公务员期刊网 精选范文 化学反应工程原理范文

化学反应工程原理精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的化学反应工程原理主题范文,仅供参考,欢迎阅读并收藏。

化学反应工程原理

第1篇:化学反应工程原理范文

【关键词】化学反应工程;改革;创新能力

化学反应工程已成为化工类本科教育的一门专业课程,它以物理化学、化工原理、化工热力学等化工专业基础课为先修课程[1],但由于课程涉及大量的数学模型的建立、理论的推导,大多数学生在学习时普遍感到理论抽象,且在实际问题面前束手无策的高分低能现象。为适应新形势国民经济的发展和要求,我校化学反应工程课程体系在逐渐发生变化,探索出一种适合我校学生特点的新的专业课,为提高工程人才的培养质量、推动高等工程教育改革具有重要意义。

一、改革与具体研究方法

结合反应工程理论教学与学生工程实践能力培养的特点,我校化学反应工程课程教学团队认为该课程体系的改革,应从单向传授知识向互动性教学体系转变,建立系统传授与探索和创新研究相结合的新教学体系,具体如下:

1.课程体系“1+x”模块化建设:课程体系“1+x”模块化建设[2],深化反应工程理论的工业应用,直接关系到学生反应工程基本原理学习程度以及反应器设计与分析等工程能力的培养质量,不仅能增强理解理论知识的准确性和科学性,也扩展了反应器应用与新能源电容器、燃料电池等领域的应用,提高学生把握科技创新发展的命脉,锻炼学生的科研思维,为其在将来就业后能独立工作打下一定的基础。

将化学反应工程课程体系进行“1+x”模块化整合。其中,“1”指化学反应的基础理论知识及理想反应器,“x”指化工不同专业方向的非理想反应器及特色反应器。根据我校化学工程与工艺、应用化学、工业催化、制药工程等专业方向的特色,分别设置非理想反应器、催化反应设备、聚合反应器和制药反应设备,并将催化反应设备与结合当代新能源领域电池、电容器研究相结合,帮助学生扩展知识应用范围。根据学生情况及当代新能源研究热点,建立师生互动栏目、网络课堂和自测考试、qq群等,丰富学生第二课堂生活,扩展知识范围。

2. “启发互动式”教学法,充分调动学生学习思考的积极性,多媒体课件与实际工厂设备相结合[3],有助于提高学生感观认识;模拟反应器操作的仿真动画,使学生加深对这些理论、概念的认识、理解,增强学生综合运用知识解决问题的能力。

精心策划授课内容,培养学生的创新能力:要求课程教学团队精心策划、设计授课内容,合理运用多媒体与传统板书相结合的教学手段,多采用 “启发互动式”教学法,充分调动学生学习思考的积极性。比如:我校教学中采用多媒体技术模拟反应器操作的仿真动画,结合生产实际操作中各种反应器的影像资料,不仅解决了传统教学中老师难教、学生难懂的难题,而且大大提高了教学效率和授课效果,丰富了课堂教学内容,同时也培养了学生的学习创新能力;采用flas进行图文并茂,生动形象的影放化工过程和化工设备的实际运转实况,并辅以实验与理论的紧密结合,有助于教学质量跨上一个新台阶。

3. 建设化学反应工程精品课程:精品课程要求具有一流教师队伍、一流教学内容、一流教学方法、一流教材等特点的示范性课程。近年来,我校汇聚了一些化学反应工程的研究人才,如来自于新加坡南洋理工、南京大学、中科院大连化学物理研究所等著名学府,其组建的反应工程教学团队将围绕反应工程课程建设和当今新能源领域研究热点进行大量的教学改革,通过课程网站建立师生互动栏目、多媒体课件、网络课堂和自测考试、qq群等交流平台,使课堂整体教学与网络教学相互补充,并将课堂教学延伸到教室外,给学生增添更多的自主学习机会,进而动了学生的学习积极性。

4. 精选国外经典教材,为实施双语教学做准备:双语教育正成为中国课程改革中的一个热门话题,是21世纪实现创新教育的一种重要教学方式。为了提升我校本科人才培养专业素质,提高学生专业英语的理解与应用水平,拟实施部分双语教学在课程的考核中,专业术语用英文来表述,英文阅读和答题占试卷的60%以上。

二、改革目标

课程教学方法改革与创新有效提高学生的学习兴趣和教学质量,确定一套适合我校学生特点的灵活多变的教学方法,建立具有我校特点的化学反应工程实践教学内容和培养方案,进一步提高我校化学反应工程课程的教学质量,为学生今后顺利完成毕业论文和毕业设计,以及科研能力的培养奠定扎实基础。同时,使学生掌握基本的理论外,注重培养学生起对工程问题的分析和解决能力,使学生能运用所学知识解决化工及相关领域的实际问题。

三、结论

化学反应工程已成为化工类本科教育的一门专业课程,随着化学工业的快速发展和环境污染问题的日益突出,新型反应设备与技术显得越来越重要,反应要从实验室放大到工业生产以及工业反应器的设计等一系列重要的化学工程问题都离不开化学反应工程的指导,为了适应新世纪知识经济时代的发展、国家及我校创新高素质人才培养目标的要求,进一步深化化学反应工程课程改革,想方设法调动学生的学习兴趣,丰富教学内容,培养学生分析、解决工程问题的创新能力,形成适合新时代人才发展的教学方式具有划时代的深远意义。

参考文献:

[1]刘其海,周新华,尹国强. 化学反应工程课程教学方法创新探讨[J]. 广州化工,2010, 38(7): 256-258.

第2篇:化学反应工程原理范文

关键词:湿式除尘脱硫设备 基本原理 流程 净化效果

造成我国大气环境污染的主要因素为燃煤和燃油烟气,它主要由二氧化硫和其他颗粒污染物组成,污染了环境和影响了人体健康。鉴于此,我国从上个世纪就已经着手脱硫除尘设备的研发工作,截止到目前,我国绝大多数燃煤和燃油装置都安装了这种设备。但由于经济的较快发展,大气污染情况进一步严重,因此,研发出一种高效湿式除尘脱硫设备变得十分必要和紧迫。

一、湿式除尘脱硫的基本原理

1.物理吸收的基本原理

气体吸收可分为物理吸收和化学吸收两种。如果吸收过程不发生显著的化学反应,仅仅是被吸收气体溶解于液体的过程,称为物理吸收,如用水吸收SO2。物理吸收的特点是,随着温度的升高,被吸气体的吸收量减少。

物理吸收的程度,取决于气--液平衡,只要气相中被吸收的分压大于液相呈平衡时该气体分压时,吸收过程就会进行。由于物理吸收过程的推动力很小,吸收速率较低,因而在工程设计上要求被净化气体的气相分压大于气液平衡时该气体的分压。因为物理吸收速率较低,所以很少单独采用物理吸收法。

2.化学吸收法的基本原理

若被吸收的气体组分与吸收液的组分发生化学反应,则称为化学吸收,例如应用碱液吸收SO2。应用固体吸收剂与被吸收组分发生化学反应,而将其从烟气中分离出来的过程,也属于化学吸收,例如炉内喷钙(CaO)烟气脱硫也是化学吸收。在化学吸收过程中,被吸收气体与液体相组分发生化学反应,有效的降低了溶液表面上被吸收气体的分压。增加了吸收过程的推动力,既提高了吸收效率又降低了被吸收气体的气相分压。因此,化学吸收速率比物理吸收速率大得多。

物理吸收和化学吸收,都受气相扩散速度(或气膜阻力)和液相扩散速度(或液膜阻力)的影响,工程上常用加强气液两相的扰动来消除气膜与液膜的阻力。在烟气脱硫中,瞬间内要连续不断地净化大量含低浓度SO2的烟气,如单独应用物理吸收,因其净化效率很低,难以达到SO2的排放标准。因此,烟气脱硫技术中以化学吸收法为主,物理吸收法为辅。

3.化学吸收的过程

化学吸收是由物理吸收过程和化学反应两个过程组成的。在物理吸收过程中,被吸收的气体在液相中进行溶解,当气液达到相平衡时,被吸收气体的平衡浓度,是物理吸收过程的极限。被吸收气体中的活性组分进行化学反应,当化学反应达到平衡时,被吸收气体的消耗量,是化学吸收过程的极限。

4.化学吸收过程的速率及过程阻力

化学吸收过程的速率,是由物理吸收的气液传质速度和化学反应速度决定的。化学吸收过程的阻力,也是由物理吸收气液传质的阻力和化学反应阻力决定的。

在物理吸收的气液传质过程中,被吸收气体气液两相的吸收速率,主要取决于气相中被吸收组分的分压,和吸收达到平衡时液相中被吸收组分的平衡分压之差。此外,也和传质系数有关,被吸收气体气液两相间的传质阻力,通常取决于通过气膜和液膜分子扩散的阻力。

二、高效除尘脱硫设备的除尘脱硫过程

根据湿式除尘脱硫的基本原理,本课题组设计了一款高效除尘脱硫设备,其除尘过程主要有3级。第一,在进气管中安装喷头,它可以喷出雾化液体,这些雾化液体可充分与尘体接触,从而完成第一级除尘工作。第二,而后形成的高速气体流直接冲向设备中的水面,形成大量的水雾,这些水雾和烟气中的体积较大的颗粒物结合,并沉降到水底,完成第二级除尘工作。第三,由于烟气的冲击力较强,“S”型管道中出现了旋流雾液,雾液与颗粒物结合,进一步除尘,则完成第三级除尘。这三个过程不仅有除尘过程,还伴有脱硫过程,即设备中的碱性液体成功实现烟气的脱硫。最后,排出净化的气体时,则需经过脱水器的处理,而后如大气。

三、高效湿式除尘脱硫装置的净化效果

1.试验装置

为分析设备改造后的除尘脱硫效果,可确定试验设备的相关参数,锅炉处理量为2 t/h,处理气量为700m3/h,其长宽高分别为800mm、400mm、1700mm,进、出气管直径均为150mm。

煤尘可作为模拟粉尘,二氧化硫气体现行制备,碱性溶液为氢氧化钠溶液。

2.试验效果

实验过程中只需对进、出口处的二氧化硫浓度和粉尘浓度进行测量,本设备密封效果极好,因此,实验结果非常准确。测量结果如表2所示。

表2 除尘脱硫效率

结果显示,当液气比为0.34 L/ m3 时,其除尘率和脱硫率较高。与国内其他同类设备相比,它可在较小的阻力和液气比条件下,实现更好地脱硫和除尘效果。

四、结束语

本设备在除尘和脱硫基本原理的基础上,实现了除尘和脱硫高效化、一体化,此外,还可以有效除去较小的颗粒污染物。设备本身造价低,能耗小,结构密封性好,适用范围广,具有良好的应用效果。

参考文献

[1] 陈志刚.火电厂石灰石——石膏法烟气脱硫装置简介[J].有色冶金设计与研究,2006(04)

[2] 方棋,顾玖平,丁承刚,倪佳敏.外高桥电厂1、2号机组湿式烟气脱硫装置[J].上海电力,2006(05)

[3] 于建国,徐军杰,杨颖,邓强.燃煤锅炉房烟气脱硫除尘装置的工程应用[J].煤气与热力,2011(02)

[4] 于爱民.湿式除尘脱硫设备[J].化工环保,2001(03)

[5] 徐娟,郭静,郭斌,苑宏英.高效湿式脱硫除尘一体化装置的研究[J].城市环境与城市生态,2002(04)

第3篇:化学反应工程原理范文

关键词:计算流体力学;求解;基本原理;化学工程;应用

化学工程在我国具有较长的研究与应用历程,并在实际的生产与生活中取得到巨大的应用成效,不仅能够供给正常的生活需求,同时根据新材料的开发,能够满足现代型环保材料的使用。在化学工程中,较多的反映环境和反应机制都是在溶液中进行的,具有质量守恒和热量守恒定律的应用。而这种质量与能量的关系正是计算流体力学的主要原理。通过对实际应用环境和原理的分析,能够优化工程设计和工艺改进,提高化学工程的生产效率。

1计算流体力学在化学工程中的基本原理

计算流体力学简称CFD,是通过数值计算方法来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。一般情况下,计算流体力学的数值计算方法主要包括数值差分法、数值有限元法及数值有限体积法,其也是一门多门学科交叉的科目,计算流体力学不仅要掌握流体力学的知识,也要掌握计算几何学和数值分析等学科知识,其涉及面广。针对计算流体力学的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。随着信息技术的发展,市场上也出现了计算流体力学软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。

2计算流体力学砸你化学工程中的实际应用

2.1在搅拌中的应用分析

在搅拌的化学反应中,反映介质之间的流动性比较复杂,依据传统的计算形式根本无法解决,并在化学试剂在搅拌中存在不均匀扩散的特点,在湍流的形式中能量的分布状况也存在着空间特点。若是依据实验手段测得反映中物质、能量和质量的变化规律,其得出的结构往往存在较差时效性,实验骗差加大。通过对二维计算流体力学的应用,能够对搅拌中流体的形式进行模拟,并进行质量、能量等数据的验证。但是流体的变化,不仅与化学试剂的浓度、减半速度有关,还与时间、容器的形状等有着之间的联系,需要建立三维空间模拟形式进行计算流行力学。随着科学技术和研究水平的提高,在通过借助多普勒激光测速仪后,已经对三维计算形式有了较大的突破,这对于化工工程中原料的有效应用和工程成本的减低具有促进的作用,但是在三维计算流体力学中还存在一定的缺陷,需要在今后的研究中不断的完善。

2.2CFD在化学工程换热器中的应用分析

换热器是化学工程中主要的应用设备,通过管式等换热器、板式换热器、冷却塔和再沸器等的应用,能够有效的控制化学试剂在反应中的温度变化。其中根据换热器的形式不同,计算流体力学的方式也就不同。在管式换热器中主要是通过流体湍流速度的改变,增加换热速率的。在板式换热器中是通过加大流体的接触面积,提高换热效率的。而在冷却塔和再沸器中,热量交换的形式更为复杂,但是却群在重复性换热的特点,增加了换热的时间,提高了换热的效果。从总体上分析,计算流量力学中,需要对温度变化、流体的速度变化、热交换面积变化和时间变化进行分析。通过CFD计算流体力学的应用,能够计算出不同设备的热交换效果,并根据生产的实际需求进行换热器的选择使用。

2.3在精馏塔中的应用

CFD已成为研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。在板式塔板上的气液传质方面,Vi-tankar等应用低雷诺数的k-ε模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。Vivek等以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD商用软件FLUENT模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。在填料塔方面,Petre等建立了一种用塔内典型微型单元(REU)的流体力学性质来预测整塔的流体力学性质的方法,对每一个单元用FLUENT进行了模拟计算,发现塔内的主要能量损失来自于填料内的流体喷溅和流体与塔壁之间的碰撞,且用此方法预测了整塔的压降。Larachi等发现流体在REU的能量损失(包括流体在填料层与层之间碰撞、与填料壁的碰撞引起的能量损失等)以及流体返混现象是影响填料效率的主要因素,而它们都和填料的几何性质相关,因此用CFD模拟计算了单相流在几种形状不同的填料中流动产生的压降,为改进填料提供了理论依据。CFD模拟精馏塔内流体流动也存在一些不足,如CFD模拟规整填料塔内流体流动的结果与实验值还有一定的偏差。这是由于对于许多问题所应用的数学模型还不够精确,还需要加强流体力学的理论分析和实验研究。

2.4CFD在化学反应工程中的应用研究

在化学反应工程中,反应物和生成物的化学反应速率与反应器、温度和压力等有着较大的联系,在实际的反应中可以利用计算流体力学进行数据的获取。但是这数据的获取具有一定的温度限制,当反应中温度过大,就会造成分子的剧烈运动,其运动轨迹的变化规律就会异常,在利用计算流体力学的模型计算中,计算数据与实际情况会发生较大的偏差。由于高温中分子的运动轨迹和运动速度难以获取,在计算流体力学的实际计算中,就要借助FLUENT进行三维建型,并利用测速反应器进行速度的测量,通过综合的比较分析,利用限元法进行数据的计算。可以得出不同环境下的反应器的流线、反应器内部的浓度梯度及温度梯度。通过CFD软件预测反应器的速度、温度及压力场,可以更进一步理解化学反应工程中的聚合过程,详细、准确的数据可以优化化学反应中的操作参数。

3结束语

计算流体力学对于化学工程的应用具有实际意义,并在经济效益的提高上具有重要的价值,在近几年,化学工程技术人员不断的计算流体力学中展开研究,以二维空间计算和模拟为基础,不断的完善三维空间的流量计算,并得出了一系列的流体流动规律。根据计算流体力学在化学工程中的广泛应用,在今后的化学工程发展中,应加强此类学科的教学与延伸,提供出更有效的反应设备和工艺操作。

参考文献

[1]余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(06).

第4篇:化学反应工程原理范文

关键词:用处;动力;大显身手;启示;喜爱

化学方程式,也称为化学反应方程式,是用化学式表示化学反应的式子。化学方程式反映的是客观事实。翻阅化学课本,品味化学方程式,梳理化学反应的作用,感觉化学反应方程式用处真不少。

一、做好实验所需化学方式

化学是一门实验科学,需要到实验室进行实验探究。如何根据现有的仪器、药品选择合适的装置?多余的药品一定要丢到废液槽里吗?一旦发生实验事故怎样解决?这些都是我们在实验室常遇到的问题。

制备氧气的原理有:

++,,。

制备氧气时,我们就可以依据物质的状态和反应条件选择不同的装置。只有掌握更多的知识,更多的化学反应方程式,才能结合实际,就地取材,解决问题。

钠与水的反应,只需黄豆粒大小,切下后,剩余的钠块能直接丢到废液槽里吗?显然不能常规处理,我们能做的就是把钠重新放回煤油中。因为钠与废液槽中的水或酸进行反应,甚至发生燃烧爆炸事故。钠一旦燃烧,我们能否用水灭火?绝对不可,否则就会“火上浇油”,不是吗?

二、用化学方程式解决实际问题

增强我们的学习动力,莫过于学以致用。如何应用我们学过的化学反应方程式解决生活中的实际问题?

若家里正将管道煤气由石油液化气(主要成分是丁烷)改为天然气,你对灶具该如何调整?

;改为天然气后,同体积燃料燃烧消耗空气的体积将减小,所以灶具的调整方法是减小空气的进气量。灶具调整好了,我做饭吧。首先思考一下,怎么使炖出的鱼味道鲜美?向锅里加点酒和醋即可。

生成会使炖出的鱼香味更浓。同样的原理,酒后吃点水果可以醒酒。水果里含有机酸,例如,苹果里含有苹果酸,柑橘里含有柠檬酸,葡萄里含有酒石酸等,而酒里的主要成分是乙醇,有机酸能与乙醇相互作用而形成酯类物质从而达到解酒的目的。家里来了客人,酒足饭饱后,你上点水果,一定能得到他们的夸奖。这真是,不想不知道,很多生活小窍门,确实来自我们学习的化学反应方程式。

生活中,我们有时会遇到一些江湖骗子。他们卖的东西比市场价低好多,说什么厂家直销、厂家大放血、亏本大甩卖。请看下面这一事例。随着人们生活水平的不断提高,穿戴金饰品的人越来越多了,购买时,人们总想买纯一点的,价格又想优惠再优惠。骗子正是抓住人们的这一心理。拿出金光闪闪的愚人金以低价位吸引人们。愚人金是指能闪耀金黄色的黄铁矿()或黄铜矿的矿石,它们常以迷人的姿色愚弄缺乏矿物知识的人而得其诨名。其实要识别其“庐山真面目”并不难。

真金是不溶于盐酸的。有了化学知识还会上当受骗么?

晚会上,运用化学反应表演一个小魔术,也是挺神奇的。我们用Na2O2表演“滴水生火”。把Na2O2裹在脱脂棉里,向脱脂棉里滴几滴水,脱脂棉就会燃烧起来。说一些夸张的话,配以神神秘秘的表情,相信尖叫声、欢呼声一定会此起彼伏。在同学面前漏一小手的感觉是不是很爽。

在工业上,我们学的化学反应方程式能大显身手么?

氯气是重要的化工原料,同时也是有毒的气体。一旦氯气泄漏,后果不堪设想。今年4月12日17时许,山西省临猗县一废品收购站发生氯气泄漏事件,附近一所小学的数十名小学生随后出现呼吸不适和腹部疼痛症状。如何检验管道是否有氯气泄漏?泄漏后又如何处理?我们用蘸有氨水的布检查氯气管道是否泄露。当有氯气泄露时,氯气和氨气反应生成氯化铵白烟。

当发现管道泄漏时,可在消防车水罐中加入生石灰、苏打粉等碱性物质,向管道、罐体、容器喷射,以减轻危害。也可将泄漏的氯气导入氢氧化钠、碳酸钠等碱性溶液中,使其反应形成无害或低毒废水.氯气还可以发生,这不是海水提溴的原理吗?可见学好化学反应方程式才能更好地服务生产。

三、化学反应方程式的启示

“量变会引起质变”这一辩证哲理,在我们化学领域成立么?足量的铜与一定量的浓硝酸反应。

随着反应的进行,硝酸变稀,会发生,

硝酸有浓变稀这一量变会使产物发生质变。

第5篇:化学反应工程原理范文

众所周知,化工生产在我国占有非常重要的地位,对农业生产等起到了很大的作用,不过我们也不可避免地看到当前化学工程中化工生产过程中的工艺也存在着一些问题,需要引起我们的重视。

1.1化工生产效率有待提高

由于我国很多化工生产都一味追求“量”,而忽略了对“质”的要求,就造成了化工生产的效率低下问题的存在。这不仅和化学反应的生产设备有关,而且还和化学反应的环境是分不开的。比如,在生产化学肥料时,反应器皿往往无法达到反应温度。从而使反应不充分,造成废气以及废物的产生。同时,还存在着反应不充分的问题,反应的不充分一方面造成了产品不能满足人民的生活生产需要,而且对资源也是极大的浪费。

1.2对环境造成污染和破坏

目前,化工生产是环境污染和破坏的一个重要原因,尤其是有毒有害气体以及重金属的排放。在化工生产中,很多企业都是为了节省成本,对有害气体和重金属超标的废水随意排放,不仅造成空气、水的污染,而且对土质也带来了破坏。在我国很多城市的周边都出现了河水的严重污染,甚至影响到了居民的日常用水。

1.3生产工艺不合格

另外,当前化工生产中工艺的不合格也是一个非常普遍的现象。这是因为,在化学工程中,连续的化工生产环节不连贯,造成整个工程的连续性不佳,工程的进度容易受到影响,尤其是当整个生产环节出现脱节的时候,就会对化学工程造成很大的影响。而化工生产环节中,出现的影响,其主要原因也在于生产工艺的不合格。

2有效加强化学工程中化工生产工艺的分析

从上文中可以看出,化学工艺的不完善使得我国化学工程中化工生产存在着一些问题。下文笔者就将结合这些问题提供一些行之有效的加强措施:

2.1改善化学反应的条件及环境

在化工生产中,化学反应条件是一个至关重要的影响要素,如何有效改善化学反应条件是提高生产效率、减少废料的产生的重要条件。因此,在实际生产中,务必要按照相关的标准对催化剂等所需的条件做严格检查,对于不达标的坚决不能用于化工生产。同时,产生的化学反应废料不要直接排放到自然环境中,以保证化工生产能处于一个相对良好的环境中。

2.2依据实际情况对工艺进行调整

对生产工艺的改善,并不是仅仅从反应条件入手,是要对不同的反应原理等都做深入的分析和研究。以制造氧气的工艺来分析,我们要仔细考虑采用哪种工艺才能生产中高效、利于投入生产的氧气呢?当然,在不同的环境下,对于生产的原料以及方式都是可以随机改变的,并能通过改变来进行适应性生产,从而提高化学生产的效率,并实现高效以及绿色生产。

2.3对化工生产产生的废料进行合理处理

对化学工程中的化工生产来说,产生废料是不可避免的,而如何合理地对废料进行处理,开发出有效的程序及治理系统,则需要我们去仔细进行考虑。当前,有毒物质以及重金属在我国的相关的法律中有明确的规定,不允许直接排放到环境中去。因此,对于废水来说,要经过相应的废水处理工艺,将水中的重金属采用沉淀的方式使其沉淀,这样就避免直接排放到环境中从而带来危害。而对于废气的处理,要在废气的中、顶部设置废气处理过滤系统,这些过滤系统可以将废气中的有毒气体以及粉尘等过滤掉。在废水和废气经过处理后,还应该对处理的水、气按照相关的标准做出检测,使其满足国家相应的标准后才允许排放到环境中去。

3结语

第6篇:化学反应工程原理范文

知识目标

使学生建立化学平衡的观点;理解化学平衡的特征;理解浓度、压强和温度等条件对化学平衡的影响;理解平衡移动的原理。

能力目标

培养学生对知识的理解能力,通过对变化规律本质的认识,培养学生分析、推理、归纳、/Article/Index.asp''''>总结的能力。

情感目标

培养学生实事求是的科学态度及从微观到宏观,从现象到本质的科学的研究方法。

教学建议

“影响化学平衡的条件”教材分析

本节教材在本章中起承上启下的作用。在影响化学反应速率的条件和化学平衡等知识的基础上进行本节的教学,系统性较好,有利于启发学生思考,便于学生接受。

本节重点:浓度、压强和温度对化学平衡的影响。难点:平衡移动原理的应用。

因浓度、温度等外界条件对化学反应速率的影响等内容,不仅在知识上为本节的教学奠定了基础,而且其探讨问题的思路和方法,也可迁移用来指导学生进行本书的学习。所以本节教材在前言中就明确指出,当浓度、温度等外界条件改变时,化学平衡就会发生移动。同时指出,研究化学平衡的目的,并不是为了保持平衡状态不变,而是为了利用外界条件的改变,使化学平衡向有利的方向移动,如向提高反应物转化率的方向移动,由此说明学习本节的实际意义。

教材重视由实验引入教学,通过对实验现象的观察和分析,引导学生得出增大反应物的浓度或减小生成物的浓度都可以使化学平衡向正反应方向移动的结论。反之,则化学平衡向逆反应方向移动。并在温度对化学平衡影响后通过对实验现象的分析,归纳出平衡移动原理。

压强对化学平衡的影响,教材中采用对合成氨反应实验数据的分析,引导学生得出压强对化学平衡移动的影响。

教材在充分肯定平衡移动原理的同时,也指出该原理的局限性,以教育学生在应用原理时,应注意原理的适用范围,对学生进行科学态度的熏陶和科学方法的训练。

“影响化学平衡的条件”教学建议

本节教学可从演示实验入手,采用边演示实验边讲解的方法,引导学生认真观察实验现象,启发学生充分讨论,由师生共同归纳出平衡移动原理。

新课的引入:

①复习上一节讲过的“化学平衡状态”的概念,强调化学平衡状态是建立在一定条件基础上的,当浓度、压强、温度等反应条件改变时,原平衡的反应混合物里各组分的浓度也会随着改变,从而达到新的平衡状态。

②给出“化学平衡的移动”概念,强调化学平衡的移动是可逆反应中旧平衡的破坏、新平衡的建立的过程,在这个过程中,反应混合物中各组分的浓度一直在变化着。

③指出学习和研究化学平衡的实际意义正是利用外界条件的改变,使旧的化学平衡破坏并建立新的较理想的化学平衡。

具体的教学建议如下:

1.重点讲解浓度对化学平衡的影响

(1)观察上一节教材中的表3-l,对比第1和第4组数据,让学生思考:可从中得出什么结论?

(2)从演示实验或学生实验入手,通过对实验现象的观察和分析,引导学生得出结论。这里应明确,溶液颜色的深浅变化,实质是浓度的增大与减小而造成的。

(3)引导学生运用浓度对化学反应速率的影响展开讨论,说明浓度的改变为什么会使化学平衡发生移动。讨论时,应研究一个具体的可逆反应。讨论后,应明确浓度的改变使正、逆反应速率不再相等,使化学平衡发生移动;增加某一反应物的浓度,会使反应混合物中各组分的浓度进行调整;新平衡建立时,生成物的浓度要较原平衡时增加,该反应物的浓度较刚增加时减小,但较原平衡时增加。

2.压强和温度对化学平衡的影响:应引导学生分析实验数据,并从中得出正确的结论。温度对化学平衡影响也是从实验入手。要引导学生通过观察实验现象,归纳出压强和温度的改变对化学平衡的影响。

3.勒夏特列原理的教学:在明确了浓度、压强、温度的改变对化学平衡的影响以后,可采用归纳法,突破对勒夏特列原理表述中“减弱这种改变”含义理解上的困难:

其他几个问题:

1.关于催化剂问题,应明确:①由于催化剂能同等程度增加正、逆反应速率,因此它对化学平衡的移动没有影响;②使用催化剂,能改变达到平衡所需要的时间。

2.关于化学平衡移动原理的应用范围和局限性,应明确:①平衡移动原理对所有的动态平衡都适用,为后面将要学习的电离平衡、水解平衡作铺垫;②平衡移动原理能用来判断平衡移动的方向,但不能用来判断建立新平衡所需要的时间。教育学生在应用原理时应注意原理的适用范围,对学生进行科学态度的熏陶和科学方法的训练。

3.对本节设置的讨论题,可在学生思考的基础上,提问学生回答,这是对本节教学内容较全面的复习和巩固。

4.对于本节编入的资料,可结合勒夏特列原理的教学,让学生当堂阅读,以了解勒夏特列的研究成果和对人类的贡献;可回顾第二节“工程师的设想”的讨论,明确:欲减少炼铁高炉气中CO的含量,这属于化学平衡的移动问题,而利用增加高炉高度以增加CO和铁矿石的接触时间的做法并未改变可逆反应的条件,因而是徒劳的。

化学平衡教材分析

本节教材分为两部分。第一部分为化学平衡的建立,这是本章教学的重点。第二部分为化学平衡常数,在最新的高中化学教学大纲(2002年版)中,该部分没有要求。

化学平衡观点的建立是很重要的,也具有一定的难度。教材注意精心设置知识台阶,采用图画和联想等方法,帮助学生建立化学平衡的观点。

教材以合成氨工业为例,指出在化学研究和化工生产中,只考虑化学反应速率是不够的,还需要考虑化学反应进行的程度,即化学平衡。建立化学平衡观点的关键,是帮助学生理解在一定条件下的可逆反应中,正、逆反应速率会趋于相等。教材以蔗糖溶解为例指出在饱和溶液中,当蔗糖溶解的速率与结晶速率相等时,处于溶解平衡状态,并进而以()的可逆反应为例,说明在上述可逆反应中,当正反应速率与逆反应速率相等时,就处于化学平衡状态。这样层层引导,通过图画等帮助学生联想,借以在一定程度上突破化学平衡状态建立的教学难点。

教材接着通过对19世纪后期,在英国曾出现的用建造高大高炉的方法来减少高炉气中含量的错误做法展开讨论。通过对该史实的讨论,使学生对化学平衡的建立和特征有更深刻的理解,培养学生分析实际问题的能力,并训练学生的科学方法。

化学平衡教学建议

教学中应注意精心设置知识台阶,充分利用教材的章图、本节内的图画等启发学生联想,借以建立化学平衡的观点。

教学可采取以下步骤:

1.以合成氨工业为例,引入新课,明确化学平衡研究的课题。

(1)复习提问,工业上合成氨的化学方程式

(2)明确合成氨的反应是一个可逆反应,并提问可逆反应的定义,强调“二同”——即正反应、逆反应在同一条件下,同时进行;强调可逆反应不能进行到底,所以对任一可逆反应来讲,都有一个化学反应进行的程度问题。

(3)由以上得出合成氨工业中要考虑的两个问题,一是化学反应速率问题,即如何在单位时间里提高合成氨的产量;一是如何使和尽可能多地转变为,即可逆反应进行的程度以及各种条件对反应进行程度的影响——化学平衡研究的问题。

2.从具体的化学反应入手,层层引导,建立化学平衡的观点。

如蔗糖饱和溶液中,蔗糖溶解的速率与结晶的速率相等时,处于溶解平衡状态。

又如,说明一定温度下,正、逆反应速率相等时,可逆反应就处于化学平衡状态,反应无论进行多长时间,反应混合物中各气体的浓度都不再发生变化。

通过向学生提出问题:达到化学平衡状态时有何特征?让学生讨论。最后得出:化学平衡状态是指在一定条件下的可逆反应里,正反应和逆反应的速率相等,反应混合物中各组分的浓度保持不变的状态(此时化学反应进行到最大限度)。并指出某一化学平衡状态是在一定条件下建立的。

3.为进一步深刻理解化学平衡的建立和特征,可以书中的史实为例引导学生讨论分析。得出在一定条件下当达到化学平衡状态时,增加高炉高度只是增加了CO和铁矿石的接触时间,并没有改变化学平衡建立时的条件,所以平衡状态不变,即CO的浓度是相同的。关于CO浓度的变化是一个化学平衡移动的问题,将在下一节教学中主要讨论。从而使学生明白本节的讨论题的涵义。

教学设计示例

第一课时化学平衡的概念与计算

知识目标:掌握化学平衡的概念极其特点;掌握化学平衡的有关计算。

能力目标:培养学生分析、归纳,语言表达与综合计算能力。

情感目标:结合化学平衡是相对的、有条件的、动态的等特点对学生进行辩证唯物主义教育;培养学生严谨的学习态度和思维习惯。

教学过程设计

【复习提问】什么是可逆反应?在一定条件下2molSO2与1molO2反应能否得到2molSO3?

【引入】得不到2molSO3,能得到多少摩SO3?也就是说反应到底进行到什么程度?这就是化学平衡所研究的问题。

思考并作答:在相同条件下既能向正反应方向进行又能向逆反应方向进行的反应叫做可逆反应。SO2与O2的反应为可逆反应不能进行完全,因此得不到2molSO3。

提出反应程度的问题,引入化学平衡的概念。

结合所学过的速率、浓度知识有助于理解抽象的化学平衡的概念的实质。

【分析】在一定条件下,2molSO2与1molO2反应体系中各组分速率与浓度的变化并画图。

回忆,思考并作答。

【板书】一、化学平衡状态

1.定义:见课本P38页

【分析】引导学生从化学平衡研究的范围,达到平衡的原因与结果进行分析、归纳。

研究对象:可逆反应

平衡前提:温度、压强、浓度一定

原因:v正=v逆(同一种物质)

结果:各组成成分的质量分数保持不变。

准确掌握化学平衡的概念,弄清概念的内涵和外延。

【提问】化学平衡有什么特点?

【引导】引导学生讨论并和学生一起小结。

讨论并小结。

平衡特点:

等(正逆反应速率相等)

定(浓度与质量分数恒定)

动(动态平衡)

变(条件改变,平衡发生变化)

培养学生分析问题与解决问题的能力,并进行辩证唯物主义观点的教育。加深对平衡概念的理解。

讨论题:在一定温度下,反应达平衡的标志是()。

(A)混合气颜色不随时间的变化

(B)数值上v(NO2生成)=2v(N2O4消耗)

(C)单位时间内反应物减少的分子数等于生成物增加的分子数

(D)压强不随时间的变化而变化

(E)混合气的平均分子量不变

讨论结果:因为该反应如果达平衡,混合物体系中各组分的浓度与总物质的量均保持不变,即颜色不变,压强、平均分子量也不变。因此可作为达平衡的标志(A)、(D)、(E)。

加深对平衡概念的理解,培养学生分析问题和解决问题的能力。

【过渡】化学平衡状态代表了化学反应进行达到了最大程度,如何定量的表示化学反应进行的程度呢?

2.转化率:在一定条件下,可逆反应达化学平衡状态时,某一反应物消耗量占该反应物起始量的质量分数,叫该反应物的转化率。

公式:a=c/c始×100%

通过讨论明确由于反应可逆,达平衡时反应物的转化率小于100%。

通过掌握转化率的概念,公式进一步理解化学平衡的意义。

3.平衡的有关计算

(1)起始浓度,变化浓度,平衡浓度。

例1445℃时,将0.1molI2与0.02molH2通入2L密闭容器中,达平衡后有0.03molHI生成。求:①各物质的起始浓度与平衡浓度。

②平衡混合气中氢气的体积分数。

引导学生分析:

c始/mol/L0.010.050

c变/mol/Lxx2x

c平/mol/L0.015

0+2x=0.015mol/L

x=0.0075mol/L

平衡浓度:

c(I2)平=C(I2)始-C(I2)

=0.05mol/L-0.0075mol/L

=0.0425mol/L

c(H2)平=0.01-0.0075=0.0025mol/L

c(HI)平=c(HI)始+c(HI)

=0.015mol/L

w(H2)=0.0025/(0.05+0.01)

通过具体计算弄清起始浓度、变化浓度、平衡浓度三者之间的关系,掌握有关化学平衡的计算。

【小结】①起始浓度、变化浓度、平衡浓度三者的关系,只有变化浓度才与方程式前面的系数成比例。

②可逆反应中任一组分的平衡浓度不可能为0。

(2)转化率的有关计算

例202molCO与0.02×100%=4.2%mol水蒸气在2L密闭容器里加热至1200℃经2min达平衡,生成CO2和H2,已知V(CO)=0.003mol/(L·min),求平衡时各物质的浓度及CO的转化率。

c(CO)=V(CO)·t

=0.003mol/(L·min)×2min

=0.006mol/L

a=c/c(始)×100%

=0.006/0.01×100%

=60%

【小结】变化浓度是联系化学方程式,平衡浓度与起始浓度,转化率,化学反应速率的桥梁。因此,抓变化浓度是解题的关键。

(3)综合计算

例3一定条件下,在密闭容器内将N2和H2以体积比为1∶3混合,当反应达平衡时,混合气中氨占25%(体积比),若混合前有100molN2,求平衡后N2、H2、NH3的物质的量及N2的转化率。

思考分析:

方法一:

设反应消耗xmolN2

n(始)1003000

nx3x2x

n(平)100-x300-3x2x

(mol)

x=40mol

n(N2)平=100mol-xmol=100mol-40mol

=60mol

n(N2)平=300mol-3xmol=180mol

a=40/100×100%=40%

方法二:设有xmolN2反应

n

122

x2x2x

【小结】方法一是结合新学的起始量与平衡量之间的关系从每种物质入手来考虑,方法二是根据以前学过的差量从总效应列式,方法二有时更简单。

巩固转化率的概念并弄清转化率与变化浓度,速率化学方程式之间的关系。

通过一题多解将不同过程的差量计算与平衡计算联系起来加深对平衡的理解,加强对所学知识(如差量的计算,阿伏加德罗定律的计算)的运用,培养学生综合思维能力和计算能力。

强调重点,加强学法指导。

【课堂小结】今天我们重点学习了化学平衡的概念及有关计算,比较抽象,希望大家加强练习,以便熟练地掌握平衡的概念。

【随堂检测】1.对于一定温度下的密闭容器中,可逆反应达平衡的标志是()。

(A)压强不随时间的变化而变化

(B)混合气的平均分子量一定

(C)生成nmolH2同时生成2nmolHI

(D)v(H2)=v(I2)

2.合成氨生产中,进入塔内的氮气和氢气体积比为1∶3,p=1.52×107Pa(150atm),从合成塔出来的氨占平衡混合气体积的16%,求合成塔出来的气体的压强。

平衡时NH3的体积分数为:

n(平NH3)/n(平总)×100%

=n(平NH3)/(n始-n)

=2x/(400-2x)×100%

=25%

第7篇:化学反应工程原理范文

关键词:大克泊湖淖;水化学演化;反向地球化学反应路径模拟

中图分类号:P641 文献标识码:A 文章编号:1009-2374(2012)33-0029-03

在我国华北、西北地区,由于气候干旱,地表水相对缺乏,地下水往往是生活以及工农业生产主要供水水源,鄂尔多斯盆地是我国重要的能源化工基地,对地下水的需求尤其强烈,因此查明该地区地下水循环和水化学形成机理成为指导该地区地下水资源合理开发利用亟待解决的问题。大克泊湖淖是鄂尔多斯盆地众多湖淖中水域面积较大的湖淖之一,对研究鄂尔多斯地下水循环演化方面具有较好的代表性,而且在前期积累了大量的水文地质、地下水水化学和同位素等基础数据,具有较好的工作基础。

1 研究区概况

大克泊湖淖地区位于鄂尔多斯盆地北部,是一个小型盆地,大克泊湖淖位于该小型盆地中央。多年平均气温为5℃,多年平均降水量为322.5mm,且降雨多集中在5~9月。地层由下至上依次为侏罗系、白垩系、第四系。白垩系砂岩是研究区的主要含水层,侏罗系碎屑岩构成了整个含水层的隔水地板。第四系风积沙广泛分布于研究区内,最大风积沙层厚度约为5m,结构松散,基岩零星出露。大克泊湖淖面积约为4km2,湖水面积变化对降雨量响应迅速。湖盆边部分布着众多湖眼。

2 样品采集与测试

3 反向地球化学反应路径模拟

3.1 反向地球化学反应路径模拟简介

反向地球化学反应路径模拟是运用质量守恒原理,通过对比同一地下水水流路径终点和起点的水化学成分和同位素的质量,推测出两点水流路径上地下水由于发生溶解或沉淀等化学反应、蒸发或不同水体之间的混合等物理反应等引起的化学组分和同位素的变化量,总结出地下水从起点到终点间的水文地球化学反应路径。其反应形式可表示为:

3.2 反应路径的选择

3.3 反向地球化学反应路径模型

3.3.1 可能矿物项的确定。岩芯检测结果显示研究区常见的矿物有石英、方解石、碱性长石(钠长石和钾长石)、斜长石(钙长石)、伊利石、石膏。溶滤作用、浓缩作用和阳离子交替吸附作用是研究区浅层地下水普遍存在的水化学形成作用。由于地下水埋深较浅,而且上覆一层松散第四系风积沙,增加CO2作为矿物相。综上把方解石、钠长石、钾长石、钙长石、伊利石、石膏、NaCl、CO2、离子交换、浓缩作用作为可能矿

物相。

4 结果与分析

路径Ⅴ:模拟结果显示在水流路径上均发生了钠长石、NaCl的溶解,方解石沉淀,阳离子交替吸附作用,同时有土壤CO2进入地下水中。由于起点和终点的地下水水位埋深均较深(见表1),因此蒸发作用很弱。

参考文献

[1] Plummer LN.Geochemical modeling of water-rock interaction:past,Present,future.Water Rock Interaction,Volume 1:Low Tempera Ture Environments[M].Netherlands:U.S.Geological Survry,1992:23-33.

[2] L.N.Plummer,Eric C.Prestemon and Dabid L.Parkhurst.An interactibe code(NETPATH) for moding Net geochemical reactions along a flow Path.U.S.Geological Survey,1994.

第8篇:化学反应工程原理范文

关键词:化工工艺;安全设计;危险原因;对策

化工行业本身就是一个高危行业,生产过程中接触到的大部分化学物质都是有毒的,有些物质毒性很高且危险性大,在工艺设计中必须严格按照相关的法律法规及其行业标准要求进行设计,全方位的保证工艺生产的安全度。行业的发展核心就是化工工艺安全设计,在进行设计时要全面考虑危险存在的原因,根据原因制定应对措施,尽可能的降低风险发生的概率。

1化工工艺安全设计危险原因及分析

1.1反应器

化学反应作为工艺设计的重要因素之一,其反应的是否完全决定着工艺设计的成败,所以选择反应器是关键。一般情况下在进行化学反应过程中多多少少都会产生一些对实验结果起反作用的物质,降低了反应速率,有些反应甚至会增加反应的危险系数,所以设计人员应该对于此类问题予以充分的考虑,不同物质反应的原理大不相同,所以要针对不同的物质选择呢具有针对性的反应器。对于那些在化学反应过程中会产生大量的热量或者会吸收大量热量的反应,应该选择耐高温或者是防爆的反应器,并制定好危险应对措施。几种常用反应器:①釜式反应器,适用于实现液相单相反应及多相反应;②鼓泡塔反应器,适用液相也参与反应的慢速反应、中速反应及放热量大反应,如各种芳烃和石蜡氯化反应;③固定床反应器,适用实现气固相催化反应,例如烃类蒸汽转化炉、氨合成塔及二氧化硫接触氧化器等。

1.2工艺原料

很多化学物质本身就具有很高的危险性,接触水或者空气中的氧气就会发生剧烈的化学反应,如果操作不当或者保管不善,会对国家和企业带来巨大的损失,影响工厂的正常生产,危害周边环境[1]。化学物质在存放时要进行分类,不同的危险级别的化学物质要选择不同的安全等级保管。在化学反应操作过程中,对不同的物质的反应原理充分了解,且针对本身存在的危险做好相关措施,防止危险事故的发生和扩大。

1.3输送管道

在化学反应过程中大部分产物都是高危物质,具有易燃易爆或者具有强腐蚀性。所以在选择输送管道时要根据物质的物理性能和化学性能及其反应物的特性选择相应的管道材质和管道压力等级,对于易燃易爆的物质,应该选择防爆密封性能好的管道,且要考虑静电的影响并做好消除静电的安全措施,对于易震动的管道应该选择抗震性能好的管道,输送高温物质时应该选择耐高温的管道材质并考虑相关膨胀系数的影响。

2化工工艺安全设计改进对策

2.1控制化工原料

化工行业所需的原料多种多样,物质存在的形式也截然不同,且各种物质都有自己的存储方式。相同物质的不同的状态化学性能也可能会有所不同,所以需要我们全面了解化学物的物理和化学性质,并在存储和运输过程中做好相关措施,尽可能的减少危险因素的存在。

2.2合理选择工艺

得到一种化学物质有多种方法和不同的工艺流程,所以要结合专业基础知识和自身的实践技能并考虑经济适用性,选择合理,节约成本的工艺路线。设计人员在进行实验时,要尽可能的选择无毒无害,在反应过程中危险性小的物质,根据实验原理合理的运用催化剂,尽可能在不污染环境的基础上提高工艺的效率。实际操作时,如果选择危险系数小的实验原材料,则对实验的设备及操作人员的要求也会相对降低等级,减少操作成本。实验时尽可能的选择新设备,这样既可以保证实验的成功率,还能减少反应物质的产生对环境的影响。

2.3强化安全设计

设计路径繁琐,连续的特点,只有严格准确执行系统操作,才能实现整体完善设计,使用更方便。设计的整体性较大,在设计中如果任何一个环节出现问题,都会影响到化工的正常生产和可能造成重大的经济损失。设计人员需根据相关规范、法律及法规等,设计化工工艺,并对工艺流程及安全设施等反复论证,确保设计具有前瞻性、安全性、科学性及可靠性。设计人员需要把安全设计作为设计核心原则,参考既往科学实践,组建监督部门,并建立健全监管体制,确保工作有章可循,达到防范风险及安全监督目的,控制或减少发生安全事故概率,利于工厂良好、稳定、有序发展。监察部门应做好本职工作,不定期或经常性的检查相关安全措施及应急措施是否到位,核实工作计划,抽检产品,巡查现场,排除隐患。对工艺路线设计进行完善,将危险最低作为设计原则。

2.4做好化学反应防护

化工厂应该配备安全必须的应急用品和必要的防护措施,包括移动式及手提式灭火器、防毒呼吸面具、防护服、救援担架等;制定好相关安全管理制度,安排质量检查人员,对设备进行定期的检查发现问题进行及时的维修。通过各种安全手册的发放和组织员工进行安全教育,加强员工的安全意识和增加遇到问题的及时处理问题的能力,减少人员的伤亡。

3结语

化工工艺安全的设计能够保证人员和财产的安全外,对于提高化工的生产效率也有很大的影响,只有对存在的问题足够的认识,对产生的问题的原因深入的了解才能对危险因素采取必要的安全措施,才能够保证企业正常的运转和发挥最大的生产效益。本文根据化工工艺安全设计中存在的危险因素提出相关对策和建议希望能够帮助需要的人。

参考文献:

[1]金阿铭.化工工艺安全设计中的危险因素及解决对策[J].黑龙江科学,2015,01:34+37.

第9篇:化学反应工程原理范文

关键词:发展;化学工程技术;优化方案

化工行业的发展,给人们的生产和生活带来了翻天覆地的变化,而且在在科技时代下我国化工行业的发展态势良好,化工行业的发展现状,为化学工程技术的更新换代提供了坚实的基础,同时为化工生产设备及实验仪器的改进创造了技术条件。那么如何使化学工程技术在传统技术的基础上有所突破,需要将化学工程技术与计算机技术等先进的科学技术相结合。

一、化学工程技术的发展概述

(一)化学分离技术。化学分离技术先要对仪器进行分离强化,然后对生产技术进行分离强化。按照化学分离原理,经强化的仪器和技术会变得更加精细,效率也会更高,而且进行化学分离后的生产原料可以将自身的化学能转化成动能或热能,同时还具有较高的能量转化效率。然而,科学家将化学分离技术与现代信息技术有机结合,并研究信息技术与化学工程的应用原理,将现代信息技术运用到热感技术的开发中,提升热感设备的精密度。比如讲新的控制方法加入传统半透膜分离技术形成新型分离技术,该技术地应用极大地提高了分离速度和效率。

(二)绿色节能技术。在工业化程度日益加深的今天,人们对资源的需求量越来越大,对于不可再生资源而言,其面临着能源枯竭的威胁,在该现状下,绿色节能化学工程技术的研究和应用从根本上提高了能源的利用率。绿色节能化学技术是指采用高新技术使化学反应在进行的过程中不会对环境造成污染,并且有利于环境保护的绿色节能技术,其理念是在化学反应的过程中,采用化学技术减少或消除化学原料及溶剂对人类健康、生态环境产生的不良影响。

(三)超临界技术。化学反应技术中的超临界反应指当压力和温度都在临界点以上,物质处于气态和液态之间。这种超临界状态的液体在化学工业、生物工业、食品工业等有着广泛的应用,尤其是在医药工业领域的应用更加广阔。目前超临界液体的诸多优势已经给人们带来了很多便利,其发展前景十分诱人,而超临界化学技术是与超临界液体相关的化学技术,化学界已经将超临界水氧化法成功应用到环境保护领域,但当前该技术还有待进一步完善和改进。

二、化学工程技术优化的重要意义

(一)优化产品结构。基于市场经济不稳定的特征,化工企业需要深刻剖析市场实际需求,对自身的产业结构进行调整和优化,从而实现科学、合理的管理目标,为企业发展注入积极因素。通过运用全新的化学工程技术,使资源得到了优化配置及合理应用,促进了产业结构的优化调整,为社会提供了更多就业机会,推动社会经济的发展[1]。

(二)有利于提高企业的竞争力。科技时代的大背景下,化工行业的市场竞争逐渐白热化,为提高化工企业的竞争力及经济效益,需要提高员工的工作效率,因此需要借助于先进的化学工程技术,并结合化工企业的发展现状,从而制定出科学、合理的发展策略,这是化工企业提升自身综合竞争力的有效途径。

三、对化学工程技术的优化

(一)与信息技术的结合。信息技术的快速发展和广泛应用,使得我国整体技术水平有了重大突破。就化学工程技术的研究未来而言,化学工程技术信息化程度会越来越高,化学工程技术要想实现优化升级,就要与信息技术进行完美结合。化学工程技术的研究需要计算机信息技术作为支撑,化学工程与信息技术相结合可以提升技g的精确性,同时也能够实现智能化的生产应用。比如在CO2传感器、温度传感器以及湿度传感器技术方面,将化学工程技术与计算机信息技术结合起来,使控制系统的反应更加灵敏。

(二)与系统工程的结合。因为物质本身的复杂性,导致化学变化也相对复杂,因此,化学研究不能只停留在对一般物理、化学特性上,要深入物质结构,探究其构成和变化原理。化学工程技术的研究方向不断拓宽,需要从根本上简化化学工程技术研究过程,与系统结构工程结合能够将实验操作和化学理论知识相结合,通过计算机系统进行数据分析,简化物质结构研究内容,为化工研究提供更加成熟的分析条件。

(三)加大对绿色化学技术的研究力度。环境是国际性问题,目前,我国投资于环境保护和改善的资金越来越多,而且更多的群体也参与到环境保护的工作中,此时绿色化学技术应运而生,由于绿色化学技术既能够降低能源的消耗量,又能提高能源的利用率,还能减少污染物的排放,该技术具有经济、社会、环境三重效益,因此未来的发展前景会更加广阔。

(四)强化化学工程基础的应用研究。在发展化学工程技术时,除了要紧跟科技发展的前沿外,还要对必要的基础应用展开研究。基础应用研究投资大、研发时间长,短期内很难看到经济效益,但是从长远利益出发,为了化学工程技术的可持续发展,必须加强基础应用研究。另外,在引进外来先进技术时,要注意消化吸收其中的基础技术,做好技术储备工作。

四、结语

总而言之,化学工程技术的研究是现代化学工程研究体系中的关键部分,在新型化学分离技术及绿色技能技术被人们接受及应用的同时,工业信息化发展的现状对化学工程技术提出了新要求和新标准,所以,在未来化学工程技术的发展和应用中,要结合现代科学技术,实现化学工程技术的升级和革新。