准备就绪,借搬迁的好时机系统筹建和规划的教学―科研一体化的综合实验室如图1所示。公共实验室和科研室设置在同一区域,既方便教师科研实验时高效利用公共实验室资源,又利于学生对专业研究领域的认识和了解,也解决了科研室科研项目转化为实验教学项目提供的容纳空间。

2.建立教学―科研一体化实践项目计划。科研项目纳入本科实践环节,应制订完善的科研教学实践项目计划:(1)对科研项目纳入教学环节的实践教学内容要进行科学的论证和认定,重点考察实验目的的明确性、实验装备的利用性、实验效果的显著性、能力培养的递进性和激发创新意识的能动性,尤其要考察是否代表本领域最精简、核心和是否具有完整系统性的引导项目。(2)科研教学实践项目申请,鼓励专业教师及其研究生对研究领域的科研项目进行提炼,制订适合本科教学的实验项目,对实验目的、方案、可行性和创新性等进行充分论证,由院学术委员会审核通过后进行实施。(3)根据科研项目的变化积极更新实验项目。国家级、省级等纵向和校企联合的横向科研项目代表当前该学科发展的最新方向和社会的最新需求,应根据在研的科研项目及时更新科研教学实验项目。

3.完善实验室实践教学监督、管理和考核评价体系。一方面,对纳入到教学实践中的高校科研室进行考核和绩效评估,促进实验室管理体制及运行机制改革;另一方面,强化对学生能力的培养,必须整改对学生实验环节的考查机制。完善教学―科研综合实验室实践教学监督、管理和考核评价体系,应从以下三方面入手。(1)实验室实践教学监督、管理和考核体系的设计。①学校应建立合理、高效的激励机制,鼓励科研实力强的专业教师将科研项目成果浓缩为实验项目,应用于本科教学;②教务管理人员制订教学监督、管理措施,切实落实科研项目在实验教学中的实施和运行;③制订出合理的考核体系和奖励措施,实施平时常规检查与年终考核相结合的绩效评估机制。(2)科研教师的考核与绩效评估。①为了激励科研教师向本科教学的倾斜力度,把实验室建设与教师的科研方向结合起来,与实验室绩效评估结果结合起来,绩效高的研究室加大投入力度;②为了鼓励专业教师科研成果为本科实践教学服务,学校除了在工作量上考虑专业教师本科实践教学方面付出的诙外,把此项工作作为职称评审的重要方面。(3)学生实验环节的考查机制。科研实验项目对学生的综合素质要求较高,需制订合理的考查机制才能够充分调动学生的积极性。学生实验环节的考查包括前期准备、实验进展和实验完成情况三个部分。前期准备方面的考核包括对实验目的的认知、实验方案设计、实验准备等;实验进展情况方面的考核包括分析问题和解决问题的能力;实验完成方面的考查包括对实验结果的分析和处理、实验报告的撰写等。分别从实验前期准备报告、实验进展报告、实验结果报告和实验室制定的成绩考核办法四个方面进行成绩考核。

四、结语

高校科研项目和科研实验室纳入本科实践教学环节,在提升大学生实践创新能力素质培养的同时,也给实验室科学规划和实验室教学管理带来了新的问题。专业教师、教务管理人员和实验管理部门必须对教学―科研一体化综合实验室教学管理体系进行积极探索,充分整合教学、科研资源,加强科研成果向日常教学的渗透,实现实践教学质量的提高。

参考文献:

[1]贺建武,麻朋友,陈斌,等.地方高校教学型实验室开放管理存在问题及对策[J].实验室研究与探索,2014,33(4):240-242.

[2]皮之军,李建海,于敏,等.开放式实验教学模式的研究与探索[J].实验技术与管理,2010,5(27).

[3]宋国利,盖功琪,苏冬妹.开放式实验教学模式的研究与实践[J].实验室研究与探索,2010,2(29):240-242.

[4]邓小青.普通高校实验室全面开放而要解决的三大问题[J].实验技术与管理,2015,32(9):226-229.

[5]武晓峰,高晓杰.高校实验室建设发展报告[M].北京:清华大学出版社,2014.

[6]何晋渐,徐静波.高校实验室资源共享机制的探索与研究[J].实验室科学,2010,13(6):132-135.

第2篇:化学高分子材料与工程范文

关键词:高分子材料;阻燃方法;研究与分析

前言

高分子材料的燃烧要满足两个条件,一个是适宜的温度,一个是分解出的可燃物的浓度,由此可见,要想阻止高分子材料燃烧就要从这两个方面着手,只要能有效的提高高分子材料的阻燃性,就能够拉动企业的经济建设的稳定发展。文章将针对高分子材料的阻燃方法进行详细的分析。

1 高分子材料的阻燃方法

1.1 通过在高分子材料中加入阻燃剂实现阻燃

通过在高分子材料中嫁娶阻燃剂实现阻燃的方法是目前我国应用最为广泛的阻燃方式,利用阻燃剂与高分子材料分解出来的可燃物之间的结合,来实现提高高分子材料阻燃性能的目的,这种方法最大的优点就是它的成本比较低,而且在对不同的高分子材料的阻燃剂调整上面也比较的灵活,是一种经济适用的高分子材料阻燃方法,与此同时,这种方式也存在一定的弊端,技术添加的阻燃剂中的元素可能会与高分子材料之间发生化学反应,从而影响高分子材料的性能[1]。因此,在阻燃剂的选择上面一定要非常的慎重,要在不影响高分子材料或者是影响较小的前提下,加入合适的阻燃剂来阻止高分子材料的燃烧。

1.2 通过与高分子材料进行化学反应进行阻燃

化学反应一直是一个非常复杂的过程,可能你改变了其中的一个分子机构就会产生不一样的效果。高分子材料的化学反应阻燃就是使用了这种方法,将某种元素通过化学反应接入或者替换高分子材料的化学链中,在不影响高分子材料的性能的前提下,改变高分子材料的性能,将高分子材料从可燃性极强转变到具有阻燃性能的高分子材料。能够实现高分子材料阻燃性的元素有很多,像是硼、硅、金属原子等都可以做到。

1.3 通过改变高分子材料表面的阻燃性能来实现阻燃

通过化学反应来实现高分子材料的阻燃主要是通过将某种元素接入或者替换高分子材料的化学链上,可能会影响高分子材料的性能,但是改变高分子表面材料的阻燃性能就不一样了,同样也是采用专业的技术将元素接入或者替换,但是这种方式没有将元素接入到高分子材料的主链上,而是只对高分子材料的表面进行改进,这样就不会影响到高分子材料的性能的同时,还实现了对于高分子材料的阻燃,避免了阻燃剂以及化学反应给高分子材料性能上带来的影响[2]。但是这种方法也存在一定的弊端,就是在它的操作过程非常的复杂,在时间上耗费也比较久,而且在资金成本上面也非常的昂贵,因此在实际生产中并不适用。由此可见,我国的专家学者还需要对于高分子材料的阻燃性能不断的研究。

1.4 将高分子材料与阻燃性能好的高分子材料合成在一起

为了加强高分子材料的阻燃性,我们可以将高分子材料与阻燃性能好的高分子材料合成在一起,这种方式不仅有效的阻止了高分子材料的燃烧,在持续的时间上也是非常的长久的,在实际的应用中可以说是效果最好的高分子材料的阻燃方法[3]。另外,这种将高分子材料与阻燃性能好的高分子材料合成在一起的方式在保护高分子材料的性能上也有也有很大的帮助,避免了阻燃剂等给高分子材料带来的负面影响。

1.5 采用纳米科技的方式来实现高分子材料的阻燃

随着时代的不断变化,我国的科学技术也在不断的提高,近几年来,我国在纳米科技方面也有着广泛的应用,高分子材料的阻燃就是其中一项,采用纳米技术实现高分子材料的阻燃可以说是为我国的科学事业开辟了一条全新的道路。通过纳米技术进入到高分子材料的内部,对其内部结构进行一系列的改造工作,将普通的高分子材料改造成阻燃性能比较强的高分子材料,极大的降低了危险的发生[4]。使用纳米技术来改变高分子材料的阻燃性能的方法虽然很好,但是在资金成本上的耗费也是非常的巨大的,因此,截止到目前为止,纳米技术的方法还是在研究阶段,实际的生产中的应用是非常少的。

1.6 对高分子材料采取两种或两种以上的阻燃方式

对高分子材料采取两种或者使两种以上的阻燃方式,来进行高分子材料的阻燃主要是为了要满足各方面的要求,既能够不改变高分子材料的性能或者是将高分子材料的性能改变降到最低,又能保证高分子材料的阻燃性能,可以说是一个一举两得的方法,在我国很多企业的建设中都有实际的应用,这种方法为高分子材料的阻燃提供了一个多重的保障。

2 结束语

综上分析可知,高分子材料的应用已经渗透到了我国的各行各业,甚至在人民群众的日常生活中也有高分子材料的广泛应用,为了保证企业经济建设的稳定发展,以及人民生活不受到影响,就要积极的对高分子材料的阻燃性能进行分析,找到最有效解决高分子材料燃烧的问题。

参考文献

[1]井蒙蒙,刘继纯,刘翠云,等.高分子材料的阻燃方法[J].中国塑料,2012,2:13-19.

[2]徐怿,曹 .高分子材料的阻燃技术探讨[J].消防技术与产品信息,2011,1:48-50.

[3]程买增,曾幸荣,李伟明,等.阻燃性有机硅高分子材料的研究进展[J].有机硅材料,2003,6:21-25+46.

第3篇:化学高分子材料与工程范文

关键字:功能 高分子材料研究

一.引言

功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%。

所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。

二.功能高分子材料

功能高分子材料按照功能特性通常可分成:分离材料和化学功能材料;电磁功能高分子材料;光功能高分子材料;生物医用高分子材料。 功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。

随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。

一般归纳起来医用高分子材料应符合下列要求:化学稳定性好,在人体接触部分不能发生影响而变化; 组织相容性好,在人体内不发生炎症和排异反应; 不会致癌变;耐生物老化,在人体内材料长期性能无变化; 耐煮沸,灭菌、药液消毒等处理方法;材料来源广、易于加工成型。

经多年研究,能较好符合上述要求的高分子化合物主要有两大类,一类是有机硅化合物,第二类是有机氟化物,最主要的两种产品是硅橡胶和聚四氟乙烯,例如美国GE公司开发了一批主要是有机硅方面的用于医学领域的功能高分子化合物。

三.生物医用高分子材料

目前,除人脑外的大部分人体器官都可用高分子材料来制作。对生物医用高分子材料,除了要求具有医疗功能外,还要强调安全性,即要对人体健康无害。目前在血液相容性高分子、组织相容性高分子、生物降解吸收高分子、硬组织材料用高分子和生物复合高分子材料、医用高分子现场固化材料、医用粘合剂、固定化酶、高分子药物释放和送达体系等都有相应的研究。随着环保概念的提出,生态可降解高分子材料的开发和应用也随之日益受到重视。如聚乳酸塑料PLA,在废弃后自然条件下,通过微生物的分解作用,只需六个月至两年时间即可完全降解,降解反应的产物为水、二氧化碳、乳酸等是植物生长良好的促进剂,对环境无任何污染。

离子交换与吸附树脂是一类带有可离子化基团或其他功能性基团如亲油基团的二维网状交联聚合物。常用的离子交换与吸附树脂多为球状珠粒,其粒径为0.3-1.2 mm。此外,还要具有高的机械性能、较好的化学稳定性、热稳定性、亲水或亲油性、渗透稳定性和高的交换/吸附容量。在水/油中具有足够大的凝胶孔或大孔结构,由于它具有高效快速分析和分离功能,目前已广泛用于硬水软化、废水净化、高纯水制备、海水淡化特别是在食品工业、制药行业、治理污染和催化剂中应用的更为广泛,而且发展迅速。除一般用的离子交换树脂外,近来还发展了具有特殊吸附功能的离子吸附树脂:如高吸油树脂等,这些高分子吸附剂可以从有机溶剂或有机无机混合相体系中吸附有机溶剂如各种油类。

随着医用科技的蓬勃发展和环境污染的日益严重,当今材料技术的发展趋势一是从均质材料向复合材料发展,二是由结构材料往功能材料、多功能材料并重的方向发展。这种发展趋势使得医用复合材料和环境处理材料得到了快速发展。

四.医用高分子材料的发展方向

可生物降解医用高分子材料因其具有良好的生物降解性和生物相容性而受到高度重视, 无论是作为缓释药物还是作为促进组织生长的骨架材料, 都将得到巨大的发展。其中高分子纳米粒子以其特有的优点是近年来国内外一个极为重要的研究热点。

任何一种材料都是通过其表面与环境介质相接触的, 因此材料的开发与应用必然涉及其表面问题的研究。一般高分子材料的表面对外界响应性较弱, 但有些高分子表面的结构形态会因外界条件(如pH、温度、应力、光及电场等) 的改变在极短时间内发生相应的变化, 从而造成表面性质的改变, 此乃智能高分子表面。因此设计这类智能表面将是生物医用高分子材料发展的一个重要方面。通常,在组织工程的应用中,高分子材料支架要负载上生长因子,以促进组织在生物体内的再生,另一方面,把特殊的粘附因子,如粘连蛋白结合到支架上,可使聚合物表面能够促进对某种细胞的粘附,而排斥其它种类的细胞,即支架对细胞进行有选择的粘附。为了使生长因子和粘附因子能够结合到可降解高分子材料上,就需要对材料进行表面改性,而有时表面改性很困难, 因此,可利用与天然聚合物杂化的方法来达到上述目的, 同时由于这些材料有良好的机械性能,又可以弥补天然聚合物强度不高、稳定性差的缺点。可见,生物杂化材料在这方面的表现是相当突出的, 必将成为医用生物高分子材料发展的一个主要趋势。

参考文献:

1、 焦剑.功能高分子材料.化学工业出版社,2007.7

第4篇:化学高分子材料与工程范文

关键词:高分子材料;可降解;生物

中图分类号:tq464 文献标识码:a

我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广,可用于地膜、包装袋、医药等领域。生物可降解的机理大致有以下3 种方式: 生物的细胞增长使物质发生机械性破坏; 微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。按照上述机理,现将目前研究的几种主要的可生物可降解的高分子材料介绍如下。

1生物可降解高分子材料概念及降解机理

生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。

生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物可降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。

因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、ph值、微生物等外部环境有关。

2生物可降解高分子材料的类型

按来源,生物可降解高分子材料可分为天然高分子和人工合成高分子两大类。按用途分类,有医用和非医用生物可降解高分子材料两大类。按合成方法可分为如下几种类型。

2.1微生物生产型

通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。如英国ici 公司生产的“biopol”产品。

2.2合成高分子型

脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(pet) 和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺) 制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可降解性。

2.3天然高分子型

自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物完全降解,但因纤维素等存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等共混制得。

2.4掺合型

在没有生物可降解的高分子材料中,掺混一定量的生物可降解的高分子化合物,使所得产品具有相当程度的生物可降解性,这就制成了掺合型生物可降解高分子材料,但这种材料不能完全生物可降解。

3生物可降解高分子材料的开发

3.1生物可降解高分子材料开发的传统方法

传统开发生物可降解高分子材料的方法包括天然高分子的改造法、化学合成法和微生物发酵法等。

3.1.1天然高分子的改造法

通过化学修饰和共混等方法,对自然界中存在大量的多糖类高分子,如淀粉、纤维素、甲壳素等能被生物可降解的天然高分子进行改性,可以合成生物可降解高分子材料。此法虽然原料充足,但一般不易成型加工,而且产量小,限制了它们的应用。

3.1.2化学合成法

模拟天然高分子的化学结构,从简单的小分子出发制备分子链上含有酯基、酰胺基、肽基的聚合物,这些高分子化合物结构单元中含有易被生物可降解的化学结构或是在高分子链中嵌入易生物可降解的链段。化学合成法反应条件苛刻,副产品多,工艺复杂,成本较高。

3.1.3微生物发酵法

许多生物能以某些有机物为碳源,通过代谢分泌出聚酯或聚糖类高分子。但利用微生物发酵法合成产物的分离有一定困难,且仍有一些副产品。

3.2生物可降解高分子材料开发的新方法——酶促合成

用酶促法合成生物可降解高分子材料,得益于非水酶学的发展,酶在有机介质中表现出了与其在水溶液中不同的性质,并拥有了催化一些特殊反应的能力,从而显示出了许多水相中所没有的特点。

3.3酶促合成法与化学合成法结合使用

酶促合成法具有高的位置及立体选择性,而化学聚合则能有效的提高聚合物的分子量,因此,为了提高聚合效率,许多研究者已开始用酶促法与化学法联合使用来合成生物可降解高分子材料。

4生物可降解高分子材料的应用

目前生物可降解高分子材料主要有两方面的用途:(1)利用其生物可降解性,解决环境污染问题,以保证人类生存环境的可持续发展。通常,对高聚物材料的处理主要有填埋、焚烧和再回收利用等3种方法,但这几种方法都有其弊端。(2)利用其可降解性,用作生物医用材料。目前,我国一年约生产3000 多亿片片剂与控释胶囊剂,其中70%以上是上了包衣的表皮,其中包衣片中有80%以上是传统的糖衣片,而国际上发达国家80%以上使用水溶性高分子材料作薄膜衣片,因此,我国的片剂制造水平与国际先进水平有很大的差距。国外片剂和薄膜衣片多采用羟丙基甲纤维素,羟丙纤维素、丙烯酸树脂、聚乙烯吡咯烷酮、醋酸纤维素、邻苯二甲酸醋酸纤维素、羟甲基纤维素钠、微晶纤维素、羟甲基淀粉钠等。

参考文献

[1]侯红江,陈复生,程小丽,辛颖.可生物降解材料降解性的研究进展[j].塑料科技,2009,(03):89-93.

[2]翟美玉,彭茜.生物可降解高分子材料[j].化学与粘合,2008,(05).

第5篇:化学高分子材料与工程范文

关键词:高职;高分子材料化学基础;内容;改革

《高分子材料化学基础》是高分子材料加工技术专业一门必修的专业基础课,是以高中(包括中专、技校、职高)化学基础为起点,以高分子化学知识为核心内容,融入高分子化学所必要的无机化学、有机化学、物理化学知识,构建本专业基本的化学知识体系,培养本专业所需化学实验操作基本技能,为学习后续的《塑料材料》、《高分子材料成型加工基础》、《塑料测试技术》、《塑料混配技术》、《塑料成型技术》等课程打基础。显然该课程是高分子材料加工技术重要的专业基础课。但从目前该课程的内容体系来看,学科体系明显,内容体系仍是无机化学、有机化学、物理化学及高分子化学知识体系的机械组合,其结果是课程内容多而杂,理论深而涩,给该课程的教学带来困难而且教学效果欠佳,可以认为目前该课程体系无法适应高职教育的要求,所以很有必要对该门课程的内容进行改革。

一、课程教学内容改革的依据

本门课程教学内容改革的依据主要考虑如下三点:第一是考虑高分子材料加工技术毕业生主要就业岗位对化学知识、技能及态度的需要,保证毕业生在就业岗位上具有够用的化学基础知识与从事化学实验室工作的技能;第二是考虑毕业生职业生涯发展的需要,要让学生掌握能够支持其进一步提高其专业水平所需的化学知识,为他们的职业发展提供后劲;第三是考虑目前高职生源的高中化学知识的掌握程度以及学习能力的实际情况。

为了掌握高分子材料加工技术专业毕业生的主要就业岗位对化学基础知识、技能及态度的要求,我们对湖南塑料行业校企联盟企业进行了走访调查,调查的主要企业有湖南路路通塑业有限公司、湖南神塑科技有限公司、南车集团时代工程塑料有限公司、湖南科天新材料有限公司、湖南省塑料研究所、湖南益达塑业有限公司、株洲三鑫塑胶科技有限公司、株洲创业塑料有限公司,另外还对25家塑料加工企业通过电子邮件发送调查表进行了调查,28家外省企业进行了电话访问调查,调查塑料加工企业达到61家。调查结果表明我校高分子材料加工技术专业毕业生就业主要有四大技术工作岗位,分别是塑料挤出技术员岗位、塑料注射技术员岗位、塑料配方技术员岗位、塑料测试技术员岗位。我们根据这四个主要技术岗位所需要的化学基础知识进行了问卷调查,发出问卷调查表207份,回收调查表198份。《高分子材料化学基础》教学内容需求调查表如表1所示。

从调查表中我们可以看出,《高分子材料化学基础》七个单元的内容对我校毕业生主要就业岗位都是需要的,其中以塑料配方技术员对《高分子材料化学基础》知识要求最高,统计需要数据达到1247次,其它三个就业的主要岗位对《高分子材料化学基础》内容要求相关不大,均超过了1100次,就业的其它岗位对本门课程的要求相对不高,只有934次。由此我们可以得出,《高分子材料化学基础》对本专业主要就业技术岗位来说非常重要,但对在其它岗位上就业的毕业生重要性相对降低。就各单元来说,以“碳链高聚物及其单体”单元最为重要,调查表中统计次数达964次,调查企业对象认为最不重要的内容是“高聚物合成”单元,只有573次,其次不重要的是“高聚物化学反应”单元,为707次,其它单元的统计次数多在800次左右,这几个单元的内容是可以认为是很重要的。

通过本次调查,我们知道了《高分子材料化学基础》哪些内容对毕业生就业岗位是最重要及很重要的,哪些内容相对不重要,为我们对《高分子材料化学基础》课程教学内容的选取找到了可靠的依据。

对于教学内容的选取我们也不能完全采取实用主义的办法,也就是说不是采用学生在企业的就业岗位用到那些知识我们就教授那些知识,高等职业教育属于国民教育序列中的高等教育,还需要考虑学生职业生涯的发展,也就是说为学生提供能够支撑其后续发展所必需的化学基础知识。采取的措施是在学生高中化学知识的基础上,将高等教育层次的化学基本的原理、理论融入各教学单元中,提高学生化学基本知识与技能,达到高分子材料加工技术专业大专层次所必需的化学基础。

同时我们还要考虑目前高职生源的实际情况,目前高职生源一般来说对高中化学课程掌握的情况不理想,学习能力也有待提高,所以我们选取《高分子材料化学基础》内容时也不能脱离生源基础的实际情况,没有必要将过深的化学理论纳入教学内容,不然学生无法掌握教学内容,反而造成不利于提高教学质量的影响,如结构化学的内容、化学反应机理的动力学分析等内容不必作为《高分子材料化学基础》的内容,以往的教学实践也证明过深的教学内容对学生学习本门课程是不利的。容易造成学生失去学习的信心与兴趣,从而从整体上影响课程教学效果。

二、教学内容的整合

如前所述,目前《高分子材料化学基础》的内容体系是无机化学、有机化学、物理化学、高分子化学等多门化学课的机械组合,每门课的教学课时在以往的教学中都在100个学时以上,即总课时在400学时以上,要在96学时的《高分子材料化学基础》这门课教授完原来400学时以上的内容,显然不对教学内容进行整合是不可能教授完相关内容,所以必须对高分子材料加工技术专业化学基础的教学内容进行整合,整合的依据就有前面所述的三个考虑。在课程内容的整合过程中,必须防止以前出现的几大化学内容简单的机械的组合,为此要正确把握好这几门化学基础课中相关内容的整合和优化,按照高分子材料加工技术专业人才培养目标对知识、技能及态度的要求,科学地进行“综合”,严格地把握好对相关课程内容“取”与“舍”的尺度。课程内容整合是为了改变以往按单一学科系统分别设置课程,各课程自成一体,缺乏联系,重理论而轻实践的现象和课程与课程间的内容重复,为此我们重新设计了《高分子材料化学基础》的内容结构体系,课程内容体系如表3所示。

从《高分子材料化学基础》教学内容新体系可以看出,新的内容体系打破了原来的几大化学课程内容机械组合的学科体系,考虑课程的职业性,是根据本专业毕业生就业岗位对本门课程知识、技能及态度的需要来设计内容,没有学科体系的影响。将无机化学、有机化学、物理化学、高分子化学这四门课的内容根据职业岗位的需要进行了取舍,整合为一门课程,即《高分子材料化学基础》。需要调整课程结构,重新优化课程内容,处理好相关内容的衔接。高分子材料化学基础以高分子材料为主线,无机化学部分容入各教学单元中,有机化学与高分子化学知识密切结合,物理化学内容也容入相关教学单元,舍去过深理论性教学内容,教学内容结合实际,提高学生学习本门课程的兴趣,从而提高教学效果。课后最后一个单元是综合训练,教学内容有高分子溶液的配制、常用高分子材料的鉴别及聚乙烯醇涂料的制备实验等,这些教学内容结合生产及生活实际,很好地实现了课程教学目标,教学实践证明,学生在学习这些内容时兴趣昂然,取得了较好的教学效果。

三、课程整合注意问题及效果

第6篇:化学高分子材料与工程范文

关键词:高分子材料;老化;老化原因;防老化措施

1高分子材料及老化现象

1.1高分子材料简述

高分子材料是指与人们生活息息相关的各种常见的材料,如塑料,橡胶,涂料,薄膜,纤维等。高分子材料被广泛应用于汽车工业,航空,建筑,军事建设等多种行业,为我国国民经济的发展做出了很大的贡献,同时也提高了人们的生活水平。但是高分子材料经常容易在强光,热辐射,水浸泡等因素作用下发生降解,失去其利用价值。

1.2高分子材料老化

高分子材料的老化由于其特性,使用条件的不同,发生老化的现象和表现出的现象也有很大不同。有的会变脆,变色,透明度下降等,也有的会出现弹性下降,变软,变粘等。归纳为如下几个方面:①外观变化:高分子材料在外观上的老化现象主要有:出现污渍,裂缝,斑点,银纹,粉化,发粘,收缩,或光学颜色改变;②物理性能改变:高分子性能在物理性能上老化的现象为:流变形能,溶胀性,溶解性变差,同时耐热性,透水性,透气性,耐寒性等也发生变化;③力学性能改变:力学性能的改变主要包括弯曲强度,剪切强度,拉伸强度,冲击强度等力学性能下降。同时,材料的应力松弛,相对伸长率等性能也会发生相应改变;④电性能改变:电性能的改变包括介电常数,表面电阻,体积电阻,电击穿强度等电化学性能的改变。

2引发高分子材料老化的原因

2.1内在因素

2.1.1材料的立体归整性

分子键排列规整的区域成为结晶区,不规整的区域成为非结晶区。这两种区域的分子排布差异很大,一般材料的老化发生在非结晶区,并逐步往结晶区蔓延。因此高分子材料的立体规整性对材料的老化会产生一定的影响。

2.1.2材料的分子量及其分布

材料的分子量和其分布直接影响了材料的老化性能。分子量分布的宽度影响了端基的数量,而端基的数量有决定了材料老化的难易程度。

2.1.3材料的化学结构

材料的链结构和聚集态结构直接影响了材料的性能。维持高分子材料聚集态的各分子间力中存在着很多弱键力,弱键很容易断裂产生自由基,这种自由基反应产生的物质会使高分子材料极速的发生老化。

2.1.4材料中的杂质

高分子材料的加工合成过程有时会引入一些杂质,或者残留一些化学助剂,这些都能引发高分子材料的老化。

2.2外在因素

①氧气:由于氧气的渗透作用,会与高分子聚合物上的弱键发生反应,引起主链结构的变化,从而引发材料的老化;②温度:温度的高低直接影响了高分子的性能和分子的断链速率。材料的温度越高,链运动速率越快,吸收的能量越多。当吸收的能量高于化学键的解离能时,链就会发生降解导致集团的脱落,使材料老化加剧。而当温度降低到一定程度,会阻碍链的运动速率,使高分子材料变得更硬,更脆;③湿度:水分子对材料的老化也有一定的影响。由于水分子的渗透性极强,会逐渐的渗透入分子间使材料发生溶胀,从而改变了分子间作用力。因此破坏了材料的聚集态,发生了老化现象;④光照:当高分子材料吸收的光能高于分子链断键的解离能时,会使分子链发生破坏,同时材料的结构也被迫发生改变,从而使材料的性能发生了改变,引起老化反应;⑤生物老化:在高分子材料的加工合成过程中,会使用一些助剂,助剂的使用同时也会引发霉菌的产生。霉菌微生物的生长代谢产生的分解霉和毒素不仅促使材料的被迫降解和老化,还会使接触者接触后感染到一系列疾病。

3高分子材料的放老化措施

3.1高分子材料的热老化预防措施

热老化预防措施主要通过改变材料的物理性质如温度。增塑剂是一种应用范围广泛的降低玻璃化温度的措施,可以使高分子材料在低温下保持原状态不发生老化。它包括分子增塑和结构增塑两种形式。分子增塑是指增塑剂在分子水平上与高分子混溶,从而降低了高分子链间的相互作用力,增强了材料的柔顺性。

3.2高分子材料的氧老化预防措施

在高分子材料的加工过程中,加入抗氧化物及含硫,磷有机化合物等,能够与过氧自由基发生反应,从而降低或终止老化反应进程。抗氧化剂包括两种类型,即自由基分解型和自由基受体型。这两种自由基抗氧剂协同作用,共同降低材料的老化速度。

3.3高分子材料的生物老化预防措施

霉菌是加快高分子材料老化的主要威胁。它能够在极短的时间内使高分子材料发生老化。

4结语

高分子材料的结构是及其复杂的,其功能众多。但其存在的老化问题也是亟待人们去解决的。上文已分析,引起高分子材料老化的因素有很多,其内部因素和外部因素共同作用引起高分子材料的结构改变,从而发生一系列的老化问题。在今后的研究中,必须要加大防老化的措施研究,才能从根本上解决高分子的缺陷。

参考文献: 

第7篇:化学高分子材料与工程范文

【关键词】高分子材料成型加工 教学改革 课程设计

【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2014)14-0010-02

在高分子科学的学科构架中,形成了高分子化学、高分子物理、高分子工程三个基础性分支学科,以及功能高分子及高分子新材料两个综合性研究领域。高分子材料成型加工属于高分子工程研究的范畴,高分子工程的主要研究线索是,研究在外场(剪切力、振动力、温度、压力等)作用下,高分子的链运动、相态及结构的变化规律和控制条件,从而发展聚合物成型的新方法和新技术。

高分子材料是材料领域的后起之秀,它具有许多其他材料不可比拟的突出性能,在尖端技术、国防建设和国民经济各个领域已成为不可缺少的材料。大多数高分子材料需要经过成型加工才能形成制品,无论金属、陶瓷、玻璃还是天然材料,没有哪一种材料能像高分子材料那样,其最终结构与性能都强烈依赖于加工过程。高分子材料加工过程是控制聚合物制品结构和性能的中心环节,内容涉及高分子物理、高分子化学、聚合物流变学、机械、计算机模拟等多学科,其任务是了解高分子材料的加工特性,确定最适宜加工条件,制取最佳性能产品,为合成具有预期性能的高分子材料提供理论依据。

高分子材料成型加工是高分子材料与工程专业最重要的专业核心课程之一。高分子材料成型加工的工程本质决定了它是一门多学科交叉、科学与工程紧密结合的学科。为使学生建立起大工程的观点,理解其精髓,本课程的讲授会涉及以上诸多学科的内容,要使学生在有限的学时内掌握这门课的基本内容,并且通过对高分子材料成型加工课程的学习,具有高分子材料及其制品设计、生产和研究的科学思维以及创新研究素质,无论对授课老师还是学生而言都是一个新的挑战。笔者结合自身讲授高分子材料成型加工课程的教学实践,在课程体系、教学内容、教学方法等方面提出以下几点看法。

一 加强课程的横向联系

高分子材料的生产有三大关键要素:适宜的材料组成、正确的成型加工方法、配套的成型机械及成型模具。要生产出一个有使用价值,能够利用现有成型设备进行加工的高分子材料制品,必须同时满足以上三个要素。高分子材料生产三个要素之间相互联系、相互影响,是一个不可分割的有机整体。从这个意义上来看,高分子材料成型加工与成型机械的联系应是非常密切的。

高分子材料成型加工与高分子材料成型机械是高分子材料与工程专业的两门专业基础课,这两门课程在本质上有密切的联系,高分子材料成型加工课程包括原材料树脂、助剂、配方设计、成型设备、成型模具、工艺条件及控制等方面,高分子材料成型设备课程主要讲述不同加工方法所采用的成型设备,如开炼机、密炼机、挤出机、注塑机、压延机、中空吹塑机等,从其包括的课程内容看,成型加工和成型机械相互渗透、相互联系,也有交叉重叠的内容,因此有必要对这两门课程的教学内容从整体的高度重新进行规划。

在这个原则的指导下,教师在教学中可以按照原材料、设备、工艺这三大要素组织教学内容,从而把两门课的知识点有机地融合起来,加强课程的横向联系,打破传统的教学模式,培养学生的大工程观。如在讲授聚氯乙烯(PVC)管材挤出成型工艺这部分内容时,教师首先讲授挤出所用的原材料配方(PVC树脂、各种助剂),由于PVC树脂牌号众多,不同牌号的树脂制备方法不同,树脂的性能也不同,在加工过程中所选用的工艺也会有所差异,因此,教师在开始讲授成型工艺时,有必要使学生具备原材料选择这个意识。然后介绍管材成型所需的设备(包括挤出机类型、机头口模、螺杆结构、螺杆组合、传动系统、控制系统、辅机)。如在讲解螺杆时,可分析各种螺杆结构参数对成型加工的影响,各种不同混合、混炼元件的螺杆组合所具有的加工特性,并结合PVC管材生产工艺特点,讲解生产PVC管材所用螺杆的选用原则。在讲解挤出机机头口模时,可将机头口模流道的设计、口模类型等涉及成型机械的内容引入课堂中,使学生掌握有关机头口模设计的基本原则。最后,讲授PVC管材生产的工艺条件及控制方法(螺杆转速、牵引速度、挤出机及机头温度)及其对制品性能的影响。

教学内容改革是21世纪高等教育教学改革的重点,将高分子材料成型加工与成型机械有机结合起来,重新组织课程内容既有利于教师的教学与学生的学习,增强理论教学的课堂教学效果,同时节约下来的理论教学课时可用于实践教学环节,培养学生的动手能力和创新意识,提高在社会上的竞争力,也符合高分子材料加工行业对本专业毕业生所提出来的越来越高的要求。

二 按课程主线组织教学内容

本课程以“材料―成型加工―制品性能”这条高分子材料成型加工的主线组织教学内容,重点了解和掌握高分子材料、成型加工工艺、制品性能三者的关系;材料的不同与成型加工方法的关系;同样的材料用不同的加工工艺方法或加工工艺条件,所得制品的性能为何不同;制品的性能

――――――――――――――――――――――――――

* 基金项目:广东石油化工学院教育科学研究基金项目

与材料本身的性质有何关系等,强调了成型加工对制品性能的重要性,即高分子材料最终的结构与性能强烈依赖于加工过程这一独特之处,这是本课程的主题思想――高分子材料的工程特征,教师在教学过程中,将这一主题思想贯彻始终是本课程教学的首要目标。

在教学过程中,任课教师应将高分子科学基础理论与实际生产和日常用品的例子相结合,与学生进行分析和讨论,启发学生在学习过程中牢牢抓住本课程的主题思想。对于聚合物来说,具体结构决定了它的性能,同一种链结构的聚合物,由于成型加工条件的不同,分子链的排列与堆砌方式会有所不同,从而形成不同的聚集态结构,聚集态结构不同,制品性能也大不相同。如生产聚丙烯注塑件时,聚丙烯注塑制品最终的物理性能不仅与本身分子量和结晶性等有关,而且与注射工艺条件的控制有关。不同的工艺条件导致聚丙烯具有不同的微观结构,而微观结构又直接影响聚丙烯注塑制品的强度、韧性、硬度以及成型加工等性能。如聚丙烯注塑件的光学性能会受到注射成型条件的影响,聚丙烯注塑件在冷却过程中,由于塑件不同部位的温度场、应力场的分布不同,从而会造成注塑件内不均匀的体积收缩和密度分布,因此严重影响了塑件的光学性能和力学性能。这些例子很好地体现了“高分子材料―成型加工―制品性能”这条高分子材料成型加工的主线。

三 对教学方法进行改革

1.多媒体教学

高分子材料成型加工属于专业技术课,教学内容具有很强的理论性和实践性,许多内容涉及成型机械的结构以及具体的操作过程,在学生大多缺少实际感性认识的情况下,单纯依靠文字的板书进行课堂教学,学生难以理解,教学效果不理想。因此,课堂讲授可借鉴国内一些院校的聚合物成型加工精品课程网站的教学资源来制作多媒体课件,通过结合所用的教材,有选择性地将多媒体动画仿真和图片资料补充到电子课件中,不断修改完善课件内容,增加课堂信息量,提高教学效果,激发学生的学习兴趣。为了加深学生对实际生产过程各种机械设备、操作工艺的认识,教师可通过收集各种高分子材料成型加工厂的生产视频,然后在课堂上进行播放讲解,可增加学生对高分子材料成型加工工艺的感性认识。如在讲薄膜的中空吹塑时,大多数学生对旋转机头的工作方式比较陌生,笔者通过给学生播放带有旋转机头口模的中空吹塑生产过程,学生在录像中可以很直观地看到旋转机头在工作中的运行情况,以及旋转机头如何调整薄膜厚度的工作原理,这些都使学生感受到课本的理论知识并不是枯燥的,它来源于生产实际,并对生产实际起到指导作用。

除了在课堂上引入多媒体课件外,教师还可向学生推荐一些著名的专业网站,包括美国塑料工程师学会(SPE)、美国塑料工业协会(SPI)、中国注塑技术论坛、聚合物技术网等,鼓励学生了解加工工程的前沿发展,从而提高学生的学习兴趣。

2.案例教学

为了提高学生分析问题和解决问题的能力,经常以日常生活中常用高分子材料制品进行案例教学,帮助学生认知高分子材料成型加工的整个过程,如日常用到的笔记本外壳、空调外壳、排水管、薄膜、泡沫塑料、汽车轮胎等,启发学生去思考,然后进行讨论,针对常用制品分析所用的原材料、成型方法和工艺,使学生在看得见、摸得着的实例中体会所学知识,这样的教学方法提升了学生学习效率和学习效果。在实际教学中,教师可给学生提供一些案例,如某个工厂某批次的注射件出现了应力开裂现象,试让学生讨论分析其中的原因,并提出解决方案。通过课堂讨论,学生从这一案例中可学到包括原材料、成型方法、成型工艺条件(温度、压力)、制品性能(应力开裂)在内的许多知识点,很好地将高分子材料基础理论与生产实际相结合,学生可以充分理解“高分子材料―成型加工―制品性能”这一课程的主题思想。

3.课程设计

作为大工程观教育理念的一部分,培养具有敏锐工程师意识的学生是工科教学的一个重要目标,高分子材料成型加工课程作为一门实践性很强的学科,可为学生将来走进企业站稳脚跟打下良好的基础,因此,在教学中引入项目教学的理念,让学生利用各种校内外的资源及自身的经验,通过完成给定的工作任务来获得知识与技能。本专业的课程设计是以高分子材料生产流程为主线,实现项目教学,以培养学生的创新能力。

设计内容可以典型的通用高分子材料(如聚乙烯、聚丙烯、聚氯乙烯和聚苯乙烯等)的生产任务为依托建构、设计出一个高分子材料产品生产项目(包括厂址的选择、原料选择、配方设计、高分子材料加工方法、设备的选型以及生产成本的核算等)。它有效地解决了传统教学中理论与实践相脱离的弊端,使理论教学内容与实践教学内容通过课程设计紧密地结合在一起。在设计的过程中,学生通过互联网查找大量的资料、数据,通过到企业调查,掌握了许多第一手资料,在这个过程学生可以概括性地知道所学专业的主要工作内容及其在整个生产过程中所起的作用。

四 结束语

高分子材料成型加工是一门实践性很强的专业技术课程。结合该门课程自身的特点,通过采取加强课程间的联系,抓住课程主线教学、改革教学方法等措施,力图改变该课程课堂讲授效果不高、学生学习积极性普遍较低等现象。

在不断深化教学改革的过程中,要想使学生学有所得、融会贯通,首先应提高学生在高分子材料产品的设计、生产和研究等方面的综合应用能力,从而培养具有卓越工程师意识的高分子材料专业技术人才。

参考文献

[1]申长雨、关绍康、张锐.加强课程建设 培养创新人才――“高分子材料成型加工”课程建设随想[J].中国大学教学,2008(3):52~54

[2]胡杰、袁新华、曹顺生.《高分子材料成型加工》课程教学中的几点思考[J].科技创新导报,2010(4)

[3]李宝铭、张星、郑玉婴.高分子材料成型与加工课程建设初探[J].化工高等教育,2010(3):39~41

第8篇:化学高分子材料与工程范文

随着高分子科学与技术的不断发展,不论是基础研究还是实际应用需求,都要求高分子化合物在微观上具有较均一的结构。因此,高分子的精密控制聚合和其精细合成化学发展很快。会上,可控自由基聚合和树状高分子的合成占了很大篇幅。就生物医用高分子而言,内醋和交醋的活性开环聚合及其聚合产物的修饰仍有大量研究报道,包括新开环聚合催化剂、多组分聚合体系、分子量控制等。多糖类高分子的合成又有新进展,以2一甲基一(6一O一对甲苯磺酞基一1,2-二脱氧一a一D一毗喃葡糖)一【2,1一d]一2恶哇琳为单体,在10一樟脑磺酸催化下可聚合生成支化的氨基多糖,数均高分子量达到6300;由经丙基。环糊精与PEG形成的超分子聚合物,经L氨基酸封端后进一步在环糊精单元上负载药物,形成了奇特的药物控制释放体系。NCA方法合成聚氨基酸过去只能在无水体系中进行,而以高HLB值的非离子表面活性剂为乳化剂,可实现y一节基一L一谷氨酸一N一碳酸配的悬浮聚合,得到均匀的聚氨基酸微球。

2生物医用高分子材料的表面修饰

生物医用材料一旦植人体内,就会遇到生物相容性间题,即生命体系与材料界面之间在分子水平和细胞水平上的相互作用。生命体系为含水体系,然而具有良好加工性能和力学性能的高分子材料往往具有较强的疏水性。因此,当这些材料与机体组织接触时,会产生较高的界面能。为了使材料的表面能降低,可采用等离子体辐射、电子束辐射、激光紫外辐射等技术处理高分子材料表面,从而在材料表面引人OH,COOH和CHO等极性基团,以降低材料表面水接触角,提高亲水性,使之更适用于医用目的(抗凝血材料、眼科材料和软组织接触材料等)。值得特别注意的是,会上多次报道了P认和PLAGA的表面处理,以改善其表面亲水性和细胞相容性,来满足组织工程的客观需要。

3合成高分子一生物高分子杂化材料

合成高分子和生物高分子的杂化主要是通过化学方法进行的,包括缀合、接枝聚合和生物高分子在材料表面的固定化。合成杂化材料的目的,一方面是为了通过杂化克服医用生物大分子的某些缺点(如稳定性、免疫原性等)或改变生物大分子的特性(如酶的催化选择性、DNA药物的细胞亲和性等);另一方面是为了通过生物大分子在材料表面的固定化,改善生物医用高分子材料的生物相容性。对于表面惰性材料,其表面固定化生物大分子,可在材料表面经物理修饰活化之后进行。如果材料本身含有反应性基团,则可以直接通过化学反应固定生物大分子。在材料表面固定化肝素,可改善材料表面的抗凝血性能,用作血液接触材料。在材料表面固定化Fibronectin及其短肤(GRGDS)、胶原样肤等,可以改善细胞在材料表面的附着性能,用作组织工程的支架材料。

第9篇:化学高分子材料与工程范文

关键词:生物可降解高分子材料;分类;应用

随着社会经济的发展,环境问题越来越得到人们的重视,而高分子材料――塑料,作为上个世纪最伟大的发明之一对人类社会的推动作用是毋庸置疑的。但同样它给环境带来的污染问题也日益显著,很重要的一点就是塑料进入自然界后难以被自然环境分解,通常完全分解一类塑料需要数十年甚至要上百年的时间。而随着生物可降解高分子材料的出现及发展,对于塑料难被自然界分解这个问题带来了希望。本文主要介绍下这种材料的分类以及可能给在一些领域带来的改变。

生物可降解高分子材料定义:生物可降解高分子材料是指在一定时间和一定条件下,能够被微生物(细菌、真菌、霉菌、藻类等)或其分泌物在酶或化学分解作用下发生降解的高分子材料。

2、生物可降解高分子材料的类型

按合成方法可分为如下几种类型。

2.1微生物生产型

许多微生物能合成高分子,这类高分子主要有微生物聚醋和微生物多糖,具有生物降解性。研究表明,若给予合适的有机化合物作食物碳源,许多微生物都具有合成聚醋的能力。此外,许多微生物能合成各种多糖类高分子,其中有一些多糖类高分子具有良好的物理性能和生物降解性,可望用于制造不污染环境的生物降解性塑料。

2. 2合成高分子型

将脂肪族聚酷和芳香族聚酷(或聚酞胺)制成一定结构的共聚物,这种共聚物既有良好的性能,又有一定的生物降解性。聚乳酸(PLA)和聚乙醇酸(PGA)作为新型生物降解的医用高分子材料正日益受到广泛重视。

2. 3天然高分子型

自然界中存在的纤维素、甲壳素和木质素等均属降解性天然高分子,这些高分子可被微生物完全降解。但因纤维素存在物理性能上的不足,因此,它大多与其它高分子,如由甲壳质制得的脱乙酞基多糖等共混制得。如日本以纤维素和脱乙酞基壳多糖进行复合,制得了生物降解塑料,采用流涎法制得的薄膜与普通的PE膜的强度相似,并可在2个月后完全分解,盒状制品75天可完全分解,但目前尚未工业化生产。

2. 4掺合型

在没有生物降解性的高分子材料中,掺混一定量有生物降解性的高分子物,使所得产品具有相当程度的生物降解性,这就制成了掺合型生物降解高分子材料,但这种材料不能完全生物降解。目前主要开发改性淀粉与可生物降解或可水溶性塑料的降解塑料合金母料,或以淀粉为主要原料的可完全生物降解塑料,可以100%地分解,其分解速度可按要求控制在数分钟到一年的时间。

3、生物可降解高分子材料的应用

生物可降解高分子材料因其独特的性能,使得它的发展前景极为广阔,将为减少环境污染、保护地球与大自然,为人类创造一个无污染的环境发挥巨大作用。生物可降解高分子材料的分类应用主要有以下几个方面:医疗领域、农业、包装材料,其他领域。

3.1生物可降解高分子材料的医学应用

由于可降解高分子材料不击一次手术移出,因此其特别适合于一些击暂时性存在的植入场合根据其临床中的应用,可分为以下几类:

(1)药物控制释放。在过去20年,合成生物可降解高分子被广泛用于最贡要的药物释放领域。用生物可降解高分子制成的药物控制释放系统来控制药物的释放速率,而理想的情况应是,药物能在合适的时间、合适的地方加以释放,以满足生理击要。以生物可降解高分子材料作为载体的避孕制剂是属于控释、缓释制剂,不但要求制剂中的药物能够恒定释放,并且要求生物可降解高分子材料在释药过程中要保持一定的形状以保证有效释药面积。

(2)外科固定。PGA和PL、作为可吸收的合成缝合线被用于外科固定植入体。随后又增加了其在上肢和下肢的应用和整形外科领域获得了新的应用。日前经过改性的PLGA植入体的性质己能更好地适应肌健、韧带和骨骼复原的需要。

(3)组织支架PLLA的物理化学性能能让它作为象肝这样的软组织,象软骨和骨骼这样的硬组织的支架材料;PC、被用作细胞移植和器官再生的人造支架;PLGA被运用于肠和肝再生,以及骨组织工程上。

3.2在包装领域,人们致力于研制可完全生物降解的高分了以取代现在使用的非生物降解高分了。己商品化的有聚己内醋、聚乙烯醇、聚乙一醇、聚乳酸等。这些高分性能优良,可用吹模、注塑等方法加工,但它们的应用并不广泛,因为价格较高,比常用包装材料聚乙烯、聚内烯价格高4― 6倍。

3.3在农业领域光生物降解聚乙烯农膜可使作物成熟期提前,减少杂草生长。通过提高田间温度增加收成,并使收获期提前。可降解农用地膜可节省灌溉水和肥料的用量,避免残留物对下一季作物生长的危害。这种薄膜还可通过在种植前儿周升高土地温度来杀死病原性细菌,可避免使用某些破坏大气臭氧层的农药如一澳甲烷。在日本已用氧俗生物降解塑料包封的农药,可达到长期缓释高效,减少对河、湖的富营养化。近来日本开发出的壳聚糖塑料降解地膜,强度大,尤污染,成本低,可生物降解,而目降解后的产物对土壤有改良作用。纤维蔚微品壳聚糖制备的功能性杂化纤维有一定的机械强度,可生物降解,降解产物对人体尤毒副作用。

除上述应用外,生物可降解高分了在其他领域也得到了运用。例如,用合成生物可降解聚醋作包装材料,在洗涤剂粉中用PA、及其共聚物处理废水,在农业土壤中用特种PH BV片来释放杀虫剂,以及在兽医中用PH BV大药丸来释放药物。用可再生资源如玉米、小麦等淀粉生产的聚乳酸,经纺妊成型制得性能良好的纺织纤维,在服装、农业、渔业、卫生、建筑等领域的应用,己实现半商品化。随着技术的进一步发展和产品的逐步商业化,生物可降解高分了的应用前景定会更加光明。(郑州大学材料科学与工程学院;河南;郑州;450001)

参考文献:

[1] 赵博,对生物可降解高分子材料的研究【J】,科技经济市场,2006年4月,28