公务员期刊网 精选范文 人工智能课堂教学范文

人工智能课堂教学精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能课堂教学主题范文,仅供参考,欢迎阅读并收藏。

人工智能课堂教学

第1篇:人工智能课堂教学范文

关键词:人工智能;英语教育;积极影响;消极影响

人工智能概念是20世纪五六十年代正式提出的,随着信息技术的不断发展,人工智能已成为一门新的技术科学。时至今日,人工智能技术的发展经历了人工智能起步期、专家系统推广期和深度学习期等阶段,而在应用领域也取得了重大突破,如Google的无人驾驶技术和运用深度学习算法的AlphaGo战胜围棋冠军等。除此之外,人工智能已被日益广泛地应用于经济社会各个领域,在教育领域亦是如此。2018年教育部就印发了《高等学校人工智能创新行动计划》,要求进一步提升高校人工智能领域科技创新、人才培养和服务国家需求的能力。因此,人工智能必将不断被融合到教育领域,并为大学教育变革提供新方式。基于人工智能的机器学习、人机交互与知识图谱等技术方法,可以为大学英语教师在课堂教学、备课与教学研究等多个方面提供支撑;可以为大学英语教学管理与治理提供决策支持;可以为大学生英语自主学习和教师备课提供智能推荐支撑。目前,学者们已对人工智能对英语教育的影响进行了相关的研究。如高华伟分析了外语作文智能评阅与形成性评价融合策略;刘洋针对人工智能技术与高校英语教学的相互关系,通过调查问卷和访谈等方式,分析了现有计算机辅助语言学习软件和系统的不足,并提出了相应的解决策略;张艳璐对人工智能在给英语教学带来机遇的基础上,探究了人工智能在大学英语教学中的应用;赵生学分析了人工智能时代大学英语教学的变革与策略;严燕分析了人工智能时代英语教学促进学生深度学习的路径。在人工智能时代,人工智能技术必将对大学英语教育领域各个方面产生重大影响,如大学英语人才培养目标、教学内容、教学计划、教学策略、教学模式、成绩评价体系与英语领域科研等方面。针对此,本文在现有研究的基础上,重点从教师和学生两个层面分析人工智能对大学英语教育的积极影响和消极影响,并提出相关建议,以期为大学英语教师教学与大学生英语学习提供参考。

一、人工智能的积极影响

人工智能技术在大学英语教育领域的应用,将对大学英语教学资源、教学模式与大学生二语习得等方面产生积极作用,主要体现为以下几个方面。

(一)丰富了大学英语教与学资源人工智能技术的发展与应用为大学英语教与学提供了丰富的资源。如互联网上含有丰富的英语视频与图片等资源;在线教育平台也提供了大量的英语课程资源,如中国大学生慕课、雨课堂等,它们各具特色,可为教师与学生提供多样化选择。因此,人工智能技术一方面可为大学英语教师提供丰富的教学素材,同时还可根据大学生学习目标与学习习惯等为其英语学习提供丰富的课外资料。同时,很多网络资源可下载或者回放,这样可以使得大学生的英语学习不再受到时间与空间的限制。特别是对于教育资源缺乏的地区而言尤为重要,可以在很大程度上解决教育资源不平衡问题。其中,百度教育大脑的智能备课系统便是典型应用案例。其依托百度人工智能、大数据和云平台的优势,整合了丰富的优质资源。对于教师而言,此平台可按照教学进度为教师提供经过筛选的教学素材,节省教师的备课时间,提高其工作效率。

(二)丰富了大学英语的教学方式传统的大学英语授课往往以线下课堂教学方式为主,而人工智能技术的使用丰富了大学英语单一的教学方式。可利用网络平台,如雨课堂、慕课平台等,开展大学英语线上教学模式或者线上线下混合教学模式。新的教学模式有利于教师在大学英语教学过程中采用不同的教学策略。使用新的教学模式和不同的教学策略可以提高大学生学习英语的兴趣,进而有助于提高大学生英语习得的效率。

(三)提高了大学生英语习得的效率由于英语习得是一个复杂的心理过程,与大学生的情感因素、学习动机等密切相关。采用人工智能技术的大学英语线上教学方式,使得教师与学生之间不是面对面的交流互动,可以在一定程度上缓解学生焦虑、害怕等情绪,有利于学生的英语学习。动机是英语习得中重要的非智力因素,也是影响大学生英语习得效率的重要内在因素之一。学习动机与使用另一种语言的兴趣密切相关。而人工智能技术采用丰富的英语学习资源以及英语教学方式的多样化,这些有助于提高学生学习英语的兴趣,进而增强学习英语的动力。

(四)形成了大学生英语习得分析数据库人工智能技术是以大数据为依托,可以跟踪和记录大学生英语课堂学习和课后学习等各种信息数据,进而可形成大学生英语习得数据库。基于大数据分析与人工智能技术方法,如数据挖掘、关联性分析和回归预测等,可以挖掘大学生英语学习背后的规律特征,了解到每个学生的具体情况。进而构建每个学生的英语学习画像,如学生的线上学习状态、课程作业完成情况、测试成绩和学习方式等。可为教师形成可视化的学生个体和班级整体的学情分析报告。因此该数据库有利于教师掌握每位学生的英语学习状态,掌握学生个体差异,为调整教学方式、教学方法与策略提供支撑。同时,上述数据为大学英语教学与大学生英语习得的研究也提供了数据支撑。

二、人工智能的消极影响

人工智能在大学英语教育领域对教师与学生发挥着积极的作用,同时对他们也产生了一些消极的影响,主要体现为以下几个方面:

(一)对教师的消极影响由于大学英语课堂教学存在一定的缺陷,往往需要改进此教学方式。而人工智能技术的应用,虽有助于大学英语教学改革,但还需要教师熟练掌握人工智能相关技术的使用,会给信息技术能力比较薄弱的教师造成压力。借助人工智能平台,大学英语教学不受时间、空间和学生人数等影响,势必会减少大学英语教师的需求,造成大学英语教师面临失业的压力。进而影响大学英语教师的工作积极性,以及大学英语教学质量。

(二)对学生的消极影响根据语言资本理论与期望价值理论,大学生英语学习的期望价值主要是经济期望价值。而大学生英语学习的期望价值与学习目的和行为密切相关。比如大学生英语学习经济期望价值主要体现为学习英语对未来找工作很重要,可以增加经济收入。而人工智能技术在语言领域的应用,势必会影响大学生对英语学习的期望价值。如人工智能翻译机的出现,使得各种语言之间翻译非常容易。即使不懂英语,也可使用它进行英语交流。因此,人工智能技术在英语领域的应用,将降低大学生英语学习的期望值,进而影响他们英语学习的兴趣与目的。

(三)对师生关系的消极影响基于人工智能技术的大学英语教学,将改变传统的以教师为中心的模式,使得教师在教学过程中的中心地位得到弱化。学生通过人工智能技术,可以很好地收集到自己需要的各种英语学习资源,如在线课程、英语讲座视频和英语文本资料等,甚至可以通过自学的方式完成英语学习任务。但这些将弱化教师与学生之间的互动以及情感,从而隔阂了教师与学生之间的关系。

第2篇:人工智能课堂教学范文

一、人工智能机器人

随着信息技术以及人工智能技术的迅猛发展,机器人无论是在技术上还是在外形上都显著提高,并且,不断的进行功能延伸。将具有感觉、思考、决策和动作能力的系统称为智能机器人,这是一个概括的、含义广泛的概念。这一划时代的概念产生,为机器人技术的发展,也为信息技术的发展,拓开了巨大的想象空间和新的创造天地。智能机器人是信息技术发展的前沿领域,是一门具有高度综合渗透性、前瞻未来性、创新实践性的学科,蕴涵着极其丰富的教育资源。

二、机器人教学的教学现状

2000年,机器人教学处于起步阶段,第一届“广茂达杯”中国智能机器人大赛在长沙举行。其目的是刺激机器人新技术的发展;鼓励年轻学生投身机器人技术。2002年,机器人竞赛得到了进一步的发展。2003年,机器人竞赛达到热潮。2004到2009年,机器人竞赛成为了主流,第四届至第九届中国青少年机器人竞赛分别在河南、广西、陕西、云南、重庆、湖南、青海举行,竞赛规模不断扩大,规格不断提高,经验不断丰富,成绩不断攀升。同时,第五届至第十届“广茂达杯”中国智能机器人大赛也取得了丰厚的成绩。2011年广东省的虚拟机器人竞赛,全省共有12个地市和顺德区报名参赛,参赛队伍106支,参赛学生148人。比赛形式新颖,要求学生现场编写虚拟足球比赛和虚拟灭火比赛的程序,然后进行投影演示,所有的同学都可以观看和学习。2012年的“乐博杯”青少年机器人世界杯中国竞赛在西安举行,汇聚了众多的参赛者。同学们秉着重在参与、学习交流的态度,经过两天紧张激烈的比赛,比赛成绩优异,涌现了一大批优秀的编程人员。其中最为突出的是兴围小学代表队,他们突出重围赢得了冠军,即将代表中国队去墨西哥参加世界级机器人大赛。

机器人竞赛已成为国内科技、教育界一致认同的一项青少年科技创新的重要赛事,作为一项富有时代性、创新性、参与性和普及性,适应当代青少年需求,深受当代青少年欢迎的智力开发活动,在全国各地产生了广泛的社会影响。

三、存在的问题

(一)教学方面

1、智能机器人缺少科学、可行、实效的教学目标。按照学制的阶段性划分不明确,存在重复学校相同知识的现象,从而导致机器人教材特色不明显。

2、智能机器人教育往往没有固定的教学设计和规划。导致许多教学只能按照产品使用说明书进行教学,不能按照学生接受能力有秩序的开展知识体系教学。

3、目前学校教育使用的机器人很纷杂,缺少规范。并且绝大部分并不兼容,开放度低。还有就是教学用机器人单机价格偏高原因是销售数量上不去,导致厂商只能太高价格。

(二)教育资源方面。由于我国各省市之间的贫富差距不断加大,从而导致在教育资源投入方面也是参差不齐,很多欠发达地区软硬件教学设备都严重不足,智能机器人的教学活动很难正常开展。

四、改进措施

(一)资源环境建设方面。积极探索信息技术条件下人工智能机器人进课堂教育环境的构建策略。建立完善系统的小学教育人工智能机器人进课堂资源的开发、应用的管理运行机制。同时,应该加大对中小学智能机器人教学资源投入力度,以确保所有孩子都能够享受到同等级的教学资源。

(二)学科教学方面。对于小学的人工智能机器人教学工作来讲,教师的培训工作应该是非常重要的。由于目前该门学科在小学教学当中仍属于一种新型的学科,相关教师之前并没有进行系统的学习过相关理论,同时,实践经验也是严重不足。因此,这就无形中增加了教师的教学难度,因此,对教师进行适当的教学培训是十分必要的。

目前,我国开展的“校校通”工程已经在全国的中小学基本完成,各地区小学已经具备了计算机房,而开展机器人教学工作还需要进一步购置教学使用的机器人,从而建立起以信息技术为核心的现代化教学环境,即“机器人”实验室。另外,教学资源的进一步开发与收集也是一项关键任务。学校可以统一添置一批有关机器人的教学信息资源,例如:教学光盘、教学软件等等。同时,还可以充分利用网络资源收集相关的机器人教学课件,教案等。丰富教师教学参考资料。

第3篇:人工智能课堂教学范文

关键词:人工智能;教育变革;智慧教育

近年来大数据、云计算等信息技术飞速发展,人工智能在一些特殊领域(如图像识别、语音识别、自然语言等)不断取得突破性进展。人工智能作为新的技术驱动力正引发第四次工业革命,为医疗、教育、能源、环境等关键领域带来新的发展机遇。人工智能专家预测,人工智能在通用技术领域可能尚不能替代人类,但在一些特殊领域,人工智能将会淘汰现有的劳动力。在国外,许多国家纷纷把人工智能作为国家发展的重要竞争战略,我国学者也密切关注着人工智能的最新理论进展和实践应用,国务院于2017年7月颁布《新一代人工智能发展规划》,明确人工智能发展的重点策略。“人工智能变革教育”的潮流,引发了教育研究领域的“人工智能热”。当前全球范围内,人工智能在教育领域的大量研究和应用催发形成了教育人工智能概念。目前梳理学术上关于研究人工智能与教育的文献主要集中于:

(一)教育理念的革新。“人机一体”将成为未来新的教育方式[1],由新技术和新手段的出现所应运而生的智慧教育[2],将对原有教育进行改进和完善。智能技术在改变教育的手段和环境的同时,还有利于构建出系统解决教育问题的教育新体系,从而真正触及教育的根本[3]。

(二)关注技术的革新。机器深度学习、智能学习的算法、视觉识别以及智能语言识别这些基础技术的突破,为人工智能的教育应用奠定了坚实的基础[4]。

(三)探究教育的应用。人工智能在学校教育中的学业测评、交叉学科、角色变化等应用领域具有巨大潜力,教师角色内涵也将在与人工智能的协同共存中发生改变。AI监课系统能够数据化、可视化评估教师的授课情况,将人工智能技术的运用渗透到整个教学过程中,教师可以根据评分实时调整授课内容,以促进个性化学习,从而提升教学效果。教育深受技术发展的影响,新技术融入教育并促进教育方式的转变已成为必然趋势。一方面技术为教育提供了新的、更加广阔的可能性;另一方面技术具有变革人类的教育方式与学习方式的能力。然而,技术是一把“双刃剑”,如何获取或实现以人工智能为代表的新兴信息技术所拥有的特征、优势与功能,使其在教育中最大限度地发挥其应有的价值呢?人工智能技术如何继续被安全使用到教育领域?如何通过教育变革来促进新兴信息技术在教育教学中的广泛与深入应用,实现教育深层次革命等问题,是目前需要关注和探讨的主要问题。

1人工智能时代下教育变革的背景

1.1人工智能的内涵及具备的强大能力

人工智能最早由美国达特茅斯学院于1956年提出,其研究主要包括机器人、图像识别、自然语言处理、语音识别等,实质是一种自动感知、学习思考并做出判断的程序。人工智能具有自主学习、推断与革新的能力,推动了图像识别、自然语言处理等方面的技术突破。人工智能同时具有理性判断力、超强的工作力,只要电力供应不断,几乎可以无限制地工作下去,而且适应不需要情感投入的工作。它的超强能力,源于三个重要的技术:深度学习、大数据和强算力。

1.2人工智能时代的机遇和挑战

人工智能在精力、记忆力、计算力、感知力以及进化力等方面与人类相比,具有突出优势。在医药领域,人工智能的出现使普通民众可以享受更为高效、稀缺的医疗资源,解决医疗诊断领域诊断质量不均衡、医生资源不足等问题。在教育领域,人工智能促进教学质量进一步提升、教师角色多样化、学生学习能力的提升;为教育研究提供新技术和数据支撑;极大拓展了教育研究新视域;使教育在立德树人方面、教育方法创新方面、教育手段和环境方面以及教育服务供给方式方面均发生改变。然而,看到人工智能以其强大的处理能力带来机遇的同时,也需要正视人工智能带来的新挑战。在人工智能浪潮冲击下,如何借助人工智能发展的机遇推进教育的变革与创新?人工智能技术如何继续被安全使用?首先,人工智能专家大都认为,人工智能将会淘汰大量现有的依靠非脑力劳动为生的劳动力,需要培养人工智能时代的新型劳动力。而且,人工智能技术本身的不太成熟使很多人工智能技术只是应用在儿童教育领域,再者,人工智能潜在的道德伦理问题缺乏法律制度规范。除此之外,人工智能时代将对社会结构以及人的地位构成挑战。综上所述,人工智能时代所带来的机遇是大于挑战的。教育需适应人工智能技术所带来的突破和飞跃,不断调整和更新教育的方向和目标,实现育人成人的发展目标。

2人工智能与教育变革

2.1人工智能与教育目的的变革

人工智能带来的巨变不仅影响人类未来如何发展,而且极大释放了人类的生产力,这些在一定程度上使得人类需要重新思考教育是何目的。人工智能影响教育目的的变革主要表现在:第一,人工智能可能会使人类陷入精神危机。这源于两方面的结果:一方面,人工智能将取代大部分人的工作岗位,工作的丧失将会导致人的价值和尊严丧失。另一方面,人工智能技术的发展将可能导致所有基于自由主义的想法破产,转而人类所拥有的价值和尊严可能转化为一种“算法”,人工智能带来的职业替代风险在教育领域同样存在,主要是对教师角色的挑战。第二,人工智能有利于培养人的学习能力。从某种角度上讲,人工智能剥夺人的就业机会,但同时,人工智能助教机器人将协助教师实现个性化指导,从而有利于将学习的过程视为寻求自我价值和意义的过程。除此之外,人工智能有利于使教育注重培养人的精神能力,这种精神能力大致包括实践动手能力、价值追求能力以及创造能力,从而有利于学生知识以便于更好地完善自我、丰富自我,使教育跳脱“知识为本”的陷阱,发挥“立德树人”的正向作用。

2.2人工智能与学习方式的变革

第一,深度学习。深度学习也称为深度结构学习或者深度机器学习,是一类算法的集合。深度学习概念的提出,一方面尊重了教学规律,另一方面也是应对人工智能时代下的挑战。深度学习在机器学习、专家系统、信息处理等领域取得了显著成就,提倡学教并重、认知重构、反思教学过程,进而达到解决问题的目的。第二,个性化学习。个性化学习区别以往传统班级课堂授课,尊重学生的个性发展,因材施教。人工智能技术与大数据的应用有利于学生享受个性化的学习服务,可提供个性化的学习内容,可视化分析学生的学习数据,快速提高学生的学习效率。第三,自适应学习。自适应学习是指人工智能基于对个体学习进行快速反馈的基础上,根据学习者特征,为其推荐个性化的学习资源和学习路径,从而最大程度上适应学生的学习状态,是实现个性化学习的重要手段。人工智能技术有利于快捷、科学地判断学生的学习状态,进行学习反馈;持续收集学生的学习数据,其中包括学习目标、学习内容;高效地为学生提供海量的学习资源。

2.3人工智能与学习环境的变革

首先,有利于搭建灵活创新的学校环境。不仅可以使空间规划更具弹性,而且可以调节性增强物理环境。其次,人工智能时代的教育区别于以往传统教育强调的统一秩序,更注重个体的用户体验。创客空间、创新实验室等学习环境的不断增加以及人工智能技术的不断发展,个性化的空间环境与学习支持将改变目前学习的学习空间环境。除此之外,随着对话交互技术的逐渐成熟与不断普及,有利于实现虚实结合的立体化实时交互。VR、AR等技术的同步协作也有利于搭建新的学习环境,满足学习者的一系列要求。脑机互动技术的突破有利于实现将人工智能植入人脑,从而改变人类自然语言的交流方式。最后,人工智能通过即时、准确、高效的大数据分析有利于进行精准且个性的学习评价与反馈。人工智能将综合收集所有同学的学习记录,互相比对、优化,从而进行综合提升。更为重要的是,人工智能的人脸识别以及语音识别技术可以运用到教师的教学过程中,进行学生的学习情绪感知,学习状况的了解,从而促进学生学习的科学化;智慧校园、智慧图书馆等的出现,为教学环境的建设提供重要参考。

3人工智能在教育领域的应用

人工智能被认为是最有潜力和影响力的教育信息化技术,将通过人工智能数据挖掘分析、3D打印、模拟仿真等技术的应用,实现人工智能与教育的深度融合,对计算机辅助教学、个性化教育服务、教育人工智能生态环境等产生根本影响。2018年《地平线报告》(高等教育版本)指出了教育领域的信息化发展,未来一段时间内将通过人工智能与信息技术的结合,进而影响教育阶段的不同过程。具体见表1所示。

第4篇:人工智能课堂教学范文

【关键词】人工智能;计算机;辅助教学;应用

计算机辅助教学是一种新兴的教学手段,帮助课堂进入到一种更加智能化和现代化的环境与条件中,将传统的教学模式和方法与多媒体和网络结合起来,为学生营造更好更有趣的教学氛围。但是由于技术的不成熟以及经验的不充分,导致其依旧存在问题和不足。

1计算机辅助教学开展现状和发展困境

1.1缺少开放包容的特性

近年来,计算机辅助教学的开发和应用已取得了一些较好的成绩,但由于我国计算机网络工程和相关领域的技术革新起步较晚,对于计算机教学的发展与改革依旧存在较多的不足和缺陷。首先是在开放包容性上的缺失。这一缺失的原因主要来自于两个方面,第一个方面是思想上的落后和闭塞,人们对于计算机辅助教学的态度依旧存在负面和抵触的情绪,这是由于害怕计算机的加入让课堂和教学秩序失控,所以并没有充分开发和展现出计算机在教学中的优势。第二个方面是技术层面上的限制,我国对于计算机辅助教学的课件和软件技术都只是按照一种最传统和安全的方式进行,缺少探索和冒险的精神、开放和包容的态度[1]。

1.2缺少人机交互的能力

计算机辅助教学过程中,计算机不仅仅是一个信息的载体,更应该将其当作课堂的一份子,能够充分参与到整个课堂的活动和教学工作中。但是大多数的智慧课堂在使用计算机时,仅仅利用其多媒体的播放功能,教学的主体和主要角色依旧是教师,只是把课本和板书照搬到了多媒体课件中。教学的内容仍然是枯燥和单一的,学生依旧带有一种被强迫的学习心理。这种教学缺乏人机之间的交互,机器不能自主获取学生学习的状态和对知识的掌握情况,学生也无法通过计算机主动地得到反馈和解答,让人机之间仅仅是流程化的配合和交流。在这种刻板的学习模式下,甚至会让一部分学生丧失学习的乐趣和兴趣。

1.3缺少课程教学的特点

不同的课程有着不同的教学重点和偏向,这就对教师的教学工作提出了更高的要求,计算机的加入,本来应该能够为教师提供一个新的教学方向和思路,但是由于计算机的便捷性导致一部分教师产生偷懒和敷衍的教学心态,在教学过程中全程使用多媒体播放课件,丧失了课程自身的特性和特质。尤其是一些对实践能力要求较高的课程,教师过度使用计算机只会导致教学趣味性的流失。

1.4缺少师生互动的乐趣

教师作为课堂教学的主要角色,不仅仅是要把知识以一种通俗外化的形式传递给学生,更是应该做学生心理特征的发掘者、学生学习习惯的纠正者和帮助者。教师的鼓励和赞许都会对学生起到重要作用。但是计算机辅助教学之后,教师将更多的精力放到了如何制作精美的教学课件上,而忽略了与学生之间最直接的感情和语言交流,丧失师生互动的乐趣。

1.5缺少有序的教学策略

教学策略是保证一节课是否能够有序开展和进行的重要条件与因素。但是计算机参与和设计的教学环节,只是一个程式化的展示,在课堂上会遇到多种多变的教学情况,一旦在某一个环节出现问题,就有可能导致计算机设计的教学步骤全部打乱,陷入一种无序的状态中[2]。1.6缺少灵活的智能性能计算机技术的开发和应用在我国已经逐渐形成了一套完善和成熟的体系,但是计算机在教学中的应用与引进时间并不长,导致当前多数计算机辅助下的课堂并不具备充分的灵活和智能性,大部分的教学工作和考核评价工作依旧是由教师人工完成,对于不同学生的学习状态掌握也有所偏差。

2人工智能在计算机辅助教学中的应用

2.1建立知识库

人工智能在计算机辅助教学中应用的主要原则,就是将深度学习与认知学的理论知识作为整个程序模块设计开发的基础,通过建立一个知识库,将收集到的知识案例进行分类,训练机器进行自动识别,从而提取和分析出不同学生在不同的知识中所表现出来的学习能力与掌握熟练程度,进而可以有针对性和有选择性地进行复习与巩固,达到机器代替部分人工教学、缓解教师压力的目的。第一步就需要进行知识库的建立,主要包括了专家决策的核心系统对所输入的知识进行判断与筛选调取。同时知识库还可以实现共享的功能,对知识进行简化与提炼,做到精益求精。知识库的搭建应该要尽量简单和易修改[3]。

2.2打造专家模块

在建立了知识库之后,就需要围绕人工智能教学的主要目的进行专家模块的打造,专家模块存在的意义在于能够将其比喻为整个学习系统中的推理机。在需要和使用的情况下,由专家模块自动随机地生成问题,并且可以通过知识库的相关内容调取形成答案并充分解释。其次,专家模块的另一个作用就在于能够帮助评价和考核学生的学习情况,实现一种更加公正透明的评价过程。在进行专家模块打造时,通常使用的是两种方法,一种是固定算法,即根据题库的问题模板,循规蹈矩、规规范范地进行问题的设立和解答的编写。而另一种就是启发策略,这种专家模块更多的是引导学生通过简单和有限的提示信息,自己推理摸索找寻正确的答案和解决方案。除此之外,专家模块还可以自动匹配,依据学生能力分配问题。

2.3建立学生模块

与专家模块相互配合相互辅助的就是学生模块。学生模块的本质其实也属于专家系统,模块内部所存储和容纳的是学生的不同学习习惯和学习行为特征。这个模块建立的目的主要是两个,一个是为了让学生在学习的过程中可能出现的错误习惯和方法被快速识别,并且能够通过机器语言进行记忆与编译,从而建立一个比较完整和全面的错误类型数据库,进而深层分析找到错误的原因。第二个目的就是为了帮助学生对错误学习行为和习惯进行解释,从更加深层次的角度挖掘学生由于知识理论掌握不充分而导致错误的原因。学生模式的建立一般依靠的就是人工智能的自我学习和接受训练让系统能够建立起模型对学生的学习习惯进行模拟。这样在上一步打造的专家模型就可以为学生模型提供一个对比的样本,专家模型的两种运算和教学方式可以分别评估学生的学习能力和学习错误[4]。

2.4优化教学模块

教学模块是人工智能在计算机辅助教学模式中必不可少的一个环节,教学模块的内容是基于传统教学设计和规划之上的。在计算机与人进行交互的过程中,教学策略主要是由教学的不同分支来体现,能够达到较好的发散性和综合性的效果。但是其不足的地方也比较明显,那就是只能按照某一类型或者某一个的教学方法进行,系统不能快速地根据不同内容识别和选择最适合最有效率的教学模式。具体的应用和实现过程就是将专家模块和学生模块的内容进行连接和合并,将专家模块生成的问题及答案与学生模块中上传和学习到的进行对比,选择覆盖或者是分析提取,能够比较客观地发现学生学习中存在的理解性偏差和实践性错误。之后再将结果传回到知识库中,调用相关的知识内容,形成一个完整的反馈链,帮助教师做出教学决策,调整教学进度和教学规划。但是这个模块的设计也应该充分考虑到诸多情况和因素,因此在条件判断时应加入更多的循环。

2.5开发智能接口模块

人工智能在计算机辅助教学模式中的应用和融合最后一步就是要开发出一个稳定和高效能的智能接口模块,主要作用是为了连接学生和计算机之间的信息交换和沟通,即进行信息的输入与传出。在接收到学生传递的学习信号后,接口模块要及时调动起教学模块、专家模块和学生模块,把信息传递给不同模块处理,之后再由教学模块所作出的教学决策和结果论证信息输出反馈给人,实现了机器语言与人类语言之间的转化。一个能够正常运转并且具备较高实用性和参考性的教学系统,一定融汇了思想教学、策略和心理学等多方面的因素和知识内容体系,所以智能接口模块的设计与开发,一定要全面考虑这些成分,开发出更加灵活多变的接口模块[5]。

3结语

人工智能在近年来获得了快速的发展和进步,成为我国当前各个行业领域之内炙手可热的先进技术。对于计算机辅助教学的开展和改革来说,人工智能的融入与应用有着重要的价值与意义。

参考文献

[1]张镒麟.关于计算机辅助教学中人工智能技术的应用研究[J].当代旅游,2019(1):239.

[2]刘荫.人工智能在计算机网络技术中的应用研究[J].科学与信息化,2019(2):20-21.

[3]孙玉梅,赵骏,王美春,等.基于人工智能技术的《单片机原理及应用》课程CAI软件研制[J].教育教学论坛,2016(45):268-270.

[4]张园.人工智能技术在计算机辅助教学中的应用研究[J].科技资讯,2007(34):108-109.

第5篇:人工智能课堂教学范文

关键词:人工智能;专家系统;ARM;单片机

人工智能(AI)[1]是计算机科学的重要分支,是计算机科学与技术专业的核心课程之一。本课程在介绍人工智能的基本概念、基本方法的基础上,主要是研究如何用计算机来模拟人类智能,即如何用计算机实现诸如问题求解、规划推理、模式识别、知识工程、自然语言处理、机器学习等只有人类才具备的“智能”,本课程重点阐明这些方法的一般性原理和基本思想,使得计算机更好得为人类服务。

1人工智能课程体系

人工智能主要研究传统人工智能的知识表示方法,包括状态空间法、问题归约法谓词逻辑法、语义网络法、框架表示、剧本表示等;搜索推理技术主要包括盲目搜索、启发式搜索、消解原理、规则演绎算法和产生式系统等。

人工智能的研究论题包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。

人工智能课程在我校计算机科学与工程学院是作为大三年级的一门专业选修课开设,总共学时数为:60(其中理论学时为36,实验学时为24),随着计算机技术的不断更新发展,人工智能的应用领域变得越来越广,因此人工智能(AI)这个学科已不再陌生,很多学生对其充满兴趣,所以在选课人数上远远超过其他选修课的人数,另外结合我校的实际情况,部分理论或实验设计项目可以与其他相关专业结合起来而应用。

2人工智能教学实践

50多年以来,人工智能获得很大的发展,已经引起众多学科和不同专业背景学者们的日益重视,成为一门广泛的交叉和前沿科学,但是到目前为止人工智能至今仍尚无统一的定义,要给人工智能下一个准确、科学和严谨的定义也是困难的。

由于人工智能[2]是一门交叉性的学科,涉及到了控制论、语言学、信息论、神经生理学、心理学、数学、哲学等许多学科。所以该学科具有知识点多、涉及面广、内容抽象、不易理解、理论性强、需要较好的数学基础和较强的逻辑思维能力等特点,导致了在教学过程中老师讲得吃力、学生听得吃力。尽管在多年的教学过程中积累了一些经验,但是对于如何把握这门课程的特点,提高学生的学习兴趣,帮助学生更好的理解这门课程,目前仍然有很多问题需要研究解决。

目前在整个教学过程中存在的主要问题[3]是:

1) 教学内容陈旧,部分参考书相关内容或案例都过于陈旧。在整个教学过程中,多数教学案例涉及到人工智能理论的高级应用――机器人,目前在国际及国内机器人的水平已经达到相当高的水平,但是部分教科书中仍沿用关节型机器人为例,教学内容稍显陈旧。

2) 教材难易程度不均匀,部分章节学生难以理解。由于人工智能课程的部分章节,本身就可以独立成一门课程,但由于是面向本科生的内容,因此很多内容压缩于一章来讲解,同时由于课时所限,完全不能将相关的内容讲透讲通;例如:神经计算中的神经网络,与模糊逻辑控制的相关理论与应用。

3) 教学手段单一,教学过程中缺乏师生之间的沟通与交流。经过自己的实践教学及对兄弟院校的人工智能的教学内容与教学手段的调研,同时也在学生之间进行沟通交流,发现多数同学反映,理论与应用虽然前沿,但是在学习过程中,教师教学手段单一,内容枯燥乏味,一般的教学模式,多采用“老师讲,学生听”的方法,整个教学效果并不理想。

4) 考核方法不科学,不能体现学生实际的学习情况。目前对于课程学习的考核采用闭卷考试的方式,很多考点有的同学根本不理解,完全死记硬背,考后又将内容丢弃,从学习的效果来讲,收获甚微且完全没有达到真正学习及应用的能力。

3教学方法改进

3.1注重激发学生的学习兴趣

科学家爱因斯坦曾说过:“兴趣是最好的老师。”如何在教学工作中激发和培养学生的学习兴趣,提高他们学习的主动性和积极性是当前教学改革中迫切需要解决的重要问题。

在实际的课堂教学中发现,刚开始听课由于有兴趣学生整体学习的积极性很高,但是一段时间过后发现部分学生由于教学内容抽象,难点比较多,不便于理解,兴趣日渐变少,针对此种情况,可以采用任务驱动式教学或案例教学。

例如:在讲专家系统章节时,在授课之前先通过互联网,采取案例教学法,给学生们实时在线演示一个医疗专家诊断系统,演示其中的功能,同时与学生互动,以问答式与学生互动,了解目前专家系统的具体应用、可以解决的问题、给人民生活带来的益处等。通过这种教学的形式,一方面可以激发学生的学习兴趣;另一方面也使同学们体会到人工智能与我们生活的贴近程度。第二步,采用任务驱动法,具体来说,它是指教学全过程中,以医疗专家诊断系统若干个具体任务为中心,通过完成任务的过程,介绍和学习基本知识和具体设计方法。

3.2注重教材选择

这一任务的执行者主要是由教研室主任或任课老师来完成。目前在各高校中所使用的人工智能相关教材的种类繁多,章节和内容的设置上也存在差别。笔者在订阅教材或参加教材展销的活动中,都比较重视人工智能教材的情况,通过比较发现,有的教材内容及难度太低,完全不符合高等本科院校的要求,而部分出版社的教材则是内容及章节安排内容太多太泛,有些知识点讲的又过于深奥,限于学时所限也不适合选用。在选教材方面,除了关注内容方面外,还要注重书上所讲的一些实例,注重这些例子的典型性、时效性及新颖性,例如,部分教材在自动规划这一章,选用机械手作为例子来说明积木世界的机器人规划问题,还有一些选择关节机器人,前些年这样的机器人技术确实是个难点,但是依据现在成熟的机器人技术,无论是国际还是国内都已不再是技术难点,再拿这个例子去配合理论去讲解,无论内容还是形式都稍显陈旧,目前机器人技术发展水平基本上达到尽可能高仿真状态。

3.3运用现代化的多媒体教学手段

针对人工智能课程相关内容比较抽象,公式推导比较繁琐,除了具有完善的教学大纲、合理的教学计划以及好的教材外,还应该根据学校的实际硬件条件尽可能地选择多媒体教学手段来辅助教学。因此在实践教学中,配合教学内容,充分利用计算机、投影仪以及互联网的优势,结合多种教学方法与手段组织整个教学过程。例如:在讲述搜索推理技术时,使用一些小的演示软件,将相关推理技术的理论通过动画的形式一步一步演示出来;在讲专家系统相关理论知识时,尤其是各种类型的专家系统,采用互联网上的一些在线视频资源为例,给同学进行详细讲解,同时结合农业院校的特点,在线资源有如农业专家系统或动物专家诊断系统等,这样学生可以加强对理论知识的理解,同时也体会到理论不再是抽象空洞的文字描述;在自动规划这一章,给同学们选择演示发达国家目前研制的各种类型机器人,通过这些形象生动、行为举止逼近真实人的机器人来给学生讲理论,这样学生通过观看视频资源,不仅可以拓宽知识面及视野,同时也可以及时地了解国际及国内机器人的发展水平及差距,不断更正自己的错误观点并更新自己新的专业认识,另一个方面也可以同时激发学生们的学习热情和积极性,这一点在课堂实践教学中得到验证,得到广大同学的认可和接受,整个教学课堂不再那么单调枯燥呆板了,基本可以达到在娱乐中传授专业知识。

3.4加强对实验教学的重视

目前高校在人工智能的教学过程中,实验所占的学时比较少,有的甚至就不安排实验课学时;另外实验内容也相对比较简单,应用不到理论课堂上所学到的人工智能原理,实验效果不是很好。面向人工智能课程的程序设计语言,多采用Prolog程序设计语言,该语言是一种基于一阶谓词的逻辑程序设计语言,它在AI和知识库的实现技术方面具有十分重要的作用,具有表达力强、表示方便、便于理解、语法简单等优点。但在整个实验教学环境也遇到了如下问题:首先是目前有关人工智能的专门配套实验教程很少;其次是即使有诸如《面向人工智能程序设计Prolog》教程,则主要是侧重介绍这门自然语言的程序设计,而其中很多部分与AI实验环节关联度不大,另外教材价位也比较高。针对此种情况,笔者在24个学时的实验教学过程中,安排7个实验内容,其中最后一个专家系统的设计与实现作为一个综合性实验来设计。在进行实验教学的过程中,首先参考多本Prolog程序设计教程,选择其中与实验教学计划中相关的内容,专门编写相应的电子教程,同时也结合我校学生本身的特点[4],有侧重地体现和编写,总的目的是给学生一份完整的、系统的、规范的电子教程。这样做的目的是:一方面作为学生参考的技术文档;另一方面也可以节省学生的部分经济开支。电子教程的结构分为三个部分来完成,首先为人工智能理论及原理,Prolog语言的使用说明;其次具体的例子演示(均经过调试正常运行);最后为布置给学生具体的实验内容及相关题目,以提供给学生自己动手实践的机会。此外在实验教学过程中,同时也会给学生们自由发挥的机会,比如专家系统的设计与实现作为一个综合性实验,学生可以采用Prolog编程实现,也可以采用其他自己擅长的程序设计语言,例如有的同学选择C语言、VC++、Visual Basic、Java及网页开发设计语言ASP/JSP等,此外在实验内容方面,实验递交的专家系统涉及多个领域(有动物辨别、医疗诊断、动物养殖咨询等专家系统)、范围也颇广,实验内容重复性很小,在设计过程中,绝大部分同学均是结合自己的兴趣爱好来完成设计。

4结语

人工智能的研究成果将能够创造出更多、更高级的智能“制品”,并使之在越来越多的领域超越人类智能,同时将为发展国民经济和改善人类生活做出更大的贡献。作为一名当代的大学生有必要学好这门课程,但是根据实际教学情况,教师与学生仍然需要继续进行相应的研究与发展,只有不断地探索和提高,才能使我们的教学工作更上一层楼,才能培养出符合时代和社会需求的人才。另外人工智能与农业等方面存在很多结合应用的契机,这样计算机就可真正地服务于社会、服务于人类、服务于农业、应用于农业、发展农业。

参考文献:

[1] 蔡自兴. 人工智能及其应用[M]. 3版. 北京:清华大学出版社,2007.

[2] 陈峰,文运平. 浅谈人工智能课程的教学[J]. 消费导刊,2006(12):123.

[3] 赵蔓,何千舟. 面向21世纪的人工智能课程的教学思考[J]. 沈阳教育学院学报,2004,6(4):131-132.

[4] 王莲芝. 高等农林院校人工智能教学的探讨[J]. 高等农业教育,2003(12):64-65

Study of the Artificial Intelligence Teaching Methods

HAN Jie-qiong1, YU Yong-quan2

(1. School of Computer Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;

2. School of Computer, Guangdong University of Technology, Guangzhou 510075, China)

第6篇:人工智能课堂教学范文

人工智能作为一门课程[1],开设时间距今只有40多年,但发展极为迅猛。人工智能课程的内容涉及计算机科学、数学、系统科学、控制科学、信息科学、心理学、电子学、生物学、语言学等等,几乎所有科学工作者都可以在人工智能中找到自己感兴趣的问题。目前,国内外已有众多高校指定人工智能为计算机科学与技术及其相关专业的主修专业基础课程,它在拓展计算机和自动控制的研究和应用领域方面有着极其诱人的学科发展前景。自2003年起,国内诸多高等院校陆续开设“智能科学与技术”本科专业,同时也有更多高校在传统信息类专业中加大了人工智能课程的课时比重,因此如何提高人工智能课程的教学质量显得尤为重要。? 

本文结合人工智能课程的特点以及自己教学与研究的实践,对本课程的教学进行一些探讨,以期改进人工智能课程教学方法,达到提高本课程教学质量的目的。?? 

一、兼顾课程内容的统一性和差异性?? 

人工智能课程的核心内容主要集中在对基本概念、基本原理、基本方法和重要算法及其应用的认识和理解上,尽管各种基本概念、原理、方法和算法在一定程度上自成体系,但是它们之间又存在着许多内在联系和规律。从这一点来看,人工智能课程与其他很多计算机课程是不同的,这就要求人工智能课程的授课要具有自己的特色。? 

知识表示、知识推理、知识应用是人工智能课程的三大内容,解决任何一个人工智能问题都离不开两个步骤,即知识表示和问题求解。由此,人工智能课程从总体结构上就有了一个比较清晰的脉络,即首先必然要学习各种知识表示方法,然后是利用这些知识进行推理,进而实现知识应用,最终达到问题求解的目的。问题求解又分为基本的问题求解方法和高级问题求解方法。图搜索策略、启发式搜索、消解原理以及规则演绎系统等都属于基本的问题求解方法。计算智能、专家系统、机器学习、自动规划等属于高级问题求解方法。? 

同时,人工智能课程某些章节或者某些方法算法在一定程度上又自成体系。例如,各种不同的知识表示方法不管是数据结构还是表示形式都完全不相同。又例如,人工智能有许多不同的学派[2],本课程往往同时会介绍不同学派的算法,这些学派在人工智能的基础理论和方法、技术路线等方面是完全不同的,甚至是对立的。? 

这些都要求我们在教学过程中不仅要强调人工智能课程理论的统一性和完整性,又要兼顾各学派的特点,尊重甚至调动学生们对不同人工智能学派及其方法的兴趣。在编写和选用教材时也要注重这一点,我们选用的是蔡自兴教授编写的《人工智能及其应用》系列教材[1,2],该教材以逻辑主义学派为主线,兼顾引进其他学派的精华内容,具有较强的科学性。 

??二、实施分层次教学?? 

各高校一般同时为计算机相关专业的本科生和研究生开设了人工智能课程,甚至有的非计算机类专业也开设有人工智能课程。不同层次的学生对人工智能课程要求掌握的程度不同,我们首先明确本科生和研究生以及非计算机类专业学生的教学目的和教学内容,做到分层次设计人工智能课程教学?过程。? 

本科阶段的人工智能课程课时量较少,本科层次只需要做到对大部分人工智能概念和算法了解、认识,少部分达到理解层次。本科生一般都是在高年级(三年级下期或者四年级上期)开设人工智能课程,这时已有不少学生准备继续读研或者已经被保研,因此在兼顾全体学生教学层次的同时,要注意给这部分学生足够的相关参考书目,让他们能够利用课余时间广泛深入了解人工智能相关算法,老师在课后还应和他们进行充分讨论,培养他们对人工智能的特别兴趣。? 

非计算机类专业的学生往往需要学习如何利用人工智能知识解决该专业领域内的问题,因此在教学中要尽量有专业针对性地进行教学。例如针对农科类专业,在教学专家系统过程中,我们要求学生参考北京农业信息技术研究中心开发的农业专家系统开发平台(paid5?0)理解并开发与本专业领域相关的简易农业专家系统。? 

给研究生开设人工智能课程要求做到概念理解,基本算法精通,即要求全面、系统地掌握人工智能的基本概念、基本原理、典型方法和若干应用实例,并且能灵活运用所学知识阐述解决实际问题的方法和途径。课程教学中要致力于培养学生分析问题与解决问题的能力,要求研究生将人工智能方法与自己的研究方向相结合,用人工智能方法解决所研究课题中的实际问题,并撰写相关的课程论文,以小型研讨会的形式进行报告交流。实践证明,我们的研究生的人工智能教学效果明显提升,成效突出。 

??三、案例驱动,寓教于乐?? 

采用案例教学是为了充分调动学生的学习兴趣,增强学生学习的自觉性[3]。通过案例教学能把枯燥的人工智能理论知识具体化、形象化,可以使学生更加感性地理解课堂教学内容。这些案例都是以教师所从事的科研项目中的实际应用环境为背景进行阐述的,让学生能在实际环境中理解概念和知识,学会利用人工智能知识去分析和解决实际问题。在教学过程中要选择学生容易接受的案例,体现理论联系实际的特色,激发学生的兴趣。? 

例如,在讲授“计算智能”内容时,我们结合黄河三门峡和小浪底水库水沙联合智能调度系统[4]进行讲解。综合三门峡水库和小浪底水库防洪运用的基本原则、历年调度方案、专家的经验、历年数据和现有的调水调沙数学模型,分别利用模糊决策、神经网络、遗传算法及综合集成方法来实现三门峡、小浪底水库水沙联合调度。? 

又例如为了让学生走近机器人,我们进行了一场机器人展示课,将研究所现有的MOROCS?1(中南一号智能移动机器人)、ASR(广茂达)、AmigoBot(自主移动机器人)、CanDroid(罐头机器人)、MD?375 Rover(人控漫游车)、Fokker D7(人控飞机,1:72)、Rockit OWI?769K(声按、压控火牛机器人)、Hexapod Monster(六足爬行机器人)、Hubo(多机能歌舞机器人)等各类机器人全部拿出来给学生做了功能演示[5]。亲眼看到这么多机器人,同学们都非常兴奋,对人工智能课程的兴趣高涨。? 

在进行案例教学时,引导学生带着问题和求知欲望深入理论的学习,让学生在案例中寻找问题的答案并获取知识。在讲授利用神经网络进行水库调度时,引导学生分析如何确定神经网络的输入端数据,什么是泛化能力以及如何提高神经网络的泛化能力。? 

为了巩固所学内容,可以让学生组成讨论小组对教师提出的论题进行讨论,分小组阐述自己的观点,这样有助于提高学生学习的主动性,还有助于培养学生思考问题的能力和提高理论教学的效果。案例教学的关键在于引导学生利用所学到的理论知识去解释、分析和解决现实案例中的问题,以达到训练学生理论运用和深入理解理论知识的目的。? 

此外,我们挑选了机器人足球、拖拉机扑克牌、中国象棋、五子棋等普遍受人喜爱的智能游戏,让学生亲手设计小型智能游戏软件,在设计的过程中掌握高深的人工智能理论知识,让学生学得会、用得上、记得牢。 

??四、结语?? 

以上谈到的一些教学方法是我们在教学过程中总结体会比较深刻的方面,以供探讨。事实上,要进一步提高人工智能课程的教学质量,还有很多方面需要改革和加强。如不断强调人工智能教师的专业素质,要求他们在讲授好人工智能课程的同时,努力提升出自身的专业素质,给学生一个良好的专业素质导向。其次,在人工智能课程教学过程中还需要有培养实用型人才的教学理念,特别是注重培养有创新意识的实用型人才。注重培养学生的质疑能力,只有通过质疑和提出问题,学生的创新意识才能够得到不断强化,创新思维能力才能够得以不断提高。? 

人工智能学科是一门非常年轻、又非常前沿的学科,有其自身的突出特点,人工智能课程教学必然与其他计算机专业课程教学不同,需要更多的从事人工智能教学的教师在自身的教学实践中不断积累经验,进行广泛的教学交流。 

 

参考文献? 

[1] 

蔡自兴, 徐光祐. 人工智能及其应用(第三版)(研究生用书)[M]. 北京: 清华大学出版社, 2004(8): 1-4.? 

[2]蔡自兴, 徐光祐. 人工智能及其应用(第三版)(本科生用书)[M]. 北京: 清华大学出版社, 2003(8):288-290.? 

[3]雷焕贵, 段云青. 中美案例教学的比较[J]. 教育探索, 2010(6): 150-151.? 

第7篇:人工智能课堂教学范文

关键词:无人机系统;智能决策;自主控制;智能体系;任务规划;课程设计

0引言

无人机具有较强的机动性和较好的可操控性,能辅助人类在恶劣和危险的环境中执行复杂的任务。近年来,无人机系统迅速发展并广泛应用于环境监测、灾难搜救、反恐侦察等众多领域。无人机系统研究的一个关键问题是如何发展高度智能化的软件系统,提高无人机在动态复杂环境中自主决策的能力。目前,众多高校开设的无人机专业课程主要研究无人机的硬件平台、通信与测控、指挥控制、综合保障和实践等方面,然而对于无人机系统的智能决策问题研究尚不深入。

1无人机系统决策的内涵

1.1无人机自主控制系统概述

无人机自主控制系统是无人机实现自主飞行管理与自主任务管理的机载系统,如图1所示,它涵盖了机器人“观测一判断一决策一行动(observer-orient-decision-action,OODA)”的各个环节。

无人机自主控制能力是衡量无人机智能自主水平的一项重要能力。表1基于OODA分别对无人机自主控制能力进行了描述,其中,“判断”与“决策”部分评价的是无人机对战场态势的评估能力和对任务或行为的决策与规划能力,是衡量无人机自主决策能力的最重要指标,也是无人机决策课程设计与实践的核心。

1.2无人机自主决策子系统概述

自主决策模块位于智能无人机系统的顶层,它如同人类神经系统执行决策行为,产生计划并处理不确定性。自主决策模块主要包括顶层任务决策、顶层任务规划、底层行为决策和底层路径规划。顶层任务决策用于任务策略的在线生成;顶层任务规划用于任务计划的在线制定;底层行为决策用于运动行为的在线序贯决策;底层路径规划用于导航计划的在线生成,这些内容的教学与实践将贯穿课程的教学与实践过程。

2人工智能在无人机系统决策中的发展以及作用与地位

人工智能从孕育之初到现在,经历了“三起两落”,如图2所示。人工智能的发展也不断促进无人机自主决策能力的发展,甚至可以说,人工智能的发展决定无人机自主决策水平的高低。早期,无人机决策大多依托产生式规则或谓词逻辑技术,主要针对确定决策;20世纪六七十年代,知识表达引入到有人机辅助决策支持系统的设计与研发中,也逐步迁移到无人机智能自主系统中;随着概率统计的引入,基于贝叶斯的不确定推理决策方法得到大力发展;专家系统依据专家经验生成策略,用于解决离散事件不确定性,形成了一系列无人机智能自主决策成功案例;近年来,机器学习、多智能体理论的热潮将无人机智能水平推到了一个前所未有的高度,使无人机具备知识沉淀、知识挖掘、智能发育的能力,并将单无人机执行ISR任务拓展到多无人机协同遂行多任务领域。无论经典人工智能方法还是人工智能新思路,都是无人机智能自主决策的重要基础,在无人机系统智能决策课程教学与实践中具有举足轻重的地位。

3无人机智能决策课程教学总体设计

国防科技大学依托控制学科和仪器学科在自动化专业试办开设了“无人机工程”专业方向,培养掌握无人机工程相关领域基础理论和基本知识的学员,使其具有从事无人机系统及相关装备的分析、设计、研制、维护和管理等方面的实际工作能力和初步科学研究能力。

3.1教学目的与课程设计总体思路

设置无人机智能决策课程的目的是使本专业学生快速了解无人机决策系统组成、熟悉决策系统工作原理、掌握决策理论与实现方法。课程设计的总体思路是设置课堂教学和动手实践两个主要环节,课堂教学环节主要通过教师讲授的方式,基于无人机自主控制系统组织结构,介绍无人机决策系统的基本概念;实践环节则是在学生已经掌握智能决策算法基本原理和流程的基础之上,让学生参与到决策系统的设计与实现中来。

3.2课程教学主要内容

无人机智能决策是课程教学的核心内容,主要覆盖贝叶斯推理理论、最优化理论、智能搜索等基本决策理论和方法,主要讲解如何将其运用于无人机智能感知、任务规划的建模和优化方法,比如基于贝叶斯的不确定推理、基于启发式人工智能搜索算法的路径规划等。内容安排包括问题描述、基本原理、算法过程、输入输出设计、结果分析等;人机智能融合决策是课程的拓展部分,主要涵盖人机智能融合原理、脑机接口原理、融合决策机制等理论和方法,主要讲解如何将其运用于人在回路辅助的无人机智能自主决策、混合主动规划的接口设计与融合决策方法,比如基于脑机接口的人机智能融合决策、混合主动任务规划等;拓展内容安排包括资料查新、接口设计、融合机制设计、融合算法实现、结果分析等。

4无人机智能决策教学实践环节设计

4.1课程实践环节的必要性

4.1.1无人机系统智能决策课程对实践的需求

实践教学是高等学校教育非常重要的教学环节,是提高人才分析问题与解决问题的重要途径。无人机系统智能决策是一门实践性很强的课程,一是由于无人机系统是一门交叉性的学科,主要涉及空气动力学、无人机平台设计与制造、图像处理与智能感知、导航系统原理、无人机飞行控制、人工智能、机器学习、任务规划与分配、无人机系统体系保障技术等许多学科,所以该学科具有知识点多、涉及面广、理论性强,需要学生具备较好的逻辑思维能力和数理基础等特点,因此,必须通过实践才能加深对无人机系统知识的理解;二是智能决策技术不断走向实用,20世纪80年代随着人工智能基础科学的研究,智能决策作为一门新兴学科出现在国际科学舞台上,智能决策技术早期以研究经典的智力游戏问题和仿真实验来证明理论等为主流,随着互联网的普及和国际信息化进程的提高,智能系统和智能计算等也逐渐成为学者们的研究热点。从加强学生的实践能力出发,考虑到课程的建设需要,需要加强无人机系统智能决策课程的实践教学内容。

4.1.2无人机系统智能决策课程对实践的要求

根据智能决策的特点,进行实践教学需要达到以下几个目的:一是加强学生对基础知识的理解,对智能决策基本方法的掌握;二是加强学生将智能决策知识与方法用于解决实际问题的能力;三是增强学生对智能决策研究领域的兴趣,培养更多的专业人才。

智能决策的实践教学工作必须以高质量的科研内容为基础。通过瞄准国际前沿、集成创新和引进消化吸收、提升原始创新以及再创新能力,从而建设创新平台和创新团队,以高水平科学研究支撑高质量的高等教育。此外,智能决策的实践教学还要考虑因材施教,验证关键技术环节。目前学生的学习任务较重且水平参差不齐,在设计实践环节时,要把握如何能在较短的时间内让学生得到最大程度的能力锻炼。在这种情况下,教师必须进行充分的准备,事先搭好通用的硬件平台和软件框架,以减轻学生不必要的负担,营造良好的氛围,将学生的主要精力集中在创新实践上,这样才能提高实践教学的效率。因此,课程借鉴了无人机领域最具影响力的国际微小型飞行器赛会(IMAV)的比赛规则,结合智能决策的研究热点和当前承担的学术科研任务,引入无人机竞赛作为智能决策教学实践的平台。

4.2基于无人机系统智能决策的课程实践方案

在智能决策课程开始之际,教师向学生明确课程实践方案,即通过无人机竞赛的形式考核学生解决实际问题的能力。通过举办无人机竞赛,可以激发学生的学习热情和创新动力,达到寓教于乐的目的。学生带着思考主动学习理论知识,而不是为了应付考试被动学习;教师应当按照学生的综合能力合理组队,从而达到能力互补和团队协作。

无人机竞赛面向本校无人机工程专业方向的本科生,根据智能决策课程的需要,共设置3个科目。

第一个科目是自稳飞行,无人机需在3分钟内完成从出发点到指定目标点的飞行,要求单次滞空时间不少于30秒;本科目考查的是学生对无人机自主飞控基础知识的掌握。第二个科目是避障侦察,无人机需以尽可能快的速度穿越一排障碍门,并识别地面上的物品;障碍门的可通行区域各不相同,无人机需通过机载单目相机识别可通行区域,并自主规划路径;本科目考查的是学生对智能识别和任务规划基础知识的掌握。第三个科目是特级飞行,包括手抛无人机平稳飞行、8字飞行、伴随飞行等;本科目考查的是学生的创造力。比赛采用百分制,3个科目按照难度系数和重要程度评分占比分别为30%、50%和20%。

如图3所示,课题组提供比赛使用的无人机硬件和飞控软件平台并指导学生拼装无人机及使用软件。学生需在课程学习的过程中制定智能决策的算法设计及代码实现计划,并严格按照时间节点实现目标;每个小组的成员必须说明自己在团队中的贡献,从而作为教师打分的依据。

第8篇:人工智能课堂教学范文

关键词:计算机网络;发展;变革

一、计算机网络技术对人们生活的影响

(一)变革工作方式

计算机网络等相关新兴技术的出现,为社会上的各行各业都带来了很大的变化。首先对于工商业来说,也是最早应用计算机网络技术的行业,在当前各行各业处于快速发展的过程中,对于计算机等新兴技术也有了更强的依赖性,企业借助计算机网络技术可以提升工作效率,同时也可以改变传统工作中存在的缺陷。在银行中主要就是利用互联网等技术来为客户提供服务,同时现在的网络购物技术以及互联网金融的快速发展,也使得越来越多的行业都面临着新的变革,并且人们也享受着网络技术所带来的便利,借助计算机网络技术可以查询企业的资源利用状况,也可以为企业的发展提供一些指导性的意见[1]。计算机网络技术等也被广泛的应用于教育领域,在教育中借助现代化技术可以显著提升教育质量,也可以摒弃传统教育存在的缺陷。如果仅仅通过枯燥乏味的教学模式是无法提升学生的学习兴趣的,在其中引入现代化的教育手段,可以培养学生的学习兴趣,同时也可以将一些枯燥乏味的内容以更加形象的方式呈现在课堂上,这样可以丰富课堂教学手段。比如借助PPT等形式可以将书本上的知识以图片视频方式呈现出来,这样可以使得教材内容更为直观,也可以使得学习过程更为高效。在教育界有效的引入现代化教育技术,可以显著提升教育质量,同时也催生了远程教育的产生,学生在家中也可以借助互联网与老师进行沟通交流,这极大的促进了教育得推广,也为我国所推行的素质教育奠定了基础[2]。

(二)革新消费方式

计算机网络技术的快速应用以及新技术的快速应用现,也在很大程度上改变了人们的生活消费与交流方式。当前相关技术的快速发展,也使得人们的购物方式发生了很大的变化,我们在生活中最为显著的一个购物行为变化就是网购行为越来越多。尤其是很多网络店铺的兴起,其凭借着京东、阿里巴巴等大平台为当下用户提供了非常便捷的购物服务,人们足不出户便能购买到自己心仪的商品,同时在网上也可以获取自己想要的资源。结合自己的需求立即购买产品,这种消费方式省时省力,不用出门也可以达到自己的需求。在该过程中人们的支付方式也发生了很大的变化,人们越来越多的使用网络支付,也不会被传统消费过程中现金支付所带来的困扰所影响[3]。

二、计算机网络技术革新

(一)大数据技术

当下越来越多的新兴技术不断涌现,最为显著的便是大数据技术。大数据技术依托于计算机网络技术能够从当前爆炸式增长的资源中来迅速挖掘到自己需要的信息,并且借助相应的分析系统来对数据进行分类整合,这样可以大大提升对于信息资源的获取、处理和利用效率。普通民众对于大数据的应用不是很多,但是对于一些互联网企业都会借助大数据技术来为自己的业务开展提供信息,比如淘宝之类的购物网站会借助大数据技术来收集用户的习惯喜好,并且针对性的推送一些用户可能会购买的产品。今日头条之类的新闻网站也会结合用户的浏览规律、浏览喜好来向其推送一些可能被喜欢的内容,这也可以做到精准化推送,以及更加周到的服务,并且获得更多的受众。

(二)人工智能

人工智能技术也被广泛的应用,虽然从整体角度来说,人工智能技术仍然不够成熟,但是其也被广泛的应用到科技领域以及家居领域,比如智能语音智能驾驶、智能家居服务都已经成为当下智能技术所研究的方向。人们一回到家就可以通过声控的方式,来对家中的电器进行控制。同时在驾驶中也可以借助智能辅助系统来获取更加舒适的体验,也有一些厂商正在研发智能驾驶系统和AI技术,这可以为人们的生活提供更加优质的服务[4]。人工智能在计算机网络安全管理工作中,可以更好的呈现自身的价值,首先借助人工智能等技术可以构建智能防火墙技术,这在很大程度上可以保护计算机系统免受外界的侵害。借助该技术可以防止黑客,以及更高级别的病毒入侵等活动。同时借助人工智能技术等衍生出来的智能防火墙,可以有效提高安检效率,并且对于一些高级病毒进行筛选防护,借助人工智能技术可以提高计算机入侵检测技术,该技术可以作为防火墙技术的核心工作,其能够为维护网络安全提供重要的技术支持,最大程度上确保计算机系统能够处于安全稳定的状态。人工智能技术也被广泛的应用到专家知识库的构建中。其主要就是结合其积累的相关资源,并且借助大数据技术的对其中的内涵价值等进行挖掘,对知识门类进行分类,这样可以借助现有的计算机网络管理经验,并且辅以数据库编码等操作来为后期各项工作的开展提供基础

(三)云技术

云技术也是当下发展较为迅速的技术,在国内,阿里云所占的份额最多,并且其借助云技术可以有为用户提供更加优质化的服务,比如云存储、云计算。通过云技术可以为互联网用户提供优质化的服务,也可以将之与大数据技术相整合,进而为整个企业业务的开展提供有效的策略。当然,在未来会有越来越多的计算机,网络技术以及相应的衍生技术出现,并且改善人们的生活质量[5]。

第9篇:人工智能课堂教学范文

关键词:高等教育;大数据;分析;挖掘

一、教育大数据分析挖掘的价值

高校大数据分析挖掘至少有四个典型价值:

一是使得大学的管理更加精准高效,可以朝着智慧治理、分类管理、过程监控、趋势预测、风险预警的方向发展,真正实现基于大数据分析规律的精准治理,改变管理的模糊性;

二是可以更加准确地分析评价课堂教学的质量,过去我们对课堂、对老师的评价是定性和模糊的,而在大数据智慧课堂的模式下,可以真正实现采集样本的持久化,采集方式的多元化,挖掘手段的多样化,分析技术多维度,通过这些方式可以提高课堂教学的质量;

三是使得教和学更加智慧,更加有效。对学生来说,老师可以了解学生学习的进展情况,发现学习兴趣点,以及对老师讲的哪些内容理解或者不理解,学习路径分析及课程推荐等等。对教师而言,不仅可以跨校跨地域分享他人的优秀课程,而且可以对学习者进行精准分类,进行个性化指导;

四是资源服务的个性化、精准化推荐与服务,学习绩效的个性化评价,以及个性化教学管理,个性化手机内容推送等等,这些功能将有效提升教与学的效率和质量。

二、教育大数据技术平台的总体设计

首先,我们对高等教育大数据技术平台有一个总体的顶层设计,如图1所示。这不仅是学校自己要有一个大数据的管理平台或者是数据中心,而且也是面向区域乃至全国的平台。教育部评估中心正在努力建立国家级高等教育教学质量监控大数据中心,陕西省也是这样考虑的。数据来自高校、教育管理部门以及行业、第三方、企业用人单位等等各方面采集的数据,该数据平台既有大学的业务数据、课程资源,也有政府部门的统计数据,还有学生网上学习的日志数据,用户产生的UGC数据,比如微信、微博、论坛等等的数据,基于大数据平台,开展面向学习者、面向高等教育管理机构、教师、高校等提供服务,并和教育部评估中心、主管部门等进行数据交换与对接。

显然,这样一个大数据平台必须是一个高性能的计算平台,没有这样的基础设施一切无从谈起,所以去年我们学校花了很大的力气做了两件事,一个是把校内二级单位原来小的集群计算进行整合,形成学校统一的高性能云计算平台,既面向校内的科学研究、人才培养提供服务,其实也可以为社会提供合作共建共享模式。目前,我们已建立了一种自我造血机制,四两拨千斤,以这个平台吸引更多的外部资源,努力扩展平台的性能和应用。

三、教育大数据分析挖掘的典型应用案例

目前,我校的高性能平台除了应用于材料、航天、能动、信息等大型科学计算之外,还开展了以下三项典型的大数据应用。

案例1:陕西省高等教育质量监控与评估大数据应用

图2所示的是陕西省高等教育的整体架构。其数据基础是来自陕西省100多所高校的各种办学状态数据,有将近700个表格,以及陕西省教育厅各个职能部处的各种各样的管理数据,此外还有行业第三方提供的数据,包括招生、就业数据等等,这个平台上我们开展预测预警、查询在线分析、信息、统计决策等等,主要是为省级教育管理部门、评估机构、教育管理机构提供各种各样的办学状况的分析、统计、关联分析。

建设全省高等教育大数据服务平台,实时采集各高校的办学状态数据,其根本目的是为了汇聚全省各高校的办学状态数据,打破数据孤岛,融合各方数据,实现横向关联比较、纵向历史分析,提供精准服务,支持科学决策。

首先,该平台面向省教育厅提供了11项功能,从根本上解决了原来各处室间的数据孤岛的问题,实现了数据融合,横向关联,纵向融通,这个数据和各个高校是实时融通的,为省教育厅领导和职能部处提供了领导仪表盘、各职能处室的专项服务、81张高基表及年报年鉴表格的自动生成、绩效分析、招生就业及办学指标计算、教育评估等功能,从根本上解决了数据碎片化及其治理问题。

其次,面向全省高校辅助决策,为高校领导以及校内各个职能部处提供了系列功能,包括办学情况综合分析和在线查询,专业结构分析比较,校级的教学质量监控评测体系,教师管理等等,这些功能非常实用,这是大学实现精细化、规范化、现代化管理的必备基础。以我校为例,我们过去教师的数据可能在人事处、教务处、科研院等学校的职能部门,采取本平台以后,把教师有关的所有数据都进行了融合,打通了所有原来割裂的数据。从去年开始,我们学校的职称评聘,年度考核全部基于这一平台,全部在大数据里,建立健全了基于数据驱动的精准化服务,解决了数据碎片化历史遗留问题,实现了从管理信息化向服务信息化的根本转变。

第三,为本科教育教学评估及专业认证提供技术支撑。鉴于本平台能提供比较全面的高校办学状态数据,便于专家在进校之前全面系统地掌握学校办学的情况,找到问题,精准查看验证,提高效率,给高等教育评估提供了重要支持。基于本平台,我们成立了中国西部高等教育评估中心,接受陕西省教育厅指派的省属本科高校的审核评估和专业论证。如果没有这一高等教育大数据平台的支撑,工作量和难度是极其巨大的,甚至难以实现。

案例2:MOOC中国技术平台

MOOC中国成立于2015年1月,到目前为止已经有121所高校加入,理事单位40家,会员单位80家。该平台的宗旨是:做政府想做的,做社会愿意做的,做单一高校做不了的事情。例如,真正解决校际资源共享、学分互认等,开拓远程教育国际化等未来发展的难题。

图3给出了MOOC中国的技术框架。其核心是互联网+教育,实现互联网教育从1.0到2.0的升级。基于这一平台,既要开展网络教育业务的国际化,比如我们牵头成立的“丝路大学联盟”,其目的之一是借助MOOC中国平台,实现网络教育业务的国际化,通过MOOC中国平台,面向“一带一路”国家开展开放教育和技能培训。

到目前为止,MOOC中国已经有了9911门课程,用户将近600万,其中光IT培训的有500多万,学历教育在读学生50多万。

案例3:西安交大教育教学大数据分析挖掘与应用

学校非常重视教育信息化技术融入和应用到教育教学之中,去年一次性建成了80个智能教室,把物联网技术、云计算技术应用于智能教室和教学一线,基于物联网技术实现教室设备的集中管理、智能控制,同时,将互联网技术深度融入到教室的管理当中,除了多媒体的直播录制功能以外,还提供了学生考勤和专家的精准督导,通过云平台来集中管理各个教室,比如说开投影机、关电源、关多媒体设备等等,都可以通过后端的云平台集中管控,真正实现教室管理的数字化、智能化、精细化,提升了教学保障的能力,也大大提高了教室管理的效率。更重要的是,这些教学的过程数据可以全程采集下来,获得数据,有了这些数据,就可以做精准化分析服务,建立西安交大教学质量大数据监测中心。

目前,我校的教学大数据主要包括两大部分:一是教师在授课过程中的全程录制的课堂实况;二是学生在学习过程中产生的大量日志数据。基于这个平台,我们可以开展教育教学的大数据关联分析,开展课堂教学质量的综合评价,实现正面激励、负面惩戒、精准督导,实现教学评价从模糊宏观到量化精准、从每学期制到持续常态、从部分随机到全面覆盖、从事后评价到实时动态的根本转变。通过评价激励老师敬畏课堂,评选精品课堂、示范课堂,在全校内进行正面表彰,另外也作为教学质量评价的重要依据,包括教师的职称晋升,评选最喜爱的老师等等。

此外,本系统还为学院领导和管理部门提供了针对性的信息服务与决策支持,以数据说话,量化分析,改变了以前我们的模糊评价,采取多维度、全覆盖、持续化、精细化的过程评价与监控。

四、教育大数据分析挖掘的若干关键技术

首先,介绍一下大数据人工智能的基本原理。前段时间,AlphaGo战胜世界围棋冠军这一故事炒得很热。这对我们的教育科研工作者提出了一个重要的课题,到底人工智能会不会战胜人类的智能,将来教师存在的主要价值是否还有必要?863计划正在研究一个项目,到2020年,人工智能软件参加高考得分要超过一本线,这就是说,计算机教出来的机器软件参加高考都能达到一本线以上。这就引起我们的思考,这是一个深层次的方向性问题。当然我们今天不是谈这个问题,而是我们要看看AlphaGO的原理,其核心是价值计算函数,用收益函数来判断围棋下一步该落子到哪里其收益是最大的,其中采用了人工智能深度学习方法。AlphaGO并非天生聪明,其实他的智慧是分三步完成的:

第一步,给AlphaGO输入了3000万个人类围棋高手的棋谱和走法,任何一个人是不可能记住3000万个棋局的,只有人工智能才能记住。

第二步,AlphaGO自己和自己对弈,在对弈过程中找到自己的薄弱点,进而改进和完善,这其实和人的学习原理类似。

第三步,才是人机对弈,从职业选手到世界围棋冠军,通过这样不断的对弈完善算法,校正学习,使得AlphaGO具有强大的智能计算能力。AlphaGO的难点在哪?其关键在于在一个巨大的落子空间选一个最大的收益点,或者落子点,称之为MovePicker()函数,这个空间很大,有10170次方,在如此庞大的计算空间中选择最优函数,只能依靠高性能计算平台。

AlphaGo为我们研究大数据问题提供了思路和启发。我们在研究教育大数据问题中需要着力攻克以下理论与技术难题。

第一,大数据造成了严重的认知碎片化问题。比如,大家在百度搜糖尿病会检索出4440万个数据源,谁也看不过来,并且里面还有一大堆真假难辩的数据。所以,碎片化知识的聚合是一个非常基础的难题,高度的碎片化降低了知识的可用性,造成了分布性、动态化、低质化、无序化等典型的问题。

一方面是知识的碎片化,另一方面是每个人的兴趣和需求还不一样。所以,资源的碎片化整合以及个性化推荐是今后人工智能中的关键问题。我们的思路是:一方面,我们要从资源的角度把无序、分散、低质的资源进一步重组以后形成知识点,形成有序的知识地图;另一方面,要对学习过程进行跟踪,实现兴趣、个性、情感等方面的动态分析与挖掘,两者结合起来,建立基于用户兴趣和个性的资源推荐,最后实现个性化精准过滤,通过知识地图面向用户提供导航学习,从而缓碎片化知识的问题。开展这一研究也要建立庞大的基础数据,就像刚才讲的AlphaGO,光靠智能软件肯定不可能那么聪明,需要建立庞大的知识地图、知识图谱,并将其放到了国际开源社区和开放数据平台之上。

第二,碎片化知识的聚合问题。其目的是解决“既见树木,又见森林”的问题,破解“学习迷航”、“认知过载”的问题。我们正在承担国家自然科学基金重点项目,研究如何将多源、片面、无序的碎片化知识聚合成符合人类认知的知识森林,找出主题与主题之间的认知关系,最后形成一个知识森林,其中需要解决主题分面树的生成、碎片化知识的装配、知识森林生成、学习路径选择与导航等有关知识地图、知识图谱构建与应用等许多基础性关键技术。