公务员期刊网 精选范文 初高中数学衔接课范文

初高中数学衔接课精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的初高中数学衔接课主题范文,仅供参考,欢迎阅读并收藏。

初高中数学衔接课

第1篇:初高中数学衔接课范文

论文关键词:教学数学能力衔接创新

 

2010年是我们湖北省进行新课程的第二年,这也是在新课程下第一次接高一年级课,接手高一新生一段时间后,我发现相当部分在初中数学成绩较好,部分中考数学成绩取得高分的学生,升入高一后,对数学也有点力不从心,而且从历次月考和期末统考试卷阅后分析看,他们无论在知识的衔接,还是在能力和数学思想的衔接上都存在问题,高中一年级是初高中承上启下的一个阶段,因此如何让学生顺利完成从初中到高中的过渡,尽快适应高中的学习,初高中的教学衔接问题,便成了个重要课题,值得数学教师进行认真探讨。现谈谈我对此问题的一些看法。

一、初高中数学教学衔接存在问题的原因。

1、知识差异

初高中数学有很多衔接知识点,如函数概念、方程的根与函数的零点等。因此,在讲授新知识时,教师要引导学生联系旧知识,复习和区别旧知识,特别注重对那些易错易混的知识加以分析、比较,从而达到温故而知新的效果。例如,在高一学习方程的根和函数的零点时,教师应引导学生回顾在初中已学过的一元二次方程和二次函数的有关知识,为学习函数的零点做好必要的铺垫,如:根的判别式,求根公式,根与系数的关系(即“韦达定理” ),二次函数的图像等等。

初中数学知识少、浅、难度容易、知识面窄。高中数学知识广泛,将对初中的数学知识推广和引申,也是对初中数学知识的完善.如:初中学习的角的概念只是“0度—180度”范围内的,但实际当中也有360度和“负300度”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。

2、学习方法的差异

由于初中的教材较单一、直观,难度不大,习题类型较少教学数学能力衔接创新,教学中采用的大都是模式教学,即教师把各种题型归类,讲授各类题型的解法,为学生作示范,供学生模仿。加上课时相对宽松,教学节奏慢,教师有较充裕的时间对疑难问题反复强调,个别答疑。学生只要记住定义、定理、公式和各类题型的解法,一般都能取得好成绩。并且受诸多因素的影响,中考试卷对与高中教学密切的知识点的考查较少,分值偏低.因此初中教学便重点针对高分值的题型进行强化模仿训练,而对学生能力的培养便无暇顾及,这种现象已经很普遍。而新课改后高一阶段,教材容量大,题型繁多,并且较灵活,有些概念较抽象,而课时相对紧,教学节奏快,教师无法讲全各类题型,更无法对各类题型进行具体分类,即使对一些疑难问题也无法反复强调,这对习惯于慢节奏和模仿学习的高一学生,就难以适应,使相当部分的学生处于一知半解的状态,当然就难以取得好成绩。

3、定量与变量的差异

初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量.学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性.如:求解一元二次方程时我们采用对方程(a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法.另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想.

二、解决初高中数学教学衔接问题的方法

1、认真研究教学方法,创造适应高一新生的学习环境,注重学生能力的培养.

在高一初始阶段,适当放慢教学节奏,让学生有一个从初中到高中过渡的适应阶段.在此阶段,在教材基础上结合实际情况,做好与高一教材相关的初中知识的复习,.在课堂教学中注意不断改进教学方法,强调学生预习,做到带着问题听课,课外认真对知识进行梳理、归纳的学习习惯.在学生预习的基础上,采用不同方式对重点内容进行传授.学生能自学弄懂的东西,尽量让学生去自学,学生能自己动手解决的问题,尽量让学生自己动手去解决.教师抓住主要的和关键性的或不易弄懂的内容,由浅入深,由具体到抽象讲授.教学过程中,讲清知识的来龙去脉,注意新旧知识的衔接.比如高一集合部分本身的知识并不多,让学生抓住集合中有关的几个基本概念(如集合、元素、子集、真子集、交集、并集、补集、全集、空集、集合相等等概念);集合的表达方式;集合、元素之间的关系符号,用浅显的例子反复弄清、弄透、落实,避免学生由于原有基础知识的缺陷而影响了对新知识的接受,然后再突破和补上旧知识的不足,把新旧知识结合起来,使知识掌握得自如和深透。又如指数函数、对数函数、幂函数的教学,在高中数学教学中是精髓部分,也起到承前启后的作用,因此在教授这一内容时,应首先复习初中部分的有理指数和对数的概念和运算法则,复习函数概念,通过正比例、反比例函数,一次函数和二次函数等函数的性质和函数的图象的复习,为学生系统学习函数理论作了铺垫,而且在运用数形结合研究函数的性质方面为学生作了示范和引导,这样使学生在学习幂函数、指数函数、对数函数时能用对比的方法自觉地去掌握这一部分知识,而且在这一章结束时,能用函数图象把这一章知识给予系统的总结,把书本上的小结给予充实和形象化.既有利理解和巩固,又有利于培养学生的综合归纳能力和逻辑推理能力.

2、重视学生学习方法的培养教学数学能力衔接创新,注意初、高中学习方法的衔接,提高学习效率。

由于初中阶段学生习惯于慢节奏的模仿学习,对教师的依赖性强,学习方法简单,难以适应高中的快节奏的学习。因此重视学生学习方法的培养,也是解决初、高中数学教学衔接的重要一环.学习方法包括听课、复习、作业等方面。为了顺利完成从初中到高中的过渡,要求学生养成课前预习的习惯.课前细读教材,做记号、划重点、多思索、提疑问,带着问题听课,提高听课效果。鼓励学生探索预习中的疑难问题,促进学生积极思维,养成独立思考、主动进取的习惯,减少对教师的依赖.

3.设计数学实验,通过直观表象来逐步提升学生的思维能力

让学生通过观察,自己动手操作(自制模型、数学实验的设计等),遵循学生认知特点和思维发展规律,从分发挥直观表象的作用,弥补抽象思维及空间想象等数学思维能力的不足,帮助学生把研究的对象从复杂的背景中分离出来,突出知识的本质特点,使刚进入高一的学生对所学知识理解得更加深刻,有利于进一步学习更加抽象的数学知识,逐步提升学生的思维能力。例如:“给定函数与其反函数的关系”的教学:用品:白纸若干张,铅笔、直尺

动手:(1)在白纸上建立平面直角坐标系

(2)在白纸1上用描点法作函数的图像(如图1)

(3)在白纸2上用描点法作出函数的图像(如图2)

(4)将白纸1上翻后旋转(可对着亮处观察图1背面旋转的图形),图1变成了图3

动脑:(1)从图1到图3坐标系发生了什么变化?(轴变成了轴,轴变成了轴)从图1到图3图像上点的坐标发生了什么变化?(点的横坐标和纵坐标互换了)(2)将图2和图3的坐标轴重合,观察有何现象发生?(图像完全重合)(3)上面的现象说明了什么问题?(由学生归纳)

得出原函数的自变量为其反函数的函数值,原函数的函数值为其反函数的自变量,它们是一对互逆的对应。

因此,可以看出初中阶段就注重学生能力的培养,对顺利完成初高中数学教学的衔接有很大的作用,又由于高中数学教学的衔接涉及面广,需要有全方位的意识,需要初高中教师的有机配合和共同努力,对学生的思维能力及数学思想方法,应从初中到高中各个阶段逐步培养,不断渗透.只有这样,才能顺利完成初高中数学教学的衔接。

参考文献:

1.课程标准实验教科书初高中数学衔接读本.人民教育出版社中学数学室编著,2009年3月.

2.陈树康、杨学枝.浅谈新课程下数学教学中的三个问题.高中数学教与学。2010年第3期

3.王爱珍.新课程下数学理解与促进学生数学理解.高中数学教与学.2008年第8期

4.郑志培、潘菊玲.新课程背景下初高中数学教学的现状及其衔接对策.中学数学2008年10月刊

第2篇:初高中数学衔接课范文

【关键词】新课程;初高中;数学;教学衔接

一、问题的提出

随着新课改的实施,全国各地的学校都开始进行改革,增加了学校间的竞争力,改变了传统的教学模式,可以让学生在轻松愉快的教学环境下学习数学知识。而且改革节省了大量的课堂时间,可以让学生形成良好的学习习惯。但是进入高中后,很多同学的数学成绩大幅度的滑坡,针对此类现象所以我们必须及时对其进行分析。

二、问题的分析探索

初高中教学内容存在的差异较大,与初中教材相比,高中教学的知识深度、广度和难度等均得到了提升。初中数学主要是数量关系作具体分析,侧重于运算和求解,具有很强的趣味性。学生只要认真听讲,认真完成作业就可以考高分。而高中数学则不然,教材内容多,题型太灵活,字母多,非常抽象,还有立体几何对学生的空间现象能力要求较高。高中数学还重视数学思维、数学思想,数学方法的教学,增加了教材的难度,让高一学生感到很吃力。

针对同一模块高中数学比初中数学要求较高。现以初高中课程标准中《函数》部分作比较:初中课程标准中《函数》部分具体要求①通过简单实例,了解常量、变量的意义。②能结合实例,了解函数的概念和三种表示方法,能举出函数的实例③能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。高中课程标准中《函数》部分具体要求:了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念②在实际情境中,会根据不同的需要选择恰当的方法表示函数。③通过具体实例,了解简单的分段函数,并能简单应用④通过已学过的函数特别是二次函数,理解函数的单调性最大(小)值及其几何意义,结合具体函数了解奇偶性,周期性的定义。⑤学会运用函数图像理解和研究函数的性质。

初高中教学内容在部分知识衔接上脱节也是数学难学的重要原因之一。由于实行九年制义务教育和倡导全面提高学生素质,现行初中数学在内容上进行了较大幅度的调整。一些在高中常用的公式定理被删掉。如果高中教师在教学中不加以注意,适时补充与深化,必会导致教学过程艰涩,学生茫然不知所措如:立方和公式、立方差公式、三个数的和的平方公式,推导及应用(正用和逆用),熟练掌握十字相乘法、简单的分组分解法,还有分子(母)有理化,高次多项式分解(竖式除法) 一元二次方程根的判别式与韦达定理,平行线等分线段定理,梯形中位线,合比定理……还有二次函数在初中只要求记住公式,会套用即可,但高中提高了要求,不仅记住公式,还必须会配方,这就要求高中老师必须补充此知识点。

三、解决问题的方案探索

(1)知识对比,断点衔接,弥补初高中教材编排上的不连续问题。随着初高中新课程的顺利合成,很多知识已经得到有机的结合,但初、高中的教材内容安排存在裂痕或断层也是显而易见的。为此在高中的教学过程中,适当地补充初中的教材,并使这些高中阶段的初中复习课更具高中的特色。在高中《数学必修1》的“集合”教学中补充一元二次不等式、分式不等式的求解,使之在集合与集合的关系及相关运算中更具有灵活性。在讲《函数》部分时,可以先专门复习初中的二次函数,并由此引申向“三个二次”的转化,“三个二次”中有关参数的讨论等,不仅回顾了初中这一重要函数的内容,同时也深化了高中对“三个二次”的要求。

(2)以旧导新,以旧带新,新旧对比,注意揭示新旧知识的内在联系,使新知识顺利的同化于原有的知识结构之上。在引入新知识、新概念时注意旧知识的复习,用学生已熟悉的知识进行铺垫和引入。以“函数的概念”教学为例,在教学这一章节时,可将初、高中“函数的概念。这一相关知识点进行比较:从中可以看到,初中以“运动”为出发点定义函数,而高中以“集合”为出发点研究函数。这一差异导致初中只需求函数表达式和自变量的取值范围,而高中研究的范围更加广泛:形式多样的函数表达式、定义域、值域、对应法则及抽象函数等。函数的概念已发生了质的变化,而学生仍然停留在初中的基础上,出现了知识的断层现象。因此补充“甲、乙两地相距S公里,一辆汽车从甲地匀速地开往乙地,速度为V公里/d,时,所需时间为T小时,回答下列问题:①已知V=45公里厂小时,写出S关于t的表达式,并求出当t=4时甲乙的距离S;②已知S=100公里,写出V关t的表达式,并求出当V=30时所需时间t;③用集合表示自变量的取值范围。”供师生共同研究,学生能在初中已有知识的基础上,在教师的引导下较好完成。

(3)多用比喻,数形结合等手段使抽象数学通俗化,形象化,想方设法增强数学的趣味性。比如,在教学函数时。很多同学对y=f (x)中的f (x)不理解,然后我就把f比喻成一台机器,其中x是输进机器的东西。如f (x)=x2,f (4)=42即把4输进去后,进行了平方的操作。g(x)=x+1,g(2)=2+1,也就是说g是对输进去的东西进行加1的操作。它只不过比初中数学中y=x+1更加详细了一些而已。这样一来,学生立马感觉函数y=f (x)并不那么抽象了。再比如讲立体几何中“平面”的概念时,我们可以拿一本书,让同学们感受这就是一个平面的一部分,然后稍微一旋转,它就变成另一个平面的一部分,这样就可以加深学生对“平面没有大小之分,只有位置不同之分”的理解。还可以创设情境增强数学的趣味性,如在“概率”教学中,利用“三个臭皮匠与诸葛亮的智力对决”导入相对独立事件。讲“等比数列求前n项和”的公式时,讲国王与象棋大师的故事等等。

(4)培养自学能力,提高学生继续学习的潜能

进入高中以后,课堂密度增大,教学进度加快,知识信息广泛,题目难度加大。只靠教师讲、学生听已很难使学生掌握所学知识。这时尤其需要调动学生的积极性,让他们由被动地学变为主动地学,由学会变为会学。在日常的教学中,教师应有意识地从讲述法向其他教学法衔接,如引导学生怎样学好数学语言,阅读数学课本,如何掌握概念,用活数学公式、以及怎样掌握数学解题基本技巧等,都需要教师在学法指导的过程中不断渗透给学生。例如在概念学习中,可以通过对重要的字词添加记号,对易混淆的概念(定理)进行对比,对公式、定理各字母的含义、适用范围、特例等作补充说明来帮助学习,这些学习方法必须在教师的指导和帮助下,由学生亲身实践后,才能成为学生自身的学习方法和习惯,通过各种不同的教学方法,使学生逐步体会到只有提高自己的学习能力,才能适应高中的学习。

结束语

本文主要对新课程下初高中数学教学衔接问题进行分析,为了促进初高中数学的衔接,必须充分发挥学生的主体性,教师引导学生独立学习知识。同时还要认真做好家长与教师的沟通,充分发挥学生思维力,提高数学教学质量。

【参考文献】

第3篇:初高中数学衔接课范文

解决“衔接问题”,必须有明确的目标与具体的途径。

一 解决好衔接,要重视注意新旧知识的联系

在高一新教材中,有许多都是以初中的教材为基础。在教学中,要注意联系初中的教材,进行升华与提高。例如在函数图像与性质的研究中,可以重点将初中的二次函数进行升华。在任意角的三角函数学习中,可以联系到初中的锐角三角函数的定义。在正、余弦定理的教学中,可以由初中解直角三角形中学到的边角关系,从而引入到斜三角形的边角关系。因此,在讲授新知识时,我们有意引导学生联系旧知识,复习和区别旧知识,特别注重对那些易错易混的知识加以分析、比较和区别。这样可达到温故知新、温故而探新的效果。

所以高中教师不仅要吃透高中教材,而且要了解高中各个新知识在初中的基础,对于那些属于初中数学学过的知识的发展或提高的,可以而且宜于从复习已有知识的基础上提出问题来引进新课进行探讨,这样由旧出新,就容易激起学生学习这些知识的积极性,较容易被学生所接受。对于某些新知识,可以用来复习巩固已有的知识的,要充分加以利用。

其实,知识的衔接,就是知识结构的转化,也就是处理新旧知识的同化与顺应的关系,从旧的基础上引申新知识,在新的高度上深化旧知识,从而形成知识系统。因此,衔接工作主要是通过新授课进行,充分运用比较的方法,对有关知识进行对比或类比,以实现新旧知识的衔接与过渡。

二 解决好衔接,要重视选择恰当的教法

培养目标在发展,教法必须相应发展。例如,在初中阶段对函数性质的研究,主要是通过直观,不要求论证;虽然也应用逻辑推理的方法,但一般不要求应用逻辑推理的方法来论证一些代数命题;但在高中数学中则有了较大的发展,对学生解证明题提出了更高的要求。针对这些特点,教学中必须注意在继续对学生培养运算能力的同时,着重对学生进行推理、论证技能的训练,加强学生逻辑思维能力的培养。在教法上要做到衔接而不长期停留,过渡而不过早跳跃。在这样的指导思想上,来确定教学中的具体做法。如教学节奏逐步由慢到快,创设问题情境,利用问题串,启发学生积极思考,允许学生出现不足、错误;提倡学生参与自由讨论,鼓励学生相互修改、补充、完善等。

总之,教师要面对新教材特点、教学内容和学生基础,为实现教学和教育的三维目标,分析可能采用的各种教法的利弊,在课堂的不同环节,灵活选用恰当的教学方式,以求效率、效果的双优。

三 解决好衔接,要重视指导正确的学法

在初中,教师讲得细,类型归纳得全,练得熟,考试时,学生只要记准概念、公式及教师所讲例题类型,一般均可对号入座取得好成绩。因此,学生习惯于围着教师转,不注重独立思考和对规律的归纳总结。到高中,由于内容多时间少,教师不可能把知识应用形式和题型讲全讲细,只能选讲一些具有典型性的题目,以落实"三基"培养能力。因此,高中数学学习要求学生要勤于思考,善于归纳总结规律,掌握数学思想方法,做到举一反三,触类旁通。然而,刚入学的高一 新生,往往继续沿用初中学法,致使学习困难较多,完成当天作业都很困难,更没有预习、复习及总结等自我消化自我调整的时间。这显然不利于良好学法的形成和学习质量的提高。

高中数学教学要把对学生加强学法指导作为教学的重要任务之一。指导以培养学习能力为重点,狠抓学习基本环节,如"怎样预习"、"怎样听课"等等。具体措施有:一是寓学法指导于知识讲解、作业讲评、试卷分析等教学活动之中,这种形式贴近学生学习实际,易被学生接受;二是举办系列讲座,介绍学习方法;三是定期进行学法交流,同学间互相取长补短,共同提高。

学生应该是学习的主体,但学生是否真正获得主体地位,很大程度上取决于教师肯不肯给予或善不善于给予。所以教师要善于调动学生积极主动地参与学习活动,不仅要使学生学会,而且要使学生会学。要针对高中学生心理特征,实现学法上的衔接过渡。充分利用学生的好奇心、好胜心、求知欲和可塑性,多形式、多渠道地培养学生的学习兴趣,引发学生学习的内部动机,引导学生由依赖性向主动性发展,由模仿性向创造性发展,由只重视计算结果转化到更重视推理过程。既要引导学生总结模式,又要引导学生突破模式,不只是会模仿几种确定类型的问题的解法,更能用创造性态度,寻求非典型的问题的解法,发展思维的灵活性。要指导学生养成做数学笔记、课堂摘记,课前预习、课后归纳整理,先复习再做作业,解题后进行反思、回顾,章节学习完后进行认真小结,课外收集数学相关资料的良好习惯。要指导学生作业要规范、整洁。教师要及时批改作业,及时反馈信息,要求学生及时订正,把错误扼杀在萌芽状态。

第4篇:初高中数学衔接课范文

关键词: 初高中数学教学衔接 问题 改进措施

我经历了由高中到初中,再由初中到高中的这种大循环的教学体制,亲眼目睹了一批初中数学成绩优秀的学生由于不适应高中数学的学习,在高一阶段就逐步变为数学学困生的过程,心中替他们感到万分的遗憾和痛心。为此,我结合高一实际,对初、高中数学衔接存在的问题及如何采取有效措施搞好初高中数学教学衔接,谈谈自己的体会和看法。

一、关于初高中数学衔接存在的问题

1.教材难度跨度大

初高中数学教材存在很大的差异性。首先,初中数学教材内容通俗具体,题型少而简单,且每一种题型的解决都有一个固定的模式;而高中数学概念抽象,定理严谨,逻辑性强,抽象思维和空间想象明显提高,各种数学思想极其繁多,知识难度加大,且习题类型多,解题技巧灵活多变,计算繁冗复杂,不仅注重计算,而且注重各种数学思想的综合运用。其次,当前初中数学教材的难度普遍降低了,而高中数学教材的难度却没有发生改变,并且初高中数学教材中还存在着知识脱节的现象。在初中数学教材中没有进行重点讲解的知识有很多都是在高中学习过程中经常用到的。如:初中教学对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。这无形中就加大了初高中数学教学内容的难度差距。

2.课时安排差距大

在初中,由于内容少、题型简单,因此课时较充足,课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法,教师有时间进行举例示范,学生也有足够时间进行巩固。而到高中,由于知识点增多,灵活性加大和新工时制实行,使课时减少,高中数学由一周至少6节课变为一周仅有4节课,必然导致课容量增大,以必修一第一、二章为例,概念、性质、法则、定理多达五十多个,而且在这两章中渗透了高中所有必须掌握的数学思想和数学方法,如集合与对应、分类讨论、数形结合、等价转化等数学思想,以及配方法、换元法、反证法、待定系数法等数学方法。由于课时少,进度要加快,对重难点内容没有更多的时间强调,对各类型题也不可能讲全讲细和巩固强化,也使一些高一新生因不适应高中学习而影响成绩的提高。

3.学习方法变化大

在初中,教师讲得细,归纳得全,练得熟,学生在学习过程中对于机械性记忆的依赖性比较强,在解题过程中总是偏好于套路,对于整个数学知识体系缺乏全面的理解与认识,对于各个知识点之间的把握也不是十分到位。所以考试时,学生只要记准概念、公式及教师所讲例题类型,一般都能取得好成绩。这导致部分学生在初中三年已形成了非常机械的学习方法,善于死记硬背解题方法和步骤。而高中数学学习要求学生勤于思考,善于总结规律和做到举一反三。但到了高中,由于内容多时间少,教师不可能把知识应用形式和题型讲全讲细,只能选讲一些具有典型性的题目,培养能力。因此,还有一部分学生上课注意听讲,尽力完成老师布置的作业,但课堂上满足于听,没有做笔记的习惯,不善于归纳总结,遇到难题不是动脑子思考,而是希望老师讲解整个解题过程,然后机械地照抄照搬;缺乏积极的思维,不善于总结数学思想和方法;不会科学地安排时间,缺乏自学、看书的能力。诸多方面的原因导致同学们普遍反映数学课能听懂但作业不会做。还有学生说,平时自认为学得不错,考试成绩就是上不去。

4.思维方式改变大

在初中数学学习阶段,虽然抽象思维能力在教学中起着基础性的作用,但是直观具体的观察也发挥着十分积极的功能。所以初中生思维主要停留在形象思维或者是较低级的经验型抽象思维阶段。但是,高中数学的学习则基本都是以抽象思维能力作为主要的思维方式,学生不仅要理解众多的抽象概念,而且要通过观察、类比、归纳、分析、综合来建立严密的数学概念进而运用所学的概念以及定理等,进行繁杂的推理与判断,并逐渐培养起辩证思维的能力。特别是高一第一学期到高二第一学期属于理论型思维,是思维活动的成熟时期,并开始向辩证思维过渡。

二、搞好初高中衔接所采取的主要措施

1.搞好思想上的动员工作。

通过入学教育提高学生对初高中衔接重要性的认识,给学生讲清高一数学在整个中学所占的位置和作用;结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法;请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。

2.搞好教材上的衔接。

刚升入高中,好多学生对初中所学的知识已经遗忘了。因此,在讲授高中新课时对初中所学的知识进行回顾,约用一个月时间补习有关的初中知识,从而把初中知识与高中教学内容衔接起来。复习的主要内容有:

(1)函数:包括一次函数、反比例函数、二次函数。重点是二次函数;

(2)因式分解:包括提公因式法、公式法(补充十字相乘法)。重点是十字相乘法;

(3)解方程:包括一元一次方程、一元二次方程、二元一次方程组。重点是一元二次方程(补充韦达定理);

(4)解不等式:包括一元一次不等式、一元一次不等式组(把一元二次不等式提上来讲)。重点是一元二次不等式。

例如:在复习一元二次方程时要完成下列任务的探索:①十字相乘法;②一元二次方程的根与系数的关系(韦达定理)。高一数学中有许多难理解和掌握的知识点,如求函数的值域或最值等,既是重点又是难点,讲授时可通过求一些简单的一次函数、二次函数的值域让学生理解值域的概念。在速度上,放慢起始进度,逐步加快教学节奏。

3.搞好学习方法的指导,培养良好学习习惯。

对于刚进入高一的新生,教师要加强学习方法的指导。如要求做好以下几点:(1)课前做好物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;(2)课前做好预习工作,这样能提高听课的针对性;(3)课上要养成做笔记的好习惯,因为高中课容量大,扩充内容比较多,部分内容需要课下进行消化;(4)作业要求及时订正,目的是帮助学生养成及时反思错误的习惯,在订正过程中加深理解;(5)课后及时完成复习和小结工作;(6)对个别学生在学习上存在的弊病(如抄袭作业,考试作弊,不按时交作业,上课不注意听讲,影响课堂纪律等)应限期改正。良好学习习惯是学好高中数学的重要因素,引导学生养成认真制订计划的习惯,合理安排时间,能使学生从盲目的学习中解放出来。

4.搞好思想方法上的衔接。

(1)函数思想与数形结合。掌握方程、数、式、函数之间的关系,利用函数的知识分析解题。(2)分类、对比、类比的思想方法。分类讨论的方法在数学中应用相当广泛,在高一集合一章中已经得到充分的体现。(3)整体和化归思想。从整体上考虑才能抓住问题的实质。(4)归纳、演绎思想,许多数学命题都是通过观察、分析其特点,归纳出某种规律而得到的。

总之,在高一数学的教学初始阶段,分析学生数学学习困难的原因,抓好初高中数学教学衔接,能够帮助学生学生尽快适应新的数学教学模式,从而更高效、更顺利地接受新知识和发展数学学习的能力。

参考文献:

第5篇:初高中数学衔接课范文

【关键词】初中高中 数学 衔接

一、把握好初、高中教材内容上的断层

新课标的实施对初、高中的教材内容都作了教大的改动,而大多数的高中教师并没有接触过初中教材,因而对初中教材的内容不是很了解。虽然在课改后初中教材的内容的深度和广度都被大大降低了,但同时那些在高中学习中经常应用到的知识,如立方差公式,韦达定理,二次函数的图象与二次方程根的分布等都需要在高一阶段补充学习。因而高中教师在教学过程中必须了解学生在初中学了哪些知识,有些知识在初中因不是重点只是作为粗略了解,但在高中却是一个重点,这就需要在教学中加深。为此,在高一数学教学中必须采用“低起点,小步子”的指导思想,帮助学生温习旧知识,恰当地进行铺垫,以减缓坡度。

二、教学内容的衔接

由于初中使用“九年制义务教育”教材,教学内容作了较大的压缩而目前的高中数学在教材内容、教学大纲、考试大纲都没有大的变化。初中压缩了的部分教学内容在目前的高一数学教材中是插入相应教材中间的,例如“余弦定理”放在“两角和差的三角函数”后,给实际教学带来很多问题。异面直线两点间的距离公式的推导不能进行,因此教学内容处理上这部分内容应先行进行教学,如:正弦、余弦定理,二次函数,一元二次不等式等。初中教材语言叙述比较通俗易懂,带有直观性、趣味性,而高中教材叙述比较严谨,抽象思维提高,重理论、重逻辑推理。如函数的单调定义,文字叙述难以理解,需要转化为符号语言,定义还有隐含条件。学生思维不能适应这些情况,教学中要把这些严谨的定义、定理,分层降低起点,分层次进行简单处理,对于文字语言、符号语言及图形语言,多让学生进行相互转化,从多方向去理解概念,多举实例,增强教材的趣味性、直观性,让学生动手制作模型,帮助学生增强空间想象能力,切实做到从大多数学生的知识基础和思维水平出发进行教学,切忌过早地与高考对口径进行教学。另外,由于近几年教材内容的调整,虽然初高中教材都降低了难度,但相比之下,初中降低的幅度大,而高中由于受高考的限制,教师都不敢降低难度,造成了高中数学实际难度没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中教材内容的难度差距,反而加大了。

三、教学方法的衔接

由于初中教材的内容较少且比较简单,课堂教学中多教师讲,学生听,每节课中学生围绕一二种题型进行反复训练,尽量做到“举三仿一”。因此,课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法,学生也有足够时间进行巩固。而到高中,由于知识点增多,灵活性加大,课容量增大,进度加快,对重难点内容没有更多的时间强调,对各类型题也不可能讲全讲细和巩固强化,只能教会学生尽量做到“举一仿三”。在教学上,要优化课堂设计,做好初高中教学方法的衔接,做到:首先,立足于大纲和教材,尊重学生实际,实行层次教学。在教学中,应从高一学生实际出发,采取“低起点、小梯度、多训练、分层次”的方法,将教学目标分解成若干递进层次逐层落实。在知识导入上,多由实例和已知引入。在知识落实上,先落实“死”课本,后变通延伸用活课本。在难点知识讲解上,从学生理解和掌握的实际出发,对教材作必要层次处理和知识铺垫,并对知识的理解要点和应用注意点作必要总结及举例说明。其次,重视新旧知识的联系与区别,建立知识网络。在讲授新知识时,我们有意引导学生联系旧知识,复习和区别旧知识,特别注重对那些易错易混的知识加以分析、比较和区别。这样可达到温故知新、温故而探新的效果。第三,重视展示知识的形成过程和方法探索过程,培养学生自学能力。

高中数学较初中抽象性强,应用灵活,这就要求学生对知识理解要透,应用要活,不能只停留在对知识结论的死记硬套上,这就要求教师应向学生展示新知识和新解法的产生背景、形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的灵活性,而且还使学生学会如何质疑和解疑的思想方法,促进创造性思维能力的提高。

四、学习方法的衔接

进入高中以后,学习密度难度及作业量猛增,极易形成被动的学习态度,必须让学生意识到重新调整自己的学习方法的必要性。教会学生,在课堂上力争做到“四个超前”:超前想、超前做、超前总结,超前提问;在课下要学会“三种复习”:课后及时复习、每一单元及时复习、考前及时复习;做作业做到“三项要求”:先复习后再做作业,作业卷面做到规范整洁,出现错解做到查明原因再重做。由此,在学习中做到:知其然,更知其所以然;明其理,还产生自己的想法;知一点,恍然大悟,懂得一片;能创造性地提出新思路、新见解、新问题、新结论。

第6篇:初高中数学衔接课范文

〔关键词〕衔接 数学思想 反思

高中数学教师经常头疼的一件事就是:很多学生升入高中后,由于教材衔接问题,难以适应高中数学的学习。高中数学教材注重抽象思维,内容庞杂、知识难度大,不再像初中教材那样贴近生活,生动形象,知识容量也更为紧密。

1 高中数学特点的变化

①数学语言在抽象程度上的突变。②思维方法向理性层次跃迁。③知识内容剧增。④综合性增强,学科间知识相互渗透,相互为用,加深了学习的难度。⑤系统性增强。⑥能力要求更高。

初高中数学特点的变化经常会导致学习断层,学生势必出现学习障碍,甚至会影响他们的整个高中阶段的学习。那么,如何做好初高中数学学习的衔接过渡,并迅速适应新的教学模式呢?

2 做好初高中数学衔接的应对策略和学习方法

2.1 充分发挥“老师”的作用。一些学生初中学习不规范,凭借聪明的头脑,中考突击也能取得较理想的成绩。这部分同学上高中后,学习上仍比较放松,以为采取同样的方法仍可以考上理想的大学。但是,现实告诉我们,这种投机取巧的方式到高中是根本行不通的。

高中数学蕴含着很多的数学思想与数学解题方法,这些抽象的思想与灵活方法的运用,同学们仅凭读课本是无法感知的,而老师上课时一般都要阱清知识的来龙去脉,剖析概念的内涵,分析重、难点,突出思想方法,只有在老师的带领下同学们才能更好地认识高中数学,认清结构,发现其中的奥秘,利用好老师的角色将对我们的学习起到事半功倍的效果。

2.2 抓住数学的灵魂――数学思想。所谓数学思想是人们对数学内容的本质认识,是对数学知识和数学问题的进一步抽象和概括,属于对数学规律性的认识范畴。数学思想是数学学习的关键,数学思想指导着数学问题的解决,并具体体现在解决问题的不同方法中。常用的数学思想有:方程思想、函数思想、转化思想、整体思想、数形结合思想、分类讨论思想等。

无论是初中数学还是高中数学,数学思想都是数学的灵魂,它们之间是可以衔接的。比如:实数k为何值时,方程kX2+2|X|+k=0有实数解?运用函数的思想就可以解决问题。

2.3 夯实基础知识和基本技能,掌握适度的知识外延。要学习好高中数学,必须准确理解和掌握好基本概念、基本公式和基本性质,抓住这些基本知识的要点和适用范围,是学好数学的基础之一。夯实基础知识和基本技能是学好数学的必要基础,但在平时的听课和练习中注意加强对一些重要结论的记忆,扩大自己的知识面,丰富自己的知识积累。

2.4 做题之后加强反思。同学们在考试中需要运用平时做题目时的解题思路与方法。因此把自己做过的每道题加以反思显得尤为重要,反思是总结一下自己的收获,如:这是一道什么内容的题,用的是什么方法。日久天长的反思,一定会构建起一个内容与方法的科学的网络系统。反思是学习过程中很重要的一个环节。

2.5 主动复习,总结提高。进行章节总结是非常重要的。初中时是老师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也不会明确指出做总结的时间。

2.6 养成良好的解题习惯,提高自己的思维能力。能力是在不同的数学学习环境中得到培养的。在平日的学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如:空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其他能力的培养也都需要在学习、理解、训练、应用中得到发展。高一阶段是高中数学学习的重要阶段,是一个初高中衔接转型的阶段。如果衔接出现问题,高中数学学习将举步维艰。

3 给高一新生的建议

3.1

改掉“依赖”的习惯。许多学生进入高中后,还像初中那样,有很强的依赖心理,跟随老师运转,没有掌握学习的主动权。表现在不订计划,坐等上课,对老师课上要讲的内容不了解,上课忙于记笔记,没听到“门道”,不会巩固所学的知识。高中仅做听话的孩子是不够的,只知做作业也是绝对不够的;高中老师讲的话也不少,但是谁该干些什么,老师并不一一具体指明。因此,高中新生必须提高学习的自主性。

3.2 运算一定要过关。学习数学离不开运算,初中老师往往一步一步在黑板上演算。到了高中,因时间有限,运算量大,老师常把计算过程留给学生,这就要求学生多动脑,勤动手,不仅要能笔算,而且还要能口算,心算和估算,对复杂运算,要有耐心,掌握算理,注重简便方法。许多学生由于运算能力低,致使数学成绩难以提高,但他们总归咎于“粗心”,思想上仍不重视。我们在高一时就要重视对自己运算能力的培养。

第7篇:初高中数学衔接课范文

一、重视新旧知识的联系与区别,建立知识网络

高中教师要熟悉初中数学教材和课程标准对初中的数学概念和知识的要求做到心中有数,把高中教材研究的问题与初中教材研究的问题在文字表述、研究方法、思维特点等方面进行对比,明确新旧知识之间的联系与差异,高中数学新授课就可以从复习初中内容的基础上引入新内容。高初高中数学有很多衔接知识点,如函数概念、平面几何与立体几何相关知识等,到高中,它们有的加深了,有的研究范围扩大了,有些在初中成立的结论到高中可能不成立。因此,在讲授新知识时,我们有意引导学生联系旧知识,复习和区别旧知识,特别注重对那些易错易混的知识加以分析、比较和区别。这样可达到温故知新、温故而探新的效果。同时应该明确高考对高一内容的相应要求,着重应该是对知识的真正理解、基本方法思想等,而不是单纯的题型甚至数量。(1)找准衔接点。数学知识间的联系非常紧密,运用联系的观点提示新知,使学生不仅能顺利接受新知,而且能够认识到新、旧知识间的联系与区别,使知识条理化、系统化。高一数学知识大多是在初中基础上发展而来的,因而从初中知识(衔接点)出发,提出新问题,可以研究得到新知识,比如函数的定义的讲解,可从初中函数定义(衔接点)出发,结合初中所学具体函数加以回顾,再运用映射的观念给这些函数以新的解释,在些基础上对函数重新定义,使新定义的出现水到渠成,易于理解,同时比较新、旧定义,发现原有定义的局限性,又使学生认识得以深化,新知得以掌握和巩固。(2)做好“衔接点”教材的处理工作。例如,在学习一元二次不等式解法时,教师应引导学生回顾在初中已学过的一元二次方程和一元二次函数的有关知识,为学习一元二次不等式的解法做好必要的铺垫,如:根的判别式,求根公式,根与系数的关系(即“韦达定理”),一元二次函数的图像等等。另一方面,对于学生在初中数学中已经学习过的概念、图形,要作一些整理的工作,使之系统化、条理化。在教学过程中,要充分利用学生头脑中已有的概念和形象(衔接点),无须作为新知识。重点处理,以便对学生造成不必要的负担,而对于在提法上予以突出。例如函数的概念,在初中组给出了用“变量”描述的经验型的定义,而在高中则从“映射”的高度给出一个理论型的定义。但后者并不摈弃前者,而是把前者作为何供对比,有待深入认识的对象。

二、立足于大纲和教材,实行分层次教学

现行初中数学教材内容通俗具体,多为常量,题型少而简单,每一新知识的引入往往与学生日常生活实际很贴近,比较形象,并遵循从感性认识上升到理性认识的规律,学生一般都容易理解、接受和掌握。那些在高中学习中经常应用到的知识,如:对数、二次不等式、解斜三角形、分数指数幂等内容,都转移到高一阶段补充学习。这样初中教材就体现了“浅、少、易”的特点。高中数学一开始,概念抽象,定理严谨,逻辑性强,教材叙述比较严谨、规范,抽象思维和空间想象明显提高,知识难度加大,且习题类型多,解题技巧灵活多变,计算繁冗复杂,体现了“起点高、难度大、容量多”的特点。高一数学中有许多难理解和掌握的知识点,如集合、映射等,对高一新生来讲确实困难较大。因此,高一数学教学中,在速度上,放慢起始进度,逐步加快教学节奏。在知识导入上,多由实例和已知引入。在知识落实上,先落实"死"课本,后变通延伸用活课本。在难点知识讲解上,从学生理解和掌握的实际出发,对教材作必要层次处理和知识铺垫,并对知识的理解要点和应用注意点作必要总结及举例说明

三、重视展示知识形成和方法探索过程,培养学生创造能力

高中数学较初中抽象性强,应用灵活,这就要求学生对知识理解要透,应用要活,不能只停留在对知识结论的死记硬套上,这就要求教师应向学生展示新知识和新解法的产生背景、形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的灵活性,而且还使学生学会如何质疑和解疑的思想方法,促进创造性思维能力的提高。处理教学内容时多举实例,增强教材趣味性、直观性;多用教具演示,借助多媒体辅助教学,帮助学生逐步增强空间想象能力;加强定义、概念之间的类比,逐步提高学生对教材理解的深刻性;对易混淆的概念(定理)对比学习;对公式、定理各字母的含义、适用范围、特例等作补充说明等来帮助学习,这些学习方法必须在教师的指导和帮助下,由学生亲身实践后,才能成为学生自身的学习方法和习惯,对于知识的结构性、整体性和问题的归类方法的选用要为学生作好充分的引导。如为了说明φ与{φ}的区别,可以类比空箱子放入空房子,房子不空。把个人与集体,小集体与大集体之间关系的相对性,联系到数学中元素与集合,集合与集合之间关系的相对性,可以使抽象的教材“活”起来,同时使学生逐步接受科学性和逻辑性都较强的高中教材。

第8篇:初高中数学衔接课范文

1、由于初中使用“九年制义务教育”教材,教学内容作了较大的压缩,而目比以前的高中数学在教材内容、教学大纲、考试形式上都没有大的变化。虽然初高中教材都降低了难度,但相比之下,初中降低的幅度大,而高中由于受高考的限制,教师都不敢降低难度,造成了高中数学实际难度没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中教材内容的难度差距,反而加大了。初中内容的删减,降低要求,导致学生“双基”无法达到高中教学要求。如十字相乘法、平行线分线段定理、简单的无理方程、高次方程、一元二次方程根、判别式等内容都没有讲到;如有理数的混合运算、多项式的除法、配方法、等等都降低了难度,因此教学内容处理上这部分内容应先行进行教学,在教学中应先讲有关初高中衔接的知识。

2、初中教材语言叙述比较通俗易懂,带有直观性、趣味性,而高中教材叙述比较严谨,抽象思维陡然提高,知识难度迅速增大,重理论、重逻辑推理。如函数的单调定义,文字叙述难以理解,需要转化为符号语言,定义还有隐含条件。学生思维不能适应这些情况,教学中要把这些严谨的定义、定理,分层降低起点,分层次进行简单处理,对于文字语言、符号语言及图形语言,多让学生进行相互转化,从多方向去理解概念,多举实例,增强教材的趣味性、直观性,让学生动手制作模型,帮助学生增强空间想象能力,切实做到从大多数学生的知识基础和思维水平出发进行教学,切忌过早地与高考对口径进行教学。

二、教学方法的衔接

由于初中教材的内容较少且比较简单,课堂教学中多教师讲,学生听,接着学生练习,每节课中学生围绕一二种题型进行反复训练,因此,课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法,教师有时间进行举例示范,学生也有足够时间进行巩固。而到高中,由于知识点增多,灵活性加大和新课改实行,使课时减少,课容量增大,进度加快,对重难点内容没有更多的时间强调,对各类题型也不可能讲全讲细和巩固强化,只能教会学生尽量做到“举一仿三”。在教学上,要优化课堂设计,做好初高中教学方法的衔接,做到:首先,立足于大纲和教材,尊重学生实际,实行分层次教学。在教学中,应从高一学生实际出发,采取“低起点、小梯度、多训练、分层次”的方法,将教学目标分解成若干递进层次逐层落实。在速度上,放慢起始进度,逐步加快教学节奏。在知识点导入上,多由实例和已知引入。

在知识落实上,先落实“死”课本,后变通延伸用“活”课本。在难点知识讲解上,从学生理解和掌握的实际出发,对教材作必要层次处理和知识铺垫,并对知识的理解要点和应用注意点作必要总结及举例说明。其次,重视新旧知识的联系与区别,建立知识网络。初高中数学有很多衔接知识点,如函数概念、平面几何与立体几何相关知识等,到高中,它们有的加深了,有的研究范围扩大了,有些在初中成立的结论到高中可能不成立。因此,在讲授新知识时,我们有意引导学生联系旧知识,复习和区别旧知识,特别注重对那些易错易混的知识加以分析、比较和区别。这样可达到温故知新、温故而探新的效果。 三、心理状态的衔接

初中生活泼好动,在生理、心理等各方面比较单纯,社会、学校、家庭三方都还把他们当作偏向于儿童的未成年人;初三学年的奋战,老师、家长、学生三方都对学生提出了上高中的奋斗目标,各方面都对他们管束得较严;终于考上高中,家长和学生都松了一口气,家长认为孩子已长大,没必要管得太多,学生入学后没了初三的紧迫感,在行动上自然没初三那时的冲劲;又加上学哥学姐们早就灌输了一些高中数学难学的“经验”,所以一上高中,就自然产生了对数学的“畏惧感”,由此影响了高一数学的学习质量。因此,我们必须在高一刚开学就告诉学生:新环境、新教材、新同学、新教师、新集体……,必然有一个适应的过程,做好下面四项工作:一是给学生讲清高一数学在整个中学数学中所占的位置和作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项;四是请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。

四、学习方法的衔接

第9篇:初高中数学衔接课范文

【关键词】初高中数学;衔接

1.关于初高中数学成绩分化的原因分析:

1.1环境和心理的变化。

对高一新生不讲,环境可以说是全新的,新教材、新同学、新老师、新集体……学生有一个由陌生到熟悉的适应过程。另外,经过紧张的中考复习,考取了自已理想的高中,必有些学生产生“松口气”想法,入学后无紧迫感。也有些学生有畏惧心理,他们在入学前,就耳闻高中数学很难学,高中数学课一开始也确是些难理解的抽象概念,如集合等,使他们从开始就处于怵头无趣的被动局面。以上这些因素都严重影响高一新生的学生质量。

1.2初高中教材梯度过大。

首先,初中数学教材内容通俗具体,多为常量,题型少而简单;而高中数学内容抽象,多研究变量、字母,不仅注重计算,而且还注重理论分析,这与初中相比增加了难度。此外,内容也多,每节课容量大于初中数学。这些都是高一数学成绩大面积下降的客观原因。

其次,由于近几年教材内容的调整,虽然初高中教材都降低了难度,但都比这下,初中降低的幅度大,而高中由于受高考的限制,教师都不敢降低难度,造成了高中数学实际难度没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中的教材内容的难度差距,反而加大了。

1.3课时的变化。

在初中,由于内容少,题型简单,课时较充足。因此,课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法,教师有时间进行举例示范,学生也有足够时间进行巩固。而到高中,由于知识点增多,灵活性加大和新工时制实行,使课时减少,课容量增大,进度加快,对重难点内容没有更多的时间强调,对各类型题也不可能讲全讲细和巩固强化。这也使高一新生开始不适应高中学习而影响成绩的提高。

1.4高一新生普遍不适应高中数学教师的教学方法。

笔者曾在高一召开过学生座谈会,同学们普遍反映数学课能听不懂但作业不会做。不少学生说,平时自认为学得不错,考试成绩就是上不去。带着问题笔者多次听到了初、高中数学教师的课堂教学,发现初中教师重视直观、形象教学,老师每讲完一道例题后,都要布置相应的练习,学生到黑板表演的机会相当多。为了提高合格率,不少初中教师把题型分类,让学生死记解题方法和步骤。在初三,重点题目反复做过多次。而高中教师在授课时强调数学思想和方法,注重举一反三,在严格的论证的推理上下功夫。又由于高中搞小循环,接高一课程的教师刚带完高三,他们往往用高三复习时应达到的难度来对待高一教学。因此造成初、高中教师教学方法上的巨大差距,中间又缺乏过渡过程,至使高中新生普遍适应不了高中教师的教学方法。

2.搞好初高中衔接所采取的主要措施:

2.1优化课堂教学环节,搞好初高中衔接。

2.1.1立足于大纲和教材,尊重学生实际,实行层次教学。

高一数学中有许多难理解和掌握的知识点,如集合、映射等,对高一新生来讲确实困难较大。因此,在教学中,应从高一学生实际出发,采劝低起点、小梯度、多训练、分层次的方法,将教学目标分解成若干递进层次逐层落实。在速度上,放慢起始进度,逐步加快教学节奏。在知识导入上,多由实例和已知引入。在知识落实上,先落实“死”课本,后变通延伸用活课本。在难点知识讲解上,从学生理解和掌握的实际出发,对教材作必要层次处理和知识铺垫,并对知识的理解要点和应用注意点作必要总结及举例说明。

2.1.2重视新旧知识的联系与区别,建立知识网络。初高中数学有很多衔接知识点,如函数概念、平面几何与立体几何相关知识等,到高中,它们有的加深了,有的研究范围扩大了,有些在初中成立的结论到高中可能不成立。因此,在讲授新知识时,我们有意引导学生联系旧知识,复习和区别旧知识,特别注重对那些易错混的知识加以分析、比较的区别。这样可达到温故而知新、温故而探新的效果。

2.1.3重视展示知识的形成过程和方法探索过程,培养学生创造能力。高中数学较初中抽象性强,应用灵活,这就要求学生对知识理解要透,应用要活,不能只停留在对知识结论的死记硬套上,这就要求教师应向学生展示新知识和新解法的产生背景、形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的灵活性,而且还使学生学会如何质疑的解疑的思想方法,促进创造性思维能力的提高。

2.1.4重视培养学生自我反思自我总结的良好习惯,提高学习的自觉性。高中数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化,认真总结归纳。这就是要求学生应具备善于自我反思和自我总结的能力。为此,我们在教学中,抓住时机积极培养。在单元结束时,帮助学生进行自我章节小结,在解题后,积极引导学生反思:思解题思路和步骤,思一题多解和一题多变,思解题方法和解题规律的总结。由此培养学生善于进行自我反思的习惯,扩大知识和方法的应用范围,提高学习效率。

相关热门标签