公务员期刊网 精选范文 人工智能教育的优势范文

人工智能教育的优势精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能教育的优势主题范文,仅供参考,欢迎阅读并收藏。

人工智能教育的优势

第1篇:人工智能教育的优势范文

人工智能技术应用上,教育领域也深受影响,如何更好的迎合现实需求,对此,我认为

一、人工智能技术要在促进学生学习理解上体现价值。

技术是有成本的。如果技术应用只是提高了训练的效益,其价值便只在低层次认知能力,这些成本是否值当?人工智能技术之应用须在促进学生高层次认知能力的发展上发挥作用,帮助学生从解答习题为主走向解决问题为主。我们应该依托人工智能技术在情境创设与人机互动等方面的优势,促使学生基于理解的学习,促使学生面向应用的学习。

二、人工智能技术要在促进学生个别化学习中发挥作用。

人工智能技术的出现,打破了教育的知识传播平衡,加强了“以学生为中心”的学习关系,使对每一个学习个体的尊重有了可能。而这恰是当前教育实践的薄弱之处。因而,在学校层面应用大数据与人工智能技术的关键,未必在统计意义的归因,而是关于学习个体的过程信息的采集,这是促进学生个别化学习的技术凭借。

第2篇:人工智能教育的优势范文

关键词:讯飞超脑计划;人工智能;未来生活

中图分类号:TP18 文献标识码:A 文章编号:1671-2064(2017)01-00218-01

人工智能包含三个层次:计算智能、感知智能和认知智能,讯飞超脑计划是包含模拟人脑的知识表示与推理、类人学习机制与新知识的获取、机器加载专业知识成为专门的教育领域。讯飞超脑计划是基于全球关于人工神经网络的深度学习研究,简单来说就是希望未来讯飞超脑计划能够将人工智能从只是简单地能听会说到能够深度思考相关问题的科技转变。人工智能的不断开拓创新是为了帮助人类能够更好地生活,我们应该注重人工智能的发展推进,将其广泛合理地应用到生活的实际中去。

1 讯飞超脑计划目前取得的阶段学习研究成果

1.1 讯飞超脑计划关于我国现阶段关于高中生学习教育的人工智能成果

随着近年来教育电子多媒体设备的投入普及使用,使目前的高中老师在课堂上更习惯用电子化的教学方式来替代传统的板书课本单一枯燥的教学,与此同时,现阶段高中生也同样具备使用移动互联网的条件,这样就使得科大讯飞超脑计划的教育产品可以形成以下的模式如图1所示。

采用此智能的学习模式可以使我国的高中生接受公平的最好的教育,这就需要借助人工智能的帮助来使老师提高自身的教育水平,使高中生丰富并开阔自身的视野。课堂教学包括了在线课堂、畅言交互式多媒体教学系统以及畅言智能语音等,这种新颖的课堂教学模式使原本单一的教学方式变成了思想上任意遨游的知识海洋;智能考试包含了标准考场、英语四六级网上阅卷、普通话与英语口语测试等方面,智能考试系统从字迹工整的程度、词汇量的丰富度、语法的正确性与通顺性等多个方面来评判考试试卷,加上多年来的不断改进,人工智能的评判方法跟相关专家的人工试卷评判的相似度相差无几,很大程度地增加了试卷评判的效率性与公平性;学习产品与教育评价更是覆盖到了从低到高的各个层面的产品组织结构,更有利于高中生的学习与应试教育的公平性。

1.2 讯飞超脑计划对于提高人类生活水平的成果

随着人工智能技术在经济、教育、文化、娱乐等领域的不断应用,使人们的生活质量水平得到了很大程度的提高,人工智能带来的方便快捷对于人类的发展进化与物质文化的进步产生了不可忽视的作用。随着讯飞超脑计划的推出,一方面,可以把人类从繁重的劳动中解放出来,很大程度地提高人类生产生活的效率与质量;另一方面,人工智能的进步会极大地革新人类的思维方式,使人们能够多角度地认知世界,加深对人类对自身所处的宇宙地位的思考,利于人不断地探索奥秘,进一步推进人类社会的进步。

2 讯飞超脑计划下人工智能对于未来生活的影响及其发展趋势

2.1 讯飞超脑计划下人工智能对未来生活的影响

由于讯飞超脑计划是感知智能结合认知智能的再创新,使得未来机器将会实现高水平的感知智能,具有更多的包括语音识别、手写识别以及图像识别的更多智能感知能力与实现包括智能客服、人机交互等的取代人类脑力劳动的认知智能突破。所以说讯飞超脑计划下的人工智能在未来的教育、经济、文化、社会结构等未来生活的各个方面都会产生重大影响。在教育上,人工智能的应用优化了课堂结构,使学生能够实时接受外界的新知识以及与时俱进的教育模式改革;在经济上,人工智能的高效能与高效率会明显提高经济效益,用人工智能来进行财务管理有助于缩减不必要的人工劳务开支与相关的培训费用,利于经济的变革与提高;在文化上,人工智能对于人类语言文化与图像处理上的优势日益凸显出来,可以确定的是人工智能的发展将会深入到人类生活的各个层面中去。

2.2 讯飞超脑计划下人工智能的未来发展趋势

随着人工智能的不断演进,人工智能从最初能存会算的计算智能阶段,到后来的能听会说、能看会认的感知智能阶段,最后再到讯飞超脑计划下提出的让机器能理解、会思考的认知智能阶段,未来的人工智能在语言理解、知识表达、联想推理以及自主学习等方面都将会取得很大的进展。

3 结语

人工智能对于未来生活的影响是多方面的,在未来生活的各个方面都十分显著。与此同时,讯飞超脑计划下的人工智能不断的改革创新与发展,也将更快地推动人类的发展,人工智能与人类的生活是互相影响又相互制约的。人工智能的不断发展给人类的未来生活带来了很大程度的改变,人类在不断开拓人工智能的领域时也应不断提高自身能力与素养,以适应人工智能带来的不断创新和改变。

参考文献:

[1]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械.2009,30卷(2).

第3篇:人工智能教育的优势范文

【关键词】大数据时代;人工智能;计算机网络技术

引言

科学技术的飞速发展,使计算机网络成为人们生活和工作的重要组成部分。在计算机应用领域,将人工智能与大数据进行融合,可有效解决计算机网络管理中安全性的问题。然而,在大数据时代背景下,由于人工智能技术的发展仍处在探索阶段,在计算机网络技术中的应用还存在许多问题。基于此,深度探讨人工智能应用优势,并针对人工智能在计算机网络技术中的应用提出几点建议,具有十分重要的意义。

1大数据时代人工智能技术的含义及应用优势

1.1大数据下的人工智能技术

人工智能作为计算机技术体系下的分支,是一门融合开发和研究为一体,主要作用于开发人类智慧所应用的科学技术。在人工智能不断发展的历程中,对于人工智能的探索逐渐延伸至管理学、语言学、社会学等学科,使人工智能能够更好地接近人类大脑,完成对社会中存在各类要素和信息的采集,并模拟出人脑对图像和声音出现的反应。在大数据时代背景下,人工智能可借助大数据内容多和规模大的特征,替代人们完成部分工作,为人们生活和生产提供便利,以进一步增强人们的幸福感。人工智能与大数据的配合,可将人类思考习惯进行数字化处理,并完成对数据的储存。在未来发展中,人工智能可实现对人类日常生活的复制,实现机械化的自动操作和控制。通过大数据和人工智能的相互配合,可为人类和技术的发展提供更广阔的空间。1.2大数据时代下人工智能在计算机网络技术中的应用优势在大数据时代背景下,人工智能在计算机网络技术中应用所体现的优势,主要体现在以下几方面:①完成对信息的预测,在计算机网络运行中,要想提升运转速度就要及时处理系统中存在的模糊数据,但对于这部分信息价值的辨别存在一定的难度。如依照传统处理方法会增加系统运行成本,对系统造成影响。在大数据时代人工智能的干预,可依据模糊分析理论更有效辨别信息价值,完成对信息的预见,进而实现计算机网络运行效率的提高。②增加网络监管能力,计算机系统的快速发展使得计算机网络结构日趋复杂,为网络监管带来难度。而人工智能的参与可实现对网络的分类管理,不但提升管理的效果和能力,还为网络营造更加安全的环境。③人工智能强化数据整合,在人工智能和大数据相互协作下,对于计算机网络空间中存在的信息进行快速整合,完成对各类资源的有效配置。还可加快资源整合的速度,减少资源的消耗,降低计算机网络的运行成本。

2大数据时代下人工智能在计算机网络技术中的应用对策

2.1计算机网络安全管理中人工智能的参与

①在计算机网络网络安全入侵检测中应用人工智能。在大数据时代下,计算机网络环境日趋复杂,各类病毒和木马的入侵可对网络造成不可逆的影响。而在计算机网络管理中应用人工智能,可通过对以往入侵情况的分析,建立数据集成的系统,通过数据编码将入侵特征进行编码转换,在系统中储存完整的信息。一旦计算机网络出现入侵系统的情况,对网络安全造成威胁,系统就可依据设定对入侵类型进行辨别,并完成安全处理,保障计算机系统和网络的安全。②数据挖掘技术在计算机网络安全管理中的应用。数据挖掘主要是指将网络从主机会话中分离出来,并通过对网络控制实现计算的规范化,并将其产生的数据储存到数据库中,在遇到网络风险时就能完成数据的辨别。③人工神经模拟。人工智能的模拟技术可模仿人类大脑的思考和处理逻辑,在网络运行中,可对噪声等要素进行识别,并通过检测,完成对网络的安全性检查,提升网络运行安全性,提升检测的质量。④危险信息拦截和垃圾处理。在计算机网络安全管理中,人工智能可在网络系统中建立智能防火墙,对部分危险信息进行识别,并完成拦截。还可在系统设置访问权限,提升安全防控的效果。同时,在垃圾处理方面,人工智能和大数据的相互配合,可实现对网络遗留数据痕迹和垃圾的检测,快速找到包含病毒的文件,并在人工智能处理模式下完成病毒的处理,消除网络中存在的安全隐患。另外,人工智能可完成对系统资源的扫描,通过对信息的分析和处理,将数字化数据反馈给用户,使用户更加直接地了解计算机网络的运行状况,为进一步保障计算机网络安全提供帮助。

2.2计算机网络管理系统中人工智能的导入

①系统数据库技术。在计算机网络系统中,利用人工智能技术将计算机系统运行的内容转化为数据,将简单内容在变为复杂的程序,在运行中对其进行不断的优化,找到有效的运行方式,实现对系统对有效的管理。这种人工智能和大数据的相互配合,可有效弥补传统数据加工在内容逻辑性方面的缺陷,并通过数据库的建立,使得计算机网络系统在运行速度和储存空间方面都得到提升。②智能问答技术。在计算机网络搜索功能中,人工智能技术的参与可使得用户利用部分有效信息就能获得海量的资源,提升网络资源的使用效率。这种智能问答方式主要以简单指令为核心,通过对关键词的识别在海量数据中快速筛选到相关的资料,获取到用户需要的内容。这种工作方式可减少搜索的时间,完成对资源的合理应用。比如,用户在搜索栏中输入“流行乐”,当下在音乐市场中流行的乐曲都能显示出来,并带出“流行乐”相关的搜索标签,找到更多相关的信息和数据,减少搜索的时间,并提升搜索的整体质量。③智能技术。计算机网络系统可完整记录用户的搜索数据,并从海量资源中挑选出相关内容,完成对用户的精准推送,这种服务的机制,可减低用户大量搜索的时间,并在短时间内找到更有效的相关信息,提升计算机网络系统的应用效果,带给人们更多的便利和帮助。

2.3计算机网络运营系统中人工智能的支持

目前,计算机网络与行业领域的深度融合,奠定了计算机网络的发展基础。同时计算机网络所支持的各类平台,可为整体网络管理工作的开展提供对接渠道,依托于信息传输机制,可有效提高数据传输的时效性,进一步为行业的发展提供保障。(1)在企业管理方面。大多数企业在运行过程中,将产生大量的数据信息,有价值与无价值的信息将呈现出同步传输的模式,计算机网络系统的应用,则是对此类数据信息进行有效整合与分类,为管理人员提供一定的信息决策支持。人工智能的融合,对于原有的计算机网络运营系统来讲,则可有效建立起一种基于人工智能实现的运算环境,通过大数据技术的价值信息挖掘、神经网络与模糊网络的精密算法等,可有效提高数据信息的统计能力,以此来节约企业资金成本的投入。此类人工之能的导入可为企业经济管理建立一种数据运营框架,在相关信息的输入下,可按照有序性的运算模式实现数据的分析,进而提高企业自身的运营质量。(2)在教育教学方面。计算机网络与教育领域的结合,是我国教育改革的一个重要实现载体,通过网络海量资源的支持,可为学生提供更为全面的信息。例如,以人工智能技术为载体的信息分配机制,其可有效建立起一智能化数据体系,学生通过网络进行作答时,计算机系统的分配机制可依据学生作答情况,将各类信息进行精准记录。同时,平台本身还可依据学生的作答信息进行学习行为方面的预期分析,然后针对某一时间点下数据信息呈现出的异常特性来分析出学生学习行为的发展方向,并将此类信息及时反馈到系统中。通过此类信息的正确界定,可对教师的教学行为以及学生的学习行为等进行有效规范。人工智能的支持下,可令计算机网络呈现出智能化运作的特性,对于当前信息时代的发展态势来讲,智能化、自动化的运营模式在行业领域中属于一种必然导向,为此,应针对行业本身的需求,界定出技术的应用形式,以此来发挥出技术应有的价值效果。

第4篇:人工智能教育的优势范文

机器和人类、现实和科幻、邪恶和美好的分界从来没有像今天这样如此模糊。眺望未来30年,智能革命的壮阔波澜,将改写人类社会对智商的理解和定义。

从AlphaGo说起:Have to win

关于这场围棋大赛,先引用一段博士老板Alan Yuille教授(美国顶级机器智能科学家,霍金理论物理学博士)的判断:

Go is a complex game but still it is finite so with enough computer power,and clever algorithm,the computers will have to win(if not this year,then next year)。(围棋是一套复杂但有内在逻辑和明确计算量的游戏,所以只要计算机遵循围棋的推演路径并拥有充裕的运算能力就必然能够赢得人类、取得胜利,AlphaGo的胜利对于计算机而言只不过是时间问题。)

AlphaGo战胜人类,美国学术界早有准备

伴随着摩尔定律的不断实现和几十年来人工智能的软硬件技术积累,人工智能其实已经悄然改变了我们生活中的许多方面,当我们还在感慨电影中各种AI的强大时,未来已经悄然而来,AlphaGo只是这场人工智能大浪潮中的一朵璀璨浪花。

在过去的5年里,人工智能已经在语音识别、计算机视觉、语言理解、医疗健康等领域取得了巨大进展,并在某些领域里超过了人类,比如语音识别、人脸识别等等方面。

以计算机视觉为例,人工智能已经发展出了突破肉眼精度的图像识别技术并已被广泛的应用于公安、金融、信息安全等领域,产生了巨大的价值。而这些进展之所以没有引起社会轰动,是因为社会中大部分非专业人员会通过直觉和自身感受而推论出机器识别“人脸”、识别“苹果”等图像信息是一件容易的任务,是一件不同年龄、不同教育背景、不同文化背景的人都能胜任的任务,在这其中体现不出人工智能的“智能”来。

但站在人工智能发展的角度,从围棋和图像识别的复杂性和不确定型来说,图像的变化比棋盘的变化要大得多。

围棋是有可遵循的逻辑、可衡量的计算量的游戏,对于人类大脑的难度在于庞大的计算量和对棋盘宏观形势的敏感度;而图像识别则会在信息抓取和逻辑分析层面呈现出更广泛意义上的随机性和不确定性。

通过机器学习将图像中的信息进行分类解析、最终提取有价值的结构化数据是极难的科研课题,从学术界到工业界的转化耗费了几十年的时光。

然而相比于计算机视觉、语言语音理解等其他的进步,AlphaGo的划时代意义在于它不仅仅缩短了机器与人的智能距离,还将颠覆人与人智商差异的感知。

未来人与人的智商差距不再会是不可弥补的先天差距,而将成为一种可以通过工具而后天获取的能力,这带来的会是人类自我价值评估的一次大颠覆,智商对于人的意义将会在一定程度上有所下降。这就像从前算术不好的,现在用计算器就能补上;未来下棋不好的,可能只是加个AlphaGo就能补上。“智商”这个词的定义可能会被迫从形容人和动物差异,变成由人和机器的差异所定义。

第一个十年的变化:The rich get richer(富人更富,强者更强)

从短期来看,让我们畅想一下在这场大浪潮中,谁会成为最大的受益者呢?

当我们回顾推动人工智能发展的关键因素时,有三个要素极为重要:数据、算法和计算。

AlphaGo这次在全社会范围内对人工智能进行了一场大面积的认知普及,会使得拥有成熟商业模式和海量数据优势的BAT等巨头重金投入这片市场,彼此间的互相追赶将在市场中形成像google收购deep mind一样的并购风潮。

同时伴随着计算能力的不断提升和算法的持续优化,这将带来人工智能史上的第一次大规模应用实践,各巨头的业务将因为人工智能带来的效率提升而加速拓展,他们相较其它竞争者的优势也会因此不断加大,这就正如今天的google相对于其他公司一样。

当资本成为这场竞逐游戏的驱动力时,获得先发优势的公司雪球也必将越滚越大,优势将在成长中愈发明显,The rich get richer。

未来的思考:人类将重新理解知识、智慧、人性

从远期来看,人工智能的进步将改写人类对自我、知识和教育的理解。

倘若,90%的医生、律师、教师、程序员能被机器所代替,人们将需要重新开始讨论“人”的自我定义和“知识”的新时代价值。

当旧时代下的知识已成为机器人仅需拷贝和执行的简单命令,而“为什么要学法律、学编程等”的疑问及背后对自我价值的疑惑就必将引发社会教育结构的变革。

过往人与人之间通过知识组合的不同而形成的差异将被人工智能抹平,“高考”等考试测评手段作为广义上的游戏(game),就像围棋一样,将不再能作为准确评价智慧和学识的方式而被修正。

当在体力劳动和脑力劳动里独立的人类相对于机器都不再具备经济优势时,人的存在形态、存在价值和机器的交互融合将成为未来前沿学术研究的重要课题,这会是一次人类社会的集体迷思、也会是人类价值的再次追寻。

人类的希望?

有人曾说,机器和人的差异是艺术的创作和欣赏。但这对于人工智能而言,已经并不是什么特别难的事情,大概在10年前就已有成熟的学术成果来用计算机创作梵高风格的作品,在这背后的艺术风格提炼、学习和再造并不是什么新鲜的技术。

也有人说,机器和人的差异是情感。但我不确定现今的人类社会对情感的定义是否像对智商一样,有着广泛的共识而能成为人类独特性的特征。情感诞生于本能和动物性,只是在人身上闪烁出了更加多彩的光芒,悲欢喜乐、嬉笑怒骂,这本就是人性中最难以捉摸而妙不可言的部分。

所以,机器和人的区别最终会是什么呢?在这个恐怕哲学家也难以回答的终极问题下,我想起了最近读到的这样一句话,“如果机器认为这场战斗必败,那么机器会选择投降;如果人认为这场战斗必败,那么有人会选择义无反顾的战斗,直至战死为止。”

或许,这句话里已经轻轻道出了我们与机器的区别。

第5篇:人工智能教育的优势范文

关键词:人工智能;计算机辅助教学;智能计算机辅助教学系统

随着现代科学技术的飞速发展,先进的技术在教学领域得到了广泛的应用,并对教学过程产生了深刻的影响。其中,人工智能技术产生的影响最为深刻。它将先进的教学手段引入教学过程,在营造理想的学习环境、激发学生的学习兴趣以及提高教学效率等方面起到了重要作用。

一、人工智能

1. 人工智能的定义

人工智能(Artificial Intelligence,简称AI)是计算机科学、控制论、信息论、神经生理学、语言学等多种学科相互渗透发展起来的一门综合性的交叉学科和前沿学科。其精确定义是:一个电脑系统具有人类知识和行为,并具有学习、推断、判断来解决问题、记忆知识和了解人类自然语言的能力。

2. 人工智能的研究内容

人工智能作为一门综合性学科,其研究内容涉及到许多方面,其中与教学实际关系较为密切的是以下四个方面:

(1) 问题解决。问题解决(Problem Solving)是人工智能研究初期的主要研究内容之一,也是其他内容的研究基础,它主要研究计算机的知识表达和推理技术。

在教育领域中,研究问题解决的实际意义在于,把人类解决问题的基本过程赋予计算机,使其能够按照人类的思维规律进行问题解决,帮助学生进行有效的学习。

(2)模式识别。模式识别(Pattern Recognition)是近三十年来在信息科学与计算机科学的基础上发展起来的新兴科学,后期它又受到了人工智能科学的影响,得到了新的发展。因此,常被作为人工智能学科的一个分支。

简单地说,模式识别就是研究用电子计算机代替人来识别事物和环境的方法。所谓模式是指那些供参照模仿用的理想化的标本。因此,具体来说,模式识别的含义就是识别出给定的事物与哪一个标本相同或相似。模式识别有时可以理解为模式分类,即判别给定的事物应该属于哪一类标本。被识别的给定事物通常是字母、符号、汉字、图像、声音、语言、景物,也可以是统计数字、图表、教授状态、学习状态等,应用于教育时则称为教育模式识别和学习模式识别。

(3)自然语言理解。对自然语言理解(Natural Language Processing,简称NLP)的研究能为实现人机自然语言直接通信提供可能,并减少软件生产的负担,从而间接地推动计算机的广泛应用,提高自动化操作效率。因此,它已经成为人工智能研究中最为棘手的问题。

自然语言是人机对话的最方便的语言,其发展的最终目标是把自然语言作为程序语言来使用,使计算机直接执行自然语言,不需要中间的解释过程。

在教育领域中,计算机对自然语言的理解有助于人机对话的实现,从而能够增进计算机与学生之间的交互作用,把原有的计算机辅助教学条件下的计算机主动变为智能计算机辅助教学条件下的人机交互主动。

(4)专家系统。所谓专家系统是指一个(或一组)能在某特定领域内,以人类专家的水平去解决该领域中困难问题的计算机系统。其特点在于能把人类专家在解决问题过程中使用的启发性知识、判断性知识分成事实与规则,以适当形式存储到计算机中,建立知识库,并基于知识库采用合适的产生式系统,按输入的原始数据选择合适的规则进行推理、演绎,作出判断和决策,可起到专家的作用,因此称为专家系统。

专家系统是人工智能中最为重要的研究内容,在教育领域中的应用也最为广泛与活跃。教学专家系统的任务是根据学生的特点,以最合适的教案和教学方法对学生进行教学辅导。

二、计算机辅助教学

1. 计算机辅助教学的定义

计算机辅助教学(Computer Aided Instruction,简称CAI)是在计算机辅助下进行的各种教学活动,以对话方式与学生讨论教学内容、安排教学进程、进行教学训练的方法与技术。CAI能为学生提供一个良好的个人化学习环境。通过综合应用多媒体、超文本、人工智能和知识库等计算机技术,克服了传统教学方式上单一、片面的缺点,有利于激发学生的学习兴趣和认知主体作用的发挥。同时,它所提供外部刺激的多样性有助于知识的获取与保持。因此,使用CAI能有效地缩短学习时间、提高教学质量和教学效率,实现最优化的教学目标。

2. 计算机辅助教学的现状

尽管计算机辅助教学要比传统的教学模式先进不少,但并不是最完善的,它还存在许多不足,主要表现在以下几方面:

(1) 缺乏人机交互能力。在教学过程中,CAI课件的教学信息是按预先设置的教学流程机械式地提供,教师只能按预定的课件流程进行操作,学生的学习也是被动的,不能很好地参与教学过程。因此,人机交互能力没有很好地体现出来。

(2)缺乏师生互动。学生在自学及使用现有的CAI课件时,大多采用的是自主学习的方式。使用这种方式时鲜有师生互动,因此课件的效果会大打折扣。同时由于缺乏网络支持,现有的绝大多数CAI课件都是在单机环境下运行的,无法使用网络来快速更新知识内容,更无法提供便捷的学习讨论空间、随时随地的师生交流方式以及远程教学实现的条件。

(3) 缺乏智能性。现有的CAI系统很多都没有智能性,无法进行有针对性的教育。学生的学习是被动的,他们不能根据自身情况调整学习进度。对教师而言,教学参与度太低,他们不能按照学生的认知模型为其准备最适合的学习内容,更不能给予不同的教学模式与方法。

(4) 缺乏广泛性。CAI系统的设计都是围绕某一知识领域,对于教学内容、问题的设计和答案的呈现,都必须在原设计系统允许范围内实现,无法根据具体教学、学习情况提出新的方案。

由此可见,传统的CAI系统本身具有无法克服的缺点。随着人工智能技术的发展,人工智能技术将会越来越多地应用在教育领域。把人工智能技术引入CAI系统,使CAI系统能合理安排教学内容,变化教学方法来满足个性化教学的需要,因此就产生了智能计算机辅助教学系统。

三、智能计算机辅助教学系统

随着计算机科学和人工智能技术的不断发展和成熟,将AI引入CAI中,使CAI系统可以理解教什么、教谁以及如何教,因而也就能合理安排教学内容、改变教学方法,去满足个别教学的需要,这就是以AI技术和认知科学理论为基础而形成的智能计算机辅助教学系统(Intelligent Computer Assisted Instruction,简称ICAI)。它是计算机应用技术的一个新领域,代表了一种新的教学思想和教学方式。智能计算机辅助教学系统的出现,提高了教学质量,改善了教学的效率。

1. 智能计算机辅助教学系统的基本结构

ICAI系统主要是在知识表示、推理方法和自然语言理解等三方面应用人工智能技术。其本质上是一个基于知识的教学专家系统,通常由专家模块、学生模块、教师模块和智能接口模块组成。它的组成结构如下图所示:

(1)专家模块(知识库)。专家模块是由题域知识构成,它包括两方面的知识:一是教材内容、提问信息、教材重点、难点、评价等有关课程的知识;二是有关应用这些知识来生成问题,推理解题的知识。其功能有:作为系统全部知识的来源,为系统其他模块频繁调用,以实时完成用户行为响应,通过知识库知识,生成相应的问题、任务以及解释;通过同步问题解答,并通过预期学生行为与实际学生行为之间的比较,评价学生知识掌握程序以及学习状态、学习方式偏好等。这个部分相当于一个根据事实进行演绎推理求出解答的专家部件。

(2)学生模块。系统通过学生模块建立对学生的了解,通过比较学生行为与专家行为,对学生进行智能模拟,包括学生的知识状态、认知特点和个性特点等。学生模块用来表示学生的学习历史、当前知识水平、解题行为等方面的知识。其任务是:表示学生对所学知识的理解程度,反映学生已掌握和未掌握的部分,通过发现错误并作出错误根源的假设,为进一步指导提供依据。

(3)教师模块(教学策略模块)。在CAI 课件的交互作用中,教学策略是与教学内容融合在一起,通过教学的分支来体现的。这样做的不足是,某一教学内容只能按某一种(或几种)固定的教学策略来教。而在ICAI中,教学策略与教学内容是分开的。这样在教学过程中,系统可随时根据教学的需要,选择不同的教学策略。

教师模块的主要任务是在一定的教学原理的指导下,选择适当的教学内容,并通过接口以适当的表达形式,在适当的时刻展示给学生。该模块的主要功能有:为学生提供学习环境;指导学生的学习活动;解释现象、过程和原因;为学生提供帮助和学习材料;监视和评价学生学习活动。

(4) 智能接口模块。智能接口模块的作用是处理学生与系统间的信息交流。模块要完成两项任务,一是在教学模块作出教学决策后,智能接口模块要以一定的形式把教学内容发送出去;二是建立学生输入信息的方式,接收学生输入的信息。

2. 智能计算机辅助教学系统的发展方向

ICAI系统在发展中不是孤立、单一的,它是伴随着多种技术以及人工智能在多种领域应用的不断发展而发展的。其未来的发展方向表现为以下几方面:

(1)与网络技术的结合。随着多媒体技术和Internet网络的飞速发展,多媒体教育应用与Internet网进一步融合,CAI 不仅仅只在智能上单一发展,它不可避免地还要向多维的网络空间发展。目前,已有不少基于Internet网的多媒体教育系统在使用,它们借助网络的优势,完成在线学习、实时讨论、网上测试等多种教学任务。将网络CAI与智能CAI有机结合,互相补充,能构建成一个新的系统工程。

(2)智能(Intelligent Agent)技术的使用。人工智能(AI)技术在ICAI中的应用,除了体现在对多媒体教学系统中引入学生模块和知识推理机制以外,还可以起到在“智能导航”浏览中,使用“智能”技术代替教师、学生进行指导学习和搜索学习的作用。

在CAI中,学生学习查询有效知识可以使用进行搜索、导引,由于它自身具备的学习功能,能够主动、高效地从Internet中发现和收集用户所需要的信息。因此,它有助于解决使用单一关键字匹配查询、搜索引擎引起的大量无关信息的涌现、信息检索的精确度不高等问题。将“智能”技术引入到ICAI中,将使得教师和学生在教与学的过程中,提高知识选取效率、加强交互学习和自主能动性学习。

(3)远程教学。结合网络CAI、智能CAI以及多协作,可以实现真正意义上的远程教学模式。ICAI系统不仅可以作为教师,为学生学习提供指导,也可以作为学生,辅助学生学习,还可以成为学生学习、交流、协作过程中多方面的。因此,具有多种特性优势的远程教学具有广阔的发展前景。

(4)虚拟现实(Virtual Reality)的应用。虚拟现实也叫人工现实(Artificial Reality),是由多媒体技术与仿真技术以及计算机技术相结合而生成的一种交互式人工世界。它的根本目标就是达到真实体验和基于自然技能的人机交互。在教学辅助中,使用创建的虚拟环境,在一般人所不能亲身体验的情景中,达到演示、操作的教学目的。目前在教学中使用的有:基于Web的火电厂的虚拟实景建构学习、建筑设计的实景化学习、医学内消化道实景教学等。

四、结语

到目前为止,人工智能技术已经逐步应用于计算机辅助教学中,与教学现代化有着密切的关系。随着人工智能技术的发展,智能计算机辅助教学系统的成效将更加明显。新世纪的教学手段将是以智能化CAI为主线,多学科、多方位发展的新技术的体现。这种手段产生了人机交互、人机共生等全新概念,大大扩展了人类的能力,促进了教育事业的进一步发展。

参考文献:

[1]何克抗.教学媒体的理论与实践[M].北京:北京师范大学出版

社,2003.

[2]谢三毛.人工智能在计算机辅助教学中的应用[J].华东交通大

学学报,2005(12).

[3]刘志勇,王阿利,张伟斌.人工智能在计算机辅助教学中应用研

第6篇:人工智能教育的优势范文

关键词:人工智能;信息素养;信息技术

中图分类号:TP18文献标识码:A文章编号:1009-3044(2008)35-2417-02

Artificial Intelligence Education and Middle School Students Information Literacy

WU Wen-tie

(Mathematics and Computer Institute of Mianyang Normal University, Mianyang 621000, China)

Abstract: Information Literacy in the Information Age is a national basic literacy, artificial intelligence represents a cutting-edge information technology. Based on the analysis of information quality and substance of the definition on the basis of exploring the field of artificial intelligence research, as well as in education, put forward the theory of artificial intelligence and technology courses in secondary education should be in a more systematic, comprehensive Improve the information literacy of students.

Key words: artificial intelligence; information literacy; information technology

1 信息素养的定义及其内涵

“信息素养”一词最早产生于信息技术和信息产业发达的美国, 是随着现代信息社会的逐渐形成而对国民提出的一种兼跨人文和科学范畴的综合性个人素养要求的描述。随着研究的深入,人们对信息素养的认识也在不断深化。

1974年美国信息产业协会主席保罗・泽考斯基最先提出信息素养的概念, 他认为信息素养是“利用大量的信息工具及主要信息源使问题得到解答的技术及技能”。1992年美国图书馆协会提出:“信息素养是人能够判断何时需要信息, 并且能够对信息进行检索、评价和有效利用的能力。”同年, 道尔在《信息素养全美论坛的终结报告》中给出了一个较为全面的定义:一个具有信息素养的人, 他能够认识到精确和完整的信息是作出合理决策的基础, 他能够确定对信息的需求, 能够形成基于信息需求的问题, 能够确定潜在的信息源, 能够制定成功的检索方案, 从包括基于计算机的和其他的信息源中获取信息、评价信息、组织信息用于实际的应用, 将新的信息与原有的知识体系进行融合以及在批判性思考和问题解决过程中使用信息。

综上所述, 虽然研究人员从不同的视角界定了信息素养的定义, 但可看出, 信息素养既包括认知态度层面上的内容, 也包括技术层面、操作层面和能力层面上的内容。概括起来讲, 信息素养主要包括信息意识、信息能力和信息道德三个方面:

1) 信息意识。信息意识是信息素养的首要因素, 主要指人们对信息及其交流活动在社会中的地位、价值、功能和作用的认识, 换句话说, 就是指人们对信息的判断、捕捉的能力。信息意识的强弱将直接影响人们利用信息的程度和效果。人们只有有了信息意识,才有可能有信息的需求, 进一步去寻找信息和利用信息, 并主动学习与信息处理有关的技术。

2) 信息能力。信息能力是信息素养的重要方面, 是指人们获取信息、处理信息、利用信息、创造信息、交流信息的技术和能力。人们只有掌握一定的信息技能, 才能有效地开展各种信息活动, 有效地利用信息和创造信息, 充分发挥信息的价值, 变信息为动力和优势。

3) 信息道德。信息道德是指人们在整个信息交流活动过程中表现出来的信息道德品质。它是对信息生产者、信息加工者、信息传播者及信息使用者之间相互关系的行为进行规范的伦理准则, 是信息社会每个成员都应该自觉遵守的道德标准。

2 人工智能的研究领域

人工智能的研究领域非常广泛, 而且涉及的学科也非常多。目前,人工智能的主要研究领域包括:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、智能决策支持系统及人工神经网络等。下面主要介绍在网络教育环境中常用的智能技术。

2.1 专家系统

所谓专家系统就是一种在相关领域中具有专家水平解题能力的智能程序系统, 它能运用该领域专家多年积累的经验与知识, 模拟人类的思维过程,求解需要专家才能解决的困难问题。

2.2 机器学习

“学习”是一个有特定目的的知识获取过程, 其内在行为是获取知识、积累经验、发现规律; 外部表现是改进性能、适应环境、实现系统的自我完善。所谓机器学习, 就是要使计算机能模拟人的学习行为, 自动地通过学习获取知识和技能, 不断改善性能, 实现自我完善。机器学习主要研究学习的机理、学习的方法以及针对相应的学习系统建立学习系统。

2.3 模式识别

所谓模式识别,是指研究一种自动技术。计算机通过运用这种技术,就可自动地或者人尽可能少干预地把待识别模式归入到相应的模式类中去。也就是说,模式识别研究的主要内容就是让计算机具有自动获取知识的能力,能识别文字、图形、图像、声音等。一般来说,模式识别需要经历模式信息采集、预处理、特征或基元抽取、模式分类等几个步骤。

2.4 人工神经网络

人工神经网络是指模拟人脑神经系统的结构和功能, 运用大量的处理部件, 由人工方式建立起来的网络系统。它是在生物神经网络研究的基础上建立起来的,是对脑神经系统的结构和功能的模拟, 具有学习能力、记忆能力、计算机能力以及智能处理功能。其中学习是神经网络的主要特征之一, 可以根据外界环境来修改自身的行为。学习的过程即是对网络进行训练的过程和不断调整它的连接权值, 以使它适应环境变化的过程。学习可分为有教师(或称有监督)学习与无教师(无监督)学习两种类型。对神经网络的研究使人们对思维和智能有了进一步的了解和认识,开辟了另一条模拟人类智能的道路。

3 人工智能技术在教育中的应用

3.1 智能搜索引擎

随着互联网站点和页面的激增以及网络用户队伍的不断壮大,信息检索成为人们利用Internet的重要途径。但是在浩瀚的网页海洋中寻找有用的信息并不容易,需要借助有力的检索工具如搜索引擎等等。目前一些著名的搜索引擎有:GOOGLE、YAHOO、EXCITE、INFOSEEK等,他们各有特色,但仍存在不足之处,如检索到的无关信息过多以及检索结果排序较混乱。智能化信息检索是信息检索的新分支,它是人工智能和信息检索的交叉学科。它在对内容的分析理解、内容表达、知识学习等基础上实现检索的智能化,这样可以节省学习者在检索中花费的时间,帮助学习者提高检索效率。智能化信息检索所用到的人工智能技术有专家系统、自然语言处理和知识表示。

3.2 智能体(agent)

agent技术早在70年代出现在人工智能领域,通过感知、学习、推理以及行动能够基于知识库的训练模仿人类社会的行为。随着其进一步发展,它在远程教育领域发挥着越来越重要的作用。一套完整的远程教育系统中包含许多子系统,如答疑、作业、考试、交互等等子系统。这些子系统都有各自的数据库用来存储信息。为了提高整个系统的智能性,可以引入智能技术,把众多子系统的数据库链接起来,实现信息资源的共享。通过分析这些信息,智能技术可以发现学习者的个别特征(如兴趣爱好信息、点击知识点信息统计、交互日志等等),并根据这些特征量身订做出适合学习者的学习方案,也有助于教师及时掌握学习者学习过程中的动态信息。

3.3 智能CAI(ICAI)

随着计算机技术的飞速发展,计算机辅助教学(CAI)已受到教育界的重视,成为学科教学改革的一种重要手段。许多学校都在开发CAI课件,但大多数CAI课件只是机械地按照教学设计者事先设计好的教学模式和内容向学生传授知识,并没有体现出个性化学习,无法做到因材施教。

智能CAI是以人工智能技术为核心,使CAI系统能够根据学生的学习情况等因素分析学生的特征,合理安排教学内容、变化教学方法去满足个别教学的需要。使用智能CAI进行教学能够克服传统CAI的不足,显著提高教学效果,是CAI课件发展的趋势。

3.4 智能教学系统ITS

智能教学系统(intelligent tutoring system,ITS)是涉及人工智能、计算机科学、认知科学、教育学、心理学和行为科学的综合性课题,其研究的最终目标是由计算机负担起人类教育的主要责任,即赋予计算机系统以智能,由计算机系统在一定程度上代替人类教师实现最佳教学。我国ITS的研究起步较晚,但近几年随着计算机的普及和教育软件需求增大,ITS的发展较快。ITS按照功能分为四个模块:专家知识模块、学生模块、教师模块、人机接口模块。

4 人工智能教育对学生信息素养的作用

人工智能(ArtificialIntelligence,AI)是计算机科学的一个分支,是一门研究运用计算机模拟和延伸人脑功能的综合性学科。换言之,它研究如何用计算机模仿人脑所从事的推理、证明、识别、理解、设计、学习、思考、规划以及问题求解等思维活动,来解决需要人类专家才能处理的复杂问题,例如咨询、诊断、预测、规划等决策性问题。人工智能也是一门涉及数学、计算机科学、控制论、信息学、心理学、哲学等学科的交叉和边缘学科。与一般的信息处理技术相比,人工智能技术在求解策略和处理手段上都有其独特的风格。人工智能研究处于信息技术的前沿,它的研究、应用和发展在一定程度上决定着计算机技术的发展方向。同时,信息技术的广泛应用也对人工智能技术的发展提出了急切的需求。今天,人工智能的不少研究领域如自然语言理解、模式识别、机器学习、数据挖掘、智能检索、机器人技术、人工神经网络等都走在了信息技术的前沿,有许多研究成果已经进入人们的生活、学习和工作中,并对人类的发展产生了重要影响。

综上所述,作为信息技术一个不可缺少的重要组成部分,人工智能的基本内容在中学信息技术课程中是不能不专门提及的,以往某些教材中用一两页篇幅作个简单介绍的方法根本不足以反映人工智能学科的全貌。因此,十分有必要在高中阶段的信息技术课程中专门设立人工智能选修课。我们认为,高中阶段开设人工智能课程可以在以下几个方面对学生的信息素养培养产生积极作用:

1) 多种思维方式的培养和信息素养的综合锻炼。

现实世界的问题可以按照结构化程度划分成三个层次:结构化问题,是能用形式化(或称公式化)方法描述和求解的一类问题;非结构化问题,难以用确定的形式来描述,主要根据经验来求解;半结构化问题则介于上述两者之间。一般说来,中学阶段开设的传统意义上的信息技术课程中所介绍的信息技术,例如多媒体技术、网络技术、数据库技术、算法与程序设计等,都是求解结构化问题的基本技术。而人工智能技术则是解决非结构化、半结构化问题的一类有效技术。

把人工智能课程引入我国现行的高中信息技术教育,可以让学生在体验、认识人工智能知识与技术的过程中获得对非结构化、半结构化问题解决过程的了解,从而培养学生的多种思维方式,达到提高信息素养的目的。通过人工智能课程的学习,学生还将了解人工智能语言的基本特征,学到智能化问题求解的最为基本的策略。

2) 体验人类专家解决复杂问题的思路,提高学生的逻辑思维能力。

这里以人工智能学科中“专家系统”技术的体验、学习与应用过程为例进行说明。在专家系统的应用过程中,一个实际的专家系统不仅能够为用户给出相关领域的专家水平建议或决策,而且能够通过解释机制,以用户容易理解的方式解释专家系统的具体推理过程。学生可以向专家系统提出诸如“为什么(Why)”、“如何(How)”、“如果……会怎么样”等问题,系统接受用户的问题指令后,可以根据推理的逻辑进程,即时将答案呈现给用户,整个过程如同教师与学生在进行面对面的教学。在该过程中,学生可以充分体验人类专家的求解思路和推理风格,有助于提高他们的分析、思维与判断能力。

另一方面,在专家系统的教学过程中,可以要求学生自行构建由产生式规则组成的知识库,或进一步利用工具软件来开发简单的实用型专家系统。为了完成该项工作,学生一开始就要编制开发规划、制定知识获取策略,并具体付诸实施,这是一个不断深化的过程。学生还得明确与系统有关的所有变量或相关的因素,并且将这些变量和因素转化为问题求解,得出相应的结论。在进行一系列问题求解分析之后,运用产生式规则来表示知识,以此建立起来的专家系统还可以让其他学生去运用和体验,具有一定的实用价值。

由于专家系统中的知识组织与推理过程是对人类专家思维方式的一种模拟,因此上述知识库的组织和系统的推理过程能够较好地体现学生的思维过程。在建造知识库过程中,学生需要将原来零碎的未成型的知识概念化、形式化和条理化,从而内化为学生自己的东西。所以,建造知识库的过程不但能反映学生的学习过程,而且有助于学生对该领域知识的深层思考并有利于长久记忆,同时也学会了专家系统的基本开发技术。正如美国著名的学习论专家Jonassen所指出的:那些自行设计专家系统的学生将会在这种活动中受益匪浅,因为这是一个对所学知识进行深度加工的过程。

3) 了解信息技术发展的前沿,激发对信息技术未来的追求。

人工智能技术在一定程度上代表着信息技术的前沿,通过人工智能知识、技术的学习与体验,高中学生能够对信息技术发展的前沿知识有一定程度的了解,这样有助于他们开阔视野,培养兴趣,激发对信息技术美好未来的追求,从而为今后进入大学或走向社会奠定良好的基础。

5 结束语

中学生的信息素养的培养是当前信息技术课的一个重要目标,而在现有的中学信息技术课程中,关于人工智能的知识只作了简单的介绍,学生们对于人工智能研究的广大领域不能有详细的概念,这对于中学生的信息化认识和信息素养的培养不够全面。因此在中学信息技术课中加大人工智能的知识介绍是信息技术课改革的重要内容。

参考文献:

[1] 雷晓庆.网络环境下大学生的信息素养及其培养[J].太原大学学报, 2004(2):38.

[2] 杜玉霞.美国信息素养教育与研究的启示[J].电化教育研究, 2005(10):42.

[3] 王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,2002,1-53.

[4] 潘瑞玲,余轮.Agent技术在远程教育系统中应用的研究[J].微型电脑应用,2002,18(4):28-30.

[5] 吴战杰,秦健.Agent技术及其在网络教育中的应用研究[J].电化教育研究,2003(3):32-36.

[6] 张剑平.关于人工智能教育的思考[J].电化教育研究,2003(1):24-28.

第7篇:人工智能教育的优势范文

关键词:人工智能 计算机技术

一、人工智能的定义

“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。

人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。

二、人工智能的应用领域

1.在管理系统中的应用

(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。

(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。计算机智能教学系统包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。

2.在工程领域的应用

(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist 2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。

(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。

3.在技术研究中的应用

(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。

(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。

三、人工智能的发展方向

1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。

2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。

3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。在它的研究中突出4个概念:(1)所处的境遇机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2)具体化机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后会有反馈。(3)智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4)浮现从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。目前,国内外不少学者都对机器人足球系统颇感兴趣,足球机器人涉及机器人学、人工智能以及人工生命、智能控制等多个领域。足球机器人系统本身既是一个典型的多智能体系统,是一个多机器人协作自治系统,同时又为它们的理论研究和模型测试提供一个标准的实验平台。

参考文献:

[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008.

[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2003.

[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003,(8).

[4]周明正.人工智能在医学专家系统中的应用[J].科技信息, 2007.

[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,(8).

[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2005,(4).

第8篇:人工智能教育的优势范文

目前,人工智能的发展阶段呈现以下三个特点:

第一,人工智能在特定约束条件下已具备超越人脑某个方面的能力,但综合来看仅仅相当于蠕虫的智能水平。近期,谷歌研发的人工智能AlphaGo围棋程序在与世界围棋九段李世石的对局中以4:1取胜。AlphaGo采用更为优化的深度学习神经网络,在规则已知和逻辑可控的棋类竞技中实现了对人类的超越。IBM的沃森机器人能够在几秒之内筛选数十年癌症治疗史中的100多万份患者病例记录,为医生提供可供选择的循证治疗方案。但无论是AlphaGo还是沃森都需要由人类预先进行知识分类和设计上的干预,并且“智能”的高低很大程度上取决于所学习先验样本的数量和准确性。因此,通用意义上的人工智能依然是一个漫长而复杂的过程,目前能够做到的更多是特定场景下人类某项大脑能力的延伸和对人类思维决策进行辅助。

第二,人工智能发展可分为不同层次,目前部分技术分支在行业中的应用已取得突破。人工智能发展层次可分为感知智能(语音、图像识别,自然语义理解,机器翻译,机器搜索等),认知智能(神经元芯片、深度学习算法、行为规划等)和自主智能(机器推理、决策和联想等)。感知智能方面,国外的谷歌、IBM、脸书、微软和国内的百度、科大讯飞等在语音和图像识别、机器翻译、大数据搜索等细分技术领域推出了一批有显著创新性的技术产品。认知智能方面,对神经元芯片、深度学习算法的开发主要集中在IBM、高通、谷歌为首的国际巨头以及美国“类人脑芯片”(SyNAPSE)、欧洲“欧脑项目”纳入的高校和科研机构中。由IBM主导的SyNAPSE项目预计在2016年内能够完成100亿神经元规模的计算机原型,但距离通用型、成熟型产品问世尚需较长时日。

第三,我国应积极应对人工智能发展新浪潮,以产学研用协同创新打造国际竞争新优势。近年来,美欧等国家在人工智能领域不断加大投入,开展专利布局,以技术和应用为纽带构筑产业生态。我国在人工视觉、语音语义识别等细分产业领域并不落后,但从全局来看,在人工智能基础理论、核心算法和产品成熟度、产业投资和人才队伍储备等方面与国外对比还存在明显差距。国外大企业重点攻关认知智能和自主智能,我国企业目前多集中在感知智能的低级阶段。

当前阶段,人工智能技术产业化发展应当从以下四个方面着手改进:

一是加强人工智能核心技术研发和产业化。制定人工智能产业技术发展路线图,在客观分析、科学研判的基础上,找准产业未来发展的薄弱点和赶超点。加大资金投入力度,重点突破自然语音语义识别、机器学习、智能搜索等关键技术,完善核心芯片、显示器件、智能传感器、开发工具与集成环境等产业链配套。

二是有效推进人工智能行业应用示范。加快人工智能技术在家居、汽车、无人系统、安防等领域的推广应用,提升生产生活的智能化服务水平。支持在制造、教育、环境、交通、商业、健康医疗、网络安全、社会治理等重要领域开展人工智能应用试点示范。

第9篇:人工智能教育的优势范文

在大数据的“滋养”下,AI在越来越多的领域更懂人,让拥有深度学习能力、不断进化的AI帮助人类探索学习规律、开拓认知潜能,已成为人不被机器淘汰的必要之举,根据教育部的规定,2018年秋季开学后,高中生们将要开设一门新课程:《人工智能》。

互联网教育尤其是线上K12培优项目一直是投资热门,直播1对1模式风口过后,教育圈内最火的应该是AI项目了。据亿欧智库的报告显示,2017年人工智能教育融资额度达42.17亿元,其中超80%属于早期投资项目,这个赛道有望诞生多个独角兽公司。

笔者发现,当前布局人工智能的在线教育大体分为三派:

教学或题库测评类工具产品,比如作业盒子等;

培训机构应用AI技术,比如好未来等;

人工智能教育引擎及平台提供商,比如高木学习等。

现在摆在AI教育创投从业者面前的问题是:到底以技术实力论英雄的AI教育的泡沫有多大?真金不怕火炼的AI教育项目的核心能力在哪里?如何才能落地? 本文试做解读。

一、为什么“自适应”其实并非真正的AI?一位投资人朋友曾向我这样说道:“既懂互联网行业又完全懂本行业的业务的管理型人才不超过十个,这是在‘互联网+’双创浪潮中每个垂直行业头部项目就几家能玩转的原因。”而认知和技术门槛更高的“AI+”情况恐怕会更加不妙,甚至很多人把“自适应”与“AI教育”划等号。

自适应学习(Adaptive Learning)的鼻祖是美国的Knewton公司,它通过评估不同学生对知识材料掌握度进行个性化推荐,有点类似于今日头条的兴趣引擎。 Knewton在国内的门徒众多,目前大概有40多家项目宣布发力做“自适应”,比如“乂学教育”(学练测自适应)、“学吧课堂”(题库自适应)、“英语 流利说”(英语口语纠正)、“一起作业”(家长、老师在线监控)等等。

嘉御基金创始人卫哲说过,“90%的人工智能项目都是伪AI”,鉴别的依据是看项目“算法速度”,如果是代数级而不是几何级计算那就不是“真AI”,以此来考验自适应项目,得到的结论未免让人失望。

初级的自适应项目是人工预设指令或编程规则推荐,高级的自适应是基于知识图谱推荐,即使是高级的自适应项目由于没有按照既定的教学大纲和教学目标有 逻辑地展开,在具体知识学习之中并不系统。关键是很多自适应项目采集的是各科最优秀特级教师的能力,导致其算法本身是线性的、模拟人学习而已。

自适应的技术原理就好比AlphaGo是应用了人类最优秀围棋大师的能力而非是完全迥异机器深度学习和自演化模型;自动驾驶AI应用了某个人类零误 差老司机的感知能力而非是基于全网海量交通大数据做运算和决策;人工智能医生是应用了看X片最快最准的医生的经验而非是海量数据库训练;显然按这样的路径 训练出的机器并非是真正的AI。

“真正拥有充分教学大数据及算法速度的‘AI教师’是能轻松超越拥有30年教龄特级教师的,并且可以突破人类的知识局限,对算法模型进行自动演化,找到人类从未尝试过的策略。”高木学习创始人刘瞻这样描述AI教师。

刘瞻是帝国理工学院科班出身,早在2015年开启AI教育创业,他认为判断真伪AI教育项目具体有三个考察维度:

(1)自适应是基于模拟优秀老师的知识图谱推荐知识,而真正的AI教育机器人则是泡在“教学实践大数据”中做深度学习。

(2)自适应主要用作知识盲点的统计,但无法分析出知识体系之间的本质联系,用AI更重要的任务是找到行为背后的原因,比如某学生表面上二次函数是 薄弱环节,既有可能是其对二次函数的各细分知识点掌握不牢,也有可能是前置知识点一次函数、函数的思想理解不透彻,还有可能是方程求解的问题;甚至有可能 是抽象思维或计算能力的问题,AI会根据该学生数据和“知识路径矩阵”,找到问题背后的原因从而匹配出最优学习路径。

(3)人类教师的情感因素能左右学生的学习效果,AI教师也应综合考虑学生的自信心与成就感的培育与激发,从而确保学生学习过程“知”、“情”、“意”的一体化。

二、AI教育的核心:帮助每个学生找到“元认知能力”AI教育并不会改变“老师-学生”的二元结构,甚至人工智能教育还要在师生两端彻底解决互联网教育未完成的两大难题:

如何帮助学生找到学习方法、提升学习效率?在中国一个普通中学生80%的学习时间是低效的。

如何帮助老师对学生更高效的“因材施教”?目前在我国师资资源依然整体短缺并且分布不均,1对1培优成本高、小班普及率低等问题依然突出。

AI教育的优势在于通过数据化形式分析学生自己都不清楚的“症结”,即所谓的“懂我更懂教好我”,同时AI还能帮助老师实现教学效果的稳定化和可控化。AI在充分收集和处理教与学两端的大数据后,还得在具体教学场景之中个性化建模,最终实现“让学生更会学,让老师更会教”,这是人工智能教育的目的。

陶行知先生说过,“教是为了不教”,教育本质不是灌输知识,而是要启发学生思考并让学生掌握自主学习的能力。目前很多伪AI学习神器只能“授人以 鱼”但并不能“授人以渔”,我国基础教育历来缺乏方法论课程,只有极少数有天赋的学生能自主制定适合自己的学习方案,而绝大多数天资处于平均线的学生在混 沌中摸索。如果从AI的视角来看,所谓“天赋”不过是少数幸运儿自觉不自觉的分享了“元认知能力”。

当人主动设定学习计划、自我反馈、动态调整学习策略时,就接近了“元认知”,在大数据时代,这种元认知能力是能被定量化分析的,AI 教育可以为学习者提供关于反复激活元认知能力的“训练法”。根据刘瞻的解读,AI教育的“训练法”就好比给蹒跚学步的婴儿安上矫正走姿的“学步车”,具体 应用什么样“训练模型”则是由AI根据大数据进行场景化定制的,有可能是通向学习目标所需要的“云梯”,有可能是“舟楫”,或者是“拐杖”等等,这些模型 能不断调取和强化人的“元认知能力”。

尽管市面上90%项目都是着眼于知识点和解题训练的自适应,真正AI教育项目比如高木学习的AI不仅包含自适应的知识图谱大数据,而且还能不断从学 生的行为数据中演化“知识路径矩阵”即AI可根据学生对知识和能力体系的理解定制出个性化学习路径。与此同时,AI让学生在对知识的理解与记忆过程中不仅 训练知识掌握度,还不自觉地训练了元认知能力,这套“个性化学习引擎”其实是在培养学生“忘掉所有知识后”剩下的元认知能力,具有普适化的特点。

实际上,AI教育并不需要局限在某一学习阶段、某一学科的知识体系,完全可以打造一个跨学科、跨门类、跨阶段使用的“通用知识学习引擎”,也就是说,除了应用在K12领域外,AI教育还可以应用在高等教育阶段,甚至在辅导大学生时比中小学生会更为轻松,无须综合考虑学生的学习动力因素等。

反过来讲,如果市面上的人工智能教育项目只能用于某一单科或只能教K12,就不是基于大数据获取和智能化引擎的“全才”和“通才”,基本可视为基于特定领域专家总结的经验规则的“伪AI”。

三、为什么AI教育项目落地,to B模式比to C模式更容易跑通?当前AI教育项目的商业化进程走向大体分为两大派:

一派是自建场景的颠覆派,试图开发新的测试软件以抓取学生的数据,甚至引入一些把AR(增强现实)、MR(混合现实)等黑科技,其目标是以“AI教师”完全取代真人老师教学,属于“人机对抗”模式,较为典型的是乂学教育的松鼠AI。

另一派是升级现行教育体系、不另创场景的改良派,属于“人机共教”模式,较为典型的是高木学习的AI Tutor。

一般走人机对抗模式最终走的是to C模式;而“人机共教”走的是to B模式。鉴于我国当前AI教育的应用场景主要为教学机构包括全日制学校与培训机构,而非一个个分散的学生;只有让AI去辅助老师备课、上课,嵌入到学生作 业和训练,帮助学生提分和学校提升升学率,才能帮助AI更快落地并且找到盈利模式。

从“全日制学校”应用AI的实践上看, AI能让老师“心中有数(据)”,提升教学的针对性,AI教师实际上相当于真人老师的“智能助教”,可以减轻老师50%的工作负荷量,比如AI帮老师批改 作业,把数据分析的可视化呈现出来帮助老师定制教研方案。因此,在市场推广过程中,AI教育项目不需要担心基层老师的接受阻力,能让老师摆脱“汗水老师” 的局面也是基础教育机构所希望看到的。

由于全日制学校获取的大数据比培训机构更加海量、持续、高频,因此高木学习更看重AI在全国全日制学校场景中的数据价值,积极在全国推行城市合伙人制度,并计划与地方教育主管部门合作推出全国教师AI应用能力培训公益活动。

To B模式中另一大企业客户就是体制外的培训机构,他们所面对的学生付费意愿强、购买力相对旺盛,是AI教育项目获得稳健现金流的必争之地,那么当前培训机构应用AI教育项目开展“人工智能双师班”的效果如何呢?

首先,AI教练能保持教学效果稳定化输出,解决原本老师教学效果不确定的弊端。

其次,AI 提升了老师的工作效率,突破了培训机构因为名师稀缺且流动性大限制培训机构的规模化发展的瓶颈。

再次,比如高木学习的AI帮助学生发掘了“元认知能力”增强学习信心、提分效果明显,帮助合作培训机构提升了续费率,为招生带来便捷。