前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的医药行业废气处理技术主题范文,仅供参考,欢迎阅读并收藏。
一、国内外纳米材料的研究现状
随着各种新兴技术以及相关产业的发展,对纳米材料的需求日益增多,纳米技术的基础理论等相关研究也都在飞速发展,相关技术在医疗、电子等行业应用得比较广泛,并已面向产业化的方向发展。虽然在美国、日本等几个国家已经实现纳米粉体材料的批量生产,但未来的研发之路是任重而道远的,纳米生物材料和纳米医疗诊断材料等产品还将处在不断的探索过程中。有关机构曾经做过预测:到2020年,全球纳米新材料市场规模达86亿美元,行业的年增长率为24.6%。最近几年,各国政府和企业对纳米技术的研究投入了大量的人力和物力,促进了纳米新材料产业的发展,纳米材料的市场规模将进一步扩大。美国将纳米材料的研发列为国家战略层面的科研项目之一,这与其在国防、军事、航空航天等领域的广泛应用分不开。纳米材料优良的性能已被认可,正逐渐应用到农业、生物、医疗等领域,创造巨大的经济效益。我国开展纳米材料的研究并不算晚,目前,我国有100多个从事纳米材料基础和应用研究的机构。其中,开展研究工作比较早的单位既有高校也有研究所,例如清华大学、吉林大学、东北大学等老牌学校,以及长春应用化学研究所、感光化学研究所等研究院所。在过去的一段时间里,我国纳米材料基础领域的研究取得了丰硕的成果。在研究过程中,主要采用物理和化学方法,并且将多种方法结合使用,研制出金属以及合金的氧化物和氮化物等一系列纳米颗粒;积极地向走在前列的国家学习,并且引进一些急缺但是却不能自主生产的设备,对纳米微粒的尺寸进行有效的控制,将研究的成果应用于生产中,其中生产出一系列高科技产品,例如纳米薄膜、纳米块材等;积极地从各个角度对纳米材料的特性进行挖掘,在很多的方面都积极而显著地创新,取得了一系列的进展,成功地研制出具有优良性能的纳米陶瓷,其主要表现在密度高和结构复杂等方面;另外,我国在世界上首次发现超塑性形变现象,即纳米氧化铝晶粒在拉伸疲劳应力集区所表现出的特性;在其他纳米技术应用的领域也取得了不菲的战绩,例如对功能纳米材料进行了深入的研究,并且取得一系列的丰硕成果。在“八五”研究工作的基础上,我国建立了几个纳米材料研究基地,具有代表性的主要有南京大学、中科院金属所、中科院物理所、国防科技大学、清华大学等。这些基地的建立为纳米材料的研发创造了条件。经过数十年的工作基础和工作积累,我国在纳米材料和纳米结构的研究方面取得了长足进步,在国际社会上具有一席之地。新时期,国内的科研院校不仅为我国纳米材料研究培养了高质量的纳米材料科研人员,还对纳米材料的应用进行了研究,促进了成果转化工作。今后一段时期内,这些科研单位和高校都将是我国纳米材料研究的重要组成部分。据有关部门的统计,目前我国已有700多个以“纳米”命名注册的公司,注册资金达到560多亿元。通过纳米材料的标准化工作,规范纳米材料产品的生产,使纳米材料高新技术与传统产业的改造有机结合,提高了传统产业的技术水平,提升了产品的档次与性能,促进了传统产业的结构调整,加速了传统产业的改造。
二、纳米产业发展的趋势
纳米材料作为一种新型材料,其研究虽然还存在诸多问题,但是伴随着科学技术水平的发展,纳米技术上存在的问题都会一一被解决。纳米技术将逐渐与其他技术相融合,最终融入到社会生活中。
第一,纳米技术与信息产业的融合。信息产业在世界上占有举足轻重的地位。2010年,我国信息产业的利润占GDP的10%。纳米技术与信息产业相融合,具体表现在以下几个方面:首先,现阶段网络通讯、芯片技术以及高清晰度数字显示技术不断发展,推动了纳米技术的发展。未来对通讯和集成等方面的零件性能要求会越来越高,美国等一些发达国家已经着手研究,实验室的研究也取得了一定的成功。其次,我国在分子电子器件和巨磁电子器件等领域的研究起步较晚,研究比较滞后。最后,在网络通讯中,我国对其中一些关键的器件如谐振器、微电容和微电极等方面的研究不足,与世界的差距较大,在进行研发的时候也要努力提升相关零件的性能,这些都为纳米技术与其产业的融合留下了巨大的空间。
第二,纳米技术与环境产业的融合。纳米技术在空气净化以及水污染物的降解方面不可或缺,纳米技术在净化环境方面的意义重大。目前,我国已经制造出可以充分降解甲醛、氮氧化物等一系列污染物的设备,可以大为降低空气的污染程度,可以将有害气体的浓度从10ppm(指用溶质质量占全部溶液质量的百万分比来表示的浓度)降低到0.1ppm;近年来,很多公司致力水处理产业,利用纳米技术的光催化性能净化水质,提高生活用水和工业用水的质量,已经取得了一定成就;在未来,纳米技术在环境领域的应用将会更加广泛。
第三,纳米技术与能源环保产业的融合。当今,对能源的不合理开发和滥用已致使其呈现出日益枯竭的状态。所以,合理有效地利用能源是我国今后的一项重要工作,同时对新能源的开发和利用也刻不容缓。一方面在传统能源领域,加紧对其催化剂的研究,这样可以使煤炭、石油等资源充分利用,充分燃烧,同时减少废气的排放,这些都需要纳米技术的支持。另一方面,在开发新能源方面,我们不仅要自主创新,还要积极地借鉴国外的先进经验,开发一些可燃气体,开发清洁能源,将一系列的新能源更便捷的在日常生活中应用。
第四,纳米技术与生物医药产业的融合。我国加入世界贸易组织后,各个行业都受到不同程度的冲击。以医药行业为例,在国际医药行业决定采用纳米尺度发展制药业的大背景下,我国必须奋起直追,不能落后。纳米生物医药发展的方向在于从动植物提取需要的材料,之后通过纳米技术处理,使其药效最大限度地发挥出来,这也是我国中医的理论思想。在医药方面采用纳米技术生产,也可以提高纳米技术的适用层次。
第五,纳米新材料的研发。美国一家机构预测:到21世纪50年代前后,汽车上60%的金属材料要被新型复合材料所代替,采用高强度轻质量的材料可节省油量达到55%;还减少了尾气的排放量,尤其是二氧化碳的排放。在车体使用纳米材料,发挥其优良的性能,不仅提升汽车的力学性能,而且还使汽车具有反射各种紫外线、红外线的功能,减少了外界的干扰。
关键词: 医用分子筛
氧气作为医院医疗使用已经有很多年的历史,在医疗行业也是不可缺少的,但其制取方法一直延用着传统的低冷空气分离法,使用该方法制氧设备投资高、占地面积大,操作及维修维护费用多,因此不便在医院推广使用。1998年4月国家医药局了《医用分子筛制氧设备通用技术规范》,1999年山西埃尔气体系统工程有限公司研制出了分子筛氧气发生装置,取代了医疗行业传统的制取方法和氧气瓶供氧方式,目前正在国内推广使用。
制氧系统的核心部件是制氧分子筛,分子筛(简称ZMS)是一种以沸石为主要原料经过特殊加工而成的白色颗粒,是一种半永久性吸附剂,在使用过程中注意防水,否则将失去吸附作用。分子筛对氧气和氮气的分离作用主要在于这两种气体在分子筛表面上的扩散时间不同,较小极性的气体分子扩散较慢,很少一部分进入分子筛微孔,较大极性气体分子扩散较快,进入分子筛微孔也较多,氧气的临界直径为2.8A(1A=10-8cm),而氮的临界直径为3A,这样在气相中可得到氧的富集成分,通过PSA变压吸附双塔流程,就可以从空气中将氧气分离出来。根据中华人民共和国医药行业标准《医用分子筛制氧设备通用技术规范》以空气为原料,利用分子筛变压吸附工艺产生的氧气,这种氧气的氧浓度范围为90%—96%(v/v)之间,剩余的部分气体主要是氩和氮,随着吸附塔自动排气阀的作用,将少部分氩和氮以及其它废气排除掉,氧气进入贮氧罐通过管道输送到各临床科室。
大坪医院野战外科研究所如今是全军唯一的集医疗、教学、科研为一体的军队卫生医疗机构,为首批三等甲级医院,重庆市首批涉外定点医院。特别是医院新病房大楼的落成使用,使大坪医院的发展融入了学校整体跨越式发展的快车道,病床数量达2000余张,收治率100%,医院各项建设指标都超过了历史最好水平,美丽舒适的庭院式医院实现了大坪医院几代人的梦想和追求,迎来了全国、全军、同行的参观学习和赞美。大楼配备自动化监控系统、气动物流传输系统、楼宇自控系统、消防报警系统、网络传输系统和自动化办公等六大系统;全部采用数字化办公,设有校园网、远程电视电话会议、数字化教学、医疗巡诊等系统;病房设变频式中央空调系统、采用真空镀膜玻璃外墙、智能分箱补偿器、直接数字控制器、平衡阀、智能温控二通阀等措施;具有完备垃圾分类处理系统、酸化水消毒系统、自平衡通风系统,各种装饰材料都通过环保认证;楼内布置绿色植物230多处,顶楼做了绿化处理,周边环境整体美化,形成独特山水、园林景观;公共区域标志鲜明:花店、超市、茶座、餐厅、自主银行等项服务应有尽有,病房配置电话、网络系统、液晶电视、医患对话系统、电子显示屏滚动播出手术进展。
实验动物科学的重要性在于他对生物医学乃至整个生命科学系统起着重要的支撑作用,只有通过不断的对实验动物的科学进行研究才能为应用推广奠定基础。随着国际贸易不断发展,我国的医药行业在世界市场上接受挑战,不断的改进技术和设施。
通常说spf级实验动物房都需要安装比较系统完备的相关设施才能够及时的排除垃圾和臭气,防止细菌的传播扩散,给spf动物和工作人员营造较好的实验环境。所谓实验动物设施的spf级,就是要拥有相当规模和完备的实验设施,能根据实验的具体要求调节好实验的环境。
1 spf实验动物环境对净化空调技术的要求
按照国家颁布的相关实验动物环境及设施法律来说,实验动物环境主要有四种系统,第一种就是开放系统,该系统中常养的是一般级别的实验动物;第二种是亚屏障系统,主要饲养的是清洁级实验动物;第三种是屏障系统,主要针对无特定病原体(spf)级实验动物设置的;最后一种是隔离系统,饲养对象是spf级及无菌级实验动物。为了确保实验动物更好的成长,让他们能活在较清新的空气中,及时排除废本文由收集整理气和废物。现新修的实验动物房都是有高要求的,无论是空气净化度、氨浓度、温度、湿度、气流速度以及房间空气压差梯度都有较明确的规定。故修建这样的spf实验动物环境需要事先做好全面的规划,且尽量确保一个性能好、节能、智能的空调系统。
2 spf试验动物环境污染途径
有两种情况常会影响到动物实验室的空气清洁程度,首先是来自室外的空气,由于室外的汽车尾气、工业废气以及家用煤气等污染气体未经处理就直接进入室内常会降低室内空气质量;其次是那些实验室里出现的动物毛、皮屑和饲养食物碎屑等,这些较细小的碎屑没得到及时处理就会腐烂变坏,产生细菌扩散到空气中。所以动物实验室的初、中、高效过滤器过滤设施就显得作用重大,它能确保室内的空气洁净度不随室外大气的变化而变化。笔者检测到的spf级动物实验室的空气是经初、中、高效过滤器过滤后的,按照检测结果看,由于该设施的作用,室外的大气即便是在不同的季节都不会对室内洁净程度造成影响。
常常我们都觉得动物实验室中没有动物的情况下其洁净度最佳。因为在实验室有动物的时候必然会产生毛发、废物碎屑等,提高空气中尘埃的浓度,从而使得细菌得以衍生和扩散。但是,若动物实验室处于静止状态的话,房间里没有动物,灰尘依然会在实验器具、阳台门窗上面集聚,在检测时,如果一个实验室没事先清洁好,即便是处在静态的状态,室内清洁度也不能达到标准;而对于清洁过的实验室,处在动态下其洁净度还是很高的。也就是说,良好的送排风设备以及适当的动态管理,能够增加动态实验室内空气的洁净度。
3 spf实验动物环境净化空调技术的现状和问题
通常的spf实验动物环境虽不会有严格的环境洁净度规定,但通风的需求则是必要。只有通风好才能顺畅排出动物制造的废气,避免出现细菌滋生或出现污浊空气的交叉污染。我国现在的通风方式大多使用的是直排式全新风净化法,就是把温度和湿度都满足一定要求的空气排放到spf实验动物房,将实验室中的浑浊空气稀释掉。排送时需要从实验室顶部的送风口进入,而浑浊的气体则是从实验室的四周墙壁的下部排风口送出。这样的空气净化方式非常便捷有效。这样的送风措施也有缺点:需求的风量比较大,消耗的能源比较多,实际效果有待改善。依据实验室里的洁净空气流动看,那些待稀释的空气也并非都是有污染的微生物,稀释后的空气也不一定就正好适合动物的需求;从实验室的设置来说,spf实验动物房有很多的笼架,架子上排列装着各种各样动物的饲养盒,它们是动物的主要生活环境及排放废气废物的地方,因盒子和架子对空气流动造成的阻力常使得洁净空气不能很好的进入到饲养盒子里,而排出的空气则大部分是洁净的,也就是说,室内空气的流动有死角,被污染气流还能停留在室内,这不仅浪费了能源且无法真正的解决室内环境的污染问题,增加了实验室里面的动物出现交叉感染的可能性,恶化了实验室的工作环境。
这样的直排式全新风净化方式想要达到最佳效果就要增加空调机组,不断送入大量洁净空气,以排除饲养盒子和架子对空气造成的阻力,确保动物的饲养盒里面的湿度和温度适中,当然这样会造成更大的能源和资源的消耗,这正是需要解决的问题。
4 净化空调节能技术在spf实验动物环境中的应用
以下是笔者针对这个日益突出的问题作出的相关分析:
4.1 减少冷热负荷 净化空调节能技术在减少冷热负荷主要是以下几种措施:首先是降低室内高度,通常实验室的高度在2.4~2.6m间,但鉴于spf实验动物环境中实验人员不多,且他们的工作时间较少,可以把房间的高度降低至两米,这样送气工作人员少,可减少将空气送入饲养盒需消耗的能源;其次是增强围护绝热并调整控制好实验室里面的温度,实验室用隔热效果好的材料来围护,便于把室内温度维持在标准范围内,不随季节变化出现大幅度的波动;后就是要用变频调速自动控制技术调控好气流的速度;最后是将spf实验动物房分成若干区域,相应地设立若干小单元独立空调系统,使用时根据动物饲养种类和数量的增减,有选择地启用房间和相应的空调系统,避免空调系统放空运行。
4.2 该技术的环保性能还表现在对能源的二次利用上 一是能净化空气循环使用。二是能源的利用,如对太阳能、地热等天然能源的利用,只要是条件允许的话就可以使用天然资源进行空气调节或辅助加热。
4.3 气定向流技术 spf实验动物环境的兴建不断的扩大的同时,能源和资源的高成本问题也越来越受到重视,这样情况下就出现了空气定向流动的技术。按照上面对于spf实验动物房空气洁净度的分析看,一般情况下送入室内的洁净空气只有十分之一参与了动物饲养盒(笼)内空气的交换。怎样才能加强洁净空气的利用率呢?最好的方法就是尽可能的减少非交换净化气流,并让可交换气流沿定向流动,最后进入排风管。
4.3.1 盒内交换笼架。该技术主要是利用单体换气系统来使得净化气流能在实验室里面按照设置的方向流动。这样的系统常常是由导风通道笼架、双风道机组、设置前端和终端空气过滤器等装置组成。当室内这么多装置一起加入空气交换的时候,空气的流量即使是很小也能够让实验室饲养盒里面的空气得到很好的净化。该装置已经上市并且占有一定的市场,因为它不仅仅简化了控制设备,便于使用,而且对基础建筑较低,对于那些规模不是很大的实验动物的饲养来说再适合不过了。
20世纪70年代以来,基因工程及杂交瘤技术的相继诞生,以及生物加工技术的发展,推动了传统生物技术跨入一个新时代――现代生物技术发展和应用时代。这个崭新的时代对发展中的中国提出了严峻挑战。
现代生物技术发展趋势
基因操作技术日新月异,不断完善;转基因植物和动物技术有重大突破;人类基因组研究促进了有重要价值新基因的分离、克隆以及开发应用;新技术、新方法通过商业渠道,出售专项技术或全套试剂,方兴未艾。全世界每年授予的1万多项专利技术中,有近l/3出自生物技术。
现代生物技术的基本特征是科学化、集约化、商品化、环保化和国际化,实现产业的社会、经济和生态效益三统一。生物技术的研究、开发及其产业化发展将会引起世界产业结构的重大变化。
一、技术的进一步完善与发展
1.基因操作技术。为了生物技术的自身发展,以及推动其产业化进程,基因操作技术在不断的完善与发展,其中包括基因合成、扩增技术、基因修饰技术、基因克隆技术、基因转移技术和蛋白质工程等;新型表达载体或体系的研究中,转基因植物和动物的相关技术有突破,动物乳腺反应器等新型的生物反应器在开发中;基因工程下游技术的发展,推动了技术集成和规模化生产;同时,作物育种和动植物品种改造相关联的分子标记技术进一步推广,以基因治疗为核心的生物治疗和诊断技术不断完善和发展。英国克隆绵羊的成功使动物“克隆”技术出现了始料不及的突破,甚至引起世界恐慌,如何应用体细胞核移植是当今世界各国不得不高度重视的重大问题。
2.基因组学技术。人类基因组计划是当代自然科学一项伟大的科学工程,进展甚速, 2003年完成人体全基因组遗传图、物理图、转录图的制作以及全部序列(30亿碱基对)的测定。人体内总数约为8~10万个的基因将全部定位,它们的分离、克隆以及结构与功能的研究全面展开。包括水稻基因组在内的模式生物基因组的研究也是该项计划的组成部分。与此相适应的是,在DNA重组技术的基础上进一步发展起基因组研究的系统技术(有人称之“基因组学技术”),它融会了现代分子生物学、细胞生物学、分子遗传学以及数学、物理学、计算机科学、信息科学等学科的理论和方法。正在成长中的基因组学及其系统技术将对21世纪生物技术的发展起着积极推动作用。具有重要的生物学功能的新基因以及疾病相关基因的分离和克隆,可直接用于基因工程产品的生产、基因治疗或人类疾病发生机理的研究,并为创新药物研制提供基础。同时,以水稻基因组研究为核心发展起来的农作物重要性状相关基因的分离、克隆以及结构与功能的研究将对农作物育种以及整个农业生产带来革命性变化。
3.生物信息学技术。生物信息学是由生物学与数学、物理学、化学、计算机科学等诸多学科交叉发展而成的一门崭新的学科。其研究内容主要包括生物体遗传信息的“解读”,生物大分子(蛋白质、核酸、多糖等)的结构模拟和分子设计,以及基于蛋白质和核酸结构基础上的药物设计;与此同时,要进行生物信息的收集、贮存、管理,创建生物信息分析的新技术、新方法,并开展相应的应用研究。它不仅对认识生物起源、遗传、发育与进化的本质有科学意义,而且可为新基因的发现、为人类疾病的诊断和预防开辟全新的途径,为动植物的物种改良提供坚实的理论基础。
二、医药生物技术产业化进程突飞猛进
医药领域的生物技术的研究和开发一直处于领先地位,其产业化的进程甚快,已有近50种基因工程药物、疫苗和其他生物制剂产品投放市场。销售最好的是促红细胞生成素(EPO)、粒细胞集落刺激因子(G-CSF)、生长激素、胰岛素和溶栓药t-PA等基因工程产品,EPO、G-CSF等产品在美国的年销售额,每种可达十几亿美元以上。美国从事生物技术药物研究、开发及产业化的公司约1300家,其中较大的生物制药公司225家,工业投资达350亿美元;日本约有800家公司从事生物技术药物的研究与开发及产业化,已有14种产品投放市场。基因工程疫苗以乙肝病毒疫苗为主要产品,目前还注意发展针对艾滋病、肿瘤等治疗用疫苗;单克隆抗体是生物技术药物中数量最多的产品;基因治疗由遗传病转向以肿瘤、心血管病和艾滋病等重大疾病为重点。
国际上普遍把医药领域作为发展生物技术产业的突破口,这是由医药生物技术在创新性及其经济效益上的巨大潜力所决定的。发展基因工程药物、疫苗以及开创全新的基因疗法和诊断技术乃是主要方向,并且它是新药研究和创制的重要支柱技术。生物技术药物是一种高附加值产品,一个药物的年销售额就可能超过一个大型钢铁企业,所以,医药生物技术产业仍将是现代产业发展中最为活跃的领域,同时也是国际间知识产权竞争的主要领域。21世纪,它将成为国民经济新的重要支柱。
三、农业生物技术市场大有进展,前景诱人
世界上进入田间试验的转基因植物已增至1500种,美国FDA相继通过了棉花、玉米、西红柿、马铃薯、大豆、南瓜等经生物技术改造的农作物品种安全性检查,并颁发商品化许可证。Calgene研制的可长期贮存的转基因西红柿已投放市场,美国和澳大利亚已批准抗虫转基因棉花进入大田推广应用。分别由 Ecogen和Crop Genetics研制的几种生物杀虫剂早在1994年已获美国环境保护委员会批准。此外,农用生长激素、疫苗等产品开发也都取得可喜的成绩。生物技术在培育高产、优质、抗病虫、抗逆性能好的农作物、畜禽、鱼类新品种中显示出很大的潜力,其对未来农业发展至关重要。
鉴于世界性的粮食短缺,各国政府都已开始重点支持生物技术在农业中的应用。目前,国际水稻基因组图谱和拟南芥菜基因组图谱等研究已获得重大突破,以植物基因组图谱为基础的农作物重要性状基因的分离和克隆研究正在蓬勃兴起。基因转化已经在水稻、玉米、棉花、马铃薯、油菜、大豆和烟草等主要作物中获得了成功。许多重要生产性状,如抗病、抗虫、抗逆、产量、品质及采后保鲜等都得到了明显改善,大大提高了现代农业的技术含量和技术附加值。特别是分子标记辅助育种技术将会对21世纪农作物常规育种带来革命性的突破。生物技术在农业中的应用将作为21世纪农业发展的主要生长点。
四、生物技术为治理环境污染提供了新途径
在环境污染日趋严重的今天,世界各国已普遍接受“可持续发展”这个概念,并围绕它制定和实施本国的环境保护及其相关的产业政策。可持续发展要求在保持经济高速发展的同时,必须保护好人类赖以生存的环境。传统的污染防治技术和手段,已远远不能满足人类对生存环境的质量要求。生物技术是环境保护的理想和武器,在处理环境污染物方面具有高速度、高效率、低消耗、低成本、反应条件温和以及无二次污染等显著优点,应用生物技术治理环境污染,已受到各国政府的高度重视。21世纪,生物技术将成为环境保护的关键技术之一。
五、经济强国在生物技术发展领域竞争激烈
作为21世纪高新技术的核心,生物技术必将在最终解决人类粮食、健康和生存环境等重大问题上发挥独特的作用。世界各主要经济强国都把生物技术确定为21世纪经济和科技发展的关键技术。美国在生物技术研究与开发方面一直处于领先地位,但近年来欧洲和日本等发达国家对其霸主地位提出了挑战。部分发展中国家也十分重视生物技术的发展。
为加紧研究发展对策,美国国家科学和技术委员会从1992年起接连发表了题为《二十一世纪生物技术》、《二十一世纪生物技术:实现诺言》和《二十一世纪生物技术:新的方向》等发展战略报告和蓝皮书,指出生物技术在经历了第一次浪潮(医药和保健领域)后,在继续重视和推动第一次浪潮向纵深发展的基础上,迎来了第二次浪潮,即重点发展:(1)农业生物技术;(2)环境生物技术;(3)生物制造和生物处理工艺及能源研究;(4)海洋生物技术研究。为此,除继续重视医药生物技术外,政府将加大在农业、环保等其他领域的研究与开发力度,并在税收、经费、专利保护期等方面制定了特殊优惠政策,以加快生物技术的研究和发展。
欧洲和日本等国纷纷制定21世纪生物技术发展战略。日本虽然起步较晚,但发展迅速,不仅引起西欧诸国的恐慌,也造成美国的严重不安。欧盟为协调和促进各成员国生物技术的研究和开发,从整体上与美、日等发达国家抗衡,专门成立了生物技术委员会,把生物技术作为未来科技发展的重点。韩国声称要在所有高技术领域全面发展,计划21世纪争取进入世界十大科技先进国家之列。印度政府专门成立了生物技术部,全面协调生物技术的研究、开发与产业化。
中国现代生物技术的发展与对策
自20世纪70年代末80年代初开始、特别是在863计划把现代生物技术作为关键领域以来,我国政府高度重视这一技术的研究、开发和利用。十余年来,已经在农林牧渔、医药卫生等许多方面取得了令人瞩目的成就,并产生了显著的经济效益和社会效益。
一、我国生物技术产业化的成绩
两系法水稻杂交优势利用是我国的首创,取得了举世瞩目的成就。两系法品种间和亚种间杂交稻的累计示范试种面积已近 1000万亩(截至 1997年底),一般增产10%~15%,为进一步大规模的推广应用创造了条件。
抗虫棉研究完成了五种抗虫基因的分离和克隆,获得了一批适用于我国长江流域和华北棉区大面积应用的转基因棉花株系,进入一定规模的试种示范;抗病小麦生物技术育种有所创新;农业重组微生物的应用,效果突出;转基因动物研究培育出来的生长激素转基因猪和转基因鲤鱼、鲫鱼新品种,正在中试开发。我国水稻基因组研究已取得突破性进展,在物理图谱方面居世界领先地位。
医药生物技术产品的研究、开发和产业化已初具规模。我国研制的哺乳动物细胞基因工程乙肝疫苗于1992年获国家批准投放市场,它已逐步替代传统的血源疫苗。几年来,我国城镇婴儿的乙肝带毒率有大幅度下降;包括我国创制的一类新药――重组人alb型干扰素在内,已有七种高技术药物先后经国家批准,投放市场,其中国家一类新药两种;G-CSF等十几种基因工程多肽药物正在临床Ⅰ、Ⅱ期试验;还有几十种产品处于中试开发或实验室阶段工作。B型血友病IX因子基因治疗在国际上属首例报导;应用疱疹病毒胸苷激酶基因治疗恶性脑胶质细胞瘤工作已完成临床Ⅰ期试验。
863计划实施十余年来,初具规模的我国生物技术产业,已开始对国民经济和社会发展产生影响。就其学术水平和开发水平,在亚洲地区名列前茅,而且,与发展中国家相比,也处于领先地位。然而,与发达国家相比,随着他们步伐的加快和投资量的加大,我国在整体研究和开发水平,尤其是产业化的程度上仍有相当大的差距。
二、经济和社会发展对现代生物技术的需求
发展生物技术对于解决我国13亿人口的吃饭和医疗保障问题,减轻环境压力具有十分重要的现实意义和深远的战略意义。
1.不断满足日益增长的粮食需要。
预计到2010年我国人口有可能超过14亿,根据人口增长趋势和当前的土地消耗率估计,到2010年我国人均拥有土地将少于0.07公顷。今后每年食物总供给与总需求的缺口大致为:粮食2200~2500万吨,为保证人民基本生活水平逐年有所提高和满足我国人民对粮食的需求,从现在开始到2015年,我国粮食总产量每5年必须增加 1000亿斤。如何大幅度提高粮食产量是我国农业生产面临的重要问题。
为满足我国日益增长的粮食需求,保持农业生产可持续发展,必须加大高科技投入。应用现代生物技术培育高产、优质、抗病虫和抗逆的农作物新品种,大幅度提高农作物产量和品质,提高常规育种的效率,逐步实现定向育种;设计和生产新一代高效、低毒、无污染,兼有防病杀虫功能的微生物农药,减少病、虫对农作物造成的危害,间接提高农作物产量,大大减轻环境污染。
2.有效控制人口,提高全民族健康素质。
我国虽然是发展中国家,但疾病病种却同时具有发展中国家和发达国家的特征,导致死亡率最高的是心脑血管病、恶性肿瘤、病毒性传染病等疾病。我国仅肝炎病毒带毒者就达2亿人。心脑血管疾病、肿瘤和糖尿病患者数千万人,以呆傻为主的遗传病患者3000万人;另外,过去已经控制的传染病如肺结核等的发病率呈回升趋势,性病和艾滋病的蔓延令人担忧;血液制品污染状况严重,已不能满足人民健康和国防的需要。它们严重影响我国人民自身健康和劳动能力,也是我国经济发展中的负担和障碍。与此同时,我国的人口压力越来越大,已成为制约国民经济发展的重要因素。因此,有效地控制人口增长,提高全民族的素质已成为关系国计民生的大事。
当前,随着国际竞争的日益加剧,我国传统医药行业亟待更新改造,如何设计和生产新一代具有我国自己知识产权的新药,已刻不容缓。生物技术产业的发展能大幅度减轻国家在卫生保健方面的负担,对提高人民的健康水平、增强我国医药市场的竞争能力和国民经济实力具有重要的推动作用。
3.大力治理污染,保护生存环境。
我国的环境污染问题十分突出。近年来,总体环境质量在下降,大气污染物如二氧化硫、飘尘等的排放量仍在上升,废水排放已超过400亿吨/年,工业固体废弃物6200万吨/年,其中100万吨直接排入河流。采用碱法造纸技术及滥用化学药品、特别是杀虫剂造成了大规模的水体和土壤污染,此外,有 60亿吨未经处理的工业废弃物堆放在室外,占地数万公顷以上。总之,我国生态环境破坏严重,其治理和恢复已迫在眉睫。生物技术是解决环境污染如水污染(包括江河污染、工业废水污染、生活废水污染)、空气污染(包括石油、煤废气污染)和农用塑料造成的“白色”污染等诸多问题的有效手段之一。
三、我国生物技术产业化面临的挑战
开发一个生物技术新型药物,要经历一个较长的周期,且耗资巨大;即使是形成了产品,对其疗效和副作用仍有很大考验,存在着很大风险;在农业上,要真正培育出高产、优质和抗逆性能好、有推广价值的新品种,过程是很艰难的。在当前激烈的国际竞争中,我们面临的风险和挑战更多:
1.专利和知识产权的威胁。目前研制和开发的医药产品,有大部分是引进国外已有或正在开发的产品,属于仿制和拷贝之列,处理不当有可能发生国际纠纷;
2.基础研究整体力量薄弱,潜在的、拥有我国自己知识产权的候选产品数量少,制约着我国生物技术及其产品的开发,以及在国际上的竞争能力;
3.国内产品开发存在严重的分散状况,低水平重复的产品多,不能形成规模化生产;
4.下游工程技术和工艺的研究力量薄弱,产品开发能力低;
5.国家在实施对外开放政策的同时,目前尚缺乏在现有状况下如何保护我国民族生物技术产业成长的相应政策和措施。
综上所述,现代生物技术是典型的高新技术,其研究的最终目标是生产商业产品,即实现产业化。现代生物技术产业是技术密集型产业,需要高深专业知识,更需要善于市场开发;需要高的资金投入,还需要科学的经营管理。现代生物技术产业具有高风险、高回报的特点,要改变过去单一的国家投入机制,建立由中央、地方、企业、投资者共同参与的风险投资机制。为把握战略机遇期大力发展我国生物技术产业化,提出如下建议:
在定位于现有863计划的基础上,以大幅度提高我国生物技术领域整体研究水平和开发能力为目标,使我国生物技术总体水平到2010年跻身于发达国家行列,某些方面处于世界领先地位。在农业、医药和环保等重要应用领域,形成具有相当规模的新兴产业。
主要任务是重点开展:高产、优质、抗逆农作物分子育种;高效畜禽和水产养殖的分子技术;高效、无污染农业与环保用遗传工程微生物;新型药物和疫苗研究与开发;组织器官工程和基因治疗的研究与开发;重大疾病相关基因的分离和我国特有资源的开发利用;分子设计和生物信息技术等七项重大关键技术和成果转化项目的研究与开发,并在水稻等重要农作物杂种优势利用、农作物分子标记辅助育种、转基因植物、重大疾病相关基因研究、基因工程药物和疫苗开发、人造血液、基因治疗、中草药开发利用等方面形成我国优势。提高我国粮、棉、油的自给能力,初步满足我国日益增长的对粮食的需求,大幅度提高和改善人民的营养水准和健康保障水平,推动社会的全面进步。