前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能教学建议主题范文,仅供参考,欢迎阅读并收藏。
政策驱动也是重要动力,科技巨头抢先布局引发示范效应。智能化时代,各国从国家战略层面加紧人工智能布局,美国的大脑研究计划(BRAIN)、欧盟的人脑工程项目(HBP)、日本大脑研究计划(Brain/MINDS),而我国也在“十三五”规划中把脑科学和类脑研究列入国家重大科技项目。企业布局方面,谷歌、Facebook、微软、IBM等均投入巨资,其示范效应是产业进步的先兆;国内百度、阿里、讯飞、360、华为、滴滴等也加紧布局。15年行业投资金额增长76%,投资机构数量增长71%,计算机视觉和自然语言处理占比居前。
产业链格局已现,上游技术成型、下游需求倒逼,计算机视觉产业应用最成熟。产业链初步格局已现,从基础层和底层技术,再到应用技术,最后再到行业应用,除了近年来底层核心技术的突破,下游行业需求倒逼也是人工智能应用技术发展的重要动力,诸如人机互动多元化倒逼自然语义处理、人口老龄化倒逼智能服务机器人、大数据精准营销倒逼推荐引擎及协同过滤,等等。其中计算机视觉应用技术的发展可能是最先发力的,国内不乏世界一流水平公司。
2B应用首先爆发,“人工智能+金融、安防”应用前景广阔。“人工智能+”将代替之前的“互联网+”,在各行业深化应用,安防、金融、大数据安全、无人驾驶等等。生物识别和大数据分析在安防和金融领域的应用则是目前技术最为成熟、产业化进程较快,如智能视频分析、反恐与情报分析、地铁等大流量区域的监控比对;金融领域的远程开户、刷脸支付、金融大数据采集、处理、人工智能自动交易、资产管理等。相关推荐标的:东方网力、佳都科技、川大智胜,建议关注大智慧、远方光电。
逐渐向2C端应用扩展,看好“人工智能+无人驾驶、教育”。人工智能在无人驾驶领域的应用体现在三方面:(1)环境感知环节的图像识别;(2)基于高精度地图和环境大数据的路径规划、复杂环境决策;(3)车车交互、车与环境交互下的车联网,智能交通管理。教育领域应用方面,人机交互重构更互动性的教学;大数据和深度学习的结合使得个性化教学成为现实,这也是在线教育最重要的突破点;此外包括VR在内的多载体应用和多屏互动也是发展趋势。相关推荐标的:四维图新、千方科技、东软集团、科大讯飞、长高集团、新开普。
人工智能技术及其应用的发展历史虽然只有短短的50余年,但是它作为信息技术的前沿领域,对社会经济和发展的影响却越来越大。在基础教育课程改革的大潮中,许多国家意识到基础教育领域开展人工智能教育的必要性,努力把人工智能列入技术类教育的教学内容中。作为师范类院校,教授人工智能课是有必要的。?
(1)为部分优秀的学生将来做更深入的研究打坚实的基础。在面向知识经济的今天,研究获取、表示和使用知识的人工智能学科越来越受到人们的重视。目前人工智能研究被列为中国高技术领域的重点之一。以专家系统为代表的智能化系统在信息技术中也占有重要地位。因此在高等教育中开展人工智能教育和智能化系统的研发,不仅是计算机科学的应用,也是促进各学科服务于国民经济发展的必然趋势。为使人工智能的理论、方法和技术的研究与应用普及和深入,教育重心必须要下移,即从研究生教育向本科教育普及。开展本科层次人工智能普及教育的有效途径之一是在本科高年级开设相关选修课。开展人工智能教育,不仅能够更好地发挥高等院校的育人和科学研究功能,而且能为学生拓宽专业路径,扩大自主学习空间和发展个性创造条件,同时也为营造一个使学生不仅有宽厚、扎实的理论基础,且具综合分析和解决问题能力的环境。?
(2)为将来从教的学生积聚大量的知识。英国早在1999年,人工智能课程已经作为选修课出现在中学的信息与通讯技术(ICT)课程中。许多中小学还通过机器人竞赛活动来激发中小学生学习人工智能的兴趣,使学生不仅提高了用信息技术解决问题的能力,而且培养了多种思维方式,获得了更多的创新空间。美国现行的中学信息技术课程设置中,将人工智能的内容作为“媒体与技术”层面对12年级学生的要求。澳大利亚的部分中学开设的信息处理与技术课程,人工智能、信息系统、算法和程序设计、社会和伦理道德、计算机系统分别作为5个主题共同构成了该课程的教学内容。在该课程的大纲中规定,人工智能部分的教学内容在高中第3学期为12年级的学生开设,教学时间为10周。?
在我国,多年以来中学奥林匹克信息学竞赛中一直包含有人工智能相关的题目,涉及启发式搜索、博弈、智能程序设计等问题。2003年4月,我国教育部正式颁布《普通高中技术课程标准(实验)》,首次在信息技术科目中设立了“人工智能初步”选修模块,标志着我国高中人工智能课程的正式起步。?
我国的新课程标准颁布后,教育部评审并通过了分别由教育科学出版社、广东高教出版社、地图出版社、上海科技教育出版社和浙江教育出版社出版的5套高中《人工智能初步》教材,并开发了相应的教辅材料,包括教师用书和配套光盘等。为了配合中学人工智能课程的实施,国内也推出了一些适合中学生学习与体验的人工智能软件和网络资源。另一方面,一些高校的本科生、研究生也逐步关注中学人工智能教育的开展并将其作为毕业论文的研究选题。一些师范院校适应形势要求,已为师范生开设了与此相关的选修课程。?
2 人工智能的教育及教学条件现状?
通过对本人多年的教学过程进行总结,我校的《人工智能》课程教育现状可总结为如下几点:?
(1)理论知识充裕。但与实践相脱节,特别是在智能科学技术的教育教学方面。尽管知识面相当广泛,而人工智能理论的普及教育以及智能技术的开发与应用仍然十分滞后。?
(2)同其它普通高等院校一样,在本校,人工智能技术的研究与应用尚未普及,甚至比不上其它院校。这不利于培养学生的科研兴趣及创造精神。?
(3)缺乏配套实验教材,实验教学内容缺乏,无法培养学生的研究能力和创新能力。只有开设实验项目,才能使人工智能的相关知识具有研究性和综合性。?
(4)对中小学智能教育的深度及教学方式、教学特点缺乏研究。做为师范类院校,我认为在对学生进行基础知识教育的基础上,要紧抓中小学智能教育的特点对师范类学生进行相关的教育与培训。?
相对于教育现状,我校的《人工智能》课程教学条件现状要稍好一些,其状态如下:?
(1)教材使用国家级规划教材,此教材非常系统地介绍了人工智能的基本原理、方法和应用技术,适合本科及研究生使用。在我们的授课过程中,也会适当为学生提供相关的国内其他先进教材,如中南大学蔡自兴教授的《人工智能及其应用》等。?
(2)为了促进学生自主学习,我们准备了多种类型的扩充性学习资料,加强学生主动学习的意识,包括:课程相关杂志和书籍目录,以及部分重要的参考文献,与人工智能相关的网络资源如优秀BBS、新闻组、网址等。 它们包括了大量的文献资料、本领域研究的前沿动态等。 使用表明,学生非常乐于查阅这些资源。 使学生能通过使用这些资源进行一些人工智能程序设计,探讨一些问题,在课堂讨论中展示他们的收获。?
(3)校园网的普及与不断优化使本课程有优良的实践性教学环境,能充分满足教学需要。我们拥有较充足的多媒体教室和网络教室,为实现本课程教学提供了物质保障。在网络资源建设方面,全校办公室、教室、学生宿舍和教师宿舍都以宽带网相连,这些硬件设备对本课程教学发挥了重要作用,使本课程教学质量得以明显提高。?
3 人工智能教学方法及手段的改革?
针对我们现在所采取的教学方法,我认为存在许多不足,如教学方式比较单一,教学内容偏重理论讲解等,为此,提出以下教学方法的改革:?
(1)通过多种途径激发学生的学习兴趣。课程的学习效果,直接受到学生兴趣和参与意识的影响。一般来讲,《人工智能》作为一门前沿课程,开始学生学习兴趣很大,当开始接触到抽象理论知识及部分算法时,学生往往感到不易接受。 我们通过各种途径和方法, 激发和培养学生的学习兴趣,包括鼓励学生参与某部分知识的扩充性资料查找,预留一定时间请学生负责对此内容进行讲解,布置学生对某个基本成型的实验进行纠错及验证,降低问题解决的难度。学生因此产生兴趣从而做更深度研究。?
(2)进行启发式教学。 我们可以尝试在教学过程中不断提出问题请学生思考,启发学生求解这些问题,鼓励学生提出自己的猜想和解决方案,然后摆出教材中的解决方案,并与同学所提出的观点进行分析和比较,这足以加强学生学习的主动意识和参与意识,提高学生学习的积极性。?
(3)课堂辩论与交互式教学。 组织课堂辩论,讨论的议题可定位为譬如人工智能是否能超过人类智能等有争议的问题。学生通过对这些问题展开激烈争论,激发了学习潜能,明确了学习目标。当然师生间的交流方式还有很多,如邮件互发、QQ留言等,也可在课程网站中的互动平台进行交流。?
(4)分层次因材施教。 在授课过程中,通过对每个具体学生的学习进度、课堂作业情况进行及时评估,对学生提出进一步的学习建议和指导, 实现个性化的教学。 对优秀学生探讨,可以在教学设计和实验设计中要求其选作部分探索性、创新性的功课和实验,以发挥学生个性优势。对于有意于将来从事中小学教育的学生可以在机器人及人工智能技术发展现状等知识层面对其做问题讲解。而那些看似缺乏兴趣的学生,我们可以用多媒体手段如播放人工智能相关电影及科学小片引起其兴趣,实行逐步引导的教学过程。?
另外,我们可以尝试双语教学。 采用中文教材和讲授的同时,注重在课程中的关键词同时用英文表示,并适当指定英文参考短文和英文参考书。使学生能够接触国外文献资料,加深对学习内容的理解,获得更宽广的知识。我们也可以在教学内容安排上,注重理论联系实际,将一些人工智能网络上的虚拟实验给学生进行课外上网练习,从而使学生了解算法的具体运行过程, 通过参与达到知识的理解,掌握基本方法和技术。?
根据现有的条件,我们在教学中可以采用多媒体教学和网络课程教学相结合的方法,充分利用多媒体的丰富表现形式,利用网络课程的交互性、情景化等特点,构筑以学生为主体的《人工智能》课程现代教学模式。 对于抽象知识,可通过动画和视频演示,通过声音和图像展示人工智能的历史、人物和前景,做到学生直接而深刻地看到知识的内涵外延。网络课程能较好地实现交互并使学习过程情景化,通过网络课程的课堂练习和章节练习,教师可以评价学生的学习情况,并给学生提出学习建议,从而提高学生的研究力和创新力。我们也可以给学生播放中学《人工智能》课程课堂教学录像,以使学生看到初高中学生的知识范围及深度;同时给学生播放现有的《人工智能》科学成果,让学生看到理论背后的实践;也可以播放科幻片,激发学生想象的翅膀从而有兴趣把人工智能作为将来深造的方向。《人工智能》是一门较新的课程,改进教学方法和手段不仅要靠教师,也应增加硬件设备的投入。如果人工智能能采用智能辅助教学系统或机器人辅助教学过程逼真、形象,一目了然,这样可大大提高学生的学习效率,尤其是提高学生的观察判断能力、发现问题和解决问题的能力。?
4 人工智能实践教学设计的探讨?
我们可以在教学过程中,适量开设一些实验和设计,提高学生的动手能力,并加深他们对理论知识的理解,降低理论的抽象度,提升理论的实用性。在近两年的教学过程中,我们会适量加入一些人工智能语言的教学过程。例如,在讲解了“野人与传教士过河”等问题后,我们可以让学生使用Visual Prolog或者C ?++?对算法进行实现;在讲解 TSP 问题的遗传算法解决案例后,指出编码方案、初始种群大小、进化代数、交叉率变异率等因素对求解结果的影响,并要求学生通过实验的方式来分析、理解这些问题,并提出“寻找更有利的解决方案”等问题。把学生的兴趣激发后,为解决这些问题,学生会在课外主动查阅相关文献、相互讨论以实现他们所设计的方案,这样既培养了学生善于钻研和勇于创新的精神又提高了学生的实践与创新能力。?
参考文献:?
[1] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1).?
[2] 何元烈,汪玲.“Visual C ?++?”在“人工智能”教学中的应用与探讨[J].广东工业大学学报:社会科学版,2008(8).?
【关键词】人工智能 计算机辅助教学 教学与控制
一、人工智能的定义
人工智能也称机器智能,它是计算机科学、控制论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统角度来看,人工智能是研究如何制造出智能机器或智能系统,实现模拟人类智能活动的能力,以延伸人们智能的科学。人工智能是一门交叉科学,逐渐形成一门涉及心理学、认知科学、思维可循、信息科学、系统科学和生物学科等多学科的综合性技术学科。
二、计算辅助教学体系和现状
计算救助教学是利用多媒体计算机的功能与特点,利用计算机辅助教师完成各个教学环节,并通过与计算机之间的交互活动,激发学生的学习积极性和主动性,帮助学生更有效地学习。实用计算机辅助教学,有利于认识主体作用的发挥,它所提供的图像、声音、动画等信息由利于学生知识的获得与保持,达到提高教学教学的目的。
目前为止,所实用的绝大多数传统以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。早期绝大多数计算机辅助教学将全部教学信息以编程方式预置于课件中,这样的以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。因此现有的以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。早期绝大多数计算机辅助教学系统面临许多挑战,它主要存在以下几个方面的问题。
1.计算机辅助教学系统的闭塞性
不具有开放性是目前以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。其弊端在于固定内容的局限性使课件的适用面狭窄,而且设定的运行路线使授课缺乏自主性;授课的针对性不强;无法利用新出现的资源在较高起点上进行二次开发。
2.智能性的欠缺
现有的计算机智能辅助课件系统不能对不同何曾度的学生进行有针对性的教育,学生的学习是被动的,不能由系统自动提供助学信息而使学生有选择地学习。。
3.人机交互能力较弱
现有计算机智能辅助大多以光盘作为信息的载体,将材料中的内容以多媒体的形式展现出来,教学信息是按预置的教学流程机械式地提供给学者,学习者使用计算机智能辅助课件学习是完全被动的。
4.教师与学生的互动在教学中的缺乏
现有计算机智能辅助课件在学生自学以及进行操作使用时,如何学习都是学生自己的事。教师不能全完了解学习者的情况,学生在蹦到问题时不能向教师求教,师生之间互相封闭,谈不上师生互动,因此课件所起的效果大打折扣。
5.课程特点没有突出
各门课程在教学上有不同的要求,但现有课件对于这些不同要求完全不予理会。例如很多课程都要涉及到大量的曲线或曲面,对有些课程来说,将这些曲线或曲面给出了一个简单的展示就足够了,而有些课程这样的展示不能达到教学目的的要求。
6.教学计划的欠缺
在课件的开发过程中实际上离不开教学策略的设计,但课件的制作者往往并未意识到这一点。例如:现有的绝大多数课件都是单一的展播式,这样的可见制作“精美”,但它不可逆、不能互动。实际上运用课件教学只是手段而不是目的,应该在教学设计理论的指导下讲求课件的实效性,着眼点在于学生学习新知识、掌握新技术、培养各种能力有帮助,而不是表面上的制作“精美”。
综上所述,现有的计算机智能辅助存在许多问题,随着新技术的不断出现,这些问题将使计算机智能辅助越来越不能适应新的要求。因此以智能计算机智能辅助为代表的心的计算机辅助教学系统将成为教育技术上需要不断探求、努力实现的发展方向。 转贴于
三、智能计算机辅助教学系统
智能计算机辅助教学系统(Intelligent ComputerAided Instruction),简称ICAI。教学过程是一个复杂的教与学的思维过程,它需要教师以专门知识和经验为依据,经过吸取、讲解、推理、示例、综合等多个步骤才能较好地完成。计算机辅助教学实际上是一个由计算机系统辅助教师进行教学以及学生进行学习并得以实现的系统。在智能ICAI中,教学思想、方法、学习内容可用知识形式表示,如何解决知识的形式化表示以及知识的访问与调用问题,是人工智能的核心技术之一,也是将ICAI引入教育技术领域中所要面临的一个问题。知识库是实现知识推理与专家系统的基础,可以用知识库作为智能ICAI的构建环境。在知识库中,教学内容等的有关知识可以用事实与规则表示,并存储于知识库内,教学与学习过程既是对知识库中知识进行推理,并最终得出所需结果的过程。ICAI系统的一般包括以下几个模块:
1.知识库。知识库是关于教学内容的模块,解决“教什么”问题。知识库中的教学内容有待于教学与控制模块和学生模块进行选取、调用。
2.学生模块。学生模块是用于记录学生的学习情况,对学生学习的各个环节信息进行搜集,以便系统对学生的学习情况进行自动评估,提出具有针对性的学习建议和个别化的辅导。学生模块描述学生对教学内容理解、掌握的程度,系统可以根据学生模块的具体情况调整教学策略并提供适当的反馈。
3.用户接口模块。这是系统与用户交流的界面。整个系统依靠用户接口模块把教学内容呈现给用户、接受用户输入的信息、并向用户提供反馈。
4.教学与控制模块。这是教学过程与整个系统的控制模块,涉及到“如何教”的问题。它具有领域知识、教学策略和人机对话等方面的知识。根据学生模型提供的学生学习情况,通过智能系统的搜索与推理,得出智能化的教学方法与教学策略,能够较科学地评估学生的学习水平,可以通过分析学生以往的学习兴趣和学习习惯,预测学生的知识需求和常犯错误,动态地将不同的学习内容、学习方法与不同的学生匹配,智能地分析学生错误的原因进而针对地提出合理的教学建议、学习建议以及改进方法。
新世纪的教学将是以智能化的ICAI为主线,是多学科、多方位发展的新技术的体现。随着人工智能技术的发展、计算机辅助教学的成效将更加明显。
参考文献
关键词:HPS教育;小学科学;人工智能
随着我国教育的迅猛发展,作为科学教育重中之重的小学科学教育逐渐开始被大众所关注,所以探索小学科学教育的新思路已成为教育改革的关键之一。多年来,我国不断借鉴发达国家的教育改革理念与经验,并进行本土化研究,促进我国教育发展。
一、研究背景
HPS教育作为西方20世纪80年代盛行的理论,引入中国已有20余年。作为极其受欢迎的教育理念,凭借着自身优势在中国教育课程改革中占据了一席之地,也为中国科学教育提供了新思路。
(一)HPS的概念界定
HPS的提出源自科学内部对科学反思和科学外部人员对科学本质认识的思考。最初,HPS指的是科学史(HistoryofScience)和科学哲学(PhilosophyofScience)两大学科领域,但在20世纪90年代科学建构论流行后,科学社会学与科学知识社会学被引入科学教育,HPS逐渐演化成科学史(HistoryofScience)、科学哲学(PhilosophyofScience)和科学社会学(SociologyofScience)三者的统称[1]:科学史即研究科学(包括自然科学和社会科学)和科学知识的历史;科学哲学则是对科学本性的理性分析,以及对科学概念、科学话语的哲学思辨,比如科学这把“双刃剑”对人类社会的影响;科学社会学则讨论科学处在社会大系统中,社会种种因素在科学发展过程中的地位和作用,这包括了政治、经济、文化、技术、信仰等因素[2]。在国外,德国科学家和史学家马赫最早提倡HPS教育,突出强调哲学与历史应用至科学教学中的作用。我国HPS相关研究开始晚且研究规模较小,首都师范大学的丁邦平教授认为HPS融入科学课程与教学是培养学生理解科学本质的一个重要途径[3]。
(二)HPS教育理念融入小学科学课程的必要性
运用科学史、科学哲学等进行教学是目前国际上小学科学教育改革的一种新趋势。2017年,教育部颁布的《义务教育小学科学课程标准》标志着我国科学教育步入了新阶段,其不仅要求达成科学知识、科学探究的相应目标,也要养成相应的科学态度,思考科学、技术、社会与环境的融洽相处。该标准提出了“初步了解在科学技术的研究与应用中,需要考虑伦理和道德的价值取向,提倡热爱自然、珍爱生命,提高保护环境意识和社会责任感”。HPS教育与小学科学课程的结合是教学内容由知识到能力再到素养的过程,是小学科学教育的新维度,改变了小学科学课程的教学环境。将科学课程中融入HPS教育的内容,可以帮助学生理解科学本质,研究科学知识是如何产生的,科学对社会的多方面影响以及科学和科学方法的优、缺点等。当《小学课程标准》将科学态度和价值观视为科学教育的有机组成部分时,小学科学课程就有望成为HPS教育的天然载体,同时为小学科学课程渗透HPS教育提出了挑战。目前,我国小学科学课程虽已有部分设计融入了HPS教育理念,但该融入过程仍停留在表面,融入程度低,融入方式单一。所以,研究HPS教育理念融入小学科学课程十分有必要。
(三)HPS教育理念融入小学科学课程的可行性
纵观国内外已有的研究,将HPS教育融入小学科学课程可分为基于传统课堂模式的正式教育课程和基于科技馆、研学机构等的非正式教育课程。由皖新传媒、中国科学技术大学先进技术研究院新媒体研究院、中国科学技术大学出版社三方通力合作、联合打造的《人工智能读本》系列丛书自出版以来已发行八万套,在安徽省多个市区的小学得以应用,是青少年人工智能教育上的一次全新探索。该套丛书分三年级至六年级共四套,涵盖了16个人工智能前沿研究领域知识点,每一节课都设有场景引入、读一读、看一看、试一试4个模块。小学《人工智能读本》作为阐述新兴科技的读本,以亲切的场景对话和可爱幽默的插画等形式吸引了众多小学生的兴趣,不仅可作为学校科学课读本,也可以应用于课外场景。本文则以小学《人工智能读本》为例,对HPS教育进行初步摸索与实践,以期对小学科学教育带来教益。
二、HPS教育理念融入小学科学的典型案例
《人工智能读本》作为HPS教育理念融入小学科学实践的典型案例,侧重引导学生多维度、科学辩证地认识人工智能,内容包括机器学习、决策职能和类脑智能,以及人工智能的不同发展阶段,带领学生思考人工智能带来的伦理问题以及其他挑战,培养学生正确的世界观、人生观和价值观。本研究将以《人工智能读本》六年级第四单元“人工智能伦理与其他挑战”为例,分析HPS教育理念融入小学科学的实践。
(一)科学史:提升课程趣味性
小学科学教育作为培养具有科学素养公众的重要步骤,提升过程的趣味性则十分重要。过去传统的小学科学教育注重知识的传递而忽略了学习过程,填鸭式教学导致学生失去对科学的兴趣与探索欲,不利于公民科学素养的整体提高。而科学史作为研究科学(包括自然科学和社会科学)和科学知识的历史,已经逐渐渗透到科学教育中来。科学史常常介绍科学家的事迹,某一知识诞生所面临的困难和曲折过程,而将科学史融入课程可以带学生重回知识诞生的时刻,切身体会科学。读本作为在小学科学教育中不可或缺的工具,利用科学史内容,以叙事方式可以将科学哲学与科学社会学的思想融入教学过程中,在读本中融入历史,可以提升课程趣味性,帮助学生更加容易探求科学本质,感受科学家不懈努力、敢于质疑的精神,提升科学素养。例如《人工智能读本》六年级第四单元“人工智能伦理与其他挑战”引入部分即以时间顺序展开,介绍人工智能的发展与面临的困境。在“看一看”中机器人索菲亚是否可以结婚的故事不仅为本章节提供了丰富的内容,提升了课程的趣味性,而且还融入了科学与哲学,引发读者对于人工智能的思考。
(二)科学社会学:提升课程社会性
科学社会学是研究一切科学与社会之间的联系与影响,包含科学对社会的影响和社会对科学的影响。科学是一种社会活动,同时也受到政治、经济、文化等多方面影响,比如蒸汽机的诞生表明科学促进社会的发展。在科学教育的课堂中融入科学社会学不仅可以帮助学生理解科学问题,还可以通过介绍科学与社会之间的复杂关系,培养学生灵活、批判看待科学问题的思维能力。如六年级第四单元“人工智能伦理与其他挑战”中,在介绍个人与技术的基础上引入了政府和环境这两个要素,使学生在更宏观的背景下,获得这样一种认知:环境与技术之间有一把“双刃剑”,个人与技术、政府与技术之间是相互促进的主客体关系。《人工智能读本》并不全是说教性质的文字,在“试一试”中的辩论赛环节让同学通过亲身实践,更加了解人工智能对于社会的多方面影响。通过对于科技是一把“双刃剑”这一事实的了解,同学们可以更好地将学习知识与社会的背景联系在一起,深刻体会科学中的人文素养,增强社会责任感。
(三)科学哲学:提升课程思辨性
以往研究发现,国内学科教材中关于科学史和科学社会学内容较多而且呈显性,而对于科学哲学的融入内容不够,且不鲜明。[3]科学哲学融入科学教育无疑可以提升学生的思辨性,帮助学生建立起对于科学正确而全面的认识。例如,《人工智能读本》六年级第四单元“人工智能伦理与其他挑战”中,引入人工智能伦理,通过介绍人工智能面对的挑战、人工智能的具体应对策略,让小学生了解人工智能技术发展的同时也要重视可能引发的法律和伦理道德问题,明白人与人工智能之间的关系以及处理这些关系的准则。通过“读一读”先让学生明白伦理概念,再用一幅画让学生思考在算法的发展下,人类与机器人的关系如何定义,向学生传递树立人类与人工智能和谐共生的技术伦理观。通过这种方式,可以帮助学生逐步建立完整的科学观,全面且思辨地看待科学,提升学生思辨性,进而提升科学素养。
三、HPS教育理念融入小学科学课程的实践建议
《人工智能读本》作为一套理论与实践相结合,具有知识性与趣味性的儿童科普读物,着重引导小学生培养科学创新意识,提升人工智能素养,产生求知探索欲望。但《人工智能读本》作为HPS融入小学科学课程的初始,仍存在教育资源不充分、内容结合较浅等不足,为了将HPS教育更好融入小学科学课程,可从以下三方面加以改进。
(一)开发HPS教育资源
HPS教育需要教育资源的支撑。HPS教育资源来源广泛,无论是学生的现实生活,还是历史资料,都可以提供契机和灵感。《人工智能读本》中收集了大量与人工智能相关的故事和现实案例,都可以作为教育资源,从各个角度达到科普的目的。在新媒体时代,进行HPS教育资源开发时,应当注意借助最新的信息与通信技术增强资源的互动性,如互动多媒体技术、虚拟现实技术、增强现实技术、科学可视化技术等。在传统的科学课堂教学中,主要是通过图片文字讲解,实验演示及互动来开展。这种形式对于现实中能接触到的实验内容,如常见的动植物、可操作的物理化学实验等,比较容易开展。而对于地球与宇宙科学领域的知识,或者一些已经不存在的动植物,则只能通过图片视频进行展示,不容易进行实验展示。通过虚拟现实技术、增强现实技术等,则可以虚拟出世界万物,如不易操作的物理化学实验、已消失的动植物等都可以通过虚拟现实的手段得以呈现。这些技术或能使教学内容变得生动形象,或通过营造沉浸感以使学生有更佳的情境体验,或让学生与教学资源进行交互从而自定义内容,服务于学生科学素养提升的终极目的。
(二)对小学科学教师进行培训
HPS教育的关键是从社会、历史、哲学等角度对自然科学内容进行重新编排,并不是将大量的内容或学科知识简单相加,这对教师能力也提出了更高要求。目前,人工智能教学领域常常出现“学生不会学、老师不会教”的状况,《人工智能读本》作为内容翔实有趣的读本可以弥补一部分缺失。但与此同时,也需要提升教师的教学能力与知识储备。HPS教育理念不仅仅针对历史中的科学人物,所有的学生主体也是历史中的主体,他们也身处于社会中,并且对于生活中的各种科学现象有着自己的思考。所以教师身为引导者,需要注意到学生的思考,深入挖掘,鼓励他们对所思内容进行反思并付诸实践。科学史和科学哲学应当成为科学教师教育项目中的一部分,这能让科学教师更好地理解他们的社会责任。为此,对职业科学教师进行HPS培训便是必要的。
(三)多场景开展小学科学教育
科学素养不是空洞的,它来自学生的认识体验,并从中获得生动、具体的理解和收获。《人工智能读本》作为方便携带的读本,不仅可以在小学科学课堂中作为教材使用,也可以应用在其他场景,如研学旅行、科技馆等场所。课堂学习只是小学科学教育中的一个环节,家庭、科技馆等也可以进行科学教育。例如,科技馆与博物馆可以以科学家和历史科学仪器为主题举办展览,展览中融入HPS教育理念,学生在参观和学习过程中学习有关科学内容。一些历史上大型的科学实验,学校教室或实验室无法满足条件,但在大型的场馆中可以实现。例如,研学旅行作为目前科学教育中最受欢迎的方式之一,已被纳入学校教育教学计划,列为中小学生的“必修课”,正逐渐成为学生获得科学知识的另一个途径。研学旅行作为一种集知识性、教育性、趣味性和娱乐性为一体的旅游形式,通常伴随着知识教育的过程,包括科学知识的普及,所以也是开展小学科学教育的重要场所。在该场景下,运用《人工智能读本》等新兴手段进行科学教育往往取得事半功倍的效果。
结语
目前,HPS教育理念已经积极尝试运用到小学科学教育中,包括学校内的正式学习以及学校外如科技馆、博物馆、研学旅游中的非正式学习之中。其中,科技史以时间维度为线索创造丰富资源的同时也可以提升课程趣味性;科学社会学以科学与社会之间的相互关系帮助学生理解科学本质,提升科学素养;科学哲学则以哲学的视域审视科学的诞生提升学生思辨能力。未来,HPS教育结合小学科学则需要更深入,在资源开发、教师培训以及应用场景等方面加以改进,为提升国民科学素养做出努力。
参考文献:
[1]袁维新.国外科学史融入科学课程的研究综述[J].比较教育研究,2005,26(10):62-67.
[2]张晶.HPS(科学史,科学哲学与科学社会学):一种新的科学教育范式[J].自然辩证法研究,2008,24(9):83-87.
[3]丁邦平.HPS教育与科学课程改革[J].比较教育研究,2000(06):6-12.
关键词:智能教学系统;神经网络;学生模型;设计
中图分类号:G434 文献标识码:A 文章编号:2095-2163(2011)04-0052-03
0 引言
人类社会为提高教学效率,更好地培养人才,一直在不断探索与尝试运用新技术、新方法来改进教与学的方法和手段。同时也希望能实现因材施教,即根据学生不同的学习基础、学习能力等特征进行差别化教育。但限于教师资源不足和教学效率的要求,尚未做到对每一个学生进行因材施教,智能教学系统的提出为实现这一目的提供了可能。智能教学系统(Intelligent Tutoring System,ITS)是计算机辅助教育与人工智能的结合,是人工智能(artificial intelligence,AI)在教学上的应用,其由人工智能、认识科学、教育理论等多门学科交叉产生。ITS通过研究人类学习的思维特征和过程,寻求学习认识的模式,同时以个性化教学为目标,并根据学生的心理特征、认知水平、已有的知识基础、认识结构和学习习惯、学习风格、动机等个性化特征进行学生个人教学方法和教学内容的确定,选择适当的教学策略,从而为学生提供与其学习特征相符的学习内容和学习进度。学生通过个性化、自适应的学习,既获得了知识,又培养了能力。智能教学系统能更好地发挥学生的积极性,有助于学生智力的开发和能力的培养,是实现教学手段现代化的新方法、新途径。
人工神经网络(Artifieial Neural Network,ANN)是人工智能的一个重要领域,也称为神经网络(Neural Networks,NN),是由大量处理单元(神经元)广泛互连而成的网络;这是一种模仿生物大脑的结构,并且模拟人脑信息处理过程的信息处理系统。神经网络具有较强的学习能力,即通过训练可抽象归纳出训练样本的主要特征,因而有较强的容错能力和记忆联想能力,能够并行处理信息,因而有较快的信息处理速度。将神经网络应用于智能教学系统能有效提高系统的智能水平、适应能力及反应速度。
目前智能教学系统已有不少研究,其中包括部分学生模型的研究,但这些学生模型普遍存在着智能性不足等问题。本论文对利用神经网络构建智能教学系统学生模型进行了研究,以人工智能、认识心理学、教育学为基础,分析了学生学习过程中的影响因素,进行了模型设计。
1 基于神经网络的学生模型设计
智能教学系统(ITS)是交叉科学,由于人工智能、计算机科学等相关学科仍处于快速发展时期,故ITS目前仍处于发展阶段,其组成部分有不同的说法,如由三部分组成,四部分组成,五部分组成,但却都包含三个核心的部分,即学生模块、教师模块和专家模块(知识库)。本文在三模块架构基础上对学生模型进行设计。
学生模型是智能教学系统的核心,是实施因材施教的基础和关键。因此构造合适的学生模型是构建智能教学系统的重点。该模型应该能够及时、正确反映出学生学习行为中的本质特征和状态,即反映出学生对某一学习内容的掌握、理解程度和学习行为中包含的学习风格、习惯及学习能力等。学生模型目前较普遍的分类有:覆盖模型、微分模型、摄动模型和认知模型等。
(1)覆盖模型是将学生所拥有的知识看成是专家知识的一部分,教学目标是在现有和总体之间建立相应联系。在覆盖模型中,通过将学生与专家的行为差别来建立学生模型,并假设由于某种原因使学生与专家的技能差别造成学习行为的不同。覆盖模型对学习者的描述过于简单,认为学生知识仅是其中的一部分,没有考虑学生的归纳和演绎训练,即举一反三,触类旁通的能力训练。
(2)微分模型是将学习者的知识分为预备授予和预备授予以外知识两个部分,较覆盖模型有了进一步的扩充,但其本质还是覆盖模型。
(3)摄动模型考虑到学生所学到的知识有可能与专家库中知识的不同,但仍然是从知识角度来建模。
上述模型都是通过专家知识与学生已有知识的对比来找出学生需要学习的内容,偏重于知识,不能较全面地反映学生的学习特征和状态。
1.1学习过程因素对于学习的影响
根据比格斯的3P学习模型,学习过程可以决定学生学习质量。不同的学生用浅层式学习与深层式学习在取得相同的成绩评定情况下,其学习质量也是不一样的。浅层式学习记住的是一些与原文一致的内容,没有去思考这些内容之间的关系。深层式学习是从整体上去把握学习内容,学习者想方设法弄清学习内容之间的内在联系。学习过程因素(主要是学习方式)不仅会影响学习结果,而且其本身也是反映学习质量的重要指标,因此在智能教学系统学生模型中,需要考虑学生对于知识记忆、分类、归纳总结和演绎推理能力的培养和提高,提醒学生使用深层式学习。从而对学生回答的问题进行比较、分析,找出其原因,特别是对于产生错误的原因进行分析诊断,并反馈给相应的教师模型,从而对学习内容、教学方法进行调整,同时给出学习方式的建议,而不是简单地让学生重新学习某一部分内容。如测试中发现学生在基础知识部分的得分很高,而综合运用测试得分较低,学生可能应用的是浅层式学习,教学系统应给出学习方式的提醒和建议,使智能教学系统的因材施教效果能更好地体现出来。
有的学生习惯于通过做大量练习题来进行新内容学习,以期将该内容所有可能出现的题型都见识一下,通过归纳总结的方法进行学习;而有的学生则习惯通过演绎推理,用万变不离其宗的原理,从所学内容的本质特征出发,深入理解内容的各部分之间关系,不用做大量习题也能较好掌握所学内容。
因此,在设计学生模型时,应该考虑的因素有学生学习习惯、年龄、拥有的正确知识及对这些知识掌握的程度(即已有的学习基础),学生的学习史与学生个性特征等。在学生模型中,学生的学习行为包括学生总时间、学习某一内容或解决某一问题所花的时间。对学习内容的认知程度用布鲁姆的6个认知级别,即识记、理解、应用、分析、综合、评价来标记。在学生具体学习行为中,用解决系统所提出问题的正确率来确定学生对目前所学知识的掌握程度,并以学习正确率与学习该内容的时间比值来衡量学生的学习能力。
1.2学生模型设计
建立学生模型采用BP神经网络(Back-propagationNeutral Network),即前馈反向传播网络。BP网络由输入层、隐层和输出层组成,各层神经元仅与其相邻神经层之间有连接,同一层神经元之间无任何连接,且其输入与输出是一个高度非线性映射关系。输入信号从输入层进入网络,经过隐层处理,最后到达输出层;每一层由多个节点组成,同层节点间无任何关系。
神经网络具有较强的自学习能力,利用学习实例对网络进行训练,通过自适应算法修改网络结构的连接权值,使网络逼近所期望的输入与输出关系,并可以根据输入数据的变化自动调整参数,优化系统,使之能更好反映学生的学习特征。输入是学生基本信息(姓名、学号、年级、班级、年龄等)、课程名称及章节、学习基础、对某一问题的得分、学习时间记录等,输入层节点数为5。输出层根据所要表达的学生学习状态和特征来设计,目前设定的输出有对某一学习内容的掌握程度、学习方式、学习习惯等。隐层数则根据需要设定。
学生模型的神经网络拓扑结构如图1所示。
关键词:智能系统控制;探究式教学;人工智能;研究课题
随着我国素质教育的全面推行和智能科学技术的快速发展,传统的教学模式受到强烈的冲击,不少学校已尝试推行网络教学模式、交互式教学模式等教学改革,并且收到一些明显的效果。这些新教学模式得到了老师、学生和家长的关注,越来越多的教师开始应用这些教学改革成果。根据“因材施教”原则和智能技术的原理,我们设计了智能系统控制课程的探究式教学方法[1]。
1智能系统控制课程探究式教学设计
智能系统控制课程与智能信息处理课程分别是我院的必修课程和选修课程,其探究式教学平台主要包括网络课程、讲义下载、学生论文/程序演示等模块。智能系统控制课程的探究式教学是指教师利用课堂的知识传授和网络的开放资源,安排学生分课题组,边进行科研合作边学习的教学模式。因此,探究式教学具有学生积极性高、师生/学生之间交互强、学生体验印象深和师生互相学习等特点。本课程的探究式教学模式设计的步骤有探究式教学模式设计、网络课程网站设计和实践展示平台的设计。
1.1探究式教学模式设计
传统教学模式往往没有提供可供学生自主选择的学习方法,但并不是所有的学生都适合此种教学方式[2]。因此,有必要研究可供学生自主选择学习进度的探究式教学模式,以实现因材施教。
本课程的探究式教学模式具体来说,是指根据每个学生的专业、基础、潜力和特点划分几个合适的课题组,帮助每个学生选定自己的小课题;接着,在老师指导和组长带领下分组调研、讨论、设计、编程和交流,同时可以利用教学网络中的各种教学资源;最后,将成果总结为PPT和程序,在课堂上交流,再在网络上演示。例如,先根据学生学习智能系统控制课程的不同目的和学生的专业基础,将众多学生分为自动化组和通信组。然后,由各大组的组长和组员根据专业基础和兴趣探讨课题题目和研究子方向,保证每个学生都有具体研究小课题。进而,学生调研、探讨、研究、合作、交流,进行PPT陈述。再如,有的学生想学智能控制的理论知识,有些学生则想重点学习智能控制的应用技术,因此将智能系统控制网络课程分为理论教学和应用教学。
1.2网络课程网站设计
智能系统控制网络课程的主要功能是在教学网页上向学生展示智能系统控制的各种课程知识,要求以逻辑性强、易于理解的方式向学生传授知识,这是学生自主学习的重要环节。知识点页面的设计要求排版清楚美观,色调适合统一,图文并茂,以多媒体的形式展示知识。为了让学生及时了解自己的学习进度并能实现知识点页面的随意转换,设计了动态跟随目录,以便于学生随时选择课程的学习内容。对智能系统控制课程设计了进度参考值,以便于学生知道其学习快慢,从整体上把握学时规划。
1.3实践展示平台的设计
在智能系统控制课程的实践展示平台中,习题的存储和管理都在数据库中进行,章节自测题的功能模块如图1所示[3-4]。学生每学完一章就可通过练习来巩固该章的知识,了解其对本章节知识的掌握情况。
在课后习题的设计中,特别增加了显示失分题并列出正确答案的功能以及留言功能。学生利用前一功能了解自己错误理解的那些知识点并改正错误,学生通过后一功能提交对答案的任何质疑或更好的建议方案,并由专业老师予以点评,如图2所示。这些功能能提高学生的积极性,增加老师与学生之间的互动性,为学生学习本课程提供了很好的智能助手[5-6]。
智能系统控制课程实践展示平台的另一重要功能是利用Java技术等网络工具展示智能技术的演示程序,促进学生的学习交互性和实践效果。对于人工智能和智能控制课程中每种能演示程序的知识点,都可以用Java等技术编程实现交互演示实例,也可以推荐学生设计相关的演示程序,开设学生作品的演示区。
2结语
智能系统控制课程的探究式教学方法可以弥补传统智能控制教学过程中的一些不足,让任何学生都可以在任何时间、任何地点选择一种自己想学的教学模式,以自己喜欢的学习方式和学习进度进行学习。学生根据自身的条件选择一种教学模式,然后进行自主学习。每章最后会设置章节自测题,查看学生对本章节的掌握情况,更主要的目的是巩固学生本章所学知识。随着智能网络技术的发展,智能技术的教学将会更加人性化和个性化[7-8]。
参考文献:
[1] 蔡自兴,徐光v. 人工智能及其应用[M]. 3版. 北京:清华大学出版社,2004.
[2] 龚涛,蔡自兴. 多维教育智能体的构建与应用[J]. 教育信息化,2002(76):55-56.
[3] 马娅婕,田翔川. 多媒体网络教学系统在线考试题库的设计[J]. 计算机应用研究,2005(1):182-183.
[4] 黄向前,刘渊,庄春兴. 关于题库资源建设系统的规范化的分析[J]. 实验技术与管理,2004,21(3):76-79.
[5] 管恩京,李静,郑海峰. 促进高校网络教学与教学资源应用的对策研究[J]. 现代教育技术,2009(12):126-129.
[6] 沈理达. 工程基础软件及应用课程的网络教学系统设计[J]. 中国科教创新导刊,2009(36):123,125.
[7] 李人厚. 智能控制理论和方法[M]. 西安:西安交通大学出版社,2002.
[8] 王岳斌,刘利强,周细义. 交互式网络教学模型设计与实现[J]. 湖南理工学院报:自然科学版,2005(3):19-22.
Research on Exploring Teaching of Intelligent System Control Course
GONG Tao1, ZHOU Jia-jia2
(1. College of Information Science and Technology, Donghua University, Shanghai 201620, China; 2. Engineering Research Center of Digitized Textile & Fashion Technology for Ministry of Education, Donghua University, Shanghai 201620, China)
关键词:智能化时代;管理会计;人才培养
一、引言
近年来,随着以计算机技术和现代网络技术为代表的信息革命向人类经济和社会生活的不断渗透,尤其是云计算、大数据、智能机器人等新兴技术的快速发展,正在带领着人类快速走进智能化时代。然而,当前我国管理会计市场资源供需存在着大量矛盾,出现“高端人才荒”现象。为此,适应新背景下会计事业的发展,必须做好管理会计人才储备。
二、智能化时代会计人才面临的新形势
(一)传统会计人员面临淘汰威胁。随着经济环境的变化以及科学技术的不断进步,现代企业管理模式已发生了变革。企业财务也在由传统手工记账到会计电算化再到智能化转变,这对传统的会计人员而言是一个巨大的威胁与挑战,基本的会计工作已经由人工智能所取代,特别是重复度高、复杂性低的工作。在2017年5月,德勤率先推出了“财务机器人”,主要功能有:替代财务流程中的手工操作;管理和监控各自动化财务流程;录入信息、合并数据、汇总统计;根据既定业务逻辑进行判断;识别财务流程中的优化点。此后,普华、安永、毕马威也相继推出了自己的“财务机器人”,且普华的财务机器人已经在央企———中化国际(控股)股份有限公司落地。这些人工智能在财务领域的应用,可以帮助企业更好、更快、更安全地完成许多财务工作,但也使得无法适应这种颠覆传统模式的会计人员遭到淘汰。因此,对高端管理会计人才的培养已迫在眉睫。(二)会计人员能力胜任要求发生变化。传统会计人员的工作重心是核算与监督,但是随着智能化时代的来临,人工智能在财务工作中的应用领域不断扩大,取代了如出纳、会计入账、生成财务报表、报税等会计工作,并且能够每日24小时不间断工作,这些变化均使得会计人员的工作重心发生了转移,因此对会计人员的胜任能力也有了新的要求。但人工智能主要取代的是重复度高且复杂性低的工作,因而在应对人工智能冲击时,会计人员应当努力提高重复度低、复杂性高的活动在自身工作中所占的比重。智能化时代,企业可以更加便捷、精准和详细地收集到客户的信息,并从中挖掘出以往被忽略但有价值的信息。企业和社会所需要的不仅仅是精于财务数据核算的会计人员,更是能够帮助企业进行经营决策分析、预测企业未来发展、分析和测度市场变动及趋势等的综合性管理会计人才。(三)政府对管理会计人才培养的大力支持。根据相关数据,中国未来管理会计人才缺口约为300万人,但据国家发展和改革委员会的统计,我国管理会计人才的储备不足1万人。为此,我国政府正在积极采取措施,指导和推进管理会计人才的培养。在2014年7月财政部的《财政部关于全面推进管理会计体系建设的指导意见》中,明确提到要建立与我国社会主义市场经济体制相适应的管理会计体系,并且力争3~5年内在全国培养出一批优质的管理会计人才;争取在5~10年内基本建成具有中国特色、符合中国市场的管理会计理论体系。2016年10月,财政部了《会计改革与发展“十三五”规划纲要》,明确将管理会计人才列为了“行业急需紧缺专门人才”,并且表示要积极支持管理会计人才的培养,期望到2020年能够成功培养3万名精于理财、善于管理和决策的管理会计人才。由此可见,目前我国管理会计人才的培养有着良好的契机和政府的大力扶持。
三、智能化时代管理会计人员能力胜任要求
由中国总会计师协会(CACFO)和英国皇家特许管理会计师公会(CIMA)联合编撰的《CGMA管理会计能力框架》以道德、诚信和专业精神为基础,将管理会计师职业技能划分为以下四大板块:技术技能、商业技能、人际技能和领导技能。美国管理会计师协会(IMA)制定的《管理会计胜任能力框架》指出,管理会计人员应当具有规划与报告、决策、科技、营运和领导力五个方面的能力。英美等国家是世界上较早进行管理会计人才培养的国家,并已形成了一套系统和完善的人才考核及培养体系。CIMA是全球最大的国际性管理会计师组织,CIMA的会员需通过全部15门考试,并取得相应的工作经验才能成为CIMA特许管理会计师。但是,CIMA根据不同的考试阶段设置了不同的等级:基础级、运营级、管理级和战略级,并且每通过一个等级便可取得相应等级的证书,如通过基础级课程考核便会被授予“CIMA企业会计证书”,而通过战略级考核便可被授予“CGMA全球特许管理会计师”的头衔;CMA考试在考核科目数量上虽较少,仅两门考试科目:财务规划、绩效与控制和财务决策,但考试内容覆盖的范围却非常广泛,涉及了会计、战略、市场、管理、金融和信息系统等多方面的知识技能。两者在考核内容上有较多重合部分,如财务会计、财务管理、业绩管理等,在能力考察方面也并无太大差异,CIMA和CMA均侧重预算预测、内部控制、决策分析、风险管理、企业运营、企业战略等内容。通过对二者的比较分析,发现管理会计师基本上应当具以下五种能力:规划与报告、决策、领导、运营和数据分析能力。同时,在科技发展迅猛和人工智能应用范围不断扩大的时代,管理会计人员还应当具备足够的IT知识和技能。
四、智能化时代管理会计人才培养建议
【关 键 词】法理学/法律推理/人工智能
【正 文】
一、人工智能法律系统的历史
机先驱思想家莱布尼兹曾这样不无浪漫地谈到推理与计算的关系:“我们要造成这样一个结果,使所有推理的错误都只成为计算的错误,这样,当争论发生的时候,两个家同两个计算家一样,用不着辩论,只要把笔拿在手里,并且在算盘面前坐下,两个人面对面地说:让我们来计算一下吧!”(注:转引自肖尔兹著:《简明逻辑史》,张家龙译,商务印书馆1977年版,第54页。)
如果连抽象的哲学推理都能转变为计算来解决,法律推理的定量化也许还要相对简单一些。尽管理论上的可能性与技术可行性之间依然存在着巨大的鸿沟,但是,人工智能技术的发展速度确实令人惊叹。从诞生至今的短短45年内,人工智能从一般问题的研究向特殊领域不断深入。1956年纽厄尔和西蒙教授的“逻辑理论家”程序,证明了罗素《数学原理》第二章52个定理中的38个定理。塞缪尔的课题组利用对策论和启发式探索技术开发的具有自能力的跳棋程序,在1959年击败了其设计者,1962年击败了州跳棋冠军,1997年超级计算机“深蓝”使世界头号国际象棋大师卡斯帕罗夫俯首称臣。
20世纪60年代,人工智能研究的主要课题是博弈、难题求解和智能机器人;70年代开始研究语言理解和专家系统。1971年费根鲍姆教授等人研制出“化学家系统”之后,“计算机数学家”、“计算机医生”等系统相继诞生。在其他领域专家系统研究取得突出成就的鼓舞下,一些律师提出了研制“法律诊断”系统和律师系统的可能性。(注:Simon Chalton,Legal Diagnostics,Computers and Law,No.25,August 1980.pp.13-15.Bryan Niblett,Expert Systems for Lawyers,Computers and Law,No.29,August 1981.p.2.)
1970年Buchanan & Headrick发表了《关于人工智能和法律推理若干问题的考察》,一文,拉开了对法律推理进行人工智能研究的序幕。文章认为,理解、模拟法律论证或法律推理,需要在许多知识领域进行艰难的研究。首先要了解如何描述案件、规则和论证等几种知识类型,即如何描述法律知识,其中处理开放结构的法律概念是主要难题。其次,要了解如何运用各种知识进行推理,包括分别运用规则、判例和假设的推理,以及混合运用规则和判例的推理。再次,要了解审判实践中法律推理运用的实际过程,如审判程序的运行,规则的适用,事实的辩论等等。最后,如何将它们最终运用于编制能执行法律推理和辩论任务的计算机程序,区别和不同的案件,预测并规避对手的辩护策略,建立巧妙的假设等等。(注:Buchanan & Headrick,Some SpeculationAbout Artificial Intelligence and Legal Reasoning,23 StanfordLaw Review(1970).pp.40-62.)法律推理的人工智能研究在这一时期主要沿着两条途径前进:一是基于规则模拟归纳推理,70年代初由Walter G.Popp和Bernhard Schlink开发了JUDITH律师推理系统。二是模拟法律分析,寻求在模型与以前贮存的基础数据之间建立实际联系,并仅依这种关联的相似性而得出结论。Jeffrey Meld-man 1977年开发了计算机辅助法律分析系统,它以律师推理为模拟对象,试图识别与案件事实模型相似的其他案件。考虑到律师分析案件既用归纳推理又用演绎推理,程序对两者都给予了必要的关注,并且包括了各种水平的分析推理方法。
专家系统在法律中的第一次实际应用,是D.沃特曼和M.皮特森1981年开发的法律判决辅助系统(LDS)。研究者探索将其当作法律适用的实践工具,对美国民法制度的某个方面进行检测,运用严格责任、相对疏忽和损害赔偿等模型,计算出责任案件的赔偿价值,并论证了如何模拟法律专家意见的方法论问题。(注:'Models of LegalDecisionmaking Report',R-2717-ICJ(1981).)
我国专家系统的研制于20世纪80年代中期起步。(注: 钱学森教授:《论法治系统工程的任务与》(《管理》1981年第4期)、《主义和法治学与技术》(《法制建设》1984年第3期)、《现代科学技术与法和法制建设》(《政法论坛》)1985年第3期)等文章,为我国法律专家系统的研发起了思想解放和奠基作用。)1986年由朱华荣、肖开权主持的《量刑综合平衡与电脑辅助量刑专家系统研究》被确定为国家社科“七五”研究课题,它在建立盗窃罪量刑数学模型方面取得了成果。在法律数据库开发方面,1993年中山大学学生胡钊、周宗毅、汪宏杰等人合作研制了《LOA律师办公自动化系统》。(注:杨建广、骆梅芬编著:《法治系统工程》,中山大学出版社1996年版,第344-349页。)1993年武汉大学法学院赵廷光教授主持开发了《实用刑法专家系统》。(注:赵廷光等著:《实用刑法专家系统用户手册》,北京新概念软件研究所1993年版。)它由咨询检索系统、辅助定性系统和辅助量刑系统组成,具有检索刑法知识和对刑事个案进行推理判断的功能。
专家系统与以往的“通用难题求解”相比具有以下特点:(1)它要解决复杂的实际,而不是规则简单的游戏或数学定理证明问题;(2)它面向更加专门的领域,而不是单纯的原理性探索;(3)它主要根据具体的问题域,选择合理的方法来表达和运用特殊的知识,而不强调与问题的特殊性无关的普适性推理和搜索策略。
法律专家系统在法规和判例的辅助检索方面确实发挥了重要作用,解放了律师一部分脑力劳动。但绝大多数专家系统只能做法律数据的检索工作,缺乏应有的推理功能。20世纪90年代以后,人工智能法律系统进入了以知识工程为主要技术手段的开发时期。知识工程是指以知识为处理对象,以能在机上表达和运用知识的技术为主要手段,研究知识型系统的设计、构造和维护的一门更加高级的人工智能技术。(注:《大百科全书·自动控制与系统工程》,中国大百科全书出版社1991年版,第579页。)知识工程概念的提出,改变了以往人们认为几个推理定律再加上强大的计算机就会产生专家功能的信念。以知识工程为技术手段的法律系统研制,如果能在法律知识的获得、表达和应用等方面获得突破,将会使人工智能法律系统的研制产生一个质的飞跃。
人工智能法律系统的源于两种动力。其一是法律实践自身的要求。随着社会生活和法律关系的复杂化,法律实践需要新的思维工具,否则,法律家(律师、检察官和法官)将无法承受法律日积月累和法律案件不断增多的重负。其二是人工智能发展的需要。人工智能以模拟人的全部思维活动为目标,但又必须以具体思维活动一城一池的攻克为过程。它需要通过对不同思维领域的征服,来证明知识的每个领域都可以精确描述并制造出类似人类智能的机器。此外,人工智能选择法律领域寻求突破,还有下述原因:(1)尽管法律推理十分复杂,但它有相对稳定的对象(案件)、相对明确的前提(法律规则、法律事实)及严格的程序规则,且须得出确定的判决结论。这为人工智能模拟提供了极为有利的条件。(2)法律推理特别是抗辩制审判中的司法推理,以明确的规则、理性的标准、充分的辩论,为观察思维活动的轨迹提供了可以记录和回放的样本。(3)法律知识长期的积累、完备的档案,为模拟法律知识的获得、表达和应用提供了丰富、准确的资料。(4)法律活动所特有的自我意识、自我批评精神,对法律程序和假设进行检验的传统,为模拟法律推理提供了良好的反思条件。
二、人工智能法律系统的价值
人工智能法律系统的研制对法学理论和法律实践的价值和意义,可以概括为以下几点:
一是方法论启示。P.Wahlgren说:“人工智能方法的研究可以支持和深化在创造性方法上的法反思。这个信仰反映了法理学可以被视为旨在于开发法律和法律推理之方法的活动。从法理学的观点看,这种研究的最终目标是揭示方法论的潜在作用,从而有助于开展从法理学观点所提出的解决方法的讨论,而不仅仅是探讨与计算机科学和人工智能有关的非常细致的技术方面。”(注:P.Wahlgren,Automationof Legal Reasoning:A Study on Artificial Intelligence and Law,Computer Law Series 11.Kluwer Law and Taxation Publishers.Deventer Boston 1992.Chapter 7.)在模拟法律推理的过程中,法学家通过与工人智能专家的密切合作,可以从其对法律推理的独特理解中获得有关方法论方面的启示。例如,由于很少有两个案件完全相似,在判例法实践中,总有某些不相似的方面需要法律家运用假设来分析已有判例与现实案件的相关性程度。但法学家们在假设的性质问题上常常莫衷一是。然而HYPO的设计者,在无真实判例或真实判例不能充分解释现实案件的情况下,以假设的反例来反驳对方的观点,用补充、删减和改变事实的机械论方法来生成假设。这种用人工智能方法来处理假设的办法,就使复杂问题变得十分简单:假设实际上是一个新的论证产生于一个经过修正的老的论证的过程。总之,人工智能方法可以帮助法学家跳出法理学方法的思维定势,用其他学科的方法来重新审视法学问题,从而为法律问题的解决提供了新的途径。
二是提供了思想实验手段。西蒙认为,尽管我们还不知道思维在头脑中是怎样由生理作用完成的,“但我们知道这些处理在数字机中是由电子作用完成的。给计算机编程序使之思维,已经证明有可能为思维提供机械论解释”。(注:转引自童天湘:《人工智能与第N代计算机》,载《》1985年第5期。)童天湘先生认为:“通过编制有关思维活动的程序,就会加深对思维活动具体细节的了解,并将这种程序送进计算机运行,检验其正确性。这是一种思想实验,有助于我们研究人脑思维的机理。”(注:转引自童天湘:《人工智能与第N代计算机》,载《哲学研究》1985年第5期。)人工智能系统研究的直接目标是使计算机能够获取、表达和法律知识,软件工程师为模拟法律推理而编制程序,必须先对人的推理过程作出基于人工智能和的独特解释。人工智能以功能模拟开路,在未搞清法律家的推理结构之前,首先从功能上对法律证成、法律检索、法律解释、法律适用等法律推理的要素和活动进行数理,将法、诉讼法学关于法律推理的研究成果模型化,以实现法律推理知识的机器表达或再现,从而为认识法律推理的过程和提供了一种实验手段。法学家则可以将人工智能法律系统的推理过程、方法和结论与人类法律推理活动相对照,为法律推理的法理学研究所借鉴。因此,用人工智能方法模拟法律推理,深化了人们对法律推理性质、要素和过程的认识,使法学家得以借助人工智能的敏锐透镜去考察法律推理的微观机制。正是在这个意义上,Bryan Niblett教授说:“一个成功的专家系统很可能比其他的途径对法理学作出更多的(理论)贡献。”(注:Bryan Niblett,ExpertSystems for Lawyers,Computers and Law,No.29,August 1981.note14,p.3.)
三是辅助司法审判。按照格雷的观点,法律专家系统首先在英美判例法国家出现的直接原因在于,浩如烟海的判例案卷如果没有计算机编纂、分类、查询,这种法律制度简直就无法运转了。(注:Pamela N.Gray Brookfield,Artificial Legal Intelligence,VT:DartmouthPublishing Co.,1997.p.402.)其实不仅是判例法,制定法制度下的律师和法官往往也要为检索有关的法律、法规和司法解释耗费大量的精力和时间,而且由于人脑的知识和记忆能力有限,还存在着检索不全面、记忆不准确的。人工智能法律系统强大的记忆和检索功能,可以弥补人类智能的某些局限性,帮助律师和法官从事相对简单的法律检索工作,从而极大地解放律师和法官的脑力劳动,使其能够集中精力从事更加复杂的法律推理活动。
四是促进司法公正。司法推理虽有统一的法律标准,但法官是具有主观能动性的差异个体,所以在执行统一标准时会产生一些差异的结果。司法解释所具有的建构性、辩证性和创造性的特点,进一步加剧了这种差异。如果换了钢铁之躯的机器,这种由主观原因所造成的差异性就有可能加以避免。这当然不是说让计算机完全取代法官,而是说,由于人工智能法律系统为司法审判提供了相对统一的推理标准和评价标准,从而可以辅助法官取得具有一贯性的判决。无论如何,我们必须承认,钢铁之躯的机器没有物质欲望和感情生活,可以比人更少地受到外界因素的干扰。正像计算机录取增强了高考招生的公正性、电子监视器提高了纠正行车违章的公正性一样,智能法律系统在庭审中的运用有可能减少某些徇私舞弊现象。
五是辅助法律和培训。人工智能法律系统凝聚了法律家的专门知识和法官群体的审判经验,如果通过软件系统或计算机实现专家经验和知识的共享,便可在法律教育和培训中发挥多方面的作用。例如,(1)在法学院教学中发挥模拟法庭的作用,可以帮助法律专业学生巩固自己所学知识,并将法律知识应用于模拟的审判实践,从而较快地提高解决法律实践问题的能力。(2)帮助新律师和新法官全面掌握法律知识,迅速获得判案经验,在审判过程的跟踪检测和判决结论的动态校正中增长知识和才干,较快地接近或达到专家水平。(3)可使不同地区、不同层次的律师和法官及时获得有关法律问题的咨询建议,弥补因知识结构差异和判案经验多寡而可能出现的失误。(4)可以为大众提供及时的法律咨询,提高广大人民群众的法律素质,增强法律意识。
六是辅助立法活动。人工智能系统不仅对辅助司法审判有重要的意义,而且对完善立法也具有实用价值。(注:Edwina L.Rissland,Artificial Intelligence and Law:Stepping Stones to a Modelof Legal Reasoning, Yale Law Journal.(Vol.99:1957-1981).)例如,伦敦大学Imperial学院的逻辑程序组将1981年英国国籍法的形式化,帮助立法者发现了该法在预见性上存在的一些缺陷和法律漏洞。(注:Edwina L.Rissland,Artificial Intelligence and Law:Stepping Stones to a Model of Legal Reasoning,The Yale LawJournal.(Vol.99:1957-1981).)立法辅助系统如能于法律起草和法律草案的审议过程,有可能事先发现一些立法漏洞,避免一个法律内部各种规则之间以及新法律与现有法律制度之间的相互冲突。
三、法在人工智能法律系统中的作用
1.人工智能法律系统的法理学思想来源
关于人工智能法律系统之法理学思想来源的追踪,不是对法理学与人工智能的联系作面面俱到的考察,而旨在揭示法理学对人工智能法律系统的所产生的一些直接。
第一,法律形式主义为人工智能法律系统的产生奠定了基础。18-19世纪的法律形式主义强调法律推理的形式方面,认为将法律化成简单的几何公式是完全可能的。这种以J·奥斯汀为代表的英国法学的传统,主张“法律推理应该依据客观事实、明确的规则以及逻辑去解决一切为法律所要求的具体行为。假如法律能如此运作,那么无论谁作裁决,法律推理都会导向同样的裁决。”(注:(美)史蒂文·J·伯顿著:《法律和法律推理导论》,张志铭、解兴权译,政法大学出版社1998年9月版,第3页。)换言之,机器只要遵守法律推理的逻辑,也可以得出和法官一样的判决结果。在分析法学家看来,“所谓‘法治’就是要求结论必须是大前提与小前提逻辑必然结果。”(注:朱景文主编:《对西律传统的挑战》,中国检察出版社1996年2月版,第292页。)如果法官违反三段论推理的逻辑,就会破坏法治。这种机械论的法律推理观,反映了分析法学要求法官不以个人价值观干扰法律推理活动的主张。但是,它同时具有忽视法官主观能动性和法律推理灵活性的僵化的缺陷。所以,自由法学家比埃利希将法律形式主义的逻辑推理说称为“自动售货机”理论。然而,从人工智能就是为思维提供机械论解释的意义上说,法律形式主义对法律推理所作的机械论解释,恰恰为人工智能法律系统的开发提供了可能的前提。从人工智能法律系统研制的实际过程来看,在其起步阶段,人工智能专家正是根据法律形式主义所提供的理论前提,首先选择三段论演绎推理进行模拟,由Walter G.Popp和Bernhard Schlink在20世纪70年代初开发了JUDITH律师推理系统。在这个系统中,作为推理大小前提的法律和事实之间的逻辑关系,被机以“如果A和B,那么C”的方式加以描述,使机器法律推理第一次从理论变为现实。
第二,法律现实主义推动智能模拟深入到主体的思维结构领域。法律形式主义忽视了推理主体的性。法官是生活在现实社会中的人,其所从事的法律活动不可能不受到其社会体验和思维结构的影响。法官在实际的审判实践中,并不是机械地遵循规则,特别是在遇到复杂案件时,往往需要作出某种价值选择。而一旦面对价值,法律形式主义的逻辑决定论便立刻陷入困境,显出其僵化性的致命弱点。法律现实主义对其僵化性进行了深刻的批判。霍姆斯法官明确提出“法律的生命并不在于逻辑而在于经验”(注:(美)博登海默著:《法理学——法及其方法》,邓正来、姬敬武译,华夏出版社1987年12月版,第478页。)的格言。这里所谓逻辑,就是指法律形式主义的三段论演绎逻辑;所谓经验,则包括一定的道德和理论、公共政策及直觉知识,甚至法官的偏见。法律现实主义对法官主观能动性和法律推理灵活性的强调,促使人工智能研究从模拟法律推理的外在逻辑形式进一步转向探求法官的内在思维结构。人们开始考虑,如果思维结构对法官的推理活动具有定向作用,那么,人工智能法律系统若要达到法官水平,就应该通过建立思维结构模型来设计机器的运行结构。TAXMAN的设计就借鉴了这一思想,法律知识被计算机结构语言以语义的方式组成不同的规则系统,解释程序、协调程序、说明程序分别对网络结构中的输入和输出信息进行动态结构调整,从而适应了知识整合的需要。大规模知识系统的KBS(Knowledge Based System)开发也注意了思维结构的整合作用,许多具有内在联系的小规模KBS子系统,在分别模拟法律推理要素功能(证成、法律查询、法律解释、法律适用、法律评价、理由阐述)的基础上,又通过联想程序被有机联系起来,构成了具有法律推理整体功能的概念模型。(注:P.Wahlgren,Automation of Legal Reasoning:A Study onArtificial Intelligence and Law,Computer Law Series 11.KluwerLaw and Taxation Publishers.Deventer Boston 1992.Chapter 7.)
第三,“开放结构”的概念打开了疑难案件法律推理模拟的思路。法律形式主义忽视了疑难案件的存在。疑难案件的特征表现为法律规则和案件之间不存在单一的逻辑对应关系。有时候从一个法律规则可以推出几种不同的结论,它们往往没有明显的对错之分;有时一个案件面对着几个相似的法律规则。在这些情况下,形式主义推理说都一筹莫展。但是,法律现实主义在批判法律形式主义时又走向另一个极端,它否认具有普遍性的一般法律规则的存在,试图用“行动中的法律”完全代替法学“本本中的法律”。这种矫枉过正的做法虽然是使法律推理摆脱机械论束缚所走出的必要一步,然而,法律如果真像现实主义法学所说的那样仅仅存在于具体判决之中,法律推理如果可以不遵循任何标准或因人而异,那么,受到挑战的就不仅是法律形式主义,而且还会殃及法治要求实现规则统治之根本原则,并动摇人工智能法律系统存在的基础。哈特在法律形式主义和法律现实主义的争论中采取了一种折中立场,他既承认逻辑的局限性又强调其重要性;既拒斥法官完全按自己的预感来随意判案的见解,又承认直觉的存在。这种折中立场在哈特“开放结构”的法律概念中得到了充分体现。法律概念既有“意义核心”又有“开放结构”,逻辑推理可以帮助法官发现的阳面,而根据政策、价值和后果对规则进行解释则有助于发现问题的阴面。开放结构的法律概念,使基于规则的法律推理模拟在受到概念封闭性的限制而对疑难案件无能为力时,找到了新的立足点。在此基础上,运用开放结构概念的疑难案件法律推理模型,通过逻辑程序工具和联想技术而建立起来。Gardner博士就疑难案件提出两种解决策略:一是将简易问题从疑难问题中筛选出来,运用基于规则的技术来解决;二是将疑难问题同“开放结构”的法律概念联系在一起,先用非范例知识如规则、控辩双方的陈述、常识来获得初步答案,再运用范例来澄清案件、检查答案的正确性。
第四,目的法学促进了价值推理的人工智能。目的法学是指一种所谓直接实现目的之“后法治”理想。美国法学家诺内特和塞尔兹尼克把法律分为三种类型。他们认为,以法治为标志的自治型法,过分强调手段或程序的正当性,有把手段当作目的的倾向。这说明法治社会并没有反映人类关于美好社会的最高理想,因为实质正义不是经过人们直接追求而实现的,而是通过追求形式正义而间接获得的。因此他们提出以回应型法取代自治型法的主张。在回应型法中,“目的为评判既定的做法设立了标准,从而也就开辟了变化的途径。同时,如果认真地对待目的,它们就能控制行政自由裁量权,从而减轻制度屈从的危险。反之,缺少目的既是僵硬的根源,又是机会主义的根源。”(注:(美)诺内特、塞尔兹尼克著:《转变中的法律与社会》,张志铭译,政法大学出版社1994年版,第60页。)美国批判法学家昂格尔对形式主义法律推理和目的型法律推理的特点进行了比较,他认为,前者要求使用明确、固定的规则,无视社会现实生活中不同价值观念的冲突,不能适应复杂情况和变化,追求形式正义;后者则要求放松对法律推理标准的严格限制,允许使用无固定内容的抽象标准,迫使人们在不同的价值观念之间做出选择,追求实质正义。与此相应,佩雷尔曼提出了新修辞学(New Rhetoric)的法律。他认为,形式逻辑只是根据演绎法或归纳法对问题加以说明或论证的技术,属于手段的逻辑;新修辞学要填补形式逻辑的不足,是关于目的的辩证逻辑,可以帮助法官论证其决定和选择,因而是进行价值判断的逻辑。他认为,在司法三段论思想支配下,法学的任务是将全部法律系统化并作为阐释法律的大前提,“明确性、一致性和完备性”就成为对法律的三个要求。而新修辞学的基本思想是价值判断的多元论,法官必须在某种价值判断的指示下履行义务,必须考虑哪些价值是“合理的、可接受的、社会上有效的公平的”。这些价值构成了判决的正当理由。(注:沈宗灵著:《西》,北京大学出版社1992年版,第443-446页。)制造人工智能法律系统最终需要解决价值推理的模拟问题,否则,就难以实现为判决提供正当理由的要求。为此,P.Wahlgren提出的与人工智能相关的5种知识表达途径中,明确地包括了以道义为基础的法律推理模型。(注:P.Wahlgren,Automation of Legal Reasoning:A Study on ArtificialIntelligence and Law,Computer Law Series 11.Kluwer Law andTaxation Publishers.Deventer Boston 1992.Chapter 7.)引入道义逻辑,或者说在机器中采用基于某种道义逻辑的推理程序,强调目的价值,也许是制造智能法律系统的关键。不过,即使把道义逻辑硬塞给机,钢铁之躯的机器没有生理需要,也很难产生价值观念和主观体验,没办法解决主观选择的问题。在这个问题上,波斯纳曾以法律家有七情六欲为由对法律家对法律的机械忠诚表示了强烈怀疑,并辩证地将其视为法律的动力之一。只有人才能够平衡相互冲突的利益,能够发现对人类生存和发展至关重要的价值。因此,关于价值推理的人工智能模拟究竟能取得什么成果,恐怕还是个未知数。
2.法对人工智能系统研制的指导作用
Gold and Susskind指出:“不争的事实是,所有的专家系统必须适应一些法理学理论,因为一切法律专家系统都需要提出关于法律和法律推理性质的假设。从更严格的意义上说,一切专家系统都必须体现一种结构理论和法律的个性,一种法律规范理论,一种描述法律的理论,一种法律推理理论”。(注:Gold and Susskind,ExpertSystems in Law:A Jurisprudential and Formal SpecificationApproach,pp.307-309.)人工智能法律系统的,不仅需要以法理学关于法律的一般理论为知识基础,还需要从法理学获得关于法律推理的完整理论,如法律推理实践和理论的,法律推理的标准、主体、过程、等等。人工智能对法律推理的模拟,主要是对法理学关于法律推理的知识进行人工智能方法的描述,建立数学模型并编制机程序,从而在智能机器上再现人类法律推理功能的过程。在这个过程中,人工智能专家的主要任务是研究如何吸收法理学关于法律推理的研究成果,包括法理学关于人工智能法律系统的研究成果。
随着人工智能法律系统研究从低级向高级目标的推进,人们越来越意识到,对法律推理的微观机制认识不足已成为人工智能模拟的严重障碍。P.Wahlgren指出,“许多人工智能技术在法律领域的开发项目之所以失败,就是因为许多潜在的法理学原则没有在系统开发的开始阶段被遵守或给予有效的注意。”“法理学对法律推理和方法论的关注已经有几百年,而人工智能的诞生只是本世纪50年代中期的事情,这个事实是人工智能通过考察法理学知识来丰富自己的一个有效动机。”(注:P.Wahlgren,Automation of Legal Reasoning:A Study onArtificial Intelligence and Law,Computer Law Series 11.KluwerLaw and Taxation Publishers.Deventer Boston 1992.Chapter 7.)因此,研究法律推理自动化的目标,“一方面是用人工智能(通过把计算机的应用与模型相结合)来支撑法律推理的可能性;另一方面是应用法理学理论来解决作为法律推理支撑系统的以及一般的人工智能问题。”(注:P.Wahlgren,Automation of Legal Reasoning:A Studyon Artificial Intelligence and Law,Computer Law Series 11.Kluwer Law and Taxation Publishers.Deventer Boston 1992.Chapter 7.)在前一方面,是人工智能法律系统充当法律推理研究的思想实验手段以及辅助司法审判的问题。后一方面,则是法律推理的法律学研究成果直接为人工智能法律系统的研制所应用的问题。例如,20世纪70年代法理学在真实和假设案例的推理和分析方面所取得的成果,已为几种人工智能法律装置借鉴而成为其设计工作的理论基础。在运用模糊或开放结构概念的法律推理研究方面,以及在法庭辩论和法律解释的形式化等问题上,法理学的研究成果也已为人工智能法律系统的研究所借鉴。
四、人工智能法律系统研究的难点
人工智能法律系统的研究尽管在很短的时间内取得了许多令人振奋的成果,但它的发展也面临着许多困难。这些困难构成了研究工作需要进一步努力奋斗的目标。
第一,关于法律解释的模拟。在法理学的诸多研究成果中,法律解释的研究对人工智能法律系统的研制起着关键作用。法律知识表达的核心问题是法律解释。法律规范在一个法律论点上的效力,是由法律家按忠实原意和适合当时案件的原则通过法律解释予以确认的,其中包含着人类特有的价值和目的考虑,反映了法律家的知识表达具有主观能动性。所以,德沃金将解释过程看作是一种结合了法律知识、信息和思维方法而形成的,能够应变的思维策略。(注:Dworkin,Taking RightsSeriously,Harvard University Press Cambridge,Massachusetts1977.p.75.)的法律专家系统并未以知识表达为目的来解释法律,而是将法律整齐地“码放”在计算机记忆系统中仅供一般检索之用。然而,在法律知识工程系统中,法律知识必须被解释,以满足自动推理对法律知识进行重新建构的需要。麦卡锡说:“在开发智能信息系统的过程中,最关键的任务既不是文件的重建也不是专家意见的重建,而是建立有关法律领域的概念模型。”(注:McCarty,Intelligent legalinformation systems:problems and prospects,op.cit.supra,note25,p.126.)建立法律概念模型必须以法律家对某一法律概念的共识为基础,但不同的法律家对同一法律概念往往有不同的解释策略。凯尔森甚至说:即使在国内法领域也难以形成一个“能够用来叙述一定法律共同体的实在法的基本概念”。(注:(奥)凯尔森著:《法与国家的一般理论》,沈宗灵译,大百科全书出版社1996年版,第1页。)尽管如此,法理学还是为法律概念模型的重建提供了一些方法。例如,德沃金认为,法官在“解释”阶段,要通过推理论证,为自己在“前解释”阶段所确定的大多数法官对模糊法律规范的“一致看法”提供“一些总的理由”。获取这些总的理由的过程分为两个步骤:首先,从现存的明确法律制度中抽象出一般的法律原则,用自我建立的一般法律理论来证明这种法律原则是其中的一部分,证明现存的明确法律制度是正当的。其次,再以法律原则为依据反向推出具体的法律结论,即用一般法律理论来证明某一法律原则存在的合理性,再用该法律原则来解释某一法律概念。TAXMAN等系统装置已吸收了这种方法,法律知识被计算机结构语言以语义的方式组成不同的规则系统,解释程序使计算机根据案件事实来执行某条法律规则,并在新案件事实输入时对法律规则作出新的解释后才加以调用。不过,法律知识表达的进展还依赖于法律解释研究取得更多的突破。
第二,关于启发式程序。的专家系统如果不能与启发式程序接口,不能运用判断性知识进行推理,只通过规则反馈来提供简单解释,就谈不上真正的智能性。启发式程序要解决智能机器如何模拟法律家推理的直觉性、经验性以及推理结果的不确定性等,即人可以有效地处理错误的或不完全的数据,在必要时作出猜测和假设,从而使问题的解决具有灵活性。在这方面,Gardner的混合推理模型,Edwina L.Rissland运用联想程序对规则和判例推理的结果作集合处理的思路,以及Massachusetts大学研制的CABARET(基于判例的推理工具),在将启发式程序于系统开发方面都进行了有益的尝试。但是,法律问题往往没有唯一正确的答案,这是人工智能模拟法律推理的一个难题。选择哪一个答案,往往取决于法律推理的目的标准和推理主体的立场和价值观念。但智能机器没有自己的目的、利益和立场。这似乎从某种程度上划定了机器法律推理所能解决问题的范围。
第三,关于法律语言理解。在设计基于规则的程序时,设计者必须假定整套规则没有意义不明和冲突,程序必须消灭这些问题而使规则呈现出更多的一致性。就是说,尽管人们对法律概念的含义可以争论不休,但输入机器的法律语言却不能互相矛盾。机器语言具有很大的局限性,例如,LDS基于规则来模拟严格责任并实际损害时,表现出的最大弱点就是不能使用不精确的自然语言进行推理。然而,在实际的法律推理过程中,法律家对某个问题的任何一种回答都可根据上下文关系作多种解释,而且辩论双方总是寻求得出不同的结论。因此,智能法律专家系统的成功在很大程度上还依赖于自然语言理解工作的突破。牛津大学的一个程序组正在研究法律自然语言的理解问题,但是遇到了重重困难。原因是连法学家们自己目前也还没有建立起一套大家一致同意的专业术语规范。所以Edwina L.Rissland认为,常识知识、意图和信仰类知识的模拟化,以及自然语言理解的模拟问题,迄今为止可能是人工智能面临的最困难的任务。对于语言模拟来说,像交际短语和短语概括的有限能力可能会在较窄的语境条件下取得成果,完全的功能模拟、一般“解决问题”能力的模拟则距离非常遥远,而像书面上诉意见的理解则是永远的终极幻想。(注:Edwina L.Rissland,ArtificialIntelligence and Law:Stepping Stones to a Model of LegalReasoning, Yale Law Journal.(Vol.99:1957-1981).)
五、人工智能法律系统的开发策略和应用前景
我们能够制造出一台什么样的机器,可以证明它是人工智能法律系统?从检验标准上看,这主要是法律知识在机器中再现的判定问题。根据“图灵试验”原理,我们可将该检验标准概括如下:设两间隔开的屋子,一间坐着一位法律家,另一间“坐着”一台智能机器。一个人(也是法律家)向法律家和机器提出同样的法律问题,如果提问者不能从二者的回答中区分出谁是法律家、谁是机器,就不能怀疑机器具有法律知识表达的能力。
依“图灵试验”制定的智能法律系统检验标准,所看重的是功能。只要机器和法律家解决同样法律问题时所表现出来的功能相同,就不再苛求哪个是钢铁结构、哪个是血肉之躯。人工智能立足的基础,就是相同的功能可以通过不同的结构来实现之功能模拟。
从功能模拟的观点来确定人工智能法律系统的研究与开发策略,可作以下考虑:
第一,扩大人工智能法律系统的研发主体。现有人工法律系统的幼稚,暴露了仅仅依靠计算机和知识工程专家从事系统研发工作的局限性。因此,应该确立以法律家、逻辑学家和计算机专家三结合的研发群体。在系统研发初期,可组成由法学家、逻辑与认知专家、计算机和知识工程专家为主体的课题组,制定系统研发的整体战略和分阶段实施的研发规划。在系统研发中期,应通过等手段充分吸收初级产品用户(律师、检察官、法官)的意见,使研发工作在理论研究与实际应用之间形成反馈,将开发精英与广大用户的智慧结合起来,互相启发、群策群力,推动系统迅速升级。
第二,确定与相结合、以应用为主导的研发策略。国外人工智能系统的研究大多停留在实验室领域,还没有在司法实践中加以应用。但是,任何智能系统包括相对简单的软件系统,如果不经过用户的长期使用和反馈,是永远也不可能走向成熟的。从我国的实际情况看,如果不能将初期研究成果尽快地转化为产品,我们也难以为后续研究工作提供雄厚的资金支持。因此,人工智能法律系统的研究必须走产研结合的道路,坚持以应用开路,使智能法律系统尽快走出实验室,同时以研究为先导,促进不断更新升级。
第三,系统研发目标与初级产品功能定位。人工智能法律系统的研发目标是制造出能够满足多用户(律师、检察官、法官、立法者、法学家)多种需要的机型。初级产品的定位应考虑到,人的推理功能特别是价值推理的功能远远超过机器,但人的记忆功能、检索速度和准确性又远不如机器。同时还应该考虑到,我国目前有12万律师,23万检察官和21万法官,每年1.2万法学院本科毕业生,他们对法律知识的获取、表达和应用能力参差不齐。因此,初级产品的标准可适当降低,先研制推理功能薄弱、检索功能强大的法律专家系统。可与机厂商合作生产具有强大数据库功能的硬件,并确保最新法律、法规、司法解释和判例的网上及时更新;同时编制以案件为引导的高速检索软件。系统开发的先期目标应确定为:(1)替律师起草仅供的起诉书和辩护词;(2)替法官起草仅供参考的判决书;(3)为法学院学生提供模拟法庭审判的通用系统软件,以辅助学生在起诉、辩护和审判等诉讼的不同阶段巩固所学知识、获得审判经验。上述软件旨在提供一个初级平台,先解决有无和急需,再不断收集用户反馈意见,逐步改进完善。
第四,实验室研发应确定较高的起点或跟踪战略。国外以知识工程为主要技术手段的人工智能法律系统开发已经历了如下阶段:(1)主要适用于简单案件的规则推理;(2)运用开放结构概念的推理;(3)运用判例和假设的推理;(4)运用规则和判例的混合推理。我们如确定以简单案件的规则推理为初级市场产品,那么,实验室中第二代产品开发就应瞄准运用开放结构概念的推理。同时,跟踪运用假设的推理及混合推理,吸收国外先进的KBS和HYPO的设计思想,将功能子系统开发与联想式控制系统结合。HYPO判例法推理智能装置具有如下功能:(1)评价相关判例;(2)判定何方使用判例更加贴切;(3)并区分判例;(4)建立假设并用假设来推理;(5)为一种主张引用各种类型的反例;(6)建立判例的引证概要。HYPO以商业秘密法的判例推理为模拟对象,假设了完全自动化的法律推理过程中全部要素被建立起来的途径。值得注意的是,HYPO忽略了许多要素的存在,如商业秘密法背后的政策考虑,法律概念应用于实际情况时固有的模糊性,信息是否已被公开,被告是否使用了对方设计的产品,是否签署了让与协议,等等。一个系统设计的要素列表无论多长,好律师也总能再多想出一些。同样,律师对案件的分析,不可能仅限于商业秘密法判例,还可能援引侵权法或专利法的判例,这决定了起诉缘由的多种可能性。Ashley还讨论了判例法推理模拟的其他困难:判例并不是概念的肯定的或否定的样本,因此,要通过要素等简单的法律术语使模糊的法律规则得到澄清十分困难,法律原则和类推推理之间的关系还不能以令人满意的方式加以描述。(注:Edwina L.Rissland,Artificial Intelligence and Law:Stepping Stones toa Model of Legal Reasoning, Yale Law Journal.(Vol.99:1957-1981).)这说明,即使具有较高起点的实验室基础研究,也不宜确定过高的目标。因为,智能法律系统的研究不能脱离人工智能的整体发展水平。
第五,人-机系统解决方案。人和机器在解决法律时各有所长。人的优点是能作价值推理,使法律问题的解决适应的变化发展,从而具有灵活性。机器的长处是记忆和检索功能强,可以使法律问题的解决具有一贯性。人-机系统解决方案立足于人与机器的功能互补,目的是解放人的脑力劳动,服务于国家的法治建设。该方案的实施可以分为两个阶段:第一阶段以人为主,机器为人收集信息并作初步分析,提供决策参考。律师受理案件后,可以先用机器处理大批数据,并参考机器的起诉和辩护方案,再做更加高级的推证工作。法官接触一个新案件,或新法官刚接触审判工作,也可以先看看“机器法官”的判决建议或者审判思路,作为参考。法院的监督部门可参照机器法官的判决,对法官的审判活动进行某种监督,如二者的判决结果差别太大,可以审查一下法官的判决理由。这也许可以在一定程度上制约司法腐败。在人-机系统开发的第二阶段,会有越来越多的简单案件的判决与电脑推理结果完全相同,因此,某些简单案件可以机器为主进行审判,例如,美国小额法庭的一些案件,我国法庭可用简易程序来审理的一些案件。法官可以作为“产品检验员”监督和修订机器的判决结果。这样,法官的判案效率将大大提高,法官队伍也可借此“消肿”,有可能大幅度提高法官薪水,吸引高素质法律人才进入法官队伍。
前言:随着我国人口红利逐渐消失,加上劳动力逐年减少、人工成本的上涨、工作环境的改变、人口老龄化和多元化的市场竞争,使各企业面临着重重压力。为了解决困境,现在越来越多的企业把目光瞄准了电气自动化设备,以此代替人工生产。种种迹象表明,工业自动化时代已渐行渐近,自动化设备有望迎来黄金发展时代[1]。在我国电子信息技术不断发展的背景下,我国的电力系统逐渐开始应用先进的电气自动化技术,从而改善自动控制水平。对电力系统中的电气自动化技术进行深入分析,符合时展的需求,具有重要的研究价值。
一、电力系统中电气自动化技术的应用现状
(一)微电子中的应用
电气自动化技术在微电子中的有效应用,能够改善微电子的半导体器件的运行质量,从而有效改善电路的安全性以及可靠性,促进系统监控效果的完善。微电子技术中有效应用电气自动化技术,主要表现为电气电子技术设备的有效引入,需要对传统微电子技术进行有效改革,从而提高微电子工艺的整体化效果[2]。以电气自动化技术作为一个新出发点,不断促进微电子技术的革新与发展,有助于优化企业的生产质量水平,同时改善其生产质量。对微电子中的电气自动化技术应用现状分析,是企业综合改善的一个重要途径,具有重要的探究意义。
(二)变化器中的应用
在变化器电力系统中有效应用电气自动化技术,能够改善变化器的电路,同时可以实现低频到高频的转换,加速电路系统的更新发展。在传统的电力工程中,多使用直流变化器实现对电路系统的流量控制,难以获得优秀的整流效果。在变化器中有效应用电气自动化技术,则可以显著改善功率,同时有效减弱谐波对电冈的影响,降低低频转矩脉动中发生不良问题的可能性,从而促进系统的完善。
(三)变流调速控制中的应用
在运输车辆的实践中,直流调速的调速性能比较好,但是具有比较高的事故发生率,制约了其有效应用。交流电所提供的交流电,应用于调速中,可以简化结构,降低消耗,提高使用寿命,但具有调速困难的问题。在交流调速控制中有效应用电气自动化技术,可以实现对电流磁场以及转矩的有效控制,可以有效改善控制性能,具有比较良好的调速效果。
二、电气自动化技术在电力系统的具体应用分析
(一)实时仿真系统
实时仿真系统能够应用大量的实验数据,并同步进行电力系统的实验,可以为科研人员提供良好的协助作用。同时应用多种控制装置,有效形成闭环系统,可以提供良好的智能化保护作用。在电力系统中应用实时仿真系统,可以有效监控电力系统的负荷情况,相关技术人员应该在对电力系统实时仿真系统进行深入研究的基础上,有效构建实时仿真环境实验室,提供良好的环境支持。
(二)综合自动化技术
在我国多年研究与发展的基础上,我国的电力综合自动化技术逐渐进入世界领先水平。我国所研制的分层式综合自动化装置能够有效应用与多种电压等级的电站,同时可以在电气自动化保护装置中有效应用人工智能技术、自适应理论以及网络通信技术等,从而有效改善综合自动化控制水平,促进电力系统的安全性的改善,提高电力系统的智能化水平。
(三)人工智能技术
在电力系统中有效应用人工智能技术,可以实现对整个系统与部分元件的有效诊断,同时能够对规划进行设计[3]。在实际的电力系统发展研究中,通过有效应用模糊逻辑以及专家系统等先进的科学理论,不断深化对电力系统的实践研究,并不断促进电力系统的控制智能化发展。
(四)配网自动化技术
配网自动化技术能够有效结合国际标准公共信息模型,同时应用高级应用软件,结合人工智能技术,实现配网的自动化。我国的配网自动化技术正在不断发展中,主要应用在高级应用软件、中低压网络数字以及信息配网一体化等多种方面中。通过解决配网的载波损耗等问题,促进电力系统自动化水平的不断完善。
(五) 单片机、集成电路
以MCS-51为代表白8位机虽然仍占主导地位,但功能简单,指令集短小,可靠性高,保密性高,适于大批量生产的PIC系列单片机及CMS97C系列单片机等正在推广,而且单片机的应用范围已开始扩展至智能仪器仪表或不太复杂的工业控制场合以充分发挥单片机的优势另外,单片机的开发手段也更加丰富,除用汇编语言外,更多地是采用模块化的C语言、PL/M语言[4]。
(六) PLC控制技术
PLC可编程逻辑控制系统在工作流程上由数据采集、数据计算与数据输出三大部分组成。 首先根据编写好的程序实现规范化的数据采集过程,将相关数据采集的电子元器件获取到的数据统一存储于系统内部,再进行具体扫描与读取工作,将采集到的数据整合为映像单元的形式。完成以上工作之后,便会自动进入主体程序的计算执行部分。当完成用户设定好的相关数据采集工作之后,将继续实现程序的执行功能。最终通过模拟 / 数字输出的方式,修改相应电气设备的控制参数,最终实现电气专业的自动化。
三、电气自动化技术的发展建议
(一)电气自动化与数字化的结合
电气自动化技术与数字化技术的有效结合,其典型表现为地球数字化技术,其中包含有电气自动化的多种创新经验,能够实现对高分辨率、多为空间的大量数据有效整合为坐标,最终组成为数字化地球。该技术通过在计算机中储存多种信息,结合计算机网络,可以获得电气自动化的基本数据信息。
(二)现场总线技术的创新性应用
在电力系统的电气化技术应用中,通过运用现场总线以及网络技术,可以实现对运行经验的有效积累,从而促进电气自动化设备的智能化发展水平的改善。在电气自动化技术中有效应用网络技术,并结合现场总线技术,可以突出目的性,为设施提供良好的通信渠道,从而将信息有效结合在一起,避免间隔状况的发生,从而有效节约资金以及材料,提高可靠性,同时节省电缆,达到成本控制的目的[5]。
(三)加强电气自动化企业与相关专业院校之间的合作
首先,鼓励企业到电气自动化专业的学校中区设立厂区、建立车间,进行职业技能培训、技术生产等,建立多种功能汇集在一起的学习形式的生产试验培训基地。走入企业进行教学,积极建设校外的培训基地,将实践能力和岗位实习充分结合在一起。扩展学校与企业结合的深广程度,努力培养订单式人才。按照企业的职业能力需求,制定出学校与企业共同研究培养人才的教学方案,以及相关的理论知识的学习指导。