公务员期刊网 精选范文 高一数学的知识点范文

高一数学的知识点精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的高一数学的知识点主题范文,仅供参考,欢迎阅读并收藏。

高一数学的知识点

第1篇:高一数学的知识点范文

[论文摘要]高等数学是高职高专学生的一门重要的基础课程,是其它学科的基础,针对当前高职高专的办学特点,高职数学的教学方法是值得教师思考的问题。

随着国家建设的发展,我国对技能型人才的需求不断在加大,职业院校不断扩招,学生人数与日俱增,这必然导致学生整体的学习基础与学习能力较以往有所下降,在当前形势之下,如果能使学生更好的掌握知识,并能学以致用是每个高职高专学校所要面临的问题。

高等数学为其它各学科奠定了基础,也在一定程度上培养了学生的思维能力,分析、解决问题的能力,如何更好的使学生掌握这门课程,在文中浅谈一下自己的几点看法。

一、培养学生兴趣,正视学生的现状、分层教学

高职院校所选用的教材单一,忽视了学生学习基础以及学习能力的差别,有很多学生分数刚好达到最低录取分数线,就被录取,再加之许多院校有个别专业,文科学生和理科学生全部招取,没有分班现象,一个班的数学水平相差悬殊,文科学生大部分数学基础比较差,缺乏自信心。同一班级中,若有部分理科生,由于理科学生相对反应较快,而文科学生较慢,这种非常不利于文科生的学习与成长,长此以往,就失去了学习数学的兴趣,导致简单的题不会做,也不想做,这为教师教学带来很多不利的因素。再加之,高中阶段,学生是在老师的严格督促下学习,进入大学之后,学习环境相对宽松,使得部分学生还在没有自制能力的状态下不能很快的进入学习状态,不能自主学习,学习效率不高。基于上面的原因,教师就应当根据学生的专业,自身的特点,基础的高低,兴趣的差异,采用不同的教学方法,分层教学,对于文科生和理科生应分班对待,在备课,布置作业方面应区分对待,对差等生给予鼓励,课后及时辅导,帮他们建立学习的兴趣。数学教学激发学生学习的兴趣是重要的一环,只要激发了学生学习的兴趣,他们就会积极的去探索和研究,广泛搜集相关的知识。

二、合理选用教材

以往选用教材,只体现“共性”,没体现“个性”与专业的针对性不强,结合性不强。老师认为“讲的越多越好”,而教材的许多定理及其证明对于高职学生来说应用性不强,且难理解,这就严重影响了学生学习的积极性。因此在选用教材上应注重,对于基础较差的学生,尤其是文科生,应选用一些简单,易理解,定理以及证明相对较少的教材,从简单到难,循序渐进,这样不仅树立学生的自信心,减少了学生对数学的恐惧,还培养了学生学习数学的兴趣。

三、教学环节的设计

在过去很长一段时间,我国数学教学采取的模式都是“一支粉笔,一块黑板”。一节课大部分时间都是教师讲解,留给学生思考的时间较少,学生跟着老师转,习惯于“照葫芦画瓢”。教师往往用固定的模式去培养学生,或多或少以自己的思维代替了学生的思维,束缚学生的创造性思维。而且很多学生认为老师讲的东西,全部是书本内的东西,自己学不学都一样,反正书上有,这样就在教师讲解重要内容的时候,学生往往容易错过,影响和整节课的学习效果和后面内容的学习。因此,在教学过程中,要将以教师为中心的“导入—讲解—巩固——作业”这五个环节教学模式稍加改动,改为:“提出问题—解决问题—深化问题—提出新问题—练习创新”。教师提前布置好问题,让学生针对问题有目的的预习,这种情况下,学生就会对所要讲的知识有初步的了解。课堂提问,针对同一问题,学生会有不同的答案,通过教师讲解新课要点,突出重点,难点,让学生分析所问问题的正确答案,然后老师加以点评。在通过安排适当的时间让学生消化,吸收所学内容,在课堂上安排时间做练习,随机抽取学生上黑板做题,同一个问题,学生从多角度着手,从多方面寻求答案,培养学生的创造性思维。最后总结本节内容,使学生对本节课有一个连续而整体的认识,布置作业,布置预习下次课的内容,给出必要的提示。这样就能使学生和教师处于“共鸣”状态。

四、考核制度的改革

以往的考试方法,基本上是限时笔试,以客观试题为主,题型标准化,内容教材化,理论多,应用测试少,标准答案试题多,不定答案的分析试题少。因此,很多学生采用题海战术以应付考试,从而忽视了培养数学学科的思维素质,应改变以往的考核制度,其具体做法是强调学在平时,考在平时,把过程与结果放在同等地位,改革考试方法,将纸质闭卷考试,平时考察,作业,奖励等几方面综合评分。平时考察学生在课堂中的表现,如理解能力,分析问题的能力,学生到课情况等,还可以加以奖励。

五、教师个人能力的培养

第2篇:高一数学的知识点范文

一、学会预习是学好数学的关键

预习就使学生在老师讲课之前独立地自学新课的内容,做到初步理解并为上课做好知识准备和心理准备。学会预习是尽快适应高中学习的关键一步,是高一新生对新知识的理解和运用,提高学习效率。 学会预习是现代高一新生的基本素质,预习的作用:

1.培养良好的学习习惯。学会自觉学习,掌握自学的方法,为以后的学习打下基础。

2.有助于了解新课的知识点、难点,为上课扫除部分障碍。

3.有助于提高听课效果。预习时不懂的或模糊的问题,上课老师讲解这部分知识的时候,容易将问题搞懂,真正达到预习的目的。

二、记好笔记是学好数学的环节

学好高一数学在学习方法上要有所改进和突破,而做好数学笔记无疑是非常有效的环节。善于做笔记,是一个学生会学习的表现,因此应从以下几方面做笔记:

1.记疑难问题。将课堂上未听懂的问题及时记下来,便于课后请教同学或老师把问题弄懂,不会导致知识断层。

2.记思路方法。对老师在课堂上介绍的解题思路方法和分析思想及时记下来,课后加以消化,如有疑问可及时问老师或同学。

3.记归纳总结。记下老师的课堂小结,这是浓缩一堂课知识点的来龙去脉,使学生容易掌握本堂课各知识点的联系便于记忆。

4.记错误反思。学习过程中不可避免的犯这样或那样的错误,记下自己所犯的错误,并用红笔加以标注,以警示自己避免再犯类似的错误,在反思中提高。

三、做好作业是学好数学的反馈

做好数学作业是学生对书本知识的运用和巩固。在课堂、课外练习中培养良好的作业习惯也很有必要.在做作业中做得整齐、清洁,有条理,不仅培养一种美感,还培养逻辑思维能力,同时可以培养一种独立思考和解题正确的责任感。在做作业时要提倡效率,按时完成作业不能拖泥带水养成好的学习习惯。无论从年龄增长的心理特征上讲,还是从学习的不同阶段的要求上讲都应该从高一进行学习习惯的培养。

四、复习巩固是学好数学的升华

高一教材知识量明显增大,理论性明显增强,高中学习对理解要求很高,不思考,就难以掌握知识间的内在联系与区别;综合性明显加强,往往解决一个问题,还得应用其它学科的知识;系统性明显增强,高一教材的知识结构化升级;能力要求明显提高。所以要及时梳理知识点融会贯通形成知识系统。融汇进了高中以后,要在学习上制定一个目标,使自己目标明确鼓舞斗志,有目标才有动力;学习上要循序渐进,尽快探索适合自己的学习方法。学习上一定要注意:

1.先预习后上课,先复习后作业;上课专心听讲课后认真复习;定期整理听课笔记,不断提高自己的自学能力。要科学安排好时间,选择最佳学习时间和方法,合理分配时间做到科学性、计划性、合理性和严格性。

2.要养成专心致志的学习习惯,学习时集中了注意力,就能使神经细胞“全力以赴”,使学习的内容留下明显的痕迹,就能加深记忆。还要养成自我整理知识的习惯,对所学知识进行综合、提炼的过程,可以加深对知识的理解,巩固所学知识

第3篇:高一数学的知识点范文

一、培养良好的学习习惯

什么是良好的学习习惯?它包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习等多个方面。

(1)制定计划。从而使学习目的明确,时间安排合理,不慌不忙,稳打稳扎,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨练学习意志。

(2)课前预习。这是上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。

(3)专心上课。 “学然后知不足”,这是理解和掌握基本知识、基本技能和基本方法的关键环节。课前自学过的学生上课更能专心听课,他们知道什么地方该详细听,什么地方可以一带而过,该记的地方才记下来,而不是全盘抄录,顾此失彼。

(4)及时复习。这是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。

(5)独立作业。这是掌握独立思考,分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的必要过程。

(6)解决疑难。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。把从老师、同学处获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。

二、记好笔记是学好数学的环节

学好高一数学在学习方法上要有所转变和改进,而做好数学笔记无疑是非常有效的环节。善于做笔记,是一个学生善于学习的反映,为此数学笔记应该记一些:

1、记疑难问题。将课堂上未听懂的问题及时记下来,便于课后请同学或老师把问题弄懂,不会导致知识断层。

2、记思路方法。对老师在课堂上介绍的解题思路方法和分析思想及时记下来。课后加以消化,如有疑问课后及时问老师或同学。

3、记归纳总结。记下老师的课堂小结,这对于浓缩一堂课知识点的来龙去脉,使学生容易掌握本堂课各知识点的联系便于记忆。

4、记错误反思。学习过程中不可避免的犯这样或那样的错误,“聪明人不犯或少犯同样的错误”,记下自己所犯的错误,并用红笔加以标注,以警示自己避免再犯类似的错误,在反思中提高。

三、注意研究学科特点,寻求最佳学习方

高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩。 数学学科担负着培养运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。结合自身特点,寻找最佳学习方法。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理,方法因人而异,但学习的四个环节(预习、上课、作业、复习)是少不了的。

第4篇:高一数学的知识点范文

关键词:转折点 讲究规范 悟性

一、学会预习是学好数学的关键

学会预习是尽快适应高中学习的关键一步,促进高一新生对新知识的理解和运用,提高学习效率。学会预习是现代高一新生的基本素质,预习的作用:

1培养良好的学习习惯。学会自觉学习,掌握自学的方法,为以后的学习打下基础。

2有助于了解新课的知识点、难点,为上课扫除部分障碍。

3有助于提高听课效果。预习时不懂的或模糊的问题,上课老师讲解这部分知识的时候,容易将问题搞懂,真正达到预习的目的。

二、读好课本,学会研究

有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。因此,同学们应从高一开始,增强自己从课本入手进行研究的意识。可以把每条定理、每道例题都当做习题,认真地重证、重解,并适当加些批注,特别是通过对典型例题的讲解分析,最后要抽象出解决这类问题的数学思想和方法,并做好书面的解后反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用。

三、记好笔记是学好数学的环节

学好高一数学在学习方法上要有所改进和突破,而做好数学笔记无疑是非常有效的环节。善于做笔记,是一个学生会学习的表现,因此应从以下几个方面做笔记:

1记疑难问题。将课堂上未听懂的问题及时记下来,便于课后请教同学或老师把问题弄懂,不会导致知识断层。

2记思路方法。对老师在课堂上介绍的解题思路方法和分析思想及时记下来,课后加以消化,如有疑问可及时问老师或同学。

3记归纳总结。记下老师的课堂小结,这是浓缩一堂课知识点的来龙去脉,使学生容易掌握本堂课各知识点的联系便于记忆。

四、做好作业,讲究规范

在课堂、课外练习中培养良好的作业习惯也很有必要。在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。同时可以培养一种独立思考的习惯和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的。抓数学学习习惯,必须从高一年级主动抓起,无论从年龄增长的心理特征上讲,还是从学习的不同阶段的要求上讲都应该进行学习习惯的培养。

五、练好悟性,提升能力

学习要注重反思,练好悟性。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵外延,分析重点难点,突出思想方法,而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是忙于赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

高一教材知识量明显增大,理论性明显增强,高中学习对理解要求很高,不思考,就难以掌握知识间的内在联系与区别;综合性明显加强,往往解决一个问题,还得应用其他学科的知识;系统性明显增强,高一教材的知识结构化升级;能力要求明显提高。所以要及时梳理知识点融会贯通形成知识系统。融进了高中以后,要在学习上制定一个目标,使自己目标明确鼓舞斗志,有目标才有动力;学习上要循序渐进,尽快探索适合自己的学习方法。学习上一定要注意:

1先预习后上课,先复习后做作业。

2要养成专心致志的学习习惯,学习时集中了注意力,就能使神经细胞“全力以赴”,使学习的内容留下明显的痕迹,就能加深记忆。

3要在预习、听课、记笔记、作业、复习,课外学习中通过各种途径提高自己的思维力、观察力、阅读力、记忆力、想象力和创造力等。

生活中无处不存在数学,学好高一数学对以后的学习起着重要作用。高一数学是学习的一个艰苦的磨炼,经过了预习、听课、记笔记、作业、复习的过程,就会打开高一数学的学习思维。只有同学们养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,才能达到事半功倍之效,进一步学好高一数学。

参考文献:

[1]邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)

第5篇:高一数学的知识点范文

一、关于初高中数学成绩分化的原因分析

1.环境和心理的变化。

对高一新生来讲,环境可以说是全新的,新教材、新同学、新老师、新集体……学生有一个由陌生到熟悉的适应过程。另外,经过紧张的中考复习,考取了自己理想的高中,有些学生产生“松口气”的想法,入学后无紧迫感。也有些学生有畏惧心理,他们在入学前,就耳闻高中数学很难学。高中数学课一开始也确实有些难理解的抽象概念,如集合等,使他们从开始就处于消极无趣的被动局面。以上这些因素都严重影响了高一新生的学习质量。

2.初高中教材梯度过大。

首先,初中数学教材内容通俗具体,多为常量,题型少而简单;而高中数学内容抽象,多研究变量、字母,不仅注重计算,而且注重理论分析,这与初中相比增加了难度。此外,内容也多,每节课容量大于初中数学。这些都是高一数学成绩大面积下降的客观原因。其次,由于近几年教材内容的调整,虽然初高中教材都降低了难度,但相比之下,初中降低的幅度较大,而高中由于受高考的限制,教师都不敢降低难度,造成高中数学实际难度并没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中的教材内容的难度差距,反而加大了。

3.课时的变化。

在初中,由于内容少,题型简单,课时较充足,因此,课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法,教师有时间进行举例示范,学生也有足够时间进行巩固。而到高中,由于知识点增多,灵活性加大,以及新工时制实行,使课时减少,课容量增大,进度加快,对重难点内容没有更多的时间强调,对各类型题也不可能讲全讲细和巩固强化。这也使高一新生因不适应高中学习而影响成绩的提高。

4.高一新生普遍不适应高中数学教师的教学方法。

笔者曾在高一召开过学生座谈会,同学们普遍反映数学课能听懂但不会做作业。不少学生说,平时自认为学得不错,考试成绩就是上不去。带着问题笔者多次听了初、高中数学教师的课堂教学,发现初中教师重视直观、形象教学,老师每讲完一道例题后,都要布置相应的练习,学生到讲台上表演的机会相当多。为了提高合格率,不少初中教师把题型分类,让学生死记解题方法和步骤。在初三,重点题目反复做过多次。而高中教师在授课时强调数学思想和方法,注重举一反三,在严格的论证推理上下工夫。又由于高中搞小循环,接高一课程的教师刚带完高三,他们往往用高三复习时应达到的难度来对待高一教学。因此造成初、高中教师教学方法上的巨大差距,中间又缺乏过渡过程,致使高一新生普遍适应不了高中教师的教学方法。

二、注意渗透数学思想方法,把握数学精髓

一般说来,初中数学教学都是从贴近生活的实例出发,建立简单的数学模型,知识的引入和导出都十分直观、具体,学生的理解往往很顺利。然而高中数学却完全不同,抽象性和概括性大大增加,数学问题从特殊到一般、从具体到抽象,复杂繁琐,各种综合题层出不穷,知识点的跨度很大,综合性很强,根本没有现成的模式可以套用,学生在解题时必须独立建立知识框架,并且要有清晰的思路和严密的逻辑。对推理能力的要求也大大提高,这便决定了学生不可能再像初中时那样仅仅依赖教师的总结和自己的记忆就能学好数学。其实,万变不离其宗,对于高中数学而言,万变的是题型,不变的是数学思想方法。数学思想方法是高中数学的精髓,它统领着概念、公式、法则、定理等基础知识,并且活跃于每一种题型、每一个具体的题目中,只有精通了思想方法才能够随机应变,做到举一反三、触类旁通。因此,高中数学教师在讲解知识的同时还要注重数学思想方法的渗透,逐步培养学生独立思考的习惯,让他们学会运用思想方法。

高中数学的主要思想方法有函数与方程、数形结合、分类讨论、等价转化等,在教学过程中,教师要注重知识间的内在联系,注意归纳和类比,由例题到习题的讲解,在知识的相互联系中抽丝剥茧般直击数学精髓,揭示思想方法所在。

三、搞好初高中衔接所采取的主要措施

针对上述问题,笔者认为要想大面积提高高一数学成绩,应采取如下措施。

1.做好准备工作,为搞好衔接打好基础。

搞好入学教育,这是搞好衔接的基础工作,也是首要工作。

①通过入学教育提高学生对初高中衔接重要性的认识,增加紧迫感,消除松懈情绪,初步了解高中数学学习的特点,为其他措施的落实奠定基础。这里主要应做好四项工作:一是给学生讲清高一数学在整个中学所占的位置和所起的作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项;四是请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。

②摸清底数,规划教学,为了搞好初高中衔接。教师首先要摸清学生的学习基础,然后以此来规划自己的教学和落实教学要求,以提高教学针对性。在教学实际中,我们一方面通过进行摸底测试和对入学成绩的分析,了解学生的基础。另一方面,认真学习和比较初高中教学的大纲和教材,以全面了解初高中数学知识体系,找出初高中知识的衔接点、区别点和需要铺路反革搭桥的知识点,以使备课和讲课更符合学生实际,更具有针对性。

2.优化课堂教学环节,搞好初高中知识衔接。

①立足于大纲和教材,尊重学生实际,实行层次教学。高一数学中有许多难理解和掌握的知识点,如集合、映射等,对高一新生来讲确实困难较大。因此,在教学中,应从高一学生实际出发,采取低起点、小梯度、多训练、分层次的方法,将教学目标分解成若干递进层次,逐层落实。

②重视新旧知识的联系与区别,建立知识网络。特别注重对那些易错混的知识加以分析、比较。这样可达到温故而知新、温故而探新的效果。

③重视展示知识的形成过程和方法探索过程,培养学生创造能力。

第6篇:高一数学的知识点范文

【关键词】高二数学;重要性;方法归纳

一、高二数学与高一数学的不同之处

与初中的数学相比,高中的数学相对来说概念抽象、习题繁多、教学密度大,高一过后,一些同学对数学望而生畏。高一阶段的知识点非常多,可以说高一阶段的知识比整个初中的知识点还要多,那么到了高二,是否知识更多更难呢?

首先,高一阶段与高二阶段对知识的侧重点不一样。高一阶段的知识侧重的是理解,而高二阶段强调的是技巧,而并非在于内容的难易程度。其次,高二数学的很多知识点是对高一知识的强化、深化与展开。例如:高一阶段学习的函数的相关性质,其中很重要的就是单调性。在高一阶段时,我们对这个知识点的要求是会用“比较法”判断单调性,并通过对图像的分析来对函数单调性有直观的感受,到了高二阶段,就要学习一种新的T具――导数,也就是我们不用做函数图像,也不用“取点比较”的情况下能直接判断函数的单调性和单调区间。这种处理问题的新方法需要的就是熟练掌握技巧和扎实的基本功。在几何方面的不同之处有:高一阶段我们学的是直线和网,属于解析几何的初始,但在高二阶段,对于几何的学习就更加复杂了,如类曲线――椭圆、双曲线、抛物线。图形复杂且运算的难度大大增加另外立体几何中还要引入空间向量的方法,实际也是把几何问题代数化,使同学用在复杂的立体图形中找辅助线了,当然,空间向量法带来的运算量也是相当大的。最后,在一些小的知识点上也有所深化,初学学习概率时,没有学习任何的计算方法,算概率的时候只能一个一个的数出来,如果题目的数稍微大一点的话我们就要浪费大量的时间在数数上,在高二我们学习了计数原理,将能彻底搞清楚生活中的随机事件里究竟蕴含了怎样的数学原理。

二、学好高二数学的重要性

高二数学的难度要比高一大的多。同学们在高一的时候对所学知识深入理解,高二阶段便是埘所学知识的巩同练习与深化的一个阶段。如果有些同学高一阶段知识学习的不够扎实,高二阶段便是唯一可能跟进与提高的机会,因为高二是深化学习、练习与巩同过程,既是学习过程又是复习的过程。高中阶段学习节奏之快使得一开始落后一点的同学在之后的学习过程中几乎没有什么时间可以再回过头来重新学习,也就是说如果想补救之知识漏洞,高中阶段唯一可行的办法就是在学习中复习。高二这个阶段是需要大量做题,大量练习的阶段,错过了这个阶段就再也没有机会超越别人。很多人想高三再努力也还来得及,这种想法是错误的。高三的时候,人人都拼命的学习,强化,想要超越别人几乎是不可能的,你努力也只能保证你的成绩不下降。也就是说你若想追上别人,想超过别人,高二已经是最后的机会了。

三、学好高二数学的方法归纳

我个人观点是要学好数学最关键的是要学数学思想,那么,什么是数学思想呢?所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。学数学最好的方法就是深入的掌握基本概念,因为这关系到你看问题是否透彻。练习是必要的但不是最重要的,因为它只是深化和巩固你所学的认识。因此学数学是更深入地理解各个知识点,多加巩固每一道题都是一种思想的体现,在不断的做题过程中,把自己的认识和别人的思想结合起来就融汇成自己的思想了。

培养良好的学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习等多个方面。养成良好的学习习惯是学生掌握科学的学习方法的重要过程;是强化学生心理素质的前提;是学生获得技能的基础。

培养对数学浓厚的兴趣。数学的学习其实不难,关键是你是否愿意去尝试。当你敢于猜想,说明你具备数学的思维能力;而当你能验汪猜想,则说明你已具备了学习数学的天赋!认真地学好高二数学,你能领悟列的还有怎么用最少的材料做满足要求的物件,如何配置资源并投人生产才能获得最多利润……,因此,当你陷人数学魅力的“圈套”后,你已经开始走上学好数学的第一步!

培养分析、推断能力。其实,数学不是知识性、经验性的学科,而是思维性的学科,高中数学就充分体现了这一特点。数学的学习重在培养观察、分析和推断能力,开发学习者的创造能力和创新思维。因此,我们在学习数学的过程中,就要有意识地培养这些能力。

尝试一些新的学习方法,因为不同学习程度的学生需要用不同的学习方法。如果你正因为数学的学习状态低迷而苫恼,请按如下要求去做:通过预习后,带着问题听老师讲课,对你的学习能起到事半功倍的效果;对自己做出的作业太追求完美是很难达到的,出错并认真订正才更合理;老师要求的练习并不是“题海”,在完成老师的作业的同时,应当做一些配套的练习;考试时,正确率和做题的速度一样重要,因此,做题的时候碰到难题、应当及时放弃,转入下一题,及时避难就易放弃一些难题,能帮助你发挥正常水平。

如果你正因为数学的学习成绩进步缓慢而郁闷,那么请接受如下建议:收集你自己做过的错题,订正并写清错误的原因,这些材料是属于你个人的财富;对于考试成绩,给自己定一个能接受的底线,定一个力所能及的奋斗目标;养成良好的学习习惯、有计划性的学习,将使你的学习成绩稳固前进,因此,请指定好学习计划并坚持执行下去吧,对各个学科的学习时间进行规划、合理的分配。术进行合理的分配,同步前进形成了很多同学都有偏科的现象,对某一知识领域的学习出现“高原现象”。参考文献:

第7篇:高一数学的知识点范文

就我们百色市的初中教育情况而言,我认为主要有学习方法、学习内容上的两大问题。在学习方法上,初中主要是填鸭式,背诵式。因为初中学习内容相对较少,时间相对较宽裕,一个知识点可以反反复复的讲、慢慢磨直到大部分学生都能懂,甚至重要题型直接背要。而在高中知识点多且抽象,不可能每个可能考的题型都反复讲、慢慢磨。更多的是需要学生在课后自己去理解这个题型并能达到举一反三的能力,再碰到类似的题能拿下。而这样的要求就需要学生在课后能自主的学习、思考,但学生在初中并没有这样的学习习惯,加上高中的知识抽象了许多、内容更是初中的N倍。所以学生一到高中,普遍都觉得数学难学了许多。就是因为方法不对造成的,学生还想像初中一样等老师把每个知识点在课堂上反复的讲直到他完全理解,可在高中这是不现实的。另外在学习内容上,初中删除了许多高中需要用的知识点,如十字相乘法、分组分解法、含有字母的方程、根式的分母有理化、最简根式、根式化简、简单的无理方程、简单的高次方程、简单的二元二次方程组、韦达定理、换元法、一元二次不等式的解法等。这些知识点都是在高中需要的基础知识,如果我们高中老师不了解情况,一上高中直接讲第一张集合。那么在后面讲解中用到以上知识点时问题就要出现了,学生根本不知道老师在讲什么。

2建议与方法

2.1建议高一数学教师在开学初,要通过摸底测验、与学生座谈等方式了解学生掌握知识的程度和学生的学习习惯;开始时,适当放慢进度,降低难度。新课的引入,尽量从初中的角度切入,注意新旧对比,前后联系。例题、作业和测试题一开始不宜太难或太易,以免学生盲目乐观或丧失信心。同时要立足于高中大纲和教材,特别要分析相对于初中数学来说高一第一学期内容的特点,其次是在一开始高中的学习时就一直要注重培养学生的自主学习习惯,课后自主思考的习惯。只有这样学生才能适应高中的数学的学习。

2.2因为初中的要求在逐渐降低,故很多与高中相关的内容(如上举例)都已删除,一定要舍得花一些时间来进行补充。在这个过程中也刚好让学生熟悉你的上课方式,到上新课时相信效果会更好。所谓磨刀不误砍柴工,这个时间是必须得用的。

第8篇:高一数学的知识点范文

一、关于初高中数学成绩分化原因的分析

1.环境与心理的变化。

对高一新生来讲,环境是全新的,还面临着新教材、新同学、新教师、新集体……学生必须经历一个由陌生到熟悉的适应过程。另外,经过紧张的中考复习,考取了自己理想的高中,有些学生产生了“松口气”想法,入学后无紧迫感。也有些学生有畏惧心理,他们在入学前,就听说过高中数学很难学。高中数学一开始也的确是有些难理解的抽象概念,如映射、集合、异面直线等。以上这些因素都严重影响高一新生的学习质量。

2.教材的变化。

初中数学教材内容通俗具体,多为常量,题型少而简单;而高中数学内容抽象,多研究变量、字母,不仅注重计算,而且注重理论分析,这与初中相比难度增加了。

3.课时的变化。

在初中,由于内容少,题型简单,课时较充足。因此,课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法。这样教师有时间进行举例示范,学生也有足够时间进行巩固。而到高中,由于知识点增多,灵活性加大和新工时制的实行,使课时减少,课容量增大,进度加快,对重难点内容没有更多的时间强调,对各类型题也不可能讲全讲细和巩固强化。这也使高一新生因不适应高中学习而影响成绩的提高。

4.学法的变化。

在初中,教师讲得细,归纳总结得全面,练得熟。考试时,学生只要记准概念、公式及教师所讲例题类型,一般均可取得好成绩。因此,学生习惯于围着教师转,不注重独立思考和对规律的归纳总结。到高中,由于内容多时间少,教师不可能把知识应用形式和题型讲全讲细,只能选讲一些具有典型性的题目,以落实“三基”培养能力。

二、搞好初高中衔接所采取的主要措施

1.做好准备工作,为搞好衔接打好基础。

(1)搞好入学教育。这是搞好衔接的基础工作,也是首要工作。应通过入学教育提高学生对初高中衔接重要性的认识,增强紧迫感,消除松懈情绪,初步了解高中数学学习的特点,为其他措施的落实奠定基础。我们主要应做好以下四项工作:一是给学生讲清高一数学在整个中学数学中的地位和作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项;四是请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。

(2)摸清底数,规划教学。为了搞好初高中衔接,教师首先要摸清学生的学习基础,然后以此来规划自己的教学和落实教学要求,以提高教学的针对性。在教学实际中,我们一方面通过进行摸底测试和对入学成绩的分析,了解学生的基础。另一方面,认真学习和比较初高中教学大纲和教材,以全面了解初高中数学知识体系,找出初高中知识的衔接点、区别和需要铺路搭桥的知识点,以使备课和讲课更符合学生实际,更具有针对性。

2.优化课堂教学环节,搞好初高中衔接。

(1)立足于大纲和教材,尊重学生实际,实行层次教学。高一数学中有许多难理解和掌握的知识点,如集合、映射等,对高一新生来讲确实困难较大。因此,在教学中,应从高一学生实际出发,采用“低起点、小梯度、多训练、分层次”的方法,将教学目标分解成若干递进层次逐层落实。

(2)重视新旧知识的联系与区别,建立知识网络。初高中数学有很多衔接知识点,如函数概念、平面几何与立体几何相关知识等,到高中,有的加深了,有的研究范围扩大了,有些在初中成立的结论到高中可能不成立。

(3)重视展示知识的形成过程和方法探索过程,培养学生创造能力。高中数学较初中抽象性强,应用灵活,这就要求学生对知识理解要透,应用要活,不能只停留在对知识结论的死记硬套上。还要求教师向学生展示新知识和新解法的产生背景、形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的灵活性,而且使学生学会如何质疑和解疑的思想方法,促进创造性思维能力的提高。

(4)重视培养学生自我反思自我总结的良好习惯,提高学习的自觉性。高中数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化,认真总结归纳。这就要求学生具备自我反思和自我总结的能力。

(5)重视专题教学。利用专题教学,集中精力攻克难点,强化重点和弥补弱点,系统归纳总结某一类问题的前后知识、应用形式、解决方法和解题规律。并借此机会对学生进行学法的指导,有意识地渗透数学思想方法。

3.加强学法指导。

高中数学教学要把对学生加强学法指导作为教学的重要任务之一。指导以培养学习能力为重点,狠抓学习基本环节,如“怎样预习”、“怎样听课”等。具体措施有三:一是寓学法指导于知识讲解、作业讲评、试卷分析等教学活动之中,这种形式贴近学生学习实际,易被学生接受;二是举办系列讲座,介绍学习方法;三是定期进行学法交流,同学间互相取长补短,以共同提高。

4.优化教育管理环节,促进初高中良好衔接。

第9篇:高一数学的知识点范文

【关键词】高一数学 教学策略 探究教学 数学史 数形结合 学困生转化

【中图分类号】G 【文献标识码】A

【文章编号】0450-9889(2017)01B-0135-03

完高一的第一感觉是:学生把数学当成了“猛虎”。作为高一的数学教师收到的投诉是所有学科中最多的。学生觉得高中和初中的知识跨度大,学习难度大,老师的讲课速度相对于他们的理解能力来说太快,回家哭诉的有,讨厌老师的有,说要放弃的更有。那么,作为承上启下的高一数学教学者,面对如此的情况应该注意什么呢?以下是笔者一些不太成熟的想法,供同行一起探讨。

一、注重初高中数学知识点的衔接

高中数学与初中数学相比,初步分析发现有以下显著特点:从直观到抽象,从单一到复杂,从浅显至深入,从定量到定性。必修1一来就是集合与函数,教材一开始就引入了大量的符号和字母,对学生的抽象、概括和数学符号的理解力有很大的要求,很多题目都涉及分类讨论,对学生的逻辑和严谨性提出了挑战。比如:“集合集合 , 若 ,求 a 的取值范围。”学生对此题中集合 B 是否为空集常忘了讨论,对于包含关系下什么时候取等号常常搞不清楚。为了解决这样的问题,教师要不停地变化条件让学生来做题和体会,才能慢慢地让学生掌握此类内容。因此,教授集合时要从一开始就耐心细致地引导,放低台阶,放慢脚步,让学生习惯数学符号的表达和书写,养成用数学符号代替自然语言的描述习惯,并学会将抽象的符号和直观的图形相结合进行理解和学习。

高一开始时,在适当放慢进度,降低难度的同时,在新课的引入中,要尽量从初中的角度切入,注意新旧对比,前后联系。比如,函数的引入可以从初中熟悉的一次函数 y=x,二次函数 y=x2,反比例函数 着手。这要求教师必须熟悉初中数学教材和课程标准对初中数学概念和知识的要求,把高中教材研究的问题与初中教材研究的问题在文字表述、研究方法、思维特点等方面进行对比,明确新旧知识之间的联系与差异,然后在讲授高中数学时,在复习初中内容的基础上引入新内容。高一数学的每一节内容都是在初中数学基础上发展而来的,故在引入新知识、新概念时,注意旧知识的复习,用学生已熟悉的知识做铺垫和引入。如讲任意角的三角函数时,要先复习初三学过的锐角三角函数的概念,进而提出任意角的三角函数概念,从而引入坐标定义法。教师在教学过程中,帮助学生以旧知识同化新知识,使学生掌握新知识,顺利达到知识的迁移,从而提高学生的学习兴趣。

二、注重数学史教学

在《普通高中数学课程标准(实验)》关于课程的基本理念中,明确指出要“体现数学的文化价值”。数学课程应适当地反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,数学科学的思想体系,数学的美学价值,数学家的创新精神,提出设立“数学史选讲”等专题。由此可见,新课标理念下把数学史作为数学文化的载体有多么重要的作用。几乎所有学科都强调“兴趣是最好的老师”,在调动学生的积极性方面,笔者发现通过讲一讲数学家的一些小故事带来的效果不错,比如,解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入迷,此时他已经近二十岁。数学中的经典问题也对学生有相当大的吸引力,比如,欧拉研究的七桥问题,阿基米德的分牛问题,等等,都是激发学生学习兴趣的好素材。

笔者在高一第一节《集合的概念和表示方法》给学生讲了集合的创始人―― 康托尔,学生感叹他的英俊养眼同时,也记得了他的“连续统”假设(CH,Continuum Hypothesis)―― 在自然数集合与实数集合之间存在不存在一种“集合”,其元素比实数集合少一些,但是,却又比自然数集合多一些?学生的眼球一下被吸引住了,他们会思考,无穷多的数如何比较大小呢?在讲授必修1第二章《函数的概念》时,笔者给学生讲了函数的由来,从莱布尼茨对“function”函数一词的提出,到贝努利认为函数是必须有表达式,到欧拉认为图形也可以表示为函数,再到柯西提出“自变量”一词,完善到与课本接近的概念,最后到德国数学家狄利克雷对函数一词本质的理解。让学生认识函数不断补充和发展的过程,认识这些知名的数学家,并且对课本为何在函数概念前放 3 个不同的列子作了很好的诠释。

在高一教学中的数学史内容还有很多,笔者大概做了以下的归类:

笔者在数学史这方面的知识储备相对来说很少,视野也不够开阔。笔者查了一些图书资料,觉得有两本书值得推荐,即李文林的《数学史概论》和美国数学家克来茵的《古今数学思想》,大家可以去看看。

三、合理选择探究教学形式

高中阶段的教学模式应该多元化,但其主要手段莫过于“启发式”“探究式”“灌输式”教学。对学生而言,数学上由探究学习与接受学习两部分组成,这二者除了获取知识的途径不同之外,还主要存在数学学习过程的思维活跃程度上的差异。笔者用 venn 图表示两者间的关系如下:

这是否说明探究式教学明显高于传统的接受式教学呢?答案是否定的。其实很多基础性的对学生数学思维要求不高的知识内容,采用传统的接受式教学方式更容易使学生掌握。启发式和探究式教学对学生的知识储备和能力都有很高的要求,探究的数学问题在具有必要性和可行性的前提下才能实施。因此对什么知识点用什么样的手段,老师要仔细考虑清楚,切不可将探究流于表面的形式,更多的要上升到内部的数学思维操作上,积极引导学生做出进一步的探究思考,从而努力实现向更高层次过渡。

例如,在一节关于等差数列概念及其性质的教学中,有一位好问的学生提出:“既然有等差数列,是不是应该存在等和数列?”虽然这个问题和本节教学无关,但此时却是为学生创造探究学习的最佳时机。通过学生的探究,学生举出了“1,2,1,2,1,…”等多个等和数列的例子,还仿照等差数列概念得出等和数列的概念,并指出了它的两个性质:(1)等和盗幸欢ㄊ侵芷谑列;(2)等和数列也一定是等积数列。

这样的例子在数学课堂上经常遇到,教师应该抓住这样的“题外话”,甚至故意引导学生发现这样的“题外话”借题发挥,从真正意义上调动学生探究欲望与积极性。苏霍姆林斯基指出:“有许多聪明的,天赋很好的学生,只有当他的手和手指尖接触到创造性劳动的时候,他们对知识的兴趣才能觉醒起来。”

四、注重数形结合

数形结合是中学数学的重要思想方法,数学家华罗庚说过:“数缺形时少直觉,形少数时难入微。数形结合百般好,隔离分家万事非。”运用数形结合的方式解题,既可体现数量与空间图形的辩证统一关系,又快捷简便,直观易懂。

例如,在集合的运算基本上,要借助数轴和 venn 图来直观形象地表示交、并、补的部分。

在函数的教学中,数形结合更为重要,例如 2015 年广东高考题最后一题:

21.(本小题满分 14 分)

设 a 为实数,函数 f(x)=(x-a)2+|x-a|-a(a-1)。

(1)若 ,求 a 的取值范围;

(2)讨论 f(x) 的单调性;

(3)当 时,讨论 在区间 内的零点个数。

这完全可以用画图的方式解决。笔者让所带的高一的学生做,数学思维能力强的学生基本能拿到 10 分。学生告诉笔者,他们认为和平时做的“x2-4|x|+3=m 有四个互相不相等的实数根,求 m 的取值范围”的方法是类似的,只是带有变量 a 的讨论而已,此类题目用画图方式容易解决。

像这样的例子在高一教学中实在太多了,基本初等函数(尤其是带参数的二次函数)、三角函数都对学生的作图能力提出了很高的要求,在高一教学中一定要给学生灌输这样的思想。在作业上严格要求,在解题中画图与书写都不能少。只有在平时经常提醒,让学生养成习惯,这样才能使学生在考试中灵活运用,进行变形迁移。

五、注重数学学习困难生的转化

笔者认为教学和教育从来都是分不开的。笔者每年都会带到一些“让我心疼”的学生,他们乖巧听话,上课认真做笔记,课后作业认真完成,学习也很用功,课外的辅导书也是标注得密密麻麻,但是一考起试来总是在 70 分左右,有甚者是全班的倒数第一。对这样的孩子,笔者通过接触发现她们把数学学不好归结于自己不行,老师讲的东西总是记不住,解决数学问题的方法不太灵活,脑子不好用,太笨了,不如别的同学聪明,不是学数学的料。这样的孩子喜欢做一些程序化的题目,但是题目稍微发生变化就不知道如何下手,即使做对了,也常常怀疑自己做错了。面对这样的学生,笔者做了以下的转化策略:

1.适时表扬,增强自信

平时分析问题时,抽查问一下他们有什么好思路,只要他们的想法有理就给予肯定和表扬,树立他们的信心,提高他们的个人数学自我效能感。另外,在讲解题目时,笔者也多方面展示自己的思路和想法,让学生明白老师也不是立刻就有正确的解法的,当他们下次遇到一下子不能正确求解的题目时不要轻易放弃。 (下转第162页)

(上接第136页)

2.鼓励做学习方法不佳的归因

学习成绩不理想一定是方法不佳,比如,总记一些结论和解题类型,没有对概念和解题思路理解好。多鼓励他们与其他同学交流学习方法和学习心得,把做错的题和不会做的题目一步步整理下来,把当时为什么不会解的各种类型的题的原因记下来,也要把之后如果再碰到这类题目应该怎么办写在旁边。让他们自己去逐渐认识到初中和高中的不同,不再是机械的模仿而是需要自己多尝试和探索,学会独立运用数学思想方法。

3.引导进行合理的外部归因

其实,除了内因外,也有一些外在的因素,如家庭环境,人际关系,身体因素等。多方面对他们进行关心和引导,这样做也取得预想不到的效果。

【参考文献】

相关热门标签