公务员期刊网 精选范文 工程化学笔记范文

工程化学笔记精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的工程化学笔记主题范文,仅供参考,欢迎阅读并收藏。

工程化学笔记

第1篇:工程化学笔记范文

[关键词]荆芥; 一体化; 化学成分; 抗炎

[Abstract]The GC-MS method was adopted to determine the contents of β-myrcene, limonene, menthone, menthofuran, pulegone, β-caryophyllene, 1-octen-3-one and 3-octanone in volatile in Schizonepetae Herba processed by traditional processing and integration processing methods. The efficacies of Schizonepetae Herba with different processing methods were detected based on the inhibition of ear swelling induced by dimethylbenzene in mice. The rationality of the integration processing was expounded based on the comparison of chemical constituents and their pharmacological effects. The results showed that the contents of the eight chemical components in the products processed with the integrated processing method were higher than those processed with the other method. And both of the processing methods could reduce the degree of swelling and the content of TNF-α/IL-1β/IL-6 in mice serum. However, the anti-inflammatory efficacy of the products processed with the integration processing method was superior to that processed with the other method. Compared with the traditional processing method, the integration processing method ensures the quality of decoction pieces, with lower time and labor costs and higher efficiency.

[Key words]Schizonepetae Herba; integration; chemical component; anti-inflammatory

doi:10.4268/cjcmm20161117

荆芥是唇形科植物荆芥Schizonepeta tenuifolia Briq.的干燥地上部分,又名假苏,始载于《神农本草经》[1],为临床常用中药,性温、味辛,以全草入药,具有解表散风、透疹、消疮之功效,主治风寒感冒、咽喉肿痛及多种皮肤病[2-3]。现代药理研究表明荆芥具有抗病毒、解热、抗菌、抗过敏、镇痛、降温等作用[4-7],在解表药中其地位独特而重要[8-9]。挥发油类成分是其抗炎的主要物质基础之一,沸点较低,容易挥发散失,而且对日光及温度较敏感,易于分解变质[10]。2015年版药典中规定荆芥的产地加工方法主要是除杂后干燥成药材,需制成饮片时,将荆芥药材除去杂质后喷淋清水,洗净润透,于50 ℃烘1 h,再经切段干燥即得。综合其加工过程,药材加工成饮片时需水处理及重复干燥,会造成挥发油及其他水溶性成分的损失,且分段加工干燥时间长,效率低下,雨天易霉烂变质、容易被鼠、虫、灰尘等污染,药材含水量、质量难以稳定[11]。为避免分段加工造成的有效成分的流失、降低药材饮片加工的时间及人工成本,本实验室前期探索了荆芥药材、饮片一体化加工工艺,现拟通过比较传统加工饮片与一体化加工饮片有效成分含量与功效的异同,探讨荆芥药材、饮片一体化工艺的可行性与合理性。

1 材料

薄荷酮、胡薄荷酮对照品(中国食品药品检定研究院,批号分别为 111705-201205,111706-201205); 1-辛烯-3-酮、d-柠檬烯、β-石竹烯对照品均购自Tokyo Chemical Industrial公司(日本);β-香叶烯、薄荷呋喃、3-辛酮对照品均购自Sigma-Aldrich公司(奥地利),对照品纯度均大于98%;萘(内标,国药集团化学试剂有限公司,分析纯);正戊烷(内标,国药集团化学试剂有限公司,GC级);乙酸乙酯为色谱纯;阿司匹林购自南京白敬宇制药有限责任公司(批号140601);二甲苯(批号20110410,江苏永华精细化学品有限公司);羧甲基纤维素钠(CMC-Na,批号F20101222,国药集团化学试剂有限公司);小鼠白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)、Elisa试剂盒(南京森贝伽生物科技有限公司,批号分别为SBJ-R0024,SBJ-M0044,SBJ-M0010)。

荆芥于2014年10月采自河北安国,经南京中医药大学吴⒛辖淌诩定为唇形科植物荆芥S.tenuifolia的地上部分。

Agilent 6890N-5975B气相色谱-质谱联用仪、Agilent ChemStation化学工作站软件(美国 Agilent公司);B211D 电子天平(1/10万,赛多利斯科学仪器有限公司)。

ICR小鼠,SPF级,雄性,体重(20±2) g。由浙江省实验动物中心提供,合格证号SCXK(浙)2013-0016。

2 方法

2.1 荆芥挥发油含量及其所含成分的定量测定[12]

2.1.1 GC-MS条件 色谱柱: HP-5MS毛细管柱(30 m×0.25 mm,0.25 μm);进样口温度200 ℃;载气氦气,载气流速1.0 mL・min-1;分流比20∶1;程序升温:初始温度为50 ℃,以10 ℃・min-1升温至90 ℃,保持6 min,再以8 ℃・min-1升温至150 ℃,保持2 min;进样量1 μL;电轰击电离源(EI);电子能量70 eV;四级杆度150 ℃;离子源温度230 ℃;接口温度280 ℃;扫描范围m/z40~400。GC-MS图见图1。

2.1.2 样品制备 一体化加工方法:鲜荆芥除杂后50 ℃干燥5 h,切段(1 cm),40 ℃干燥3 h干燥成饮片。传统加工方法:除去杂质,晒干,制得药材。取药材喷淋清水,洗净,润透,于50 ℃烘1 h,切段(1 cm),40 ℃干燥3 h得饮片。挥发油的提取:取荆芥饮片适量,照《中国药典》2015年版四部 “挥发油提取法”甲法提取挥发油,计算得率。提取的挥发油加入适量无水Na2SO4静置保存。

2.1.3 内标溶液的制备 取萘和正癸烷适量,置100 mL量瓶中,加乙酸乙酯溶解并稀释至刻度,摇匀,即得(每1 mL含萘1.73 mg,正癸烷0.29 mg)。

2.1.4 供试品溶液的制备 取加入适量无水Na2SO4静置1 h后的荆芥挥发油约50 mg,精密称定,置10 mL量瓶中,加乙酸乙酯溶解稀释至刻度,摇匀,精密量取该溶液和内标溶液各1 mL置10 mL量瓶中,加乙酸乙酯溶解并稀释至刻度。

2.1.5 对照品溶液的制备 精密称取对照品3-辛酮12.47 mg、β-香叶烯10.91 mg、薄荷酮160.35 mg、1-辛烯-3-酮13.64 mg、D-柠檬烯21.18 mg、薄荷呋喃14.07 mg、胡薄荷酮270.42 mg、β-石竹烯12.95 mg,分别置10 mL量瓶中,加乙酸乙酯溶解并稀释至刻度,摇匀,即得各待测化合物的对照品溶液。精密量取3-辛酮溶液0.5 mL、β-香叶烯0.3 mL、薄荷酮2 mL、1-辛烯-3-酮0.5 mL、D-柠檬烯1 mL、薄荷呋喃1 mL、胡薄荷酮2 mL、β-石竹烯1 mL置同一10 mL量瓶中,加乙酸乙酯稀释至刻度,摇匀,即得对照品混合溶液。荆芥中8个化合物MS监测数据见表1。

2.1.6 线性关系的考察 分别精密量取对照品混合溶液0.1,0.2,0.4,0.6,0.8,1.0 mL置10 mL量瓶中,分别精密加入内标溶液 1 mL,加乙酸乙酯溶解并稀释至刻度,摇匀。分别吸取上述6份溶液各1 μL,进样,按内标法以峰面积计算。以各待测化合物与内标的峰面积比值(y)为纵坐标,各待测化合物质量浓度(x,mg・L-1)为横坐标,进行线性回归,得回归方程。各化合物线性关系考察结果见表2。

2.1.7 精密度试验 精密量取对照品混合溶液1 mL置10 mL量瓶中,精密加入内标溶液1 mL,加乙酸乙酯稀释至刻度,摇匀,即得精密度试验溶液。连续进样6次,计算各待测化合物峰面积与内标峰面积的比值,计算RSD,结果为8种化合物的RSD为1.4%~2.4%,表明本方法精密度良好,具体结果见表3。

2.1.8 重复性试验 取同一荆芥饮片所得挥发油6份,分别按2.1.4项下方法制备供试品溶液,照上述试验条件进样测定,计算各待测化合物峰面积与内标峰面积的比值,按内标法计算含量,计算RSD,结果为8种化合物的RSD为2.3%~2.9%,表明本方法重复性良好,具体结果见表3。

2.1.9 稳定性试验 取同一份荆芥挥发油供试品溶液,照上述试验条件分别在0,2,4,6,8,12 h进样测定,计算各待测化合物峰面积与内标峰面积的比值,计算RSD,结果为8种化合物的RSD为1.5%~2.3%,表明供试品溶液在12 h内稳定,具体结果见表3。

2.1.10 加样回收试验 取已知待测化合物含量的同一荆芥挥发油约50 mg,共6份,精密称定,置10 mL量瓶中,分别加入薄荷酮对照品溶液和胡薄荷酮对照品溶液各1 mL,加入3-辛酮对照品溶液、β-香叶烯对照品溶液和d-柠檬烯对照品溶液各0.1 mL,加入1-辛烯-3-酮对照品溶液和β-石竹烯对照品溶液各0.3 mL,加入薄荷呋喃对照品溶液0.5 mL,用乙酸乙酯溶解稀释至刻度,摇匀,精密量取该溶液和内标溶液各1 mL置10 mL量瓶中,加乙酸乙酯溶解并稀释至刻度。照上述试验条件进样测定,以各待测化合物与内标的峰面积比值按内标法计算样品含量,再计算加样回收率,结果见表3。

2.1.11 样品测定 分别取3个批次的鲜荆芥,每个批次分为2份,分别按2.1.2项下制备2个加工工艺的样品。取每份样品适量,按2.1.4项下制备供试品溶液。照上述实验条件进行测定,以各待测化合物与内标的峰面积比值按内标法计算待测成分含量,再以含油量换算饮片中各待测成分的含量,取平均值,结果见表4。

2.2 2种工艺产品抗炎作用的比较

2.2.1 分组与给药 取ICR小鼠90只,随机分为空白组、模型组、阳性组、一体化高、中、低剂量组(1.5,3.0,6.0 g・kg-1)、传统高、中、低剂量组(1.5,3.0,6.0 g・kg-1),每组10只。二甲苯致炎前每天上午9:00和下午4:00灌胃给药,连续给药3 d。阳性组给予阿司匹林混悬液,一体化高、中、低剂量组分别给予不同浓度的荆芥一体化工艺产品粉末混悬液,传统高、中、低剂量组分别给予不同浓度的荆芥传统工艺产品粉末混悬液,空白组和模型组给予等体积的0.5% CMC-Na溶液,各组小鼠每次灌胃给药体积均为15 mL・kg-1(体重)。

2.2.2 模型制备与耳肿胀度检测 末次给药1 h后,除空白组外,各组小鼠于左耳正反两面涂抹0.04 mL二甲苯致炎,右耳做对照。1 h后将小鼠脱颈处死,沿耳廓基线剪下两耳,用直径7 mm的打孔器分别在同一部位打下圆耳片,称重,以左右耳片重量之差与右耳的比值为肿胀度。

2.2.3 ELISA法检测荆芥对耳肿胀小鼠血清TNF-α,IL-1β和IL-6含量的影响 二甲苯致炎1 h后眼框取血,血样静置30 min后3 000 r・min-1离心10 min,取上清,ELISA法检测血清中TNF-α, IL-1β和IL-6含量。

2.2.4 数据处理 数据用±s表示,采用SPSS 20.0进行统计学分析,以P

3 结果

3.1 一体化工艺与传统工艺加工产品化学成分的比较

相比传统加工工艺产品,一体化加工工艺产品中挥发油与8个待测成分的含量均有所增加,见表4。

3.2 对二甲苯致耳廓肿胀小鼠肿胀度的影响

与模型组比较,阳性药抑制肿胀作用明显,荆芥一体化工艺和传统工艺产品各剂量均能降低小鼠耳廓肿胀度,高、中剂量作用尤其显著(P

3.3 对二甲苯致耳廓肿胀小鼠的血清中TNF-α,IL-1β,IL-6含量的影响

与空白组比较,模型组小鼠血清中TNF-α,IL-1β,IL-6的含量显著增加(P

4 讨论

现代中医学研究认为,表证症状与炎症这一基本病理过程紧密相连,解表药的抗炎作用是其发挥解表功效的重要药理基础之一,因而研究荆芥抗炎作用及作用机制是研究荆芥的解表作用的重要途径[13]。本实验通过比较小鼠的肿胀度以及血清中TNF-α,IL-1β和IL-6含量,来考察荆芥一体化工艺和传统工艺产品高、中、低3种剂量饮片粉末的抗炎作用。TNF-α作为炎症反应的重要介质,通过增高微血管壁通透性和趋化、增强中性粒细胞与血管内皮细胞的黏附性激活炎性细胞。IL-1β和IL-6介导中性粒细胞等炎性细胞到局部病灶,是炎症性疾病中的重要因素[14]。在本实验中,荆芥一体化工艺产品与传统工艺产品均能降低小鼠血清中TNF-α,IL-1β和IL-6炎症细胞因子的含量,降低小鼠耳廓肿胀度,发挥抗炎作用。

研究表明,挥发油是荆芥的主要药效成分,其药效作用可能是几种成分的加和或协同作用,不同成分组成或主要成分比例有较大差异的荆芥挥发油,药效和急性毒性相差很大[15-16]。前期研究发现,胡薄荷酮、薄荷酮、柠檬烯、3-辛酮、1-辛烯-3-酮、β-香叶烯、β-石竹烯、薄荷呋喃在荆芥挥发油中占有很高的比例,其中胡薄荷酮、薄荷酮和柠檬烯的含量最高,为挥发油的主要药效成分,故本实验选取荆芥挥发油中主要的8种成分作为指标,考察一体化工艺与传统工艺的挥发性成分差异。结果发现,荆芥一体化工艺产品折干后挥发油含油量为1.08%,传统工艺产品折干后挥发油质量分数为0.55%,明显低于一体化工艺产品,所以其胡薄荷酮等8个成分的含量远低于一体化工艺产品。

本课题前期已采用正交实验优化荆芥一体化加工工艺参数(本部分正在申报专利),一体化工艺产品含油量较高是因为只经过一次干燥加工过程,避免了挥发油的流失。挥发油乃热不稳定性成分,重复干燥过程势必会造成其含量的降低。荆芥采收后经产地加工为干燥药材,此时的荆芥叶、穗质地较脆,在包装、运输及饮片加工过程中易脱落造成损失,以致挥发油含量降低。而一体化工艺产品是由荆芥采收后直接切段干燥成饮片,减少荆芥叶、穗在长途运输过程中的脱落损失,保证了饮片质量。此外,传统加工还经过水处理,两个工艺产品的水溶性成分及其他成分是否存在差异还需进一步的研究与探索。

药效研究结果表明,一体化工艺产品的抗炎作用整体上优于传统工艺,结合化学成分比较分析的结果,一体化工艺产品挥发油及其中各个组分的含量均高于传统工艺产品,故推断一体化工艺产品挥发油成分较高与其抗炎效果优于传统工艺产品之间有密切相关性。此外,工业化生产中一体化工艺不仅能够保证饮片质量,更能够提高加工效率,节约时间及人工成本。因此荆芥药材、饮片一体化加工有其一定的可行性及合理性。

[参考文献]

[1] 吴普.神农本草经[M].北京: 人民卫生出版社, 1963: 77.

[2] 赵立子, 魏建和.中药荆芥最新研究进展[J].中国农学通报, 2013, 29(4):39

[3] 中国药典.一部[S].2015:232.

[4] 钱雯, 单鸣秋, 丁安伟, 等.荆芥的研究进展[J].中国药业, 2010, 19(22): 17.

[5] 张霞, 周, 姚梅悦, 等.荆芥穗提取物体外抗呼吸道合胞病毒有效部位研究[J].山东中医杂志, 2015, 43(3):213.

[6] 何婷, 汤奇, 曾南, 等.荆芥挥发油及其主要成分抗流感病毒作用与机制研究[J].中国中药杂志, 2013, 38 (11):1772.

[7] 何婷, 陈恬, 曾南, 等.荆芥挥发油体外抗甲型流感病毒作用及机制的研究[J].中药药理与临床, 2012, 28 (3):51.

[8] 胡炜.解表药的作用机理探讨[J].浙江中医杂志, 2013, 48(10):771.

[9] 邹文俊, 雷载权, 张廷模.解表用药规律探讨[J].成都中医药大学学报, 2001, 24(1):7.

[10] 权美平.荆芥挥发油药理作用的研究进展[J].现代食品科技, 2013, 29 (6):1459.

[11] 陈艺文, 于生, 丁安伟, 等.荆芥不同干燥加工方法药材质量变化研究[J].广州化工, 2010, 38(5):102.

[12] Yu Sheng, Chen Yiwen, Zhang Li, et al.Quantitative comparative analysis of the bio-active and toxic constituents of leaves and spikes of Schizonepetae tenuifolia at different harvesting times[J].Int J Mol Sci, 2012, 12:6635.

[13] 陆茵, 张大方.中药药理学[M].北京: 人民卫生出版社, 2012:55.

[14] 李佳曦, 汪受传, 徐建亚, 等.白藜芦醇对RSV感染BALB/c小鼠肺泡灌洗液TNF-α,IL-1β,IL-6表达的调控趋势[J].中国中药杂志, 2012, 37(10):1451.

第2篇:工程化学笔记范文

关键词:毕业要求;课程设计;化学基础课程

《国家教育事业发展“十三五”规划》提出,加快培养战略性新兴产业急需人才,显著提高创新型、复合型、应用型和技术技能型人才培养比例。化学作为创造性的中心学科,它的方法,它对结构和反应性的集中重视使其正活跃的支配着其他科学领域。化学在研究对象的交叉性、研究方法的通融性、研究目的上的相似性,使得其进入基础科学和应用科学的各个领域成为一个不可逆转的趋势[1]。三峡大学目前在制药工程专业、生物工程专业、生态与生物学专业开设了《有机化学》、《无机及分析化学》、《物理化学》等化学基础课程;在土木工程、水利工程、地质工程、环境工程、工业工程等专业开设了《大学化学》、《工程化学》、《普通化学》等化学基础课程。上述诸多课程均有化学专业的一线教师承担,在化学知识储备方面,任课教师都是非常优秀的。非化学专业的化学基础课程有别于化学专业,任课教师也有基本的认识。但在化学基础课程教学内容设计方面,尚有诸多改进的地方。非化学专业的化学基础课程不是简化的、拼凑的化学知识片段,而应该是依据各个专业毕业要求规划和制定的详略得当、有机组合的个性化课程。化学专业也应吸取其他学科专业教学素材资源,丰富化学基础课程自身内涵;厚积薄发,对其他专业输出更加优质的课程资源,提升化学专业影响力,更好支持其他工程学科的发展。如何使化学基础课程的教学课程内容更加合理,本文结合实践操作,浅谈一些见解。

1明确课程定位

化学基础课程分布于各个专业的课程体系中,每个课程体系里的课程一般分为通识核心课程、素质拓展课程、专业基础课程、专业核心课程、专业拓展课程。不同专业对化学基础课程的定位在培养方案中都有明确界定。对于化学专业,化学基础课程主要定位为专业核心课程,专业基础课程。但由于人为因素的影响,可能使一些重要课程偏离毕业要求的导向。例如,《物理化学》在化学专业课程体系中备受重视,但《结构化学》部分却由于知识难度较大,往往被定位为素质拓展课程,列为选修课程,远不符合化学专业的毕业要求。降低了学生的培养质量。无法保证毕业学生有系统的量子化学知识储备,不利于学生继续深造和从事相关工作。因此课程负责老师应该对化学专业的培养方案有整体的认识,明确所负责课程对毕业要求的支撑强度,找准课程定位,坚持不动摇。对于非化学专业的理工专业的课程体系,化学基础课程一般定位为专业基础课程,且是必修。和数学一样,化学也逐渐成为学生学习专业知识,进行科学研究的有力工具。化学基础课程所占的学时和学分,不同专业间差异较大,由各专业对化学基础知识的需求度决定[2-3]。生物、医药、化工等专业的化学基础课程学时一般较多,以便有足够的化学基础知识的容量满足毕业要求;土木工程、水利工程、地质工程、环境工程、工业工程等专业的化学基础课程学时一般较少。学时分配是制定教学大纲的重要依据之一,决定了化学基础课程的知识容量。毕业要求中对化学基础知识的要求一般比较概括,以《有机化学》在生物工程专业课程体系为例,毕业要求:“掌握解决食品发酵与生物医药生产复杂工程问题所需的数学、物理、化学等自然科学知识,并能够将其用于工程问题的识别和表述;能够应用数学、自然科学和生物工程的基本原理,对食品发酵与生物医药生产中的复杂工程问题进行识别和判断,并认识问题的本质”。毕业要求中只提到了化学等自然科学,对教学内容的导向不够明确,这就需要课程负责人对该专业进行深入了解,对毕业要求的解读准确到位,制定教学内容合理的个性化的教学大纲。

2明确课程目标

化学基础课程的教学目标要以所在专业的毕业要求为依据,对毕业要求形成有力支撑。首先,对知识范围有明确要求,以生物工程专业的《有机化学》教学目标为例:“掌握有机化合物的命名、结构与理化性质的关系、各类化合物的典型反应及其历程、诱导效应、共轭效应、有机化合物异构及立体构型等静态立体化学的基本内容、亲电加成、亲核取代、消除反应的立体化学和化学特征反应鉴别方法等有机化学基础知识。”而化学专业的《有机化学》教学目标在知识范围方面有了很大拓展,在掌握有机化学基础知识的基础上,还要求了解化学的前沿理论、应用前景、最新发展动态以及化学相关产业发展状况。其次,对知识的掌握程度和运用水平要求,同样以生物工程专业的《有机化学》为例:“能够用于解决食品发酵与生物医药生产复杂工程相关有机化学问题的识别和表述;能够根据有机化学的基本原理和方法,对食品发酵与生物医药生产中的复杂工程出现的有机化学相关问题进行识别和判断,并认识其本质。”而化学专业的《有机化学》教学目标在对知识的掌握程度和运用水平要求侧重于具有提出、分析和解决问题的能力,具有从事化学研究、开发和其它实际工作的能力。以毕业要求为导向的化学基础课程教学目标,与该专业课程体系内的其他课程目标相向而行,形成合力,对该专业的毕业要求形成更全面的支撑。

3优化教学内容

教学内容与毕业要求处于不同的层次,一方面毕业要求的导向作用可以通过课程目标传导给教学内容;另一方面在做教学内容设计时将毕业要求作为指导性纲领。首先将教学内容划分章节或知识模块;依据教材的章节划分教学内容一般较为合理,但有时很难满足课程目标个性化的要求,因此需要对教材的章节做适当的调整或自编教材。其次是将划分好的知识模块内容细化。每条知识链都能与课程目标紧密相扣,比较重要的课程往往有多个课程目标,一条知识链可能支撑多个课程目标,一个课程目标也可能被多条知识链支撑,因此知识链与课程目标就会呈现交错的支撑关系。再其次是知识点在知识链中的重要性、难易度确认。知识点的重要性是随毕业要求和课程目标的不同而有变化。例如生物工程专业,有机化学中的氨基酸、多肽与蛋白质是重点,而在地质工程专业将硅酸盐列为重点,氨基酸、多肽与蛋白质基本不要求。知识点的难易度和知识点本身有很大关系,也和学生的专业背景有关系。生物相关专业课程体系内包涵《生物化学》这门课,有助于学生理解化学相关知识,而水利工程专业课程体系无相关课程,因此知识难点的范围要大一些。确定知识的重要性和难度,有助于在教学中把握教学重点和教学难点,以便采用不同的教学方法。结合知识模块的知识容量、难易度和重要性,完成学时分配。毕业要求中普遍要求了解前沿理论、应用前景、最新发展动态以及专业相关产业发展状况。化学专业应增加对化学学科发展前沿知识的介绍,并进行有机整合,使新的教学体系更具系统性和完整性;其次注重开发丰富的优质教学资源;引入非化学学科应用化学理论解决科学研究或工程问题成功范例,有助于化学基础理论的阐释。非化学专业的化学基础课程教前沿教学内容主要涉及两方面,一是化学前沿知识在相关专业中的应用,二是相关专业中前沿知识涉及的化学原理。,以地质工程专业为例,其开设的《普通化学》中有关胶体的知识内容,能很好的解释河流入海口三角洲的形成。一般认为河流入海口流速降低导致泥沙沉降形成三角洲,这只是其中一个因素。颗粒较小的泥沙在河水中形成胶体时,一般不易沉降,只有遇到含有强电解质的海水时,才迅速沉降,形成河口三角洲。在化学中胶体遇到强电解质发生沉降机理应在地质工程和水利工程专业中列为重点内容。毕业要求的最终实现要体现在学生对知识掌握的情况。每个知识模块都对应学生的任务,包括课堂要求、课后要求和作业要求。明确课堂要求掌握具体知识点,课后补充拓展补充材料,作业要求的具体的题目。

4课程考核、成绩评定依据与对课程目标的支撑

培养方案中的毕业要求的达成,需要合理的课程考核和成绩评定[4-5]。传统课程考核的平时成绩与考试对课程目标支撑不足,课程考核依据需要细化。课程的考核可分为:平时作业,课堂笔记,教学活动,期末闭卷考试。平时作业:作业完整,准确率>90%,字迹工整,思路清晰,提交及时。笔记,笔记完整详细,能在笔记本或教材上将重要知识点记录和标注,并有自己的注释。教学活动,积极参与教学活动,积极举手发言,踊跃发起和参与讨论,翻转课堂内容组织全面,能掌握相关的知识点,准确率>90%。期末考试,合理分配各课程目标的分值,根据考察知识的特点,选择合适的题型。课程考核对课程目标的支撑形成明确的量化关系,以有两个课程目标的课程举例列表,见表1。

5优选参考教材

参考教材的选择应尽量弱化教师的偏好,而应该有客观的依据。培养方案中的毕业要求是重要的指导性纲领,选择最能支撑课程目标的教材。参考教材要能博采众长,教师需要研读多个教材版本,以便整理出较为合理的教案和课件