公务员期刊网 精选范文 硬件系统设计论文范文

硬件系统设计论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的硬件系统设计论文主题范文,仅供参考,欢迎阅读并收藏。

硬件系统设计论文

第1篇:硬件系统设计论文范文

关键词:变压器;冷却控制系统;硬件

1变压器冷却控制系统控制模块的设计总体思想

本文所进行的就是对变压器冷却控制系统控制器模块进行设计,其中包括了可以对主变压器风扇投入与切除的温度范围进行自行设定,也可以按照用户的要求而变化。在传统控制方式中,风扇投切的温度限制值是不能改变的,此外,风扇电机的启动和停止温度有一余量,不像传统的控制方式中是一个定值,避免了频繁启动的缺陷,此外还有运行、故障保护及报警等信号的显示及其与控制中心或调度中心的通讯,上传这些信息,如变压器油温、风扇运行状态有无故障等。至于风扇的分组投切设置是为了节约电能,具有一定的经济意义,但这个分组数不宜过多,以免控制复杂,且散热效果不佳。

控制器主要由AT89CS1单片机、A/D转换器、键盘控制芯片,输出模块、通讯模块以及自动复位电路等组成,其中单片机是控制器的核心,AID转换器是把输入信号转换为数字信号。

2变压器风扇控制系统的硬件接线

基于以上的要求,我们设计的风扇控制器的硬件线路图如下页图1所示。变压器风扇控制中对控制模块进行改进是本文研究的重点,其中包括主要芯片的选用以及一些抗干扰元件的使用。所以在本章节中,我们重点将要介绍变压器风扇冷却控制模块中的主要硬件芯片的作用、选用以及它们之间的连接力一法。

(1)单片机AT89C51(如图1)。

AT89C51是Atmel公司生产的一种低功耗,高性能的8位单片机,具有8k的flash可编程只读存储器,它采用Atmel公司的高密度不易丢失的存储器技术,并且和工业标准的80c51和80c52的指令集合插脚引线兼容,其集成的flash允许可编程存储器可以在系统或者通用的非易失性的存储器编程中进行重新编程。AT89C51集成了一个8位的CPU,8K的flash。256字节的EDAM,32位的I/0总线。三个16字节的定时器/计数器,两级六中段结构,一个全双工的串行口,振荡器及时钟电路。AT89C51是完成系统的数据处理和系统控制的核心,所有其它器件都受其控制或为其服务。

在本文中,经过TLC1543A/D转换器后输出的数字量输入到AT89C51单片机中,同时在进行了温度参数的设置以后,进行它的输出控制,其中包括了变压器的温度显示、状态显示、以及声音报警设备等等,也就是我们所研究的变压器冷却控制系统的核心部分。

(2)变压器的温度采集及温度处理模块。在变压器的风扇冷却自动控制系统中,第一步进行的就是对变压器上层油温进行的温度采集工作。变压器的温度采集是由变压器的温度控制器来实现的,其中包括铂电极、传感器以及变送器。经过温度控制器输出的信号进入变送器,变送器送出一个4一20毫安的电流信号,然后将此电流信号通过控制芯片上的电阻元件实现电流电压信号的转换,转换后的电压是在0.4一2(伏特)之间,然后将此电压信号输入到TLC1543数模转换器,进行信号处理。变送器输出信号有电流和电压信号两种,考虑到变压器安装的位置(室外)距本控制装置(室内)有一定的距离,电流信号不易损失,故选择了4一20毫安的电流信号。(3)11通道10位串行A/D转换器丁LC1543。

TLC1543A/D转换器是美国TI公司生产的众多串行A/D转换器中的一种,它具有输入通道多、转换精度高、传输速度快、使用灵活和价格低廉等优点,是一种高性价的模数转换器。TLC1543是CMOS,10位开关电容逐次逼近模数转换器。它有三个输入端和一个3态输出端:片选(CS),输入/输出时钟(I/0CLOCK),地址输入和数据输出(DATAOUT)。这样通过一个直接的四线接口与卞处理器或的串行口通讯。片内还有14通道多路选择器可以选择11个输入中的任何一个三个内部自测试(self-test)电压中的一个。

(4)BC7281128段LED显示及64键键盘控制芯片。

BC7281是16位LED数码管显示器键盘接口专用控制芯片,通过外接移位寄存器(典型芯片如74HC164,74LS595等),最多可以控制16位数码管显示或128支独立的LED。BC7281的驱动输出极性及输出时序均为软件可控,从而可以和各种外部电路配合,适用于任何尺寸的数码管。

BC7281各位可独立按不同的译码方式译码或不译码显示,译码方式显示时小数点不受译码影响,使用方便;BC7281内部还有一闪烁速度控制寄存器,使用者可随时改变闪烁速度。

BC7281芯片可以连接最多64键C8*8)的键盘矩阵,内部具有去抖动功能。它的键盘具有两种工作模式,BC7281内部共有26个寄存器,包括16个显示寄存器和10个特殊(控制)寄存器,所有的操作均通过对这26个寄存器的访问完成。

BC7281采用高速二线接口与MCU进行通讯,只占用很少的I/O资源和主机时间。

BC7281在本系统中主要用于驱动变压器温度显示的LED以及显示风扇运行状态的指示灯。

前已提及,BC7281芯片内部共有26个寄存器,包括16个显示寄存器和10个特殊功能寄存器,共用一段连续的地址,其地址范围是OOH-19H,其中OOH-OFH为显示寄存器,其余为特殊寄存器。

(5)使用MAX232实现与PC机的通讯。

①MAX232芯片简介

MAX232芯片是1VIAX工M公司生产的低功耗、单电源双RS232发送/接收器,适用于各种E工A-232E和V.28;V.24的通信接口,1VIAX232芯片内部有一个电源电压变换器,可以把输入的+5V电源变换成RS-2320输出电平所需±10V电压,所以采用此芯片接口的串行通信系统只要单一的+5V电源就可以。

我们的设计电路中选用其中一路发送/接收,RlOUT接MCS一51的RXD,T1工N接MCS一51的TXD,TlOUT接PC机的RD,Rl工N接PC机的TD1。因为MAX232具有驱动能力,所以不需要外加驱动电路。

系统中使用了此技术之后就实现了变压器风扇冷却系统的远程控制,工作人员可以在控制室对冷却系统进行控制,可以达到方便、准确、快捷的日的,这也是我们对传统的风扇冷却控制系统而做的一个重要的改进。

②串行通讯

在此实现中,我们必须要对MCS-51串行接日和PC机串行接日的串行通讯要有一定的了解,串行通信是指通信的发送方和接收方之间数据信息的传输是在单根数据线上,以每次一个二进制位移动的,它的优点是只需一对传输线进行传送信息,囚此其成本低,适用于远即离通信;它的缺点是传送速度低;串行通信有异步通信和同步通信两种基本通信方一式,同步通信适用于传送速度高的情况,其硬件复杂;而异步通信应用于传送速度在50到19200波特之间,是比较常用的传送方式,本文中使用的就是异步通讯方式。

(6)“看门狗”电路DS1232

在系统运行的过程中,为了避免因干扰或其他意外出现的运行中的死机的情况,“看门狗电路”DS1232会自动进行复位,并且能够重读EEPROM中的设置,以保证系统可以安全正常的运行。

美国Dallas公司生产的“看门狗”(WATCHDOG)集成电路DS1232具有性能可靠、使用简单、价格低廉的特点,应用在单片机产品中能够很好的提高硬件的抗干扰能力。

DS1232具有以下特点:

①具有8脚DIP封装和16脚SOIC贴片封装两种形式,可以满足不同设计要求;

②在微处理器失控状态卜可以停止和重新启动微处理器;

③微处理器掉电或电源电压瞬变时可自动复位微处理器;

④精确的5%或10%电源供电监视;

在本变压器冷却控制系统中,DS1232作为一定时器来起到自动复位的作用,在DS1232内部集成有看门狗定时器,当DS1232的ST端在设置的周期时间内没有有效信号到来时,DS1232的RSR端将产生复位信号以强迫微处理器复位。这一功能对于防止由于干扰等原因造成的微处理器死机是非常有效的,因为看门狗定时器的定时时间由DS1232的TD引脚确定,在本设计中,我们将其TD引脚与地相接,所以定时时间一般取为150ms。

3结论

本装置实现了通过单片机自动控制冷却器的各种运行状态并能精确监测变压器的油温和冷却器的各种运行、故障状态,显示了比传统的控制模式的优越性。(1)能够对变压器油温进行监测与控制;(2)实现了变压器冷却器依据不同油温的分组投切,延长了冷却器的使用寿命,有较好的经济意义;(3)实现了冷却系统的各种状况,如油温、风扇投切和故障等信息的上传,便于值班员、调度员随时掌握情况。

由于固态继电器实现了变压器的无触点控制,解决了传统的控制回路的弊端,同时此控制装置具有电机回路断相与过载的保护功能。由于使用了单片机,因而具有一定的智能特征,实现了油温、风扇的投入、退出和故障等信号的显示以及上传等。通过实际运行表明,该装置的研制是比较成功的。但今后,我们还应该对固态继电器本身的保护进行一些研究,以免主回路因电流过大而造成固态继电器的损坏,以使变压器风扇冷却控制回路更加完善。

参考文献

第2篇:硬件系统设计论文范文

【关键词】AGV 磁引导 PWM调速 8052单片机

随着现代科学技术的高速发展,自动导引小车(Automatic Guided Vehicle AGV)得到了广泛的应用。AGV以电池为动力,并装有非接触导航(导引)装置,以电磁引导、激光引导、惯性引导及GPS引导等方式。可实现无人驾驶的运输作业。它能在计算机监控下,按路径规划和作业要求,精确地行走并停靠到指定地点,完成一系列作业。

AGV以轮式移动为特征,较之步行、爬行或其它非轮式的移动机器人具有行动快捷、工作效率高、结构简单、可控性强、安全性好等优势。AGV的活动区域无需铺设轨道、支座架等固定装置,不受场地、道路和空间的限制。在自动化物流系统中,最能充分地体现其自动性和柔性,实现高效、经济、灵活的无人化生产。

一、AGV导航系统的系统总体设计

本论文设计了磁带引导AGV,完成寻迹、蔽障、PWM调速、人工控制等功能,为大量生产工业型AGV提供较好的研究基础。系统模块设计如图1所示:

图1

本论文主要对AGV的硬件系统进行设计,重点研究磁引导AGV的磁寻迹感器模块软硬件模块、速度反馈模块的设计。

二、磁寻迹传感模块设计

磁寻迹传感器是AGV能否完成磁带寻迹功能的关键,为了检测到弱磁磁场的存在,要选用灵敏度更高的传感器。本设计采用磁阻传感器,可以测量到弱磁磁场的存在。由于磁阻传感器输出为模拟量输出,需要通过响应的A/D转换电路将信号输入单片机。模块设计如图2所示。

图2 磁寻迹传感器硬件实现电路

三、速度反馈模块设计

本论文AGV采用双轮差速驱动方式,当电机负载增加时,电机的运行速度下降,一般额定转速降落达3%~10%,为了使两电机同速,必须要有反馈换环节对电机的速度进行反馈。只有组成了闭环系统,AGV的运动与速度才可控。码盘接口硬件电路如图3所示。两编码器的A和B两相信号经过74LS14施密特整形,分别接到单片机的P2.3和P2.2 以及INT0和INT1上。单片机对INT1和INT0的中断次数计数来测量通道B的脉冲数,读取P1.2的电平状态来判断电机的转动方向。以上升沿触发为例,当B路信号的上升沿引起中断时,单片机判断P2.2或P2.3信号的电平高低。若其为低,则电机正传;为高,则电机反转。电机的速度即为一个采样周期中N值的变化量。电机的转速为,式中,C为标度变化系数,可根据转速的量纲来选择,N为一个采样周期中的计数值,它的符号反应电机的转动方向。硬件实现电路如图3所示。

图3 光电编码器实现电路图

四、总结

本系统采用PWM调速及双轮差速控制,使车辆依照车载传感器确定的位置信息,沿着规定的行驶路线和停靠位置,自动行驶,完成规定的操作。论文对关键模块的设计进行了详细设计,经验证该系统设计可靠合理,能实现系统设计的基本功能。

参考文献:

[1] 温钢云,黄道平. 计算机控制技术[M]. 华南理工大学出版社,2002.

[2] hard C.Dorf Robert H.Bishop. 现代控制系统[M].高等教育出版社,2006.

第3篇:硬件系统设计论文范文

关键词:虚拟仪器;微机保护;实验系统

中图分类号:TP391文献标识码:A文章编号:1009-3044(2010)19-5381-02

继电保护装置是一种利用电磁感应原理而发展起来的电力系统保护装置,随着电子技术和网络通信技术的飞速发展,目前已经发展到微机型阶段,并且利用软件技术可以实现由软件技术驱动硬件而实现微机继电保护,这就是目前研究很热的技术――基于虚拟仪器技术的继电保护系统。利用虚拟仪器技术实现的微机继电保护装置,具有传统微机继电保护装置所不具备的优势,例如控制更加安全可靠等。

本论文主要将虚拟技术应用于微机保护实验系统,拟对基于虚拟仪器技术的微机保护系统进行开发,并从中找到可靠有效的微机保护实验方法与建议,并和广大同行分享。

1 微机继电保护概述

1.1 微机继电保护的基本构成

微机继电保护装置,其基本结构构成与普通的电力保护装置一样,也是有硬件和软件两大部分构成。硬件部分主要由数据采集系统、数据处理系统及逻辑判断控制模块等几个部分构成,主要由数据采集模块负责对电力系统的相关电参数实现检测与采集,并将数据传送至数据处理系统,数据经过运算之后,由逻辑判断控制模块调用软件控制程序,并发出相应的控制信号,驱动保护装置执行保护动作,从而实现电力继电保护的功能。

随着集成电子电路技术的发展,目前发展的微机型继电保护装置,其硬件系统主要由CPU(微处理器)主机系统、模拟量数据采集系统和开关量输入/输出系统三大部分组成,尽管结构构成已经发生一定变化,但其实实现继电保护的基本原理仍是一样的,由模拟量数据采集系统负责相关保护参数的采集,微机继电保护装置是以微处理器为核心,根据数据采集系统所采集到的电力系统的实时状态数据,按照给定算法来检测电力系统是否发生故障以及故障性质、范围等,并由此做出是否需要跳闸或报警等判断。

1.2 微机继电保护装置的特点

微机保护与常规保护相比具有以下优点:

1) 微机继电保护装置主要由微处理器为核心而构成的硬件系统,因此借助于现代功能强大的微处理器,微机型继电保护装置可以实现一定程度的智能化。

2) 相比于传统的机械式硬件实现的硬件保护装置,微机型继电保护装置能够依靠数据采集模块实现对相关参数的检测与采集,整个过程实现数字化流程,这就为继电保护装置的控制功能的稳定性、可靠性提供了技术条件;另一方面,依靠微处理器内部的软件程序,微机继电保护装置能够进行周期性自检,一旦发现自身硬件或者软件发生故障,能够立即实施报警,从而保障了继电保护装置功能的可靠性。

3) 传统的机械式硬件实现的硬件保护装置,其保护功能较为单一,仅仅是实现基本的保护功能,动作依靠一次性机械元件完成,一旦该部件发生故障,则整个继电保护装置无法工作;而微机型继电保护装置除了能够利用弱电驱动控制实现继电保护的功能外,还能够依靠数据采集系统对整个电力系统的相关电力参数都实施监测与采集,通过程序的分析,实现对电力系统整体性能的检测,保护功能大大丰富。

4) 传统的机械式硬件实现的硬件保护装置,其功能调试复杂,工作量大,而且极容易造成内部晶体管集成电路的失效,而现代微机继电保护装置,依靠内部的核心微处理器,能够开发专用的人机交互系统,利用人机交互系统实现继电保护装置的调试,简单易行,还可以自动对保护的功能进行快速检查。

5) 利用微机的智能特点,可以采用一些新原理,解决一些常规保护难以解决的问题。例如,采用模糊识别原理或波形对称原理识别判断励磁涌流,利用模糊识别原理判断振荡过程中的短路故障,采用自适应原理改善保护的性能等。

2 基于虚拟仪器的微机保护实验系统开发设计

2.1 总体结构设计

本论文探讨的是基于虚拟仪器技术的微机继电保护系统,因此首先面临选择合适的虚拟仪器开发平台的问题,这里选择基于G语言的LabView开发平台是目前国际最先进的虚拟仪器控制软件,集中了对数据的采集、分析、处理、表达,各种总线接口、VXI仪器、GPIB及串口仪器驱动程序的编制。基于虚拟仪器的微机继电保护装置系统,是利用虚拟仪器开发平台,构建虚拟的微机继电保护装置,实现完整的微机继电保护装置的全部功能,并对设计的虚拟继电保护装置进行评估和改进,从而完成微机继电保护系统设计的一种设计手段。

利用虚拟仪器技术进行微机继电保护系统的开发设计,从具体设计流程来说,主要从以下几个环节入手进行总体结构的设计:

根据微机继电保护系统的设计目标、设计功能,列出所需要的相关硬件,构建整体微机继电保护系统结构框架;另一方面,尽量采用模块化的开发设计模式,将微机继电保护系统按照不同的功能环节,设计各功能模块之间的结构关系。

如下图所示,是本论文所探讨的利用虚拟仪器平台所开发的微机继电保护系统结构原理图。这种方式既便于模块的单独调试,节省系统开发周期,又便于系统功能的改变,使系统具有更强的移植与升级功能。

如图1所示,基于虚拟仪器技术的微机保护系统结构主要由一次系统、转换模块、数据采集模块、保护测量模块及保护决策软件系统等几部分构成,一次系统主要负责面向电网系统模拟设置合适的传感器,将相关拟生成电网的二次侧电压、电流信号,信号经过转换、调理电路变换成符合要求的-5V~+5V模拟信号送数据采集模块,数据采集模块主要由DAQ数据采集卡构成,能够自动将模拟产生的模拟电压信号进行A/D转换,并进行初步的数据处理转换再传送给以虚拟微处理器为核心的保护决策模块,最终将生成的继电保护控制决策信号输出到保护策略模块,最终实现微机继电保护系统的功能。

2.2 数据采集模块的设计与实现

本文中微机实现的继电保护实验系统输入信号来源于继电保护测试仪,根据保护系统测试输入信号的特点,本论文采用数据采集卡来负责数据的采集与高速传输。

2.2.1 数据采集卡的选择

要实现基于虚拟仪器技术平台的微机继电保护系统,一次系统在完成相应电力系统电参数的传感检测之后,数据采集模块要能够按照微机继电保护系统的功能于设计要求实现相应数据的转换与采集,因此,数据采集卡的选择成为整个微机继电保护系统保护功能实现的关键。目前的数据采集卡,主要有12位或16位的DAQ数据采集卡,在具体决定选用12位还是16位的DAQ设备时,主要从采集精度和分辨率这两个指标考虑,可以由给定的系统精度指标衡量出DAQ卡需要的整体精度。

在本论文中,这里选取PCI-1716数据采集卡。PCI-1716是研华公司的一款功能强大的高分辨率多功能PCI数据采集卡,它带有一个250KS/s16位A/D转换器,1K用于A/D的采样FIFO缓冲器。PCI-1716可以提供16路单端模拟量输入或8路差分模拟量输入,也可以组合输入。它带有2个16位D/A输出通道,16路数字量输入/输出通道和1个10MHz16位计数器通道。PCI-1716系列能够为不同用户提供专门的功能。

2.2.2 虚拟数据采集程序的实现

在选择了数据采集卡硬件设备之后,需要借助于虚拟仪器平台为整个系统设计虚拟护具采集程序。在具体进行设计时,由系统内部虚拟程序产生数据采集卡锁需要的相应信号,具体来说就是CT、PT信号,因此,在具体编程时,首先将CT、PT信号传输至相应的滤波器,LabVIEW提供了各种典型的滤波器模块,根据需要可以设置成低通、高通、带通、带阻等类型的滤波器;其次,将经过数据滤波处理之后的数据进行输出。数据采集模块的程序如图2所示。

2.3 微机保护模块的设计与实现

既然在数据采集模块之后需要进行数据的滤波,尽管LabVIEW提供了各种典型的滤波器模块,但是仍然需要借助于虚拟滤波模块设计专用的滤波算法,而且在微机继电保护系统中,对电力系统的继电保护功能的实现,主要是由相应的滤波保护算法实现的,因此有必要为虚拟微机电力保护系统设计滤波保护算法程序。

本论文采用如下的设计方法对滤波保护算法进行设计:

1) 利用LabVIEW自带的滤波器进行数据的排序滤波。

2) 按照系统保护功能所需要的数据频带,设置相应的低通、高通、带通、带阻等灯滤波保护功能。按照上述方法,基于虚拟仪器平台的微机继电保护系统,其滤波器输入得到的数据序列,多数是传感器采集到的电参数,如电压和电流,而电压和电流数据是离散的数字量序列,其中包含了大量的谐波干扰信号,因此有必要进行滤波。在本论文中,采用了二级滤波保护算法,即分别进行前置滤波和后置滤波,实现对数据的二级滤波保护,从而提高整个微机继电保护系统的稳定性和可靠性。前置滤波模块如图3所示,后置滤波模块如图4所示。其中前置滤波模块提供了差分滤波器、积分滤波器、级联滤波器、半波和1/4周波傅立叶滤波器、半波和1/4周波沃尔氏滤波器,可以根据需要自行选择;后置滤波模块提供了平均值滤波器、中间值滤波器,也可以自由选择。

3 结束语

利用虚拟仪器技术进行微机继电保护装置系统的设计开发,能够很好的避免了实物硬件开发设计所带来的周期较长、调试较复杂以及成本较高等劣势,所有的开发设计任务全部在虚拟仪器平台上完成。本论文将虚拟仪器技术应用到了微机保护装置的设计,对于进一步提高微机继电保护装置的可靠性与稳定性具有优势,同时借助于虚拟仪器技术的开发,能够更好的实现电气继电保护功能的完善与提升。

参考文献:

[1] 李佑光,林东.电力系统继电保护原理及新技术[M].北京:科学出版社,2003.

[2] 王亮,赵文东.微机继电保护的现状及其发展趋势[J].科技情报开发与经济,2006,16(18):150-151.

[3] 张振华,许振宇,张月品.第三代微机保护的设计思想[J].电力自动化设备,1997,17(3):24-25.

第4篇:硬件系统设计论文范文

引言

不论社会经济如何飞速,对于电机的控制在人们正常生活和生产中起着重要的作用。一旦缺少了电机的控制,轻则给人民生活带来极大的不便,重则可能造成严重的生产事故及损失,从而对电机控制系统提出了更高的要求,需要满足及时、准确、安全等特性。如果仍然使用人工方式,劳动强度大,工作效率低,安全性难以保障,由此必须进行自动化控制系统的改造。

目前的单片机广泛的应用在很多的场合,在以下的民用电子产品、计算机系统、智能仪表、工业控制、网络与通信的智能接口、军工领域、办公自动化等领域有广泛的应用。本次的电机控制系统设计使用单片机控制电路实现对电机的控制。

本文采用AT89C51单片机作为硬件核心实现对电机进行控制,通过采集电路采集电机的速度信息,并与设定的速度进行比较,产生偏差信号,偏差信号通过PID调节器调节电机转速,保证电机的恒转速运行。

AT89C51单片机温度测控仪采用Atmel公司的AT89C51单片机,采用双列直插封装(DIP),有40个引脚。该单片机采用Atmel公司的高密度非易失性存储技术制造,与美国Intel公司生产的MCS—51系列单片机的指令和引脚设置兼容。其主要特征如下:8位CPU;内置4K字节可重复编程Flash,可重复擦写1000次;完全静态操作:0Hz~24Hz,可输出时钟信号;三级加密程序存储器;128B×8的片内数据存储器(RAM);32根可编程I/O线;2个16位定时/计数器;中断系统有6个中断源,可编为两个优先级;一个全双工可编程串行通道;可编程串行UART通道;具有两种节能模式:闲置模式和掉电模式。

1电机控制系统的硬件设计

对于电机的整流电路在实际的应用过程中已经非常成熟,因此可以参考相关的电机设计资料,在本论文中就不做相应的赘述。

1.1功率驱动模块

功率驱动模块是电机控制系统的一个重要组成部分,在本文的电机控制系统中,采用的是IR公司的IRAMS10UP60A,这款集成电路具有硬件电路简单,并且稳定性和安全性、可靠性高等特点。在这款电路中具有自举电路和过温过流保护,这样能够保证闭环速度控制系统的功能。

1.2检测电路

在本篇论文中采用的是无刷直流电机自带的霍尔元件式的位置传感器,霍尔元件是一种基于霍尔效应的磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔元件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。采用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。

通过遮光盘的齿部的遮挡与不遮挡,使霍尔元件产生高、低电平信号,从而提供了电动机的转子位置信息。当电机转轴逆时针转动时,遮光盘的齿部进入霍尔传感器定子内,此时由于永磁块的磁力线被齿部所短路,磁力线不穿越霍尔元件,霍尔元件输出为“1”(高电平);当齿部离开时,磁力线穿越霍尔元件,霍尔元件输出为“0”(低电平),这样,根据这三个霍尔元件的输出状态,就可以准确地确定转子的磁极位置。

1.3电流采样设计

2电机控制系统软件设计

3结论

随着性能高的微处理器的出现,采用高性能的处理器可以简化系统的设计,同时还能够提高系统的安全性、可靠性。根据这种方法设计的电机控制系统与传统的电机控制系统相比较在成本上具有很大的优势。本文利用ATMEL公司的AT89C51的单片机,设计出了相应的硬件和软件系统,在系统的软件设计中,采用了模块化的设计思想,并给出了相应的设计流程,这种芯片式的电机控制系统设计,简化了设计的时间,降低了开发成本,能够很好的实现系统的功能。

参考文献:

[1]白雷石,杨华.基于DSP的无刷直流电动机控制系统[J].电气传动自动化,2012(2).

第5篇:硬件系统设计论文范文

【关键词】控制系统;PLC;温室

农业从古至今一直是我国经济基础,在国家发展中占有重要的地位。随着人们生活水平的提高,人们对农作物的生命期、品种都有了更高的要求,如四季能吃到绿色菜以及买到想要品种的鲜花。因此温室现在越建越多,建温室的重要保证参数就是植物的生长要素,即光、温度、湿度和CO2,本论文就是论述如何用PLC技术对温室进行控制。

一、确定控制系统方案

(一)控制对象

1.温度

植物生长的温度是在一个范围内,虽然最适宜温度植物长得很快,但是往往因为消耗有机物太多,会出现长的细长现象。控制系统的控制温度范围要略低于植物最适宜温度。

2.湿度

空气的湿度太大会造成之无病虫害,但是要保证空气湿度低的同时要有充足的水分由土壤供给植物。

3.光照

植物生长需要光照,这样才能进行光合作用,不同植物的光补偿点不同,因此事宜温度范围也不同,同时人们可以控制光照时间和强度来控制植物的生长速度。

4.CO2

植物生长需要光合作用,光合作用需要的一个物质是CO2,植物的光合作用随着CO2的浓度增大而增强,但是浓度过高反而会抑制植物光合作用,因此二氧化碳浓度的控制范围要与农作物相适应。

(二)PLC控制系统

PLC是可编程逻辑控制器,它可以通过编程方式完成传统的继电器-接触器的逻辑控制,PLC的控制系统性能稳定,价格便宜,开发容易,性价比高,缺点就是人机交流困难。

(三)控制系统的方案确定

本控制系统方案为各参数的自动控制,当传感器检测的温湿度、光照以及CO2超过范围时,PLC控制系统会发出指令,控制执行机构如天窗的电动机等动作,使温室参数达到用户要求。

二、控制系统软硬件设计

(一)控制要求

随时检测控制对象温湿度、CO2浓度和光照参数,并保证参数在控制范围内。控制系统设计流程如图1所示。

(二)硬件设计

1.根据控制系统输入输出的点数,对PLC型号进行选择

(1)PLC开关量点数确定

(2)根据PLC开关量点数确定PLC型号

由上表可得输出点13个,输入点14个,考虑到应有输入输出端子的余量,选择S7-200cpu226型,其有24/16个I/O口。

2.模拟量模块的选型

对于温湿度、CO2和光强传感器都输出模拟信号,需要PLC扩展模拟量模块。温湿度传感器分别要在温室的上下南北四处检测,因此输入10路模拟量信号,因此选择EM235模块3个(此模块4AI/1AO)。

3.温湿度、光照以及CO2检测元件选型

选择HMD40温度传感器,Poi88-c光强传感器,TGS4160型CO2传感器以及A1203型湿度传感器。

4.进行电路设计

控制电路简图如图2所示,主电路同传统继电器-接触器电路。

(三)软件设计

以光照的控制为例,比较光照传感器的值,如果超过上限,则打开遮光帘,如果在范围内,则遮光装备动作不变,低于下限值收起遮光装备并且打开光照灯。

最后,要进行整机调试。调试时先启动控制电路,断开主电路,等确定程序和控制电路无误后,在进行整机调试。

参考文献

第6篇:硬件系统设计论文范文

高校教师论文及著作管理系统采用.NETFramework3.5框架,利用+C#技术,运用C/S和B/S相结合的系统架构来设计完成系统的主要功能,系统开发平台采用微软的VisualStudio2010。

1.1系统功能模块设计

近年来,随着高校教师队伍的不断扩大,整体科研水平不断提高,在各专业学科领域涌现出了很多学术成果,并据此撰写了大量的论文及著作,如何对这些宝贵的学术成果数据信息进行有效管理是当下各高校面临的重要课题。笔者结合本人日常工作经历,并走访了各级各类高校相关管理工作人员、专职教师和科研人员,收集了大量需求信息,随后进行系统功能模块设计和数据库设计、程序编码,最终形成了本系统原形产品,本系统的主要功能有:1、教职工所撰写的论文及著作基本信息查询,包括:第一作者姓名、第二作者姓名、第三作者姓名、论文(著作)名称、ISBN(ISSN)、出版社名(期刊名称)、成果类别、获奖情况、总页码、封面彩图、封底彩图、总字数,本人所完成的字数等信息;2、根据论文及著作成果影响程度和类别,以及本人完成的字数来计算科研积分及工作量折算;3、存储论文及著作的的目录,封面、封底图片,以备日后查询;4、与现有教师教学工作量计算系统无缝集成,以便汇总教师总的工作量及绩效津贴。图1反映了高校教师论文及著作管理系统的主要工作的流程示意图,其中教师操作部分使用B/S模式,采用Windows2003server+IIS+.net+MSSQLServer2005平台,使用C#.net进行编程;管理工作人员操作部分采用C/S模式,使用C#.net进行编程。

1.2论文及著作管理系统的数据库系统设计

由于高校教师论文及著作管理系统中涉及到的用户权限和业务一般相对复杂,因此在进行数据库系统设计时,充分利用数据库理论和设计规则,同时兼顾硬件系统性能指标等客观条件,适当容忍较低程度的数据冗余。由于要储存论文及著作的封面、封底的图片,故涉及到大量图像采集和存储,对系统的存储功能要求较高,要求采用大容量存储技术,对所有用户所提交的各种文档采用二进制流文件格式统一存放到数据库中,避免了占用服务器中的大量存储资源,根据需要,在数据库中设计若干个数据表,其中论文及著作表(CEC_AUTHORS)主要存储教职工的论文及著作数据,该表是整个系统的主数据表,其结构如图2所示,其中著作编号为主键,封面、封底字段的数据类型设置为image数据类型。同时,为降低系统运行中出现“脏”数据的几率,在数据库系统别设计了以论文及著作表为中心的数据库关系图,以保证数据库数据完整性和一致性,如图3所示。

2基于绩效管理制度的高校教师论文及著作管理系统的实现及性能分析

本系统的后台数据库采用SQLServer2005搭建,在B/S部分采用了MVC(Model-View-Controller)三层结构设计模式,即模型-视图-控制器三层,用以实现程序代码、业务逻辑以及数据显示的分离,下面谈谈对系统的实现和性能分析。

2.1系统实现

在此,笔者以本系统中位于Model层中的数据访问类的实现和View层功能的实现为例,简要叙述基于.NETFramework3.5的高校教师论文及著作管理系统的B/S部分的实现过程。由于篇幅有限,在此简单罗列部分关键代码,希望能抛砖引玉,在MicrosoftVisualStudio2010开发环境下,实现数据访问公共类的简要代码如下。在B/S部分,系统中的用户登录模块负责接受来自UI层的用户号、用户密码、用户身份等数据,并将这些数据传送到控制层,控制层根据不同用户身份数据,返回相应的不同数据给用户,从而在View层中显示不同的内容,图4和图5展示了根据不同用户身份返回不同的View内容。在C/S部分,管理员对论文及著作成果信息进行逐一分类、汇总核实,然后根据教职工通过B/S客户端提交的信息对各成果取得人进行统一入库归档,如图6所示,其中作者单位和姓名是根据教职工提供的作者教师号自动生成,无需管理人员手动输入。

2.2系统性能分析

本系统采用基于.NETFramework3.5开发平台,该软件项目充分利用AJAX技术创建更有效、更具交互性、高度个性化界面,在B/S部分的Web系统中大量运用母板技术,使整个系统界面统一规范,外观友好,设计合理,用户操作起来非常方便。服务器采用WindowsServer2010操作系统,运行稳定,响应速度快,数据库系统状态良好,数据准确,同时为方便管理、整合各种数据,便于用户检索数据信息,在设计本系统后台数据库时,采用了大容量存储技术,合理、恰当地利用了数据库系统的事务、存储过程、和触发器等技术,优化服务器配置,保证了数据的安全性和一致性,使其满足海量数据的并发访问和存储的需要。

3结论

第7篇:硬件系统设计论文范文

摘要:本文介绍了我校对计算机硬件实验课程体系及实践教学环节进行的改革,建立了“基础层-应用层-提高层”三层体系结构的硬件课程群实验体系,并对多层次、系列化的硬件实践教学模式及训练模式进行了探讨。

关键词:硬件课程群;实验体系;实验内容;实践能力

中图分类号:G642

文献标识码:B

我校计算机专业自99级开始进行了较大规模的扩招,但由于师资力量跟不上、实验条件和实验内容相对落后等原因,造成计算机硬件教育存在层次单一、教学内容滞后、理论与实践脱节等问题,学生普遍存在着“重软怕硬”的现象,毕业后硬件设计能力差,软件开发缺少后劲。为提高学生的硬件动手能力,增强毕业生的社会适应性,学院自2002年开始进行计算机硬件课程群建设及相应的硬件课程群实验体系建设,包括“计算机组成原理”等九门硬件课程及5门相关的实践课程。本文对我院计算机硬件课程群实验体系建设及硬件实践教学环节的改革进行了探讨与总结。

1构建科学完整的硬件课程群实验体系

在原有的课程体系下,我院为本科生开设的硬件实验教学课程有“数字逻辑实验”、“计算机组成实验”、“微机接口实验”、“单片机实验”。由于实验条件的限制,各课程实验内容相对独立,综合性、系统性较差;尚有部分硬件主干课程没有对应的实验课程,如系统结构。实验课程体系存在诸多问题。

(1) 缺乏对学生系统设计能力的培养。传统的硬件设计和软件设计相分离的设计方法成为阻碍设计和实现复杂、大规模系统的关键因素。系统平台的搭建、软硬件的协同设计验证和软硬件功能模块的可重用性已成为现阶段设计方法的热点。培养学生具有系统设计的思想成为当务之急。

(2) 缺乏对学生可编程芯片设计能力及EDA技术的培养。可编程芯片与EDA技术是现代电子设计的发展趋势,将可编程芯片设计及EDA技术引入实验教学中是时展的需要。

(3) 缺乏综合性的实践课程,学生的创新能力发挥受限。由于实验条件限制,原有的多数实验是基于纯硬件逻辑设计的,只是在面包板上用器件构建小系统,功能扩展性差;并且只能开设数量有限、技术含量较低的实验,学生无法开展自主的综合性设计,无法进行创新能力的培养。

为此,经过充分调研和论证,我院首先从修改03级教学计划入手,对课程体系中的多门课程进行了调整,同时理顺各门课程间的关系,构建起了新的硬件课程体系。该课程体系由必修课程、选修课程及配套实践三部分组成。必修课包括“组成原理”、“接口技术”、“系统结构”等基础课程。为适应社会需求,在选修课中删去原有的“诊断与容错”等一些过时的课程,增加“数据采集”、“计算机控制技术”、“嵌入式系统”等社会需求较强、实用价值高的应用性课程,同时新开了“模型机设计与组装”、“硬件综合实践”等实践课程。在07版教学计划中,又新增了“DSP原理与应用”、“嵌入式系统实践”等新课程,保证课程体系的实用性与先进性。

硬件系列课程从体系结构上划分为三个层次:基础层、应用层和提高层,其课程间的关系如图1所示。基础层为“数字电路”与“组成原理”。“数字电路”课程虽然在教学体系上不属于计算机硬件系列课程,但它是计算机硬件系统的技术基础,是必修的前续课;“组成原理”介绍计算机的基本组成和工作原理,解决整机概念;通过“电工电子实习”与“模型机设计与组装”两门实践课程,强化学生的硬件动手能力。在应用层中,通过“接口技术”介绍应用层的接口和相关外设,以“嵌入式系统”等四门实用性强的课程作为选修课,每门课程都配有相应的实验环节,并通过“硬件综合实践”、“嵌入式系统实践”强化学生对基础知识的掌握和综合应用。提高层为“系统结构”及“性能测试与分析”实践课程,通过学习和实践,能够使学生比较全面地掌握计算机系统的基本概念、基本原理、基本结构、基本分析方法、基本设计方法和性能评价方法,并建立起计算机系统的完整概念。

在硬件课程群实验体系建设过程中,突出强调课程体系的系统性和完备性。从第1学期到第7学期硬件实验不断线,层次逐步提高,实验内容衔接连贯。注意各硬件实践的相互次序和互补,使硬件实践训练层次化、系列化,以此来系统强化学生的硬件动手能力。同时调整各课程的开设顺序,理顺每门课与前导课和后续课之间的关系,从而保证硬件课程体系的系统性和完备性。

注:所有必修课程与选修课程均开设课内实验,包括验证实验(20%)、设计实验(80%);实践课程单独开设,包括综合实验(80%)、探索实验(20%)。

2改革实验教学内容与模式

计算机硬件系列课程的重要特点之一是工程性、实践性强。为了使学生在学过该系列课程后具备较强的实际动手能力和计算机应用系统的开发能力,应在实验教学内容的设置上体现出基础性、系统性、实用性和先进性,既要重视计算机硬件的基础内容,又要结合当今电子与计算机的最新发展。为此,我们对该硬件系列课程的实验教学内容和教学模式进行了改革创新。

2.1优化实验内容,引进实验新技术,提高硬件设计的效率和兴趣

随着计算机硬件技术的日益发展,各种各样的微处理器不断更新,功能不断增强,以FPGA为代表的数字系统现场集成技术取得了惊人的发展,嵌入式系统设计也逐步成为主流。为了使学生跟上时代潮流,了解最新技术,需要不断引入新设备、新技术,提高硬件设计的效率和兴趣。如更新的“组成原理”和“系统结构”实验台,通过RS232串口与PC机相连,可在PC机上编程并向系统装载实验程序,还可在PC机的图形界面下进行动态调试并观察实验的运行,使学生像设计软件一样来设计硬件,做到了硬件设计软件化,大大提高了硬件设计的效率和兴趣。“模型机设计与组装”,将CPLD和FPGA等技术引入,用CPLD来设计复杂模型机。“汇编语言”和“接口技术”补充Windows下设备驱动程序的设计与实现,增加PCI、USB的应用等内容。“系统结构”通过局域网组建小型的微机机群,研究探索多处理机操作系统,试验并行程序的运行与任务分配调控等功能。为适应当前嵌入式芯片的迅速普及应用,新开设了“嵌入式系统设计”课程设计。针对学生已学过多门硬件课程,但仍不能完成一个完整的、可独立工作的计算机系统设计问题,新开设了“硬件综合实践”,使同学亲自体会设计一台微型计算机系统的全过程。

2.2建立“验证型-设计型-综合型-探索型”的多层次实践教学模式

在实验教学内容的改革上,本着“加强基础、拓宽专业、注重实践、提高素质”的方针,将实验项目分为4类,即验证型、设计型、综合型、探索型,实验项目由浅入深,循序渐进。在所有硬件必修和选修课程中,全部开设课内实验。课内实验由验证实验(20%)、设计实验(80%)组成。所有实践课程都单独开设实验,包括综合实验(80%)、探索实验(20%)。这样,课内课程中开设“验证型”和“设计型”的实验,在后续课程设计中,开设“综合型”和“探索型”的实验,形成“验证型-设计型-综合型-探索型”的多层次实践教学模式,系统强化学生的综合设计和硬件动手能力。

在验证型实验中,注重使学生巩固基本理论,进一步掌握基本概念和基本技能。在设计型的实验中,注重培养学生的创新意识、设计能力和动手实践能力。在这一类实验中,以学生动手为主,教师辅导为辅,只给定实验的课题及达到的目的,中间过程需学生自己去查阅资料和设计方案,直至最后调试完成。在综合型实验中,注重培养学生综合运用所学知识的能力,使学生受到更为实际、更加全面的科学研究的训练。综合实验的特点是没有现成的模式可循,学生需要独立完成硬、软件设计和调试。在调试过程中,学生自己动手分析解决实验中出现的问题,虽然有一定的难度和深度,但对学生很有吸引力,能使学生从应付实验变为主动实验,不仅提高了基本操作技能,也发挥了学生的主观能动性和创造性。课程设计的部分内容属于探索型实验,学生可以自主选择感兴趣的课题及相关开发工具,写出设计书,交给指导教师审核后实施。在这一过程中,学生需要查阅大量的资料,培养了学生的自学能力、研究设计能力、独立分析问题及解决问题的能力和创新能力。

2.3确立“系列化硬件实践训练”方案

硬件实践训练由“课程实验-课程设计-综合训练-毕业设计”四个系列组成。课程实验――所有硬件课程都开设。课程设计――在“嵌入式系统”、“组成原理”等重点课程中开设,在这些课程的课内实验中进行部件或模块实验,在课程设计中进行综合性、创新性设计。综合训练――通过“硬件综合实践”展开。该课程安排在大四开设,是一门综合性设计实践课程,也是对前面所学课程的一个全面应用和总结,在硬件课程群建设中起着“总练兵”的作用。通过让学生亲自设计一台小型计算机控制系统,包括计算机的各个部件和功能,“麻雀虽小,五脏俱全”,旨在让学生真真切切感受到如何设计一个可独立工作的计算机系统,强化和提高学生的综合实践能力,培养学生的创新思维和创造能力。毕业设计――每年精选一定数量的硬件毕业设计题目,提供实验场所、设备及材料,让对硬件感兴趣的同学去实现自己的设计,放飞自己的理想。学生以接近于实际应用环境,完成高质量综合设计为训练手段,以掌握计算机硬件结构与应用系统设计作为主要训练目的,使学生对计算机的整个硬件系统有较全面、较系统的掌握。要求学生能够根据需要设计出一定规模的计算机硬件应用系统实例,从模板设计、制作、总线的走向、计算机部件选取、工作原理的分析、部件在模板上的部局、部件的焊接、运算能力的调试、结果正误的判断分析等流程的设计到具体的制作,直至最后写出毕业论文,使学生建立系统的概念与工程的概念。

3结束语

上述改革取得了令人满意的效果。大学生对计算机硬件实验课程学习的兴趣增强了,实验室开放期间,有更多的学生走进了硬件实验室。在毕业设计时,有更多的学生选择了与计算机硬件系统设计和开发相关的课题。学生做完硬件综合实习和硬件毕业设计课题后,普遍充满自豪感和成就感,感到硬件设计及底层软件开发不再可怕。通过这样的训练,提高了其综合设计能力和创新能力,同时也锻炼了他们的团队合作精神,步入单位就能直接胜任计算机应用系统设计、开发的工作,实现高校、学生、用人单位等各方面的多赢。同时我们也应该看到,随着新技术的不断发展,计算机硬件系列课程及其实验体系的建设和实验内容的改革是一项长期不懈的工作,需要不断完善。

参考文献

[1] 罗家奇,李云,葛桂萍等. 计算机硬件系统实验教学改革的研究[J]. 实验室研究与探索,2007,26(8):98-99.

[2] 武俊鹏,孟昭林. 计算机硬件实验课程体系的改革探索[J]. 实验技术与管理,2005,22,(10):107-109.

第8篇:硬件系统设计论文范文

单片机系统设计是一门实践性、应用性很强的课程。传统的单片机系统设计实验教学,具有:①实验应用机会少;②缺乏具体的实验教学内容和完善的考试、考核方法;③验证性多,创新性少;④实验教学内容与实践应用脱节的弊端。这样的教学模式和方法,很难让学生完全掌握单片机系统设计的基本原理和开发方法,更不用说培养学生的创新能力。因此,为了培养和训练学生具备独立设计简单的单片机应用系统、编写系统控制程序的能力和技能,激发学生的创造力,我校在学生完成了《单片机系统设计》的理论课和汇编程序设计、七段数码显示、键盘扫描、AD转换、串行通讯等实验教学后,特开设了为期2周的综合实践教学环节。此教学环节让学生完成一个单片机系统的设计、开发、调试的完整过程,整个综合实践教学环节完成后,学生对单片机系统的学习和应用兴趣更浓了,而且具备了自行设计、开发简单的单片机系统的能力。

2任务与要求

利用伟福Lab6000系列单片机仿真实验系统构成简单实用的单片机系统,要求如下:

(1)充分应用MCS-51系列微处理器和伟福Lab6000系列单片机仿真实验系统所提供的硬件资源,自由选题实现一个简单实用的单片机系统。

(2)要求具备必需的人机接口。

(3)可以选用汇编或C51语言进行控制程序开发。

设计的系统性能如下:

(1)系统运行稳定,具有一定的抗干扰和故障自测能力。

(2)系统设计安全可靠,具有出错报警和应急关闭能力。

(3)系统精度达到一般民用品的基本要求。

(4)人机接口界面友好、直观、操作简单。

另外,我们提供了一些选题供学生拓展思路,主要有:

(1)出租车计价器。

(2)温度控制系统。

(3)可编程交通灯系统。

(4)PWM电机调速系统。

(5)数字温度计。

(6)数字频率计。

3设计范例

3.1PWM电机调速系统

PWM电机调速系统系统包含电机驱动电路和测速电路,两者构成闭环系统。电机驱动采用脉宽PWM调压电路,测速电路的核心部件是霍尔元件。霍尔元件是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。在外磁场的作用下,当磁感应强度超过霍尔元件导通阈值BOP时,霍尔元件输出管导通,输出低电平。若外加磁场的B值降低到BRP时,输出管截止,输出高电平。在直流电机的转盘上粘贴着一枚小磁铁,霍尔元件安装在转盘附近,每当磁铁靠近霍尔元件时霍尔元件导通,输出低电平,远离时霍尔元件截至,输出高电平。这样,直流电机转动一圈,霍尔元件就会输出一个脉冲,通过这个原理能够测出电机的转速。

PWM是单片机系统中常用的模拟量输出方法,通过外接的转换电路,可以将脉冲的占空比转化成电压。直流电机的转速和驱动电压呈近似线形关系,改变脉冲的占空比,就可以改变直流电机的转速,闭环工作时,测速电路测得的转速和给定的转速相减获得差值e,根据差值e运用PID增量控制算法获得控制量,即占空比,通过MCS-51的口线输出给定占空比的脉冲,再通过转换电路转化成电压来驱动直流电机。系统控制算法采用增量型PID控制算法,如果k时刻电机当前转速是y(k),给定转速是r(k),PID控制器输入信号为e(k),输出信号为u(k)。

3.2数字温度计

数字温度计的核心电路——温度传感器调理电路如图3所示,温度传感器采用负温度系数的热敏电阻(NTC),NTC的阻值随着温度的上升而非线性下降,具体温度-阻值特性为式中,RT 、 RT0是温度分别为T、T0 时的电阻值;B为负温度系数热敏电阻的材料常数。固定电阻和NTC组成的电阻桥输出电压随NTC阻值的变化而变化,这种变化经过差动放大器的放大后送给AD转换器转换成数字量,具体转换遵循以下公式一般情况下,会事先根据NTC的温度-阻值特性计算出一张温度-阻值对应表。根据AD转换的数字值逆运算获得当前NTC的阻值,再根据NTC的温度特性表运用分段查表和表项间线性运算就可以获得当前温度值,把当前温度在输出设备(如七段数码管、LCD)上显示出来就构成了完整的数字温度计。本范例也可在其他温度测量的系统中应用。

3.3出租车计价器

出租车计价器是一个较实用的设计范例。出租车计价器包含里程测量电路、实时时钟电路和人机接口,出租车计价器里程测量的核心部件是霍尔元件,具体电路和图1的测速电路一样。在轮胎的转轴上粘贴了6个小磁铁,轮胎转动一圈,霍尔元件就会输出6个脉冲,对脉冲进行计数就可以获得轮胎转动的圈数,圈数乘以轮胎的周长就可以获得车辆行驶的里程数。

一般情况下,出租车白天和晚上的里程单价并不一样,因此需要一个实时时钟来获得当前时间。DS1307是一个I2C总线的实时时钟(RTC),在外部电池的供电下,它能提供高精度的年月日时分秒BCD码时间。另外,它还包含56字节的非易失性SRAM(NV SRAM),可以用来保存系统的设置信息。显示设备可以采用七段数码管或LCD,用来显示当前时间、行驶里程数、里程单价、和行驶里程价格等信息。还需要少量的按键或矩阵式键盘用于输入里程单价、开始计价、清零、时间设置等操作。

4实施过程

4.1根据任务与要求进行总体规划与设计

这个过程包括:

⑴ 课题选择。

⑵ 硬件模块的选择和设计。

⑶ 软件整体流程的设计。

⑷ 查找各种所需资料。

综合实践课题题目是不是新颖,是不是能够激发学生的创造性和好奇心,直接影响学生实验的积极性,有的学生觉得做实验非常无聊,就是因为他们的好奇心和热情没有被激发起来。而集知识性、趣味性、创造性于一体,能应用所学知识解决具体问题的综合实践课题,是本综合实践的最大亮点,也是本教学环节区别于其他教学环节的标志。我们要求学生思考在实际生活中能应用单片机系统技术能解决的具体问题,并且考虑伟福Lab6000系列单片机仿真实验系统所能提供的硬件资源,选择一个有自己特色、能在两周内独立完成的题目,题目要求新颖,鼓励创造性的思维,并且能解决实际生活中的具体问题。

受限于实验条件,硬件设计无法完全按照单片机系统设计的一般方法和标准步骤来实施。在教学过程中,我们要求学生可以根据伟福Lab6000系列单片机仿真实验系统所提供的硬件资源自主地完成硬件部分的理论设计,也可以不完全局限于此实验平台进行理论设计。理论设计完全遵循单片机系统设计的一般流程,学生自己查阅资料,设计硬件电路图。指导老师对硬件部分的理论设计进行评审后,再根据具体的实验平台指导学生完成课题。

软件设计可以采用汇编语言或Keil C51高级语言开发环境来实现,这两种软件开发环境是当前MCS-51系列单片机系统开发的主流环境。根据学生选题的特点,指导学生选择较为容易实现的开发环境。

4.2根据总体规划实施软硬件的开发与设计

这个过程包括:

⑴ 硬件连接。

⑵ 软件编程。

⑶ 软硬件联调。

在这一过程中主要培养学生的硬件设计能力、编程能力和积累软硬件调试经验,熟练掌握单片机系统中人机接口的设计、控制算法设计、硬件驱动程序设计,体会理论与实践之间的差别,对单片机系统的设计与实现由理性认识转化为感性认识,激发学生的求知欲望,锻炼学生克服困难解决问题的能力。

4.3交流总结

在2周的综合实践中抽出一天时间让能力较强的学生陈述他的设计思想和设计过程、设计中的难题和解决方法以及自己的心得体会。让进展不顺的学生提出他在设计中没能解决的难题,全班同学共同讨论,集思广益,找到解决问题的方法。这样可以使学生互相学习,取长补短,拓宽知识面,活跃思维,能在以后的工作和学习中更好地完成任务。

4.4完成实践报告及验收评分

最后两天是综合实践报告的完成阶段,在进行了两周的综合实践以后有必要好好地总结一下,把自己在综合实践中所学到的知识以文字的形式表述出来,这样更有助于水平和能力的提高。实践报告完全按照毕业论文要求书写,包含中英文摘要、设计任务与要求、系统结构及工作原理、主要单元电路的设计过程、控制软件的编写及调试、测试数据及调试中故障分析、收获和体会、参考文献等部分。要求学生重点讲述清楚故障分析和收获体会。综合实践成绩由平时表现、实践报告、设计成果、创新点4部分组成,成绩构成比例是2:3:4:1。

5效果

经过几年的教学实践,单片机系统综合实践教学环节取得的效果主要体现在以下几个方面:

(1)让学生掌握了单片机系统设计的一般原理及其基本的实现过程,实现了从理论向实际的迁移,强化了学生所学的知识。

(2)让学生掌握了单片机系统硬件、软件设计的基本方法,具备了软硬件相结合的系统设计的基本能力和调试经验。

第9篇:硬件系统设计论文范文

关键词:智能监控;ZigBee;传感器网络

中图分类号:TP274 文献标识码:A 文章编号:1007-9416(2017)03-0058-01

1 ZigBee无线传感器网络

1.1 ZigBee简介

ZigBee技术是目前发展最快的一种短距离无线通信技术,该技术的协议栈复杂度较低,功耗很低,硬件简单,传输速率适中,设备价格极其低廉,支持休眠状态。通信距离可达百米以上,断网自组能力较强[1]。表1是ZigBee同其他无线通信技术对比。

1.2 系y总体设计目标

监测系统从车厢监测区域内实时收集温度、气压、湿度、一氧化碳等环境参数,实现对列车车厢内与舒适性密切相关的环境状态变化的实时观察,确保列车安全舒适运行[2]。因此,本论文设计了一种基于ZigBee技术的无线数据传输网络系统,实现了对列车环境的实时无线监控。

2 硬件设计

2.1 硬件架构

整个监测系统主要由ZigBee无线通信网络模块和基于ARM的数据通信控制器模块组成。ZigBee无线通信网络模块是网络系统信息采集和传输的核心模块,由协调节点、路由节点和终端传感器节点组成。

2.2 ZigBee终端模块设计

无线通信网络模块是系统数据通信的核心,由协调节点、路由节点和终端传感器节点组成,系统三类工作节点协调工作[3]。

(1)在本系统的采集终端中选择了ZigBee芯片CC2430,C2430芯片内部集成了一个2.4G赫兹的DSSH射频收发器,并且内置了一个加强型的8051单片机[4]。

(2)为了可靠的采集列车中的温湿度信息,本系统选择了高集成度的SHT11传感器芯片。SHT11芯片在测量时可以保证温度测量精度为± 0.5oC,湿度在0%~100%RH[5]。

(3)系统选用了MPXA6115A气压传感器来采集列车车厢内的绝对气压,可以测量的范围是15kPa到115kPa[6]。

(4)为了更好地实现列车车厢的信息展示,用了一个2.8英寸的液晶触摸屏作为列车车厢的空调控制单元,并选取了ADS7843作为控制器。

(5)为了控制车厢内的环境温度,本系统设计了调速电机控制模块,终端CC2430处理器接收到控制命令后,通过内部调速程序在P0_0端口输出信号,经过光电耦合器后,控制调速电机的输入电流,最终实现对调速电机的控制。

3 控制系统软件设计

3.1 主程序流程

软件系统采取了模块化的设计,通过ARM处理器控制ZigBee网络中的协调器节点启动网络并初始化系统,扫描网络中的终端节点并等待其加入网络,在网络建立后维护网络的正常运行。

3.2 终端节点程序流程

在网络节点设备的软件设计中需要完成的功能有以下几个部分:网络搜索和加入、发起绑定请求、数据的发送和接收、空调开关、气压调节器和LCD显示器的控制等。

4 结语

本文在ZigBee通信技术的基础上,选用多种环境信息传感器来采集列车中的环境参数,并在网状拓扑网络中进行数据的传输,实现了对列车环境的智能监控。通过合理的软硬件系统设计,本系统可以实现系统的可靠运行,可以长时间稳定的工作,在实际的应用中非常广泛的前景。

参考文献

[1]李佳.基于ZigBee和GPRS无线传感器网络网关的设计与实现[D].南京邮电大学,2013.

[2]董方武.基于ZigBee的汽车空调控制系统[J].电子技术应用,2009(11):118-121.

[3]杨春华.基于ZigBee技术的无线网络协调器的研究[D].西南石油大学,2011.

[4]杨世超.基于CC2430的ZigBee节点设计及MAC层协议改进[D].上海交通大学,2012.