前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人教版数学上册教案主题范文,仅供参考,欢迎阅读并收藏。
教学内容:
教学目标:
1、结合具体实例初步理解数与形结合的思想方法。
2、运用数形结合的方法探索规律,帮助计算,解决实际问题。
3、在解决实际问题的过程中,体会数与形之间的密切联系,感受数学知识的奥妙,激发学生学习数学的兴趣。
教学重难点:
1、结合具体实例理解数与形结合的思想方法。
2、运用数形结合的方法探索规律,帮助计算,解决实际问题。
教具准备:
教学ppt。
教学过程:
一、复习旧知,抢答。
1+3=
1+3+5=
1+3+5+7+9+11=
1+3+5+7+9+11+13+15=
师:我们一起来口算几道加法题
师:老师发现当加数越来越多的时候你们算的越来越慢,当加数很多的时候,你们相信老师能快速的算出像上面这样的算式的答案吗。
生:相信
师:你们想见识见识吗?
生:想
师:谁愿意来说像上面这样的算式我来报答案
师:老师厉害吧,
师:其实老师也只能快速的说出像上面这样的算式的答案,你知道上面的每个算式都有什么共同的特点吗?
生:都是从1开始的几个连续的奇数相加(师板书)
师:你也想像老师这样快速的算出上面这样的算式的答案吗?
师:其实啊,老师是借助图形来发现了其中的规律
师:这节课我们就一起来学习数与形(板书课题)
二、探索新知
师:这是什么图形?
生:正方形
师:几个正方形?
生:1个
师:如在这个正方形的基础上拼一个比这个大一点的正方形至少需要增加几个小正方形?你能拼出这个正方形来吗?
师:三个人一小组拼一拼
请学生上台演示
师:拼一个大一点的正方形至少需要增加几个小正方形?一共有几个小正方形?
生:3个,1+3=4个
师:
我们再来看看这个正方形,
有几行,每行有几个,还可以怎样算出小正方形的个数?
生:边长乘边长,2乘2
师板书
师:如在这个正方形的基础上拼一个比这个大一点的正方形至少需要增加几个小正方形?你能拼出这个正方形来吗?
生:能
师:分小组拼一拼
请学生上台演示
师:拼这个再大一点的正方形需要至少增加几个小正方形?一共有几个小正方形?
生:5个,1+3+5=9个,等于3的平方
师:
我们再来看看这个正方形,有几行,每行有几个还可以怎样算出小正方形的个数?
生:边长乘边长,3乘3
师:继续拼下去,第四图形应该会是怎样呢?
出示课件
生:应该有四行四列
生2:第四幅图应该在原来的基础上增加7个小正方形。
师:我们来看一看,也就是(学生说)1+3+5+7=42
师:再继续拼下去,第5幅图会是怎样的?
生:在原来的基础上增加9个小正方形。
师:也就是1+3+5+7+9=52
师:我们一起来看看你们说的正确吗?
师:我们一起来看看这几组算式的左边有没有什么特点?
生:左边都是从1开始的几个连续奇数的和
师:我们看看左边这几个算式它们的加数的个数跟右边的结果有没有什么联系?
生:有几个连续奇数相加和就是几的平方
师:也就是说从1开始几个连续奇数相加的和就是几的平方
生齐读
师:我们来理解一下这句话,你认为这句话中哪几字很重要?
生:1
连续
奇数
几个
几的平方
师:我们看1+3+5+7+……
,n个数相加和是?
生:N的平方
师:也就是说从1开始N个连续奇数相加,和就是N的平方。(生齐读)
师:你能说说像上面这样的算式吗?
生1
生2
师:黑板上的两个算式你知道是几的平方吗?
生:不知道
师:为什么?
生:不知道加数有几个?
师:也就是它的加数太多了,加数太多的时候还能这样去数它加数的个数吗?
师:那怎么能不用数就知道有几个数呢?
师:从1到10这十个数中,有几个奇数?几个偶数?
生:有5奇5偶
师:从1到100这一百个数中,有几个奇数,几个偶数?
生:有50奇50偶
师:也就是说奇偶同样多
师:那你知道上面这个算式有几个奇数吗?
生:19+1的和除以2,有十个
师:你会算奇数的个数了吗?
生:用奇数中最大的个数加1除以2就等于奇数的个数。
师:所以1+3+7+9+……+17+19=等于19+1的和除以2等于10,10的平方等于100…………
师:这种方法简单吧!
生:简单
三、巩固练习
1、师:你们会写这种题目吗?老师来考考你们
1+3+5+7+9=
1+3+5+7+9+11+13+15=
=92
2、下面请你动动脑筋看看这道题怎么算
1+3+5+7+9+11+9+7+5+3+1=
师:这种方法简单吧,这么简单的方法我们是借助什么来发现它的规律的呢?
生:图形
师:看来结合图形来解题会更直观更形象更简单
师:在数学中隐藏的数形结合的规律还很多,下面这道题你能通过图形发现数的规律吗?
。。。。。。。。。。。。
师:我们看数量为1、3、6、10、15……相同的小图形可以组成一个三角形,这些数也叫做“三角形数”。
师:同样的数量为1、4、9、16、25……的小正方形可以组成一个大正方形,这些数也叫做“正方形数”。
师:在以后的学习中我们还会学到长方形数,三角形数、正方形数、长方形数的三者之间还存在着许许多多的奥妙有待于我们同学们去发现去研究去探讨。
师:看来图形结合解题更简单方便
师:其实在我们以前的学习当中也应用到了很多数形结合,比如
师:看来数形结合在我们数学当中无处不在
四、小结
一、选择题(共10小题,每小题3分,满分30分)
1.如果零上5℃记作+5℃,那么零下5℃记作()
A.﹣5B.﹣5℃C.﹣10D.﹣10℃
【考点】正数和负数.
【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.
【解答】解:零下5℃记作﹣5℃,
故选:B.
【点评】此题主要考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
2.下列各对数中,是互为相反数的是()
A.3与B.与﹣1.5C.﹣3与D.4与﹣5
【考点】相反数.
【分析】根据相反数的定义,只有符号不同的两个数互为相反数,0的相反数是0,且一对相反数的和为0,即可解答.
【解答】解:A、3+=3≠0,故本选项错误;
B、﹣1.5=0,故本选项正确;
C、﹣3+=﹣2≠0,故本选项错误;
D、4﹣5=﹣1≠,故本选项错误.
故选:B.
【点评】本题考查了相反数的知识,比较简单,注意掌握互为相反数的两数之和为0.
3.三个有理数﹣2,0,﹣3的大小关系是()
A.﹣2>﹣3>0B.﹣3>﹣2>0C.0>﹣2>﹣3D.0>﹣3>﹣2
【考点】有理数大小比较.
【专题】推理填空题;实数.
【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【解答】解:根据有理数比较大小的方法,可得
0>﹣2>﹣3.
故选:C.
【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
4.用代数式表示a与5的差的2倍是()
A.a﹣(﹣5)×2B.a+(﹣5)×2C.2(a﹣5)D.2(a+5)
【考点】列代数式.
【分析】先求出a与5的差,然后乘以2即可得解.
【解答】解:a与5的差为a﹣5,
所以,a与5的差的2倍为2(a﹣5).
故选C.
【点评】本题考查了列代数式,读懂题意,先求出差,然后再求出2倍是解题的关键.
5.下列去括号错误的是()
A.2x2﹣(x﹣3y)=2x2﹣x+3y
B.x2+(3y2﹣2xy)=x2+3y2﹣2xy
C.a2﹣(﹣a+1)=a2﹣a﹣1
D.﹣(b﹣2a+2)=﹣b+2a﹣2
【考点】去括号与添括号.
【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.
【解答】解:A、2x2﹣(x﹣3y)=2x2﹣x+3y,正确;
B、,正确;
C、a2﹣(﹣a+1)=a2+a﹣1,错误;
D、﹣(b﹣2a+2)=﹣b+2a﹣2,正确;
故选C
【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.
6.若代数式3axb4与代数式﹣ab2y是同类项,则y的值是()
A.1B.2C.4D.6
【考点】同类项.
【分析】据同类项是字母相同且相同字母的指数也相同,可得y的值.
【解答】解:代数式3axb4与代数式﹣ab2y是同类项,
2y=4,
y=2,
故选B.
【点评】本题考查了同类项,相同字母的指数也相同是解题关键.
7.方程3x﹣2=1的解是()
A.x=1B.x=﹣1C.x=D.x=﹣
【考点】解一元一次方程.
【专题】计算题;一次方程(组)及应用.
【分析】方程移项合并,把x系数化为1,即可求出解.
【解答】解:方程移项合并得:3x=3,
解得:x=1,
故选A
【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
8.x=2是下列方程()的解.
A.x﹣1=﹣1B.x+2=0C.3x﹣1=5D.
【考点】一元一次方程的解.
【专题】计算题.
【分析】方程的解就是能够使方程左右两边相等的未知数的值,把x=2代入各个方程进行进行检验,看能否使方程的左右两边相等.
【解答】解:将x=2代入各个方程得:
A.x﹣1=2﹣1=1≠﹣1,所以,A错误;
B.x+2=2+2=4≠0,所以,B错误;
C.3x﹣1=3×2﹣1=5,所以,C正确;
D.==1≠4,所以,D错误;
故选C.
【点评】本题主要考查了方程的解的定义,是需要识记的内容.
9.如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()
A.75°B.15°C.105°D.165°
【考点】垂线;对顶角、邻补角.
【专题】计算题.
【分析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2.
【解答】解:∠1=15°,∠AOC=90°,
∠BOC=75°,
∠2+∠BOC=180°,
∠2=105°.
故选:C.
【点评】利用补角和余角的定义来计算,本题较简单.
10.在海上,灯塔位于一艘船的北偏东40°,方向50米处,那么这艘船位于这个灯塔的()
A.南偏西50°方向B.南偏西40°方向
C.北偏东50°方向D.北偏东40°方向
【考点】方向角.
【分析】方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度.根据定义就可以解决.
【解答】解:灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的南偏西40度的方向.
故选B.
【点评】本题考查了方向角的定义,解答此类题需要从运动的角度,正确画出方位角,找准基准点是做这类题的关键.
二、填空题(共6小题,每小题4分,满分24分)
11.有理数﹣10绝对值等于10.
【考点】绝对值.
【分析】依据负数的绝对值等于它的相反数求解即可.
【解答】解:|﹣10|=10.
故答案为:10.
【点评】本题主要考查的是绝对值的性质,掌握绝对值的性质是解题的关键.
12.化简:2x2﹣x2=x2.
【考点】合并同类项.
【分析】根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.
【解答】解:2x2﹣x2
=(2﹣1)x2
=x2,
故答案为x2.
【点评】本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.
13.如图,如果∠AOC=44°,OB是角∠AOC的平分线,则∠AOB=22°.
【考点】角平分线的定义.
【分析】直接利用角平分线的性质得出∠AOB的度数.
【解答】解:∠AOC=44°,OB是角∠AOC的平分线,
∠COB=∠AOB,
则∠AOB=×44°=22°.
故答案为:22°.
【点评】此题主要考查了角平分线的定义,正确把握角平分线的性质是解题关键.
14.若|a|=﹣a,则a=非正数.
【考点】绝对值.
【分析】根据a的绝对值等于它的相反数,即可确定出a.
【解答】解:|a|=﹣a,
a为非正数,即负数或0.
故答案为:非正数.
【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.
15.已知∠α=40°,则∠α的余角为50°.
【考点】余角和补角.
【专题】常规题型.
【分析】根据余角的定义求解,即若两个角的和为90°,则这两个角互余.
【解答】解:90°﹣40°=50°.
故答案为:50°.
【点评】此题考查了余角的定义.
16.方程:﹣3x﹣1=9+2x的解是x=﹣2.
【考点】解一元一次方程.
【专题】计算题;一次方程(组)及应用.
【分析】方程移项合并,把x系数化为1,即可求出解.
【解答】解:方程移项合并得:﹣5x=10,
解得:x=﹣2,
故答案为:x=﹣2
【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
三、解答题(共9小题,满分66分)
17.(1﹣+)×(﹣24).
【考点】有理数的乘法.
【分析】根据乘法分配律,可简便运算,根据有理数的加法运算,可得答案.
【解答】解:原式=﹣24+﹣
=﹣24+9﹣14
=﹣29.
【点评】本题考查了有理数的乘法,乘法分配律是解题关键.
18.计算:(2xy﹣y)﹣(﹣y+yx)
【考点】整式的加减.
【专题】计算题.
【分析】先去括号,再合并即可.
【解答】解:原式=2xy﹣y+y﹣xy
=xy.
【点评】本题考查了整式的加减,解题的关键是去括号、合并同类项.
19.在数轴上表示:3.5和它的相反数,﹣2和它的倒数,绝对值等于3的数.
【考点】数轴;相反数;绝对值;倒数.
【专题】作图题.
【分析】根据题意可知3.5的相反数是﹣3.5,﹣2的倒数是﹣,绝对值等于3的数是﹣3或3,从而可以在数轴上把这些数表示出来,本题得以解决.
【解答】解:如下图所示,
【点评】本题考查数轴、相反数、倒数、绝对值,解题的关键是明确各自的含义,可以在数轴上表示出相应的各个数.
20.解方程:﹣=1.
【考点】解一元一次方程.
【专题】方程思想.
【分析】先去分母;然后移项、合并同类项;最后化未知数的系数为1.
【解答】解:由原方程去分母,得
5x﹣15﹣8x﹣2=10,
移项、合并同类项,得
﹣3x=27,
解得,x=﹣9.
【点评】本题考查了一元一次方程的解法.解一元一次方程常见的过程有去分母、去括号、移项、系数化为1等.
21.先化简,再求值:5x2﹣(3y2+5x2)+(4y2+7xy),其中x=2,y=﹣1.
【考点】整式的加减—化简求值.
【专题】计算题;整式.
【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.
【解答】解:原式=5x2﹣3y2﹣5x2+4y2+7xy=y2+7xy,
当x=2,y=﹣1时,原式=1﹣14=﹣13.
【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.
22.一个角的余角比它的补角的还少40°,求这个角.
【考点】余角和补角.
【专题】计算题.
【分析】利用“一个角的余角比它的补角的还少40°”作为相等关系列方程求解即可.
【解答】解:设这个角为x,则有90°﹣x+40°=(180°﹣x),
解得x=30°.
答:这个角为30°.
【点评】主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180°.解此题的关键是能准确的从图中找出角之间的数量关系,从而计算出结果.
23.一个多项式加上2x2﹣5得3x3+4x2+3,求这个多项式.
【考点】整式的加减.
【分析】要求一个多项式知道和于其中一个多项式,就用和减去另一个多项式就可以了.
【解答】解:由题意得
3x3+4x2+3﹣2x2+5=3x3+2x2+8.
【点评】本题是一道整式的加减,考查了去括号的法则,合并同类项的运用,在去括号时注意符号的变化.
24.甲乙两运输队,甲队原有32人,乙队原有28人,若从乙队调走一些人到甲队,那么甲队人数恰好是乙队人数的2倍,问从乙队调走了多少人到甲队?
【考点】一元一次方程的应用.
【专题】应用题;调配问题.
【分析】设从乙队调走了x人到甲队,乙队调走后的人数是28﹣x,甲队调动后的人数是32+x,通过理解题意可知本题的等量关系,即甲队人数=乙队人数的2倍,可列出方程组,再求解.
【解答】解:设从乙队调走了x人到甲队,
根据题意列方程得:(28﹣x)×2=32+x,
解得:x=8.
答:从乙队调走了8人到甲队.
【点评】列方程解应用题的关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.
25.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)
第一次第二次第三次第四次第五次第六次第七次
﹣4+7﹣9+8+6﹣5﹣2
(1)求收工时距A地多远?
(2)当维修小组返回到A地时,若每km耗油0.3升,问共耗油多少升?
【考点】正数和负数.
【专题】探究型.
【分析】(1)根据表格中的数据,将各个数据相加看最后的结果,即可解答本题;
(2)根据表格中的数据将它们的绝对值相加,最后再加上1,因为维修小组还要回到A地,然后即可解答本题.
【解答】解:(1)(﹣4)+7+(﹣9)+8+6+(﹣5)+(﹣2)=1,
即收工时在A地东1千米处;
(2)(4+7+9+8+6+5+2+1)×0.3
=42×0.3
=12.6(升).
【内容出处】1.1 正数和负数 人教版七年级数学上册(P2--3)
【学习课时】1课时
【课标要求】
了解正数和负数的产生,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量
【学习目标】
1.结合生活实际,了解正数和负数的产生;
2.通过具体的实例理解正负数表示的量的意义;
3.掌握正、负数的概念和表示方法,理解数0表示的量的意义.
【评价任务】
1.独立完成活动1;(DO1)
2.小组合作完成活动2;(DO2)
3.独立完成训练1;(DO3)
4.同桌完成训练2;(DO4)
【学习过程】
资源与建议
1.本课是有理数的第一课时,引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理。负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.(CS)
2. 数0既不是正数,也不是负数。在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.(CS)
3.本主题的学习流程:相反意义的量---正数和负数---综合应用。(CS)
4.本主题的重点:正、负数及0表示的量的意义;难点:会用正、负数表示具有相反意义的量.(CS)
预备知识
小学学过的正数及0的意义。
课中学习
活动1(DO1)
例1:汽车向东行驶3千米和向西行驶2千米。
例2:温度是零上10℃和零下5℃。
例3:收入500元和支出237元。
例4:水位升高1.2米和下降0.7米。
例5:买进100辆自行车和买出20辆自行车。
1.请你观察以上几个例子思考:这些例子中出现的每一对量,有什么共同特点?
2.你能举出几对日常生活中具有相反意义的量吗?
思考1
1.你能用我们已经学的来很好的表示这些相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?
2. 怎样表示具有相反意义的量呢?能否从天气预报出现的标记中,得到一些启发呢?
3.0是正数还是负数呢?
活动2(DO2)
小组合作进行如下活动,看哪一组获胜:
1.其中一名同学按照老师的要求说出指令:向前2步,向后3步,向前-2步,向后-3步,另一名同学按这位同学的指令表演.
2.各小组互相监督,派一名同学汇报完成的情况.
训练1(DO3)
1.―10表示支出10元,那么+50表示 ;
2.如果零上5度记作5°C,那么零下2度记作 ;
3.如果上升10m记作10m,那么―3m表示 ;
4.太平洋中的马里亚纳海沟深达11034米,可记作海拔___米(即低于海平面11034米)。比海平面高50m的地方,它的高度记作海拨_;比海平面低30m的地方,它的高度记作海拨_;
训练2(DO4)
1.一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值.
2.某年,下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%,
德国增长1.3%,
法国减少2.4%,
英国减少3.5%,
意大利增长0.2%,
中国增长7.5%.
写出这些国家这一年商品进出口总额的增长率.
【检测与作业】
1.读出下列各数,指出其中哪些是正数,哪些是负数?
-2,0.6,+6,0,-3.141 5,200,-754 200.
2.下面说法正确的是( )
A.正数都带有“+”号
B.不带“+”号的数都是负数
C.小学数学中学过的数都可以看作是正数
D.0既不是正数也不是负数
3.数学测验班平均分80分,小华85分,高出平均分5分记作+5,小松78分,记作__。
4.某物体向右运动为正,那么―2m表示__,0表示__。
5.一种零件的内径尺寸在图纸上是10±0.05(单位mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸__,最小不超过标准尺寸__。
6.七(1)班某次数学测验的平均成绩是85分,老师以平均成绩为基准,记为0,超过85分的记为正,那么92分、78分各记作什么?若老师把某3名同学的成绩简记为:-5,0,+8,则这3名同学的实际成绩分别为多少分?
课堂小结
教学目标:
1.
使学生掌握分数混合运算的运算顺序,并能根据这一顺序进行正确计算。
2.
培养观察、操作,分析、比较、抽象概括的能力。
3.
渗透类比、推理、转化等的数学思想,培养良好的计算习惯。
教学重点:
掌握分数混合运算的运算顺序,正确地计算分数混合运算。
教学难点:
掌握分数混合运算的运算顺序。
教学过程:
一、复习导入
计算下列各题。
设计意图:通过复习分数除法的计算方法,唤醒学生已有认知,为本节课学习分数混合运算奠定基础。
二、探究新知
课件出示图片和题目
师:想一想,可以怎样列出算式?
给予学生一定的独立思考时间。
生1:我先算出每天吃多少片:(片),之后计算可以吃多少天:(天)。
师:这种方法还可以列综合算式表示以上过程,你会列吗?
生:。
师:自己试着计算一下。
学生完成,全班核对,课件展示计算过程。
师:需要注意的是有小括号的分数乘、除混合运算,要先算小括号里面的。
设计意图:当学生列出分步算式解决问题后,引导学生列出综合算式,计算时强调小括号的作用,使学生感受分数混合运算中小括号的作用与整数混合运算中小括号的作用相同。
师:还有其他方法吗?
生2:我先算这两盒药可以吃几次:(次),之后计算可以吃多少天:(天)。
师:这种方法也可以列综合算式表示以上过程,你会列吗?
生:。
师:自己试着计算一下。
学生独立完成,全班核对,课件展示两种计算方法。
师:说一说你是怎样计算的?
生:我是按照从左往右的顺序计算的:
设计意图:本环节使学生利用知识的迁移,运用整数乘、除混合运算的运算顺序来计算分数乘、除混合运算,即按照从左往右的顺序依次计算。
师:非常正确,这种算式还可以这样计算:
将算式转化成连乘后直接约分计算。观察的两种计算方法,说一说你更喜欢哪种?
生:我更喜欢第二种,因为这样计算更简便。
设计意图:本环节在教师的引导下,将算式转化为连乘后直接约分计算,并把两种方法进行比较,以培养学生掌握灵活的计算策略。
三、巩固练习
1.
计算下面各题。
设计意图:本题包括多种混合运算形式,有利于巩固混合运算的顺序,提高分数运算能力。
2.
老爷爷每天慢跑要用多少时间?
设计意图:本题利用混合运算解决实际问题,这样的问题相当于过去的“归一问题”,解决问题的方法非常多样化,可以先求出6圈里有多少个半圈,也可以先求出跑1圈用的时间。
3.
这块玻璃的面积是多少?
设计意图:本题使学生在新的情境中进一步巩固分数混合运算的计算方法,培养了学生分析问题、解决问题的能力。
四、课堂小结
师:说一说怎样计算分数混合运算?
1.
带小括号的分数乘、除混合运算,要先算小括号里面的。
2.
一、教学目标
1、认识倒数的意义,学会求倒数的方法。
2、学会应用倒数解决实际问题。
3、在学习中体验数学思维,产生学习兴趣。
二、教学重难点
重点:学会求倒数的方法。
难点:理解倒数的意义。
三、教学用具
PPT课件
四、教学过程
1、导入--快速计算
快速计算四个计算题。发现了什么?
计算总结,乘积都为1。
说几对这样的数。
乘积为1的数,我们说它们互为倒数。
2、理解倒数意义
乘积为1的两个数互为倒数。
如×=1,所以我们说和互为倒数,的倒数是,的倒数是。
说一说和,5和,和12的关系。
理解“乘积为1的两个数互为倒数”这句话。重点为“乘积为1”,“两个数”和“互为”。
理解“若a和b互为倒数,则a×b=1”。
小练习--判断:
×=1,则我们说是倒数。
(
×
)
+=1,则和互为倒数。
(
×
)
3、倒数的求法
观察快速计算的四组互为倒数的数,发现了什么?
分子分母位置互换,如×,3从分母变成分子,8从分子变成分母。
分子分母位置互换。如分子分母位置互换一下就是,×=1。分子分母位置互换变成,×=1。
特别的,整数的倒数。如2。2=,则它的倒数为。
小数的倒数。如0.25。0.25=,则它的倒数为4。
带分数的倒数。如。=,则它的倒数为。
特别的,1的倒数是1。1×1=1,所以1的倒数是1。
0没有倒数。0乘任何数等于0,没有与0相乘等于1的数。
小练习--找倒数
,6,,,,1,,0
一个数大于1,则它的倒数会小于1。如大于1,则它的倒数小于1。
一个数小于1,则它的倒数会大于1。如小于1,则它的倒数大于1。
4、课后小练习
PPT展示
五、板书设计
倒数的认识
乘积为1的两个数互为倒数。
和互为倒数
的倒数是
的倒数是
a和b互为倒数
a×b=1
1的倒数是1。
这篇人教版八年级上册数学月考练习试题及答案的文章,是
一、 选择题(每小题3分,共45分) 1、下面哪个点在y=-2x-3的图象上?.........................................................( ) A、(-,-2) B、(,2) C、(,-2) D、(,2) 2、下面函数图象不经过第二象限的是............................................................( ) A、y=3x+2 B、y=3x-2 C、y=-3x+2 D、y=-3x-2 3、函数的自变量的取值范围是...................................................( ) A、≥0 B、≤0 C、≠0 D、全体实数 4、直线上的点在轴的下方时对应的自变量的范围是 ........................( ) A、x>2 B、x≥2 C、x<2 D、x≤2 5、已知一次函数y=kx+b的图象如图所示, 则k, b的符号是.................................( )
(A)k>0,b>0 (B)k>0,b
一、选择题(本大题共有10小题.每小题2分,共20分)
1.下列运算正确的是()
A.﹣a2b+2a2b=a2bB.2a﹣a=2
C.3a2+2a2=5a4D.2a+b=2ab
【考点】合并同类项.
【专题】计算题.
【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.
【解答】解:A、正确;
B、2a﹣a=a;
C、3a2+2a2=5a2;
D、不能进一步计算.
故选:A.
【点评】此题考查了同类项定义中的两个“相同”:
(1)所含字母相同;
(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.
还考查了合并同类项的法则,注意准确应用.
2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()
A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.
故选:A.
【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.已知(1﹣m)2+|n+2|=0,则m+n的值为()
A.﹣1B.﹣3C.3D.不能确定
【考点】非负数的性质:偶次方;非负数的性质:绝对值.
【分析】本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.
【解答】解:依题意得:
1﹣m=0,n+2=0,
解得m=1,n=﹣2,
m+n=1﹣2=﹣1.
故选A.
【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:
(1)绝对值;
(2)偶次方;
(3)二次根式(算术平方根).
当非负数相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.
4.下列关于单项式的说法中,正确的是()
A.系数是3,次数是2B.系数是,次数是2
C.系数是,次数是3D.系数是,次数是3
【考点】单项式.
【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.
【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.
故选D.
【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.
5.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是()
A.B.C.D.
【考点】由三视图判断几何体;简单组合体的三视图.
【分析】找到从左面看所得到的图形即可.
【解答】解:从左面可看到一个长方形和上面的中间有一个小长方形.
故选:D.
【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
6.如图,三条直线相交于点O.若COAB,∠1=56°,则∠2等于()
A.30°B.34°C.45°D.56°
【考点】垂线.
【分析】根据垂线的定义求出∠3,然后利用对顶角相等解答.
【解答】解:COAB,∠1=56°,
∠3=90°﹣∠1=90°﹣56°=34°,
∠2=∠3=34°.
故选:B.
【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题.
7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是()
A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°
【考点】平行线的判定.
【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.
【解答】解:A、∠3+∠4,
BC∥AD,本选项不合题意;
B、∠C=∠CDE,
BC∥AD,本选项不合题意;
C、∠1=∠2,
AB∥CD,本选项符合题意;
D、∠C+∠ADC=180°,
AD∥BC,本选项不符合题意.
故选:C.
【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.
8.关于x的方程4x﹣3m=2的解是x=m,则m的值是()
A.﹣2B.2C.﹣D.
【考点】一元一次方程的解.
【专题】计算题;应用题.
【分析】使方程两边左右相等的未知数叫做方程的解方程的解.
【解答】解:把x=m代入方程得
4m﹣3m=2,
m=2,
故选B.
【点评】本题考查了一元一次方程的解,解题的关键是理解方程的解的含义.
9.下列说法:
①两点之间的所有连线中,线段最短;
②相等的角是对顶角;
③过直线外一点有且仅有一条直线与己知直线平行;
④两点之间的距离是两点间的线段.
其中正确的个数是()
A.1个B.2个C.3个D.4个
【考点】线段的性质:两点之间线段最短;两点间的距离;对顶角、邻补角;平行公理及推论.
【分析】根据两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短可得①说法正确;根据对顶角相等可得②错误;根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行,可得说法正确;根据连接两点间的线段的长度叫两点间的距离可得④错误.
【解答】解:①两点之间的所有连线中,线段最短,说法正确;
②相等的角是对顶角,说法错误;
③过直线外一点有且仅有一条直线与己知直线平行,说法正确;
④两点之间的距离是两点间的线段,说法错误.
正确的说法有2个,
故选:B.
【点评】此题主要考查了线段的性质,平行公理.两点之间的距离,对顶角,关键是熟练掌握课本基础知识.
10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在()
A.射线OA上B.射线OB上C.射线OD上D.射线OF上
【考点】规律型:数字的变化类.
【分析】分析图形,可得出各射线上点的特点,再看2016符合哪条射线,即可解决问题.
【解答】解:由图可知OA上的点为6n,OB上的点为6n+1,OC上的点为6n+2,OD上的点为6n+3,OE上的点为6n+4,OF上的点为6n+5,(n∈N)
2016÷6=336,
2016在射线OA上.
故选A.
【点评】本题的数字的变换,解题的关键是根据图形得出每条射线上数的特点.
二、填空题(本大题共有10小题,每小题3分,共30分)
11.比较大小:﹣>﹣0.4.
【考点】有理数大小比较.
【专题】推理填空题;实数.
【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【解答】解:|﹣|=,|﹣0.4|=0.4,
<0.4,
﹣>﹣0.4.
故答案为:>.
【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
12.计算:=﹣.
【考点】有理数的乘方.
【分析】直接利用乘方的意义和计算方法计算得出答案即可.
【解答】解:﹣(﹣)2=﹣.
故答案为:﹣.
【点评】此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.
13.若∠α=34°36′,则∠α的余角为55°24′.
【考点】余角和补角;度分秒的换算.
【分析】根据如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算.
【解答】解:∠α的余角为:90°﹣34°36′=89°60′﹣34°36′=55°24′,
故答案为:55°24′.
【点评】此题主要考查了余角,关键是掌握余角定义.
14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n=1.
【考点】同类项.
【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m+1=3m﹣1,10+4n=6,求出n,m的值,再代入代数式计算即可.
【解答】解:﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,
2m+1=3m﹣1,10+4n=6,
n=﹣1,m=2,
m+n=2﹣1=1.
故答案为1.
【点评】本题考查同类项的定义、方程思想及负整数指数的意义,是一道基础题,比较容易解答.
15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|=0.
【考点】实数与数轴.
【专题】计算题.
【分析】先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、a﹣b、c+b的符号,再化简绝对值即可求解.
【解答】解:由上图可知,c<b<0<a,|a|<|b|<|c|,
a+c<0、a﹣b>0、c+b<0,
所以原式=﹣(a+c)+a﹣b+(c+b)=0.
故答案为:0.
【点评】此题主要看错了实数与数轴之间的对应关系,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.
16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是1.
【考点】代数式求值.
【专题】计算题.
【分析】先变形(x+y)2﹣x﹣y+1得到(x+y)2﹣(x+y)+1,然后利用整体思想进行计算.
【解答】解:x+y=1,
(x+y)2﹣x﹣y+1
=(x+y)2﹣(x+y)+1
=1﹣1+1
=1.
故答案为1.
【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.
17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为2.
【考点】同解方程.
【分析】根据解一元一次方程,可得x的值,根据同解方程的解相等,可得关于m的方程,根据解方程,可得答案.
【解答】解:由2(2x﹣1)=3x+1,解得x=3,
把x=3代入m=x﹣1,得
m=3﹣1=2,
故答案为:2.
【点评】本题考查了同解方程,把同解方程的即代入第二个方程得出关于m的方程是解题关键.
18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,则AM=13或7cm.
【考点】两点间的距离.
【专题】计算题.
【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上.
【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=26cm,M是线段AC的中点,则AM=AC=13cm;
②当点C在线段AB上时,AC=AB﹣BC=14cm,M是线段AC的中点,则AM=AC=7cm.
故答案为:13或7.
【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为240元.
【考点】一元一次方程的应用.
【专题】应用题.
【分析】设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.
【解答】解:设这种商品每件的进价为x元,
根据题意得:330×80%﹣x=10%x,
解得:x=240,
则这种商品每件的进价为240元.
故答案为:240
【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.
20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为2.5cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.
【考点】展开图折叠成几何体.
【分析】利用剪下部分拼成的图形的边长等于棱柱的底面边长求解即可.
【解答】解:设粗黑实线剪下4个边长为xcm的小正方形,根据题意列方程
2x=10÷2
解得x=2.5cm,
故答案为:2.5.
【点评】本题考查了展开图折叠成几何体,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.
三、解答题(本大题有8小题,共50分)
21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.
【考点】有理数的混合运算.
【分析】利用有理数的运算法则计算.有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法.有括号(或绝对值)时先算.
【解答】解:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|
=﹣1﹣÷3×|3﹣9|
=﹣1﹣××6
=﹣1﹣1
=﹣2.
【点评】本题考查的是有理数的运算法则.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.
22.解方程:
(1)4﹣x=3(2﹣x);
(2)﹣=1.
【考点】解一元一次方程.
【分析】去分母,去括号,移项,合并同类项,系数化一.
【解答】解:(1)4﹣x=3(2﹣x),
去括号,得4﹣x=6﹣3x,
移项合并同类项2x=2,
化系数为1,得x=1;
(2),
去分母,得3(x+1)﹣(2﹣3x)=6
去括号,得3x+3﹣2+3x=6,
移项合并同类项6x=5,
化系数为1,得x=.
【点评】本题考查解一元一次方程,关键知道去分母,去括号,移项,合并同类项,系数化一.
23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.
【考点】整式的加减—化简求值.
【专题】计算题.
【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.
【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b
=3a2b﹣ab2,
当a=﹣1,b=﹣2时,原式=﹣6+4=﹣2.
【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.
24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关
(1)求a、b的值;
(2)求a2﹣2ab+b2的值.
【考点】整式的加减—化简求值.
【专题】计算题.
【分析】(1)原式合并后,根据代数式的值与字母x无关,得到x一次项与二次项系数为0求出a与b的值即可;
(2)原式利用完全平方公式化简后,将a与b的值代入计算即可求出值.
【解答】解:(1)原式=(6﹣2a)x2+(b+1)x+4y+4,
根据题意得:6﹣2a=0,b+1=0,即a=3,b=﹣1;
(2)原式=(a﹣b)2
=42
=16.
【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.
25.如图,点P是∠AOB的边OB上的一点.
(1)过点P画OB的垂线,交OA于点C,
(2)过点P画OA的垂线,垂足为H,
(3)线段PH的长度是点P到直线OA的距离,线段PC的长是点C到直线OB的距离.
(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是PH<PC<OC(用“<”号连接)
【考点】垂线段最短;点到直线的距离;作图—基本作图.
【专题】作图题.
【分析】(1)(2)利用方格线画垂线;
(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA的距离,线段OP的长是点C到直线OB的距离;
(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH,CO>CP,即可得到线段PC、PH、OC的大小关系.
【解答】解:(1)如图:
(2)如图:
(3)直线0A、PC的长.
(4)PH<PC<OC.
【点评】本题考查了垂线段最短:直线外一点到直线上各点连接的所有线中,垂线段最短.也考查了点到直线的距离以及基本作图.
26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:
普通(元/间)豪华(元/间)
三人间160400
双人间140300
一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?
【考点】一元一次方程的应用.
【分析】首先设该旅游团入住的三人普通间数为x,根据题意表示出双人豪华间数为,进而利用该旅游团当日住宿费用共计4020元,得出等式求出即可.
【解答】解:设该旅游团入住的三人普通间数为x,则入住双人豪华间数为.
根据题意,得160x+300×=4020.
解得:x=12.
从而=7.
答:该旅游团入住三人普通间12间、双人豪华间7间.
(注:若用二元一次方程组解答,可参照给分)
【点评】此题主要考查了一元一次方程的应用,根据题意表示出双人豪华间数进而得出等式是解题关键.
27.已知∠AOC=∠BOD=α(0°<α<180°)
(1)如图1,若α=90°
①写出图中一组相等的角(除直角外)∠AOD=∠BOC,理由是同角的余角相等
②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;
(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是互补;当α=45°,∠COD和∠AOB互余.
【考点】余角和补角.
【分析】(1)①根据同角的余角相等解答;
②表示出∠AOD,再求出∠COD,然后整理即可得解;
(2)根据(1)的求解思路解答即可.
【解答】解:(1)①∠AOC=∠BOD=90°,
∠AOD+∠AOB=∠BOC+∠AOB=90°,
∠AOD=∠BOC;
②∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,
∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,
∠AOB+∠COD=180°,
∠COD和∠AOB互补;
(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,
所以,∠COD+∠AOB=2∠AOC,
若∠COD和∠AOB互余,则2∠AOC=90°,
所以,∠AOC=45°,
即α=45°.
故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.
【点评】本题考查了余角和补角,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.
28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB
(1)OA=8cmOB=4cm;
(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;
(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.
①当t为何值时,2OP﹣OQ=4;
②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?
【考点】一元一次方程的应用;数轴.
【分析】(1)由于AB=12cm,点O是线段AB上的一点,OA=2OB,则OA+OB=3OB=AB=12cm,依此即可求解;
(2)根据图形可知,点C是线段AO上的一点,可设CO的长是xcm,根据AC=CO+CB,列出方程求解即可;
(3)①分0≤t<4;4≤t<6;t≥6三种情况讨论求解即可;
②求出点P经过点O到点P,Q停止时的时间,再根据路程=速度×时间即可求解.
【解答】解:(1)AB=12cm,OA=2OB,
OA+OB=3OB=AB=12cm,解得OB=4cm,
OA=2OB=8cm.
故答案为:8,4;
(2)设CO的长是xcm,依题意有
8﹣x=x+4+x,
解得x=.
故CO的长是cm;
(3)①当0≤t<4时,依题意有
2(8﹣2t)﹣(4+t)=4,
解得t=1.6;
当4≤t<6时,依题意有
2(2t﹣8)﹣(4+t)=4,
解得t=8(不合题意舍去);
当t≥6时,依题意有
2(2t﹣8)﹣(4+t)=4,
解得t=8.
故当t为1.6s或8s时,2OP﹣OQ=4;
②[4+(8÷2)×1]÷(2﹣1)
=[4+4]÷1
=8(s),
3×8=24(cm).
人教版七年级历史上册期中考试试题
一、选择题(50分)
本部分共25小题,每小题2分,共50分。
1. 修筑在岷江中游,被联合国教科文组织列为“世界文化遗产”,两千多年来一直造福于人民,闻名世界的防洪灌溉工程是
A.都江堰
B.郑国渠 C.隋朝大运河
D.灵渠
2. “民以食为天”,我国古代的原始居民很早就懂得农耕技术。我国在世界上最早种植的粮食作物是
A.水稻和小麦
B.水稻和粟 C.小麦和粟
D.水稻和玉米
3. 文字的出现,是人类进入文明时代的标志。我们今天的文字源于
A 金文 B 小篆 C 甲骨文 D 陶器上的符号
4. 春秋战国时期由于生产力的发展,促使社会不断变革,最终导致奴隶制度的瓦解,封建制度的确立。那么,最能代表当时生产力发展水平的是
A.青铜器的广泛使用
B.水利事业的发展
C.铁农具、牛耕的使用和推广
D.耕作技术的提高
5. 十一长假,小聪参观了我国境内已知的最早人类遗址,他去的是
A、陕西省 B、北京市 C、云南省 D、浙江省
6. 人类社会是由低级到高级往前发展的,这是一个客观规律。有几位同学将我国境内出现的几类原始人进行了先后排列。哪一位同学的排列符合这一规律?
A.小明:元谋人、北京人、河姆渡和半坡原始居民、山顶洞人
B.小芯:北京人、元谋人、山顶洞人、河姆渡和半坡原始居民
C.小华:元谋人、山顶洞人、北京人、河姆渡和半坡原始居民
D.小丽:元谋人、北京人、山顶洞人、河姆渡和半坡原始居民
7. 中国被世界和平理事会定为世界四大文化名人的是
A.哥白尼 B.孔子 C.拉伯雷 D.屈原
8. 2005年,宋楚瑜先生率领亲民党大陆访问团祭拜黄帝陵。与黄帝一起被奉为中华民族“人文始祖”的传说时代的人物是
A、炎帝 B、禹 C、尧 D、舜
9. 同学们来到殷墟,讲解员指着一段文字残片告诉同学:“这文字记录反映了商王的活动和商朝的政治、经济情况,对研究商朝的历史有重要的价值。”由此判断,这些文字应该是
A.甲骨文 B.小篆 C.隶书 D.行书
10. 西周众多的诸侯,是通过下列哪个制度产生的
A.奴隶制 B.世袭制 C.分封制 D.禅让制
11. “知彼知已者,百战不殆”的军事格言,是哪个军事家的名言
A.庞涓 B.孙武 C.韩非 D.孙膑
12. 通过战争成就霸业是春秋时期诸侯争霸常用的手段。下列成就晋文公中原霸主地位的是
A.城濮之战 B.赤壁之战 C.官渡之战 D.马陵之战
13. 很多人爱吃米饭,水稻种植在我国有很长的历史。下列哪个地方的居民最早吃到米饭
A、北京周口 B、陕西半坡村 C、山东大汶口 D、浙江河姆渡
14. 在某一博物馆中,一讲解员说:“这是目前世界上已发现的最大青铜器……”它应是
A.四羊方尊 B.编钟 C.青铜立人像 D.司母戊鼎
15.战国时期有一户人家:老大因作战有功获得爵位,老二在家勤于耕作免除徭役,老三则被国君派往小县为吏。据此判断这户人家最有可能生活在
A齐国 B楚国 C燕国 D秦国
16、他是历史上的一位重要人物,李白称赞他说:“秦王扫六合,虎视何雄哉!”李白称赞他的功绩是
A结束了春秋战国以来的分裂割据局面,完成统一。
B创立了封建专制主义的中央集权制度
C推行郡县制,在我国历史上影响深远
D、统一了货币和文字
17、齐桓公首先称霸有诸多原因,最根本的原因在于
A 管仲改革壮大了齐国的力量 B 以“尊王攘夷”为号召
C 齐桓公本人的威信和能力 D 周天子派人参加会盟
18、俗语:“姜太公钓鱼,愿者上钩”。当年,姜尚等待的贤明君主是
A、黄帝 B 、夏启 C、商汤 D、周文王
19、屈原受到我国人民崇敬并每年纪念他,最主要是因为
A.他在文学上创造了新的文学体裁 B.他主张变革的政治成就
C.他的抗秦事迹 D.他的爱国爱民精神
20、在下列主张中,最能体现“可持续发展”这一思想的是
A福兮,祸之所伏;祸兮,福之所倚 B斧斤以时信山林,林木不可胜用也
C仁者爱人,为政以德 D兵无常势,水无常形
21、传说“大禹治水”的“水”,你认为应该是 ( )
A 黄河 B 长江
C 淮河 D 珠江
22、秦统一全国后,诏书传到南方的许多地方,当地没有人认识。据此,你认为秦始皇应该采取什么措施?( )
A 统一货币 B 焚书坑儒 C 统一度量衡 D 统一文字
23、夏朝和商朝的暴君分别是
A、启、桀 B、桀、纣 C、汤、桀 D、汤、纣
24、春秋时期第一个霸主是:
A.齐桓公 B.楚庄王 C.晋文公 D.秦穆公
25、黄河流域原始农耕时代的居民是 ( )
A、半坡人 B、北京人 C、河姆渡人 D、蓝田人
二、材料题(共50分)
26、材料一、“全世界都在学中国话,孔夫子的话越来越国际化,全世界都在讲中国话,我们说的话让世界都认真听话。”一曲明快的《中国话》,表达出人们对祖国的美好祝愿。
材料二、孔子说:学而时习之,不亦说乎?知之为知之,不知为不知。三人行,必有我师焉。
结合所学知识,回答下列问题。(16分)
(1)歌词中提到的“孔夫子”生活在什么时期?(2分)他是哪一学派的创始人?(2分)他的主要思想记录在哪一部著作里?(2分)
(2)他的思想核心是什么?(2分)
(3)、依据材料二,概括出他的教育思想。(6分)
(4)、如何评价此人?(2分)
27、某校初一年级班主任在班级管理中受到诸子百家思想的影响而采用不同的管理方法。分别说出以下四位班主任的思想主张可能受到哪个学派的影响,并分别说出这些学派的代表人物。(8分)
(1)张老师认为管理班级应该尊重学生的特点,顺应自然,不可过多干涉学生的言行。
(2)王老师主张制定严厉的班规,然后学生绝对服从老师的管理和纪律的约束。
(3)李老师认为老师要爱惜学生,主张因材施教,用道德教育来感化学生。
(4)赵老师认为师生之间、同学之间要互助互爱,反对同学中以大欺小、以强凌弱的行为。
28、长太息以掩涕兮,哀民生之多艰!(14分)
1、上述内容出自哪一部作品?(2分)
(2)、这一作品是谁创作的?(2分)他生活在战国时期的哪个国家?(2分)你能写出春秋时期与该国有关的战争吗?(2分)
(3)、这两句诗反映了作者怎样的情怀?(2分)
(4)、为了纪念他,我们国家把每年的农历五月初五定为什么节日?(2分)我们应如何评价此人?(2分)
29、现代著名史学家离沫若说:“书籍被烧残,其实还在其次,春秋末年以来,蓬蓬勃勃的自由思索的那种精神,事实上因此而遭受了一次致命的打击。”(12分)
(1)、书籍被烧指的是什么事?(2分)这件事是秦始皇采纳谁的建议而实行的?(2分)
(2)、秦始皇采取这种行动的目的是什么?(2分)
(3)、你如何看待这件事?(2分)
(4)、秦朝时北方最宏伟的国防工程是什么?(2分)
(5)、秦始皇建立的中央集权的封建国家把哪家的思想主张变成了现实?(2分)
人教版七年级历史上册期中考试试卷参考答案
26、(1)春秋晚期、儒家学派、<<论语>>
(2)提出“仁”的学说。
(3)时常复习学过的知识;要有老老实实的学习态度;要谦虚好学。
(4)孔子是中国伟大的思想家、教育家。
看了“人教版七年级历史上册期中考试试卷”的人还看了:
1.七年级历史上册期中考试试卷及答案
2.七年级历史上册期中测试题及答案
3.七年级历史上期中试卷及答案
教学目标
1.通过观察、猜测、比较、实验等活动,找出最简单的事物的组合数。
2.初步培养有序地全面地思考问题的能力;培养初步的观察、分析、及推理能力。
3.感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣;初步培养有顺序地、全面地思考问题的意识。
教学重点
经历探索简单事物组合规律的过程。
教学难点
初步理解简单事物排列与组合的不同。
课时安排
1课时
教学过程
一、情景导入
1.课件出示:用5、7、9三个数字,任意选取其中两个数字组成没有重复数字的两位数,能组成几个两位数?
(1)学生仔细读题,独立完成,然后在组内交流自己的想法。
(2)选择不同想法的学生汇报。
2.师:今天我们继续学习有关搭配的知识,请大家思考:今天学的的知识和排列问题有什么区别?(板书课题)
二、合作探究
教学例2
师:同学们,蓝猫带领我们到数学广角玩了一遍。可它自己却有一个问题没解决,你能帮它一下吗?
课件出示例2。
有3个数5、7、9,任意选取其中2个求和,得数有几种可能?
要求学生两人一组,动手操作摆数字卡片,边摆边记,摆出两张卡片求出和是多少,然后把结果在小组内讨论交流。
师:同学们用摆数字卡片的方法,求出了得数有三种可能,分别是12、14、16。考虑一下,还有其他的方法吗?
学生在小组内讨论交流,教师巡回指导。
实物投影展示学生想到的方法。
方法一:填表法
加数
5
5
7
7
9
9
加数
7
9
5
9
5
7
和
12
14
12
16
14
16
方法二:连线相加
师:同学们想到的这两种方法都很好,你们是怎么想到的?
生:利用例1的方法先找到两个数,然后再相加。
师:噢,原来是这样。请同学们观察一下,两个数相加得到的和中有没有重复的?
生:有。
师:请同学们观察一下,为什么会这样?
生:因为两个数相加时,有的是两个数交换了位置,和没变。
师:两个数交换位置,和没变,这说明了什么呀?
生:两个数的和与顺序没有关系。
师:同学们观察得不错。因为两个数交换了位置,虽然有六种情况,可得数却只有三个。
师生共同讨论交流,为蓝猫解决了问题,任意选取其中两个求和,得数只有三种可能:12、14、16。
归纳总结:
如果从三个数中任意选取其中2个求和,两个数的和与顺序没有关系,得数只有三种可能。
三、巩固新知
1.完成教材第98页的“做一做”。
2.完成教材第99页练十四的3~4题。
四、归纳新知
通过今天的学习,你对排列和组合又有了哪些新的认识?
五、板书设计
简单的组合
例2 方法一:填表 方法二:连线相加