前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的一年级数学教案主题范文,仅供参考,欢迎阅读并收藏。
教学重点
初步理解减法的含义是本小节的教学重点.
教学难点
学生能够看图说图意,并能够正确列式计算.
教学过程
一、复习导入
(一)出示图片:金鱼图和绵羊图
1.请你根据图意列式
2.教师总结
(1)我们可以从不同角度观察同一个问题;
(2)当我们需要把两部分合并在一起的时候,我们需要用加法计算;
(3)两个数相加,交换两个加数的位置,他们的和不变.
(二)教师设疑
我们知道把两部分合并在一起我们用加法计算;如果我想:从总数里面去掉一部分,求另一部分是多少,我们该怎样计算呢?
二、学习减法
(一)看图自主理解减法含义
1.出示图片:主题图
(1)请你自己想一想,这幅图什么意思?
(2)小组内说一说
(3)你知道怎样解答吗?
2.全班讨论
3.教师小结
当我们从总数里面去掉一部分,求剩下的另外一部分时,我们用减法计算.“-”记做减号.
从5个里面减去2个,还剩3个,写作:5-2=3
(二)反馈
1.出示图片:做一做1
2.出示图片:做一做2
3.出示图片:小刺猬拿苹果
(三)小结
当我们需要把两部分合并在一起的时候,我们需要用加法计算;当我们从总数里面去掉一部分,求剩下的另外一部分时,我们用减法计算.
三、练习
(一)出示图片:手指图
(二)出示图片:小鸟摘果子
(三)出示图片:老鼠做数学
四、小结
今天我们接触了减法,你知道什么时候运用减法进行计算吗?今天你有什么收获吗?
探究活动
成双配对
游戏目的
1.巩固5以内加减法的含义.
2.使学生能够熟练计算5以内的加减法.
游戏准备
将所有5以内的加减法算式制作成口算卡片.
游戏过程
1.学生以小组为单位进行活动.
2.组长任意说一个5以内的数字,其他学生就从口算卡片中拿出得数等于组长所报数字的口算卡片.
教学目标
一、知识与技能:
1、理解比的意义,掌握比的读写法,认识比的各部分名称。
2、理解比值的含义,知道求比值的方法,并能正确地求比值。
3、理解并掌握比与分数、除法的关系。
4、培养学生分析、比较、抽象概括、分析解决问题的能力和应用意识。
二、过程与方法:
1、通过自主学习,合作交流,使学生掌握一定的学习方法。
2、利用多媒体课件沟通数学与生活的联系,培养学生的应用意识。
3、引导学生加强知识间的联系,提高学生分析解决问题的能力。
三、情感态度价值观:
1、有机渗透爱国主义教育。
2、引导学生探索知识间的内在联系,激发学生学习兴趣。
3、通过课件演示,使学生感悟到数学知识内在联系的逻辑之美,增强审美意识。
教学重点和难点
1、教学重点:比与除法、分数的关系
2、教学难点:理解比的意义
教学过程
一、创设情境,引入新课。
师谈话引入新课,出示课题
二、探究新知,掌握知识。
(一)教学比的意义。
1、教学同类量的比。
A、请同学们看大屏幕,(出示课件2),这是谁?
关于杨利伟,你们都知道些什么?
师:你们知道的真多!2003年10月15日,我国成功发射了第一艘载人飞船————“神州”五号,(出示课件3),杨利伟叔叔就是乘坐“神州”五号飞上太空的,实现了我们中华民族几千年的飞天梦想。
(出示课件4)这就是杨利伟叔叔在太空中向人们展示联合国旗和中华人民共和国国旗时的情景。杨叔叔能干吗?
(出示课件5)杨利伟叔叔展示的两面旗都是长15cm,宽10cm,长是宽的几倍?
宽是长的几分之几?怎样用算式表示?
(引导学生说出,教师板书:15÷10
10÷15)
B、师:这两个关系都是用什么方法来求的?(除法)
C、师:比较这两个数量之间的关系,除了除法,还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10(师板书:15比10
)
,宽和长的比是10比15。
(师板书:10比15
)
我们来看一看,长与宽的比,宽与长的比一样吗?为什么?说明什么?
师:两个数量进行比较一定要弄清谁和谁比。谁在前,谁在后,不能颠倒位置,否则比表示的具体意义就变了。比是有顺序的。
D、师:不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。
例如:我们班有男生22人,女生24人,男生和女生人数的比是几比几;女生和男生人数的比呢?
2、教学不同类量的比。
A、师(课件5出示):“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。飞船进入轨道后平均每分钟飞行多少千米?怎样用算式表示?(
生说师板书:42252÷90)
B、师:对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90。(师板书:42252比90)这里的42252千米与90小时是两个不同类的量。不同类的两个量相比可以得到一个新的量,如:路程∶时间
=
速度
总价∶数量
=
单价
3、归纳比的意义。
A、师:刚才的两个例子,都是通过两个数相除来表示两个数量之间的关系,它们都可以用比来表示,所以什么是比?聪明的你能说说吗?(学生试说,教师总结板书:两个数相除又叫做两个数的比。(揭示课题)这就是我们今天学习的比的意义(师板书课题)
B、学生读比的意义。
(二)教学比的读写法和比的各部分名称。
1、师:关于比,我们课本第44页还有很多知识,下面请同学们带着这些问题(出示课件6)自学,并概括相关知识点,看看谁最能干。
1、几比几怎样写、怎样读?
2、比的各部分名称是什么?
3、怎样求比值?
4、比值可以怎样表示?)
2、学生代表汇报,师补充板书。(15∶10
10∶15
42252∶
90)
师质疑:比号和冒号有区别吗?书写时应注意什么?
3、学生代表汇报,教师用(课件7)逐一出示:
“∶”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
15
∶
10
=
15
÷
10=
比值
=
比的前项
÷
比的后项
即时练习
: 3 ∶
2
=
3 ÷ 2
= 或1.5
8 ∶
1
=
8 ÷ 1
=
8
比值通常用分数表示,也可以用小数或整数表示。
大家想一想:比与比值有什么区别吗?
(三)教学比与除法、分数的关系。
1、(出示课件8)小组讨论:
比的前项、后项和比值分别相当于除法算式和分数中的什么?
联
系(相
当
于)
区别
比
比的前项
∶(比号)
比的后项
比值
一种关系
除法
被除数
÷(除号)
除数
商
一种运算
分数
分子
-(分数线)
分母
分数值
一种数
A、小组代表汇报,完成上表。(课件出示)
B、师:如果用字母表示比与除法、分数这三者的内在关系,应该怎样表示?引导板书:
a
∶
b
=
a
÷
b
=
C、根据分数与除法的关系,两个数的比也可以写成分数的形式。
例如:15∶
10,可写成(师板书),仍读作“15比10”。
2、(出示课件9)(b≠0)想一想:比的后项可以是0吗?为什么?(比的后项不能是0。因为在除法算式中,除数不能为0,比的后项相当于除数,所以比的后项也不能为0。因为在分数中,分母不能为0,比的后项相当于分母,所以比的后项也不能为0。)师补充板书
3、师质疑:(出示课件10)可是,在比赛场上,我们常常用比分的形式来表示两个队的比赛结果,这里的比和我们这节课学习的比一样吗?这里的12∶
0是什么意思?谁能说说看。
学生讨论回答后,教师订正时指出(课件出示):各类比赛中记录的比分,只表示某一队与另一队比赛各得的进球分数,不是表示两队所得分数的倍数关系,这与我们今天学习的比的意义不同,它只是借用了我们这节课学习的比的写法。
三、巩固新知,深化提高。
1、(出示课件11)判断对错我能行。
(1)小明身高1米,爸爸身高1.7米,小明与爸爸身高的比是1︰1.7(
)
(2)
既可以读作十五分之七,又可以读作七比十五。
(
)
(3)把1克盐溶于20克水中,盐与盐水重量的比是1︰20。
(
)
(4)比的前项和后项都可以为0。
(
)
2、(出示课件12)完成课本“做一做”的第1、2题。
(1)小敏和小亮在文具店买同样的练习本。小敏买了6本,共花了1.8元。小亮买了8本,共花了2.4元。小敏和小亮买的练习本数之比是(
)︰(
),比值是(
);花的钱数之比是(
)︰(
),比值是(
)。
(2)
3
︰(
)=
24
(
)︰
8
任县骆庄乡骆一村小学
邴朝杰
教学目标:
1、知识与技能:使学生经历探索分数除以分数的计算方法的过程,理解并掌握分数除以分数的计算方法,能正确计算分数除以分数的式题。
2、过程与方法:使学生在探索分数除以分数计算方法的过程中,进一步理解分
数除法的意义,体会数学知识之间的内在联系。
3、情感态度:培养学生迁移,概括的能力。在数学学习活动中获得成功的体验,培养数学学习的兴趣。
教学重难点:
教学重点:理解分数除以分数的计算方法。
教学难点:理解分数除以分数的计算方法,能正确地进行计算。
教具准备:小黑板。
教学步骤:
一、复习引新
1、小黑板出示题目,列式计算。
有2升果汁,倒入容量是2/5升的杯中,需要准备几个杯子?
学生独立列式计算后,说说是怎样列式的?是怎样计算的?
2、引入谈话。
师:在前面我们已经学习了分数除以整数和整数除以分数的方法,都转化成乘除数的倒数,今天我们继续学习新的内容。
二、探索新知
1、教学例4
(1)出示例4,理解题意,列出算式。
提问:这里已知什么,要求什么?用什么方法计算。
(2)追问:为什么用除法计算?
怎样列式?
板书:9/10÷3/10
师:这个算式与我们前面学习的内容有什么不同?(分数÷分数)
揭示课题(板书):分数除以分数
2、画图分析,引导探索
(1)你能试着在图中把9/10升,按每3/10升为一杯分一分吗?看看可以倒几杯?请大家画图探索一下得多少?指名到黑板上画一画,其余学生在练习本上画一画。交流汇报(3个)。
(2)讨论:分数除以分数,能不能用被除数乘除数的倒数来计算呢?学生试着完成书上的计算。
请大家计算一下它的积,看得数与我们画图的结果是不是一样?
(3)交流:结果是3个,与分一分的方法结果相同吗?这说明了什么?(分数除以分数可以转化成乘除数的倒数来计算。)
3、统一方法
(1)前面所学的分数除以整数以及整数除以分数的计算,都是怎样计算的?
今天所学的分数除以分数是怎样算的?由此可见,不论是整数除以分数,还是分数除以分数,都可以这样算?
归纳得出(板书):甲数除以乙数(0除外),等于甲数乘乙数的倒数。
4、完成“练一练”。
(1)第一题。
说说3/5在图形中怎么表示?3/5里面有几个1/5?那么3/5÷1/5得多少?
说说3/10表示的意思?3/5里面有几个3/10?
学生完成计算后,说说通过看图与计算,可以验证什么知识?
(2)第2题。
学生独立完成,完成后集体校对,注意个别学困生的辅导。
提示:转化为乘法计算后,能约分的要先约分。
三、巩固练习
完成练习十一第9题。
学生独立完成,完成后校对。
四、课堂小结:这节课学习了哪些内容?你有什么收获?
五、布置作业:练习十一第13、14题。
六、板书设计:
一个数除以分数
例4:量杯里有9/10升果汁,茶杯的容量是3/10升。这个量杯里的果汁能倒满几个茶杯?
甲数除以乙数,等于
甲数乘乙数的倒数。
9/10÷3/10=3(个)
学
生
画
图
分解算法:
西沟乡中心小学
高雪兰
教学内容:冀教版小学数学四年级下册70~72页
教学目标:
1、通过实例初步理解小数的意义,体会小数和分数的关系。
2、能进行十进分数与小数的互化。
3、充分利用教材提供的实例,引导学生利用已有的知识和生活经验理解小数的意义。
4、结合具体情境,进一步体会小数在日常生活中的广泛应用。
重点难点:
1、重点:理解小数的意义,能进行十进分数与小数的互化。
2、难点:理解小数的意义。
教学准备:1、实物投影仪一台。
2、每组学生准备一把刻度尺(米尺)。
教学方法:本课时主要采用直观演示法。
教学过程:
一、课前三分钟:
教师用多媒体出示:
1、填空:
(1)四年二班共有学生(
)人。
(2)男生有(
)人,占全班人数的(—)。
(3)女生有(
)人,占全班人数的(—)。
2、用直线上的点表示下列各分数:
(
)米(
)米
(
)米(
)米
二、探索新知:
师:1米
=(
)分米
1分米
=(
)米
,它是用分数表示的,它能用小数表示吗?今天我们来探究分数与小数的关系。板书课题:小数的意义
出示小研究:
小组同学合作利用米尺写数:
(一)、把1米平均分成10份,每份是(
)分米,1米=(—)米(用分数表示)=_
米(用小数表示)。
3分米=(—)米(用分数表示)=_
米(用小数表示)。
7分米=(—)米(用分数表示)=_
米(用小数表示)。
(二)、把1米平均分成100份,每份是(
)厘米,
1厘米=(—)米(用分数表示)=_
米(用小数表示)。
7厘米=(—)米(用分数表示)=_
米(用小数表示)。
25厘米=(—)米(用分数表示)=_
米(用小数表示)。
(三)、把1米平均分成1000份,每份是(
)毫米,
1毫米=(—)米(用分数表示)=_
米(用小数表示)。
56毫米=(—)米(用分数表示)=_
米(用小数表示)。
375毫米=(—)米(用分数表示)=_
米(用小数表示)。
小结:分母是10的分数可以写成一位小数,分母是100的
分数可以写成两位小数,分母是1000的分数可以写成三位小数……
课件出示:把正方形平均分成10份、100份的两幅图。
涂色部分各占整个图形的几分之几?各写成的小数,小数读
法。指名写一写,读一读。
可写成小数0.1,0.1读作零点一.
可写成小数0.3,0.3读作零点三.
可写成小数0.01,0.01读作零点零一.
可写成小数0.27,0.27读作零点二七.
把正方形平均分成1000份,一份是多少?8分是多少?32份呢?请同学们讨论交流。
三、巩固练习,提高能力
练一练
学生先独立完成,再师生交流。
四、课堂小结:谈一谈本节课的收获
五、作业设计
1、把“1”平均分成1000份,其中的一份是(
),也可以表示为(
),其中的245份是(
),也可以表示为(
)。其中59份是(
),也可以表示为(
)。
2、把下面图中涂色部分分别用分数和小数表示出来。
3、把下列分数写成小数
4、在(
)填上合适的分数或小数.
(1)
元=(
)元
(2)0.07元=(
)元
(3)0.385千克=(—)
千克(4)米=(
)米
5、操作题:
在下面几个正方形(体)中涂上颜色,分别表示、
、和
,并把它们写成小数填在括号里
(
)
(
)
(
一、我会填。
1、把下列各数按从小到大的顺序排列。
10
6
3
20
15
(
)
)
)
)
)
2、写一写,填一填。
(
)个十和(
)个一是(
)
(
)个十和(
)个一是(
)
(
)个十是(
)
(
)个十和(
)个一是(
)
3、(1)10里面有(
)个一;20里面有(
)个一。
(2)20里面有(
)个十,减少1个十是(
)。
(3)10里面有(
)个十,添上1个十是(
)。
(4)1个十和8个一合起来是(
),添上下1个一是(
)。
(5)13里面有(
)个一;13里面有(
)个十和(
)个一。
4、(1)一共有(
)只小兔,再添上(
)只就是10只。
(2)从右数起,把第4只小兔涂黑。
(3)把左边的4只小兔圈起来。
5、用下列的数,写出不同的算式。
13
8
7
9
4
6
12
10
6、看图写出四个算式。
7、说图意,写算式。
8、看图填空。
王力在李明的(后)面,刘强在李明的(
)面。张永的后面是(
),李明的前面是(
)。刘强的前面有(
)人,后面有(
)人。
9、看图填空。
10、过1小时后是几时?
11、看图填空:
(1)一共有(
)个图形。
(2)从右数起,把第3个图形涂黑。
(3)把左边的4个图形圈起来。
12、(1)13里面有(
)个一和(
)个十,添上1个一是(
);(
)个十和(
)个一组成18,减少1个十是(
)。
(2)10个一就是一个(
),10里面有(
)个十,10添上1个十是(
),20里面有(
)个十。
(3)15中的1表示(
)个(
),5表示(
)个(
)。
(4)十位上的数是1,个位上的数是6,这个数是(
)。个位上是8,十位上是1,这个数是(
)。
(5)1个十和6个一合起来是(
);1个一和6个十合起来是(
)。2个十合起来是(
)。
(6)19前面一个数是(
),后面一个数是(
)。
(7)与12相邻的两个数是(
)和(
)。
13、看图数一数,填一填。
二、看图列式。
(3)
三、用数学
(1)
(2)
(3)
(4)
美美和丽丽之间有(
)人。
(5)
一共有多少人?
(6)
一共有多少头象?
(7)
(8)
(9)
(10)
(11)
现在有几只?
(12)
现在有几只?
(13)
(14)爸爸买了一些作业本,我用了3本,还剩下10本。爸爸原来买了几本作业本?
参考答案
一、我会填。
1、把下列各数按从小到大的顺序排列。
10
6
3
20
15
(3)
2、写一写,填一填。
(1)个十和(3)个一是(13)
(1)个十和(1)个一是(11)
(2)个十是(20)
(1)个十和(4)个一是(14)
3、(1)10里面有(10)个一;20里面有(20)个一。
(2)20里面有(2)个十,减少1个十是(10)。
(3)10里面有(1)个十,添上1个十是(20)。
(4)1个十和8个一合起来是(18),添上1个一是(19)。
(5)13里面有(13)个一;13里面有(1)个十和(3)个一。
4、(1)一共有(7)只小兔,再添上(3)只就是10只。
(2)从右数起,把第4只小兔涂黑。
(3)略。
5、用下列的数,写出不同的算式。
13
8
7
9
4
6
12
10
6、看图写出四个算式。
7、说图意,写算式。
8+6=14
15-5=10
8、看图填空。
王力在李明的(后)面,刘强在李明的(前)面。张永的后面是(刘强),李明的前面是(刘强)。刘强的前面有(1)人,后面有(2)人。
9、看图填空。
上、下、右、左
10、过1小时后是几时?
3时、9时、11时、6时、1时
11、、看图填空:
(1)一共有(6)个图形。
(2)从右数起,把第3个图形涂黑。
(3)略
12、(1)13里面有(3)个一和(1)个十,添上1个一是(14);(1)个十和(8)个一组成18,减少1个十是(8)。
(2)10个一就是一个(十),10里面有(1)个十,10添上1个十是(20),20里面有(2)个十。
(3)15中的1表示(1)个(十),5表示(5)个(一)。
(4)十位上的数是1,个位上的数是6,这个数是(16)。个位上是8,十位上是1,这个数是(18)。
(5)1个十和6个一合起来是(16);1个一和6个十合起来是(61)。2个十合起来是(20)。
(6)19前面一个数是(18),后面一个数是(20)。
(7)与12相邻的两个数是(11)和(13)。
13、看图数一数,填一填。
二、看图列式。
(1)9-2-4=3
(2)9-3=6
(3)4+2+3=9
三、用数学。
(1)10-3=7
(2)3+4-1=6
(3)9-4-2=3
(4)美美和丽丽之间有(
6
)人。
5、6、7、8、9、10、11、12
(5)方法一:5+5+4=14(人)
方法二:6+4+4=14(人)
(6)方法一:4+4+4=12(头)
方法二:6+4+2=12(头)
(7)9-2-4=3
(8)10-1-3=6
(9)8+3=11
(10)15-9=6(道)
(11)9-2-3=4
(12)3+2+4=9
(13)6-2+3=7
(14)10+3=13(本)
小学数学名师
小学数学老师de公众号
人教版一年级数学上册第一单元整理与复习+同步练习
一、整理与复习
二、同步练习及答案
名师分享,珍贵资料
与经验和智慧零距离
欢迎关注【小学数学名师】
人教版五年级数学上册易错题集锦
一、填空题。
1、1.25×0.8表示(
)。
2、去掉0.25的小数点,就是把这个数扩大(
);把50.4的小数点向左移动两位,就是把它缩小到原来的(
)。
3、两个因数相乘,一个因数扩大10倍,另一个因数扩大3倍,积会(
)。
4.一个不为0的数乘以0.8,它的积比这个数(
)。一个自然数乘以0.01,就是把这个自然数(
)。
5、把“2.58×0.03”中的0.03扩大为3而使积不变,另一个因数2.58的小数点应(),积保留两位小数是(
)。
6、56÷11的商用循环小数表示是(
)精确到百分位是(
)。
7、3÷11的商用循环小数的简便写法记作(
)商保留一位小数是(
)。
8、9.97÷4.21的商保留两位小数是()保留整数是(
)。
9、在“”中,最小的是(
),最大的是(
)。
10、两个因数的积是3.4,如果把两个因数同时扩大10倍,积是(
)
11、三个2.5连乘得积是(
)。
12、3x=6.9的解是(
)。
13、水果店运来香蕉x千克,运来的桃子是香蕉的2.5倍,香蕉和桃子一共运来(
)千克。如果x=5,桃子比香蕉多(
)千克。
14、35dm2=(
)cm2;7.4m2=(
)dm2;7.5m2=(
)cm;2350m2=(
)公顷;500平方米=(
)公顷;3平方米70平方分米=(
)平方米;3小时15分=(
)小时;1.8时=(
)时(
)分;2.15小时=(
)分钟;7.6米=(
)米(
)厘米。
15、把一个平行四边形木框拉成一个长方形,周长(
),它的高和面积都会(
)
16、把一个长方形木框拉成一个平行四边形,周长(
),它的高和面积都会(
)。
17、把一个平行四边形沿高剪开,重新拼成一个长方形,它的高和面积(
),周长(
)。
18、一张边长是20厘米的正方形纸,从相邻两边的中点连一条线段(如下图),沿这条线段剪去一个角,剩下的(阴影部分)面积是(
)cm2。
19、一个三角形和一个平行四边形底相等面积也相等。平行四边形的高是10cm,三角形的高是(
)。
20、一个梯形的上底增加3厘米后就变成一个边长6厘米的正方形(如下图),这个梯形的面积是(
)平方厘米。
21、把一个小数的小数点向右移动两位,得到一个新数,与原数相差44.55,原数是(
)。
22、一个直角三角形的三条边分别是3cm、4cm和5cm,这个三角形的面积是(
),斜边上的高是(
)。
23、一个小数有两位小数,保留一位小数它的近似值是10.0,这个数最大是(
)最小(
)。
24、三个连续自然数,中间的数是n,另外的两个数分别是(
)和(
)。
25、125缩小到它的(
)是0.125;(
)扩大到它的100倍是0.3。
26、一个两位数,它的个位上的数字是b,十位上的数字是a,那么这个两位数可写成(
)。
27、一个等腰三角形的底是16cm,腰是a
cm,高是b
cm。这个三角形的周长是(
)cm,面积是(
)cm2。
28、一个等腰三角形的周长是16厘米,腰长是5厘米,底边上的高是4厘米,它的面积是(
)平方厘米。
29、把一个边长8厘米的正方形剪拼成一个平行四边形后面积是(
)。
30、0.25除以0.15,当商是1.6时,余数是(
);0.79÷0.04,商是19,余数是(
)。
31、一个梯形的上底、下底、高分别是5cm、9cm、6cm,面积是(
)平方分米。
32、小明从一个上底是15cm、下底是10cm、高是6cm的梯形中剪下一个平行四边形(如下图)。这个平行四边形的面积是(
)cm2。
33、一堆圆木,最顶层有5根,最底层有14根。每相邻两层相差1根圆木,这堆圆木一共有(
)根。
34、一个三角形和一个平行四边形的面积相等,高也相等。如果三角形的底是25cm,平行四边形的底是(
)dm。
35、一个直角梯形,如果把下底减少3cm,这个梯形就变成一个边长7cm的正方形。这个梯形的面积是(
)cm2。
36、张诚把一个梯形的上底缩小成一点后
这个梯形就变成一个(
)形。
二、判断题。
1、小数乘法的意义和整数乘法的意义完全相同。(
)
2、一个数乘0.8,积比原来的数小。(
)
3、近似数7.0和7的大小相等,但精确度不一样。(
)
4、8.4×0.5就是求8.4的一半是多少。(
)
5、一个数除以一个小数,商可能是小数。(
)
6、小数除以小数,商一定是小数。(
)
7、在除法里:商一定小于被除数。(
)
8、一个非0的数除以一个比1小的小数,所得的商一定比被除数大。(
)
9、如果除数小于1,那么商就比被除数(0除外)大。(
)
10、(0.1-0.1×0.1)÷0.1=0.9。(
)
11、x2不可能等于2x。(
)
12、a2>2a。(
)
13、未知数的值叫做方程的解。(
)
14、小数分有限小数、无限小数和循环小数。(
)
15、一组数据的中位数和平均数可能相等。(
)
16、循环小数不一定是无限小数。(
)
17、方程左右两边同时乘一个相同的数,左右两边仍然相等。(
)
18、把平行四边形木框拉成长方形,周长和面积都变大了。(
)
19、如果两个图形能拼成平行四边形,那么它们一定完全一样。(
)
20、边长是4分米的正方形,它的周长和面积相等。(
)
21、两个都比1小的数(0除外)相乘,积一定小于其中的每一个因数。(
)
22、方程5+2x=16.2的解是5.6。(
)
23、6x+6=6(x+1)。(
)
24、把一个梯形的上底、下底和高都扩大2倍,它的面积就扩大2倍。(
)
三、选择题。
1、a与它的2.5倍相差(
)。
A、a-2.5
B、2.5-a
C、1.5a
2、下面两个式子相等的是(
)。
A、a+a和2a
B、a×2和a2
C、a+a和a2
3、与3.75÷12.5结果相同的算式是(
)。
A、3750÷12.5
B、37.5÷125
C、3750÷125
4、可以运用(
)对4.7×99+4.7进行简便运算。
A、乘法交换律
B、乘法结合律
C、乘法分配律
5、已知两个因数的积是其中一个因数的3.5倍,是另一个因数的4.2倍,这两个因数的积是(
)。
A、8.7
B、14.7
C、1.2
6、下面算式中积最小的是(
)。
A、320×0.24
B、2.4×0.32
C、24×0.32
四、列方程或算式。
1、“3.2除x的商是0.8”的等量关系式是__________________
2、一个数的3倍加上这个数的一半等于80.5,求这个数。
(列方程)解:设这个数是x,则方程是:__________________
3、一个数的5倍与它的3.6倍相差5.6,求这个数。
(列方程)解:设这个数是x,则方程是:__________________
4、“7与0.38的和去除4.6,商是多少?”的算式是__________________
五、应用题。
1、某小学五年级有学生55个人。男生人数是女生人数的1.2倍。男、女生各有多少人?
2、童装厂原来做一种儿童服装,每套用布2.2米。现在改进了裁剪方法,每套节省布0.2米。原来做1800套这样的服装所用的布,现在可以多做几套?
3、一个长方形的周长是45厘米,长是宽的2倍。这个长方形的面积是多少平方厘米?
4、甲乙两筐苹果,甲筐苹果的个数是乙筐的2.4倍,如果从甲筐取出35个苹果放入乙筐,这时两筐苹果个数相等,原来两筐苹果各有多少个?(列方程解答)
5、妈妈将一些奶糖和水果糖分装在小袋里,每袋装入0.25千克奶糖和0.15千克水果糖。当水果糖用去4.5千克时,用去奶糖多少千克?
6、姐姐骑电瓶车每小时行18千米,弟弟开小汽车每小时行54千米。他俩从相距247千米的两地同时相向而行,2.5小时后两人还相距多少千米?
参考答案
一、填空题。
1、1.25×0.8表示(1.25与0.8的积是多少)。
2、去掉0.25的小数点,就是把这个数扩大(100倍);把50.4的小数点向左移动两位,就是把它缩小到原来的(百分之一)。
3、两个因数相乘,一个因数扩大10倍,另一个因数扩大3倍,积会(30倍)。
4.一个不为0的数乘以0.8,它的积比这个数(小)。一个自然数乘以0.01,就是把这个自然数(缩小到这个自然数的百分之一或缩小100倍)。
5、把“2.58×0.03”中的0.03扩大为3而使积不变,另一个因数2.58的小数点应(向左移动两位),积保留两位小数是(0.08)。
6、56÷11的商用循环小数表示是(5.090909……),精确到百分位是(5.09)。
7、3÷11的商用循环小数的简便写法记作(),商保留一位小数是(0.3)。
8、9.97÷4.21的商保留两位小数是(2.37)保留整数是(2)。
9、在“”中,最小的是(),最大的是(3.23)。
10、两个因数的积是3.4,如果把两个因数同时扩大10倍,积是(340)
11、三个2.5连乘得积是(15.625)。
12、3x=6.9的解是(2.3)。
13、水果店运来香蕉x千克,运来的桃子是香蕉的2.5倍,香蕉和桃子一共运来(3.5x)千克。如果x=5,桃子比香蕉多(7.5)千克。
14、35dm2=(3500)cm2;7.4m2=(740)dm2;
7.5m2=(75000)cm2;2350m2=(0.235)公顷;
500平方米=(0.05)公顷;3平方米70平方分米=(3.7)平方米;
3小时15分=(3.25)小时;1.8时=(1)时(48)分;
2.15小时=(129)分钟;7.6米=(7)米(60)厘米。
15、把一个平行四边形木框拉成一个长方形,周长(不变),它的高和面积都会(变大)
16、把一个长方形木框拉成一个平行四边形,周长(不变),它的高和面积都会(变小)。
17、把一个平行四边形沿高剪开,重新拼成一个长方形,它的高和面积(不变),周长(变小)。
18、一张边长是20厘米的正方形纸,从相邻两边的中点连一条线段(如下图),沿这条线段剪去一个角,剩下的(阴影部分)面积是(350)cm2。
19、一个三角形和一个平行四边形底相等、面积也相等。平行四边形的高是10cm,三角形的高是(20cm)。
【解析:一个三角形和一个平行四边形在底相等,面积也相等的情况下,三角形的高是平行四边形的两倍。】
20、一个梯形的上底增加3厘米后就变成一个边长6厘米的正方形(如下图),这个梯形的面积是(27)平方厘米。
21、把一个小数的小数点向右移动两位,得到一个新数,与原数相差44.55,原数是(0.45)。【解析:把一个小数的小数点向右移动两位,原来小数扩大100倍,也就是增加99倍,所以原数是:44.55÷99=0.45】
22、一个直角三角形的三条边分别是3cm、4cm和5cm,这个三角形的面积是(6cm2),斜边上的高是(2.4cm)。【解析:直角三角形的三条边中,斜边是最长的,所以两条直角边分别3cm、4cm。两条直角边相当于这个直角三角形的底和高所以,三角形的面积=3×4÷2=6cm2,则斜边上的高=6×2÷5=2.4cm】
23、一个小数有两位小数,保留一位小数它的近似值是10.0,这个数最大是(10.04)最小(9.95)。
24、三个连续自然数,中间的数是n,另外的两个数分别是(n-1)和(n+1)。
25、125缩小到它的(千分之一)是0.125;(0.003)扩大到它的100倍是0.3。
26、一个两位数,它的个位上的数字是b,十位上的数字是a,那么这个两位数可写成(ab)。
27、一个等腰三角形的底是16cm,腰是a
cm,高是b
cm。这个三角形的周长是(2a+16)cm,面积是(8b)cm2。
28、一个等腰三角形的周长是16厘米,腰长是5厘米,底边上的高是4厘米,它的面积是(12)平方厘米。【解析:首先要求出,底=16-5×2=6cm,然后计算,面积=6×4÷2=12cm2】
29、把一个边长8厘米的正方形剪拼成一个平行四边形后面积是(64平方厘米)。【解析:用剪拼的方法改变了形状,面积是不会变的。只有用拉抻的方法改变形状,面积才会变。】
30、0.25除以0.15,当商是1.6时,余数是(10);0.79÷0.04,商是19,余数是(3)。
31、一个梯形的上底、下底、高分别是5cm、9cm、6cm,面积是(0.42)平方分米。【解析:注意面积单位的转化。】
32、小明从一个上底是15cm、下底是10cm、高是6cm的梯形中剪下一个平行四边形(如下图)。这个平行四边形的面积是(60)cm2。
33、一堆圆木,最顶层有5根,最底层有14根。每相邻两层相差1根圆木,这堆圆木一共有(95)根。【解析:本题关键是要算出这堆圆木的层数:14-5+1=10层,就可以计算圆木的根数:(5+14)×10÷2=95根】
34、一个三角形和一个平行四边形的面积相等,高也相等。如果三角形的底是25cm,平行四边形的底是(1.25)dm。【解析:注意长度单位。一个三角形和一个平行四边形在面积相等,高也相等的情况下,平行四边形的底只是三角形的一半。】
35、一个直角梯形,如果把下底减少3cm,这个梯形就变成一个边长7cm的正方形。这个梯形的面积是(59.5)cm2。
36、张诚把一个梯形的上底缩小成一点后
这个梯形就变成一个(三角)形。
二、判断题。
1、小数乘法的意义和整数乘法的意义完全相同。(×)
【解析--】
小数乘整数的意义与整数乘法的意义相同;而小数乘小数的意义与整数乘法的意义就不相同了;
补充:
整数乘法的意义:求几个相同加数的和的简便运算;
现有教材的理解已较宽:如3×4既可以说:3个4是多少?也可以表述成:4个3是多少?
小数乘法的意义:(原有老教材是分开的,供参考)
(1)小数乘整数:与整数乘法的意义相同,就是求几个相同加数的和的简便运算.例如:2.5×6
表示6个2.5求和或2.5的6倍是多少.
(2)一个数乘小数的意义:与整数乘法的意义有所不同,它是整数乘法意义的进一步扩展.它可以理解为是求这个数的十分之几、百分几、千分之几……是多少.例如,2.5
×
0.6表示2.5的十分之六是多少,2.5
×
0.98表示2.5的百分之九十八是多少.
记得现行教材统一为:就是求一个数的几倍(几分之几)是多少?
分数乘法的意义理解与小数乘法相同。
2、一个数乘0.8,积比原来的数小。(×)
【解析:这个数只有大于0的时候,乘0.8,积才比原来的数小。】
3、近似数7.0和7的大小相等,但精确度不一样。(√)
【解析:对。根据四舍五入的规则,7.0在数值上等于7,但是在精确位上7.0的精确位是在最后一位,在十分位,7的精确位在个位,所以他们的精确位并不一样,即原题是对的。】
4、8.4×0.5就是求8.4的一半是多少。(√)
5、一个数除以一个小数,商可能是小数。(√)
6、小数除以小数,商一定是小数。(×)
7、在除法里:商一定小于被除数。(×)
8、一个非0的数除以一个比1小的小数,所得的商一定比被除数大。(√)
【解析:这道题如果局限在本册知识内,它就是对的;如果这个比1小的小数是个负数,那么所得的商就会比被除数小,如:2÷(-0.5)=-4,这时候原题就是错的。这道题出在小学阶段里,本身就没有意义。】
9、如果除数小于1,那么商就比被除数(0除外)大。(√)【解析:与上题同解。】
10、(0.1-0.1×0.1)÷0.1=0.9。(×)
11、x2不可能等于2x。(×)
【解析:如果x=2,那么x2就会等于2x】
12、a2>2a。(×)
【解析:只有a大于2时才是对的。如果a≤2,那么a2≤2a】
13、未知数的值叫做方程的解。(×)
【解析:错。正确的说法是:使方程左右两边相等的未知数的值叫做方程的解】
14、小数分有限小数、无限小数和循环小数。(×)
【解析:错。循环小数已经包含在无限小数中。小数分有限小数和无限小数两大类,而无限小数再分为无限循环小数和无限不循环小数。】
15、一组数据的中位数和平均数可能相等。(√)
【解析:正确。如1,2,3这组数里,2是中位数,也是平均数,是相等的。】
16、循环小数不一定是无限小数。(×)
【解析:错。循环小数本身就是无限小数。】
17、方程左右两边同时乘一个相同的数,左右两边仍然相等。(×)
【解析:等式的性质是:方程两边同时乘或除以同一个数(0除外),等式依然成立,题干中没说0除外,所以原题说法错误。】
18、把平行四边形木框拉成长方形,周长和面积都变大了。(×)
【解析:错。把平行四边形木框拉成长方形,四条边的长度是不会变的,所以周长不会变,只有面积变大了。】
19、如果两个图形能拼成平行四边形,那么它们一定完全一样。(×)
【解析:错。把一个平行四边形剪成一大一小的两个平行四边形来理解就明白了。】
20、边长是4分米的正方形,它的周长和面积相等。(×)
【解析:错。它们的数值虽然相同,但单位意义不一样,所以是不可能说周长和面积相等。】
21、两个都比1小的数(0除外)相乘,积一定小于其中的每一个因数。(√)
22、方程5+2x=16.2的解是5.6。(√)
23、6x+6=6(x+1)。(√)
【解析:对。根据乘法分配律,这个等式是成立的。】
24、把一个梯形的上底、下底和高都扩大2倍,它的面积就扩大2倍。(×)
【解析:错。假设原来的上底、下底、高分别是2cm、3cm、4cm,则面积是10平方厘米;上底、下底、高都扩大2倍后,上底、下底、高分别是4cm、6cm、8cm,面积是40平方厘米,面积不止扩大2倍,而是4倍了。】
三、选择题。
1、a与它的2.5倍相差(C)。
A、a-2.5
B、2.5-a
C、1.5a
【解析:2.5a-a=1.5a】
2、下面两个式子相等的是(A)。
A、a+a和2a
B、a×2和a2
C、a+a和a2
【解析:a+a和2a都表示两个a的和,所以这两个式子相等。】
3、与3.75÷12.5结果相同的算式是(B)。
A、3750÷12.5
B、37.5÷125
C、3750÷125
【解析:被除数与除数同时扩大10倍,商的大小不变。】
4、可以运用(C)对4.7×99+4.7进行简便运算。
A、乘法交换律
B、乘法结合律
C、乘法分配律
5、已知两个因数的积是其中一个因数的3.5倍,是另一个因数的4.2倍,这两个因数的积是(B)。
A、8.7
B、14.7
C、1.2
【解析:两个因数的积是其中一个因数的3.5倍(即另一个因数为3.5),是另一个因数的4.2倍(即这一个因数为4.2)则这两个因数的积是:3.5×4.2=14.7】
6、下面算式中积最小的是(B)。
A、320×0.24
B、2.4×0.32
C、24×0.32
【解析:不用计算,就用判断积的小数位数的方法来选择。】
四、列方程或算式。
1、“3.2除x的商是0.8”的等量关系式是
x÷3.2=0.8
【解析:注意“除”跟“除以”是不同的。“除”表示它前面的数是除数,“除以”表示它前面的数是被除数。】
2、一个数的3倍加上这个数的一半等于80.5,求这个数。
(列方程)解:设这个数是x,则方程是: 3x+x÷2=80.5
3、一个数的5倍与它的3.6倍相差5.6,求这个数。
(列方程)解:设这个数是x,则方程是:
5x-3.6x=5.6
4、“7与0.38的和去除4.6。商是多少?”的算式是
4.6÷(7+0.38)
五、应用题。
1、某小学五年级有学生55个人。男生人数是女生人数的1.2倍。男、女生各有多少人
【解析:根据等量关系式
男生人数+女生人数=全班人数
列方程。】
解:设女生有x人,则男生有1.2x人
1.2x+x=55
2.2x=55
x=55÷2.2
x=25
男生人数=1.2x=1.2×2.5=30(人)
答:(略)
2、童装厂原来做一种儿童服装,每套用布2.2米。现在改进了裁剪方法,每套节省布0.2米。原来做1800套这样的服装所用的布,现在可以多做几套?
【解析:要求现在可以多做几套,需知道原来做的套数(已知)与现在做的套数,要求现在做的套数,还需先求出布的总米数(1800×2.2)和现在每套用布的米数(2.2-0.2),然后算出现在可以做的套数1800×2.2÷(2.2-0.2)。由此找出条件列出算式解决问题】
1800×2.2÷(2.2-0.2)-1800=180(套)
答:(略)
3、一个长方形的周长是45厘米,长是宽的2倍。这个长方形的面积是多少平方厘米?
【解析:根据周长和已知长是宽的2倍这两个信息可以利用方程算出长和宽各是多少(根据“(长+宽)×2=长方形周长”这个长方形周长公式列出方程),然后就可以计算长方形的面积
。】
解:设宽是x厘米,则长是2x厘米。
(2x+x)×2=45
3x=45÷2
3x=22.5
x=22.5÷3
x=7.5
则长=2x=2×7.5=15厘米
长方形的面积:15×7.5=112.5(平方厘米)
答:(略)
4、甲乙两筐苹果,甲筐苹果的个数是乙筐的2.4倍,如果从甲筐取出35个苹果放入乙筐,这时两筐苹果个数相等,原来两筐苹果各有多少个?(列方程解答)
解:设乙筐的苹果有x个,则甲筐的苹果有2.4x个。
2.4x-35=x+35
2.4x-x=35+35
1.4x=70
x=70÷1.4
x=50
则甲筐的苹果有:2.4x=2.4×50=120(个)
答:甲筐苹果有120个,乙筐苹果有50个。
5、妈妈将一些奶糖和水果糖分装在小袋里,每袋装入0.25千克奶糖和0.15千克水果糖。当水果糖用去4.5千克时,用去奶糖多少千克?
【解析:根据水果糖用去的质量算出用去了多少袋,再乘每袋包含奶糖的质量就可以了。】
4.5÷0.15×0.25
=30×0.25
=7.5(千克)
答:(略)
6、姐姐骑电瓶车每小时行18千米,弟弟开小汽车每小时行54千米。他俩从相距247千米的两地同时相向而行,2.5小时后两人还相距多少千米?
247-(18+54)×2.5
=247-72×2.5
=247-180
=67(千米)
答:(略)
人教版四年级数学上册易错题集锦
一、填空题。
1、与最小的八位数相邻的两个数是(
)和(
)。
2、10个鸟蛋重50克,100万个鸟蛋约重(
)吨。
3、用两根一样长的铁丝分别围成一个长方形和一个正方形,(
)的面积大。
4、100张纸厚1厘米,1亿张纸厚约(
)千米。
5、用“万“作单位写出下面各数的近似数:
945000≈(
)万
305100≈(
)万
996043≈(
)万
6、用“亿“作单位写出下面各数的近似数。
420000000≈(
)亿
650000000≈(
)亿
6990000000≈(
)亿
7、写出里的数。
÷26=7……6
298÷=9……1
÷35=8……3
197÷=5……2
8、把下面的每一组算式,合并成综合算式
73+27=100
100÷25=4
________________________________________
52-36=16
45×16=720
________________________________________
42×13=546
102+546=646
________________________________________
9、用5个3和3个0按要求写出下面各数
(1)一个“零“都不读出来;________
(2)只读出一个“零“;________
(3)读出两个“零“;________
(4)读出三个“零“。________
10、每列上下为一组,第32组是(
)。
11、里最大能填几(填整数)?
÷35
÷27
12、填上合适的运算符号。
456
=26
456=14
456=34
13、从1写到50,数字0一共写了(
)个,数字2一共写了(
)个。
14、一个数省略“亿“位后面的尾数的近似数是8亿,这个数最大是(
),最小是(
),它们相差(
)。
15、找规律填数
(1)30600、32600、34600、(
)、(
)。
(2)100000、99900、99800、(
)、(
)。
16、把两个边长都是5厘米的正方形,拼成一个长方形,拼成的长方形的周长是(
)厘米,面积是(
)平方厘米。
17、有一个数,它的百万位的左边、右边的数以及百位左边的数都是“8“,其余各个数位上都是“0“,那么这个数(
)位数,写作(
),读作(
),这个数四舍五入到万位,得(
)。
18、数一数(
)个角。
19、万里长城全长(
)千米。(67、670、6700、67000)。
20、100张纸厚约1厘米,那么一亿张纸厚约(
)千米。
21、慈溪市人口100万,这是一个(
)(近似、准确)
数,慈溪市人口最多可能有(
)人,最少可能有(
)人。
22、从一点出发,可以画(
)条射线,其中每两条射线
都能组成一个(
)。
23、角的大小跟(
)无关,跟(
)有关。
24、甲数是乙数的5倍,那么甲数除以乙数的商是(
),如果乙数缩小3倍,要使商不变,甲数应该(
)。
25、根据1260÷45=28,写出下面各式的得数。
630÷45=
45×28=
2520÷90=
2800×450=
630÷15=
56×45=
26、3时正时,时针与分针所组成的角是(
)角,角度是(
)。9时半时,时针与分针所组成的角是(
)角,角度是(
)。
27、一口锅能放3个饼,每个饼煎两面,每面需2分钟,煎5
个饼至少要用(
)分钟。
一个锅能放3个饼,每个饼煎两面,煎熟一个饼需2分
钟,煎5个饼至少要用(
)分钟。
28、在两条平行线间可以画(
)条垂线,这些垂线互
相(
),而且长度(
)。
29、一个数先扩大100倍,再缩小1000倍是1200,这个数是(
)。
30、(
)÷(
)=17……28,被除数最小是(
)。
31、在没有余数的除法算式里,被除数-除数X商
=(
)。
32、和千万相邻的两个计数单位是(
)和(
)。
33、÷=15……24,最小是(
),此时是(
)。
34、在同一平面内,直线a垂直于直线b,直线b垂直于直
线c,那么a与c的关系是互相(
)。
35、电子计算器上,CE键的作用是(
)。
36、想要反映出四年级各兴趣小组的参加人数可采用(
)统计图。想要反映出四年级各兴趣小组男女生的人数可采用(
)统计图。
37、在乘法里,一个因数乘10,另一个因数除以2,所得的积是原来的(
)倍。
38、买1个茶壶和6个茶杯共48元,那么买5个茶壶和30个杯子一共(
)元。
39、马小虎在计算除法时,把除数63错写成了36,结果得到的商是18还余8,这道题正确的商应该是(
),还余(
)。
40、小马虎在计算(+15)×4时,忘掉了小括号,最后算得结果是90,正确的答案应该是(
)。
二、判断题。
1、一条直线长10米,100条这样的直线长1千米。(
)
2、有两个锐角组成的角一定是钝角。(
)
3、不相交的两条直线叫做平行线。(
)
4、两个完全相等的三角形一定能拼成一个三角形。(
)
5、两个完全相等的三角形一定能拼成一个平行四边形。()
6、两个高相等的梯形一定能拼成一个平行四边形。(
)
7、直线和射线都没有端点,所以他们都不能量出长度。(
)
8、四个角是直角的四边形一定是长方形。(
)
9、个位、十位、百位、千位、万位……都是计数单位。(
)
10、过直线外一点画已知直线的垂线,只能画一条。(
)
三、应用题。
1、一本书共156页,每天看25页,看了3天,第4天从哪一页看起?
2、在捐资助残活动中,三年级三个班,平均每个班捐款75元,四年级捐款总数是三年级捐款总数的2倍少48元。四年级一共捐款多少元?
3、教室的面积48平方米,如果用边长是4分米的方砖铺,共需要多少块?
4、小红有135根小棒,小芳有31根小棒。小红想让小芳的小棒和自己的一样多,她每次从自己的学具盒里拿出13根给小芳,需要拿多少次?
5、购物中心玩具柜购进了75个足球,每个售价20元。全部卖出后赚了600元,每个足球的进货价格是多少元?
6、皮鞋厂四月份生产皮鞋420双,平均每天生产多少双?
7、苏果电器第一季度彩电的销售情况是:一月份销售258台,二月份(29天)销售339台,三月份销售222台。第一季度平均每天销电多少台?
8、工程队第一天修路450米,第二天修530米,还剩98米未修。已修的长度是未修的多少倍?
9、王叔叔家准备把一间长9米宽5米的房间铺上地砖,每平方米需要16块地砖,王叔叔一共要买多少块地砖?
10、6辆同样的卡车为发电厂运864吨煤,每辆每次能运12吨。这些煤要多少次才能运完?(用两种以上方法解答)
11、会议室的长12米,宽8米。现要铺上边长是8分米的地砖,这个会议室要铺多少块地砖?(用两种方法解答)
12、一块长方形的绿地宽8米,面积为560平方米。如果宽要增加到24米,长不变。扩大后的绿地面积是多少?
13、课桌的单价是56元,椅子的单价是14元。张老师带900元钱买这样的课桌椅,最多能买多少套?
14、王叔叔从县城出发去王庄乡送化肥。去的时候他的速度只有60千米每小时,用4小时到达王庄乡,返回的时候用了3小时。返回时平均每小时行多少千米?
15、一本288页的故事书,丁丁12天看完。一本162页的科技书,冬冬每天看18页。丁丁和冬冬平均每天看的页数相差多少?
16、新星果园一角共有8040棵果树,其中苹果树有14行,每行420棵,其余的都是桃树,已知桃树18
行,_________________?(先补问题,再解答)
17、玩具厂要生产3000套电动智力玩具,计划用12完成,_________________,实际用了多少天?(先补上一个适当的条件,再解答)
参考答案
一、填空题。
1、与最小的八位数相邻的两个数是(9999999)和(10000001)。
【最小的八位数是:10000000,相邻的两个数分别是10000000-1=9999999,10000000+1=10000001。】
2、10个鸟蛋重50克,100万个鸟蛋约重(5)吨。
【100万=1000000,1000000÷10×50=5000000克=5000千克=5吨】
3、用两根一样长的铁丝分别围成一个长方形和一个正方形,(正方形)的面积大。
4、100张纸厚1厘米,1亿张纸厚约(10)千米。
【1亿=100000000,100000000÷100×1=1000000厘米=10000米=10千米】
5、用“万“作单位写出下面各数的近似数:
945000≈(95)万
305100≈(31)万
996043≈(100)万
【小数向左移动四位,再四舍五入保留整数。】
6、用“亿“作单位写出下面各数的近似数。
420000000≈(4)亿
650000000≈(7)亿
6990000000≈(70)亿
【小数向左移动八位,再四舍五入保留整数。】
7、写出里的数。
÷26=7……6
298÷=9……1
188÷26=7……6
298÷33=9……1
【被除数=商×除数+余数:7×26+6=188,除数=(被除数-余数)÷商:(298-1)÷9=33】
÷35=8……3
197÷=5……2
283÷35=8……3
197÷39=5……2
【被除数=商×除数+余数:8×35+3=283,除数=(被除数-余数)÷商:(197-2)÷5=39】
8、把下面的每一组算式,合并成综合算式
73+27=100
100÷25=4
(73+27)÷25=4
52-36=16
45×16=720
45×(52-36)=720
42×13=546
102+546=646
42×13+546=646
9、用5个3和3个0按要求写出下面各数
(1)一个“零“都不读出来;33333000
(2)只读出一个“零“;33330003
(3)读出两个“零“;33033003
(4)读出三个“零“。33030303
10、每列上下为一组,第32组是( 小
B )。
【32÷5=6……2,余数是几,就取第几组。】
11、里最大能填几(填整数)?
÷35
÷27
279÷35
134÷27
【35×8-1=279,27×5-1=134】
12、填上合适的运算符号。
456
=26
456=14
456=34
4×5+6
=26
4×5-6=14
4+5×6=34
13、从1写到50,数字0一共写了(5)个,数字2一共写了(14)个。
14、一个数省略“亿“位后面的尾数的近似数是8亿,这个数最大是(849999999),最小是(750000000),它们相差(99999999)。
15、找规律填数
(1)30600、32600、34600、(36600)、(38600)。
(2)100000、99900、99800、(99700)、(99600)。
16、把两个边长都是5厘米的正方形,拼成一个长方形,拼成的长方形的周长是(30)厘米,面积是(50)平方厘米。
【拼成长方形后,长方形的长为10厘米,宽为5厘米,则周长=(10+5)×2=30厘米,面积=10×5=50平方厘米。】
17、有一个数,它的百万位的左边、右边的数以及百位左边的数都是“8“,其余各个数位上都是“0“,那么这个数(八)位数,写作(80808000),读作(八千零八十万八千),这个数四舍五入到万位,得(8081万)。
左边
右边
千万
百万
十万
万
千
百
十
个
8
8
8
18、数一数(6)个角。
19、万里长城全长(6700)千米。(67、670、6700、67000)。
20、100张纸厚约1厘米,那么一亿张纸厚约(10)千米。
21、慈溪市人口100万,这是一个(近似)(近似、准确)
数,慈溪市人口最多可能有(1004999)人,最少可能有(995000)人。
22、从一点出发,可以画(无数)条射线,其中每两条射线
都能组成一个(角)。
23、角的大小跟(边的长短)无关,跟(角两边张口的大小)有关。
24、甲数是乙数的5倍,那么甲数除以乙数的商是(5),如果乙数缩小3倍,要使商不变,甲数应该(缩小3倍)。
25、根据1260÷45=28,写出下面各式的得数。
630÷45=14
45×28=1260
2520÷90=28
2800×450= 1260000
630÷15=42
56×45=2520
26、3时整时,时针与分针所组成的角是(直)角,角度是(90°)。9时半时,时针与分针所组成的角是(钝)角,角度是(105°)。
【①3时整时,时针和分针所构成的角是:30°×3=90°,是直角;②9点半时,时针指向9和10中间,即一大格的中间,分针指向6。钟表12个数字,每相邻两个数字之间为一大格,夹角为30°,半大格是15°,所以9点半时,分针与时针的夹角正好是30°×3+15°=105°,是钝角。】
27、一口锅能放3个饼,每个饼煎两面,每面需2分钟,煎5
个饼至少要用(8)分钟。
【一口锅能放3个饼,5个饼需要放2次,也就相当于要煎4面每面2分钟
4面需要8分钟】
一个锅能放3个饼,每个饼煎两面,煎熟一个饼需2分钟,煎5个饼至少要用(4)分钟。
【一口锅能放3个饼,5个饼需要放2次,也就相当于要煎4面每面1分钟
4面需要4分钟】
28、在两条平行线间可以画(无数)条垂线,这些垂线互相(平行),而且长度(相等)。
29、一个数先扩大100倍,再缩小1000倍是1200,这个数是(12000)。
【用逆推法计算出这个数:1200×1000÷100=12000】
30、(
)÷(
)=17……28,被除数最小是(521)。
【根据算式,除数应为29,则被除数为:17×29+28=521】
31、在没有余数的除法算式里,被除数-除数X商
=(0)。
【没有余数,被除数=除数X商
所以被除数-除数×商
=0】
32、和千万相邻的两个计数单位是(亿)和(百万)。
33、÷=15……24,最小是(25),此时是(399)。
【余数+1=最小除数,商×除数+余数=被除数】
34、在同一平面内,直线a垂直于直线b,直线b垂直于直线c,那么a与c的关系是互相(平行)。
35、电子计算器上,CE键的作用是(清除)。
36、想要反映出四年级各兴趣小组的参加人数可采用(单式条形)统计图。想要反映出四年级各兴趣小组男女生的人数可采用(复式条形)统计图。
37、在乘法里,一个因数乘10,另一个因数除以2,所得的积是原来的(5)倍。
【例:10×4=40,(10×10)×(4÷2)=200,200÷40=5】
38、买1个茶壶和6个茶杯共48元,那么买5个茶壶和30个杯子一共(240)元。
【5刚好是1的5倍,30刚好是6的5倍,所以买5个茶壶和30个杯子一共需要的钱刚好也是48的5倍:48×5=240元】
39、马小虎在计算除法时,把除数63错写成了36,结果得到的商是18还余8,这道题正确的商应该是(10),还余(26)。
【先算出原来的被除数:18×36+8=656,然后还原:656÷63=10……26】
40、小马虎在计算(+15)×4时,忘掉了小括号,最后算得结果是90,正确的答案应该是(180)。
【先算出代表的数:90-15×4=30,然后还原:(30+15)×4=180】
二、判断题。
1、一条直线长10米,100条这样的直线长1千米。(×)
【直线没有端点,不能度量长度。】
2、有两个锐角组成的角一定是钝角。(×)
【大于90度且小于180度的角是钝角。如果一个锐角是35度,另一个是50度,组成一个角后是85度,还是锐角而不是钝角。所以这个说法是不一定对的。】
3、不相交的两条直线叫做平行线。(×)
【要说明这两条直线是在同一个平面上。】
4、两个完全相等的三角形一定能拼成一个三角形。(×)
【只有两个完全相等的直角三角形才能拼成一个新的三角形。不是两个完全相等的直角三角形是不能拼成一个新的三角形的。】
5、两个完全相等的三角形一定能拼成一个平行四边形。(√)
6、两个高相等的梯形一定能拼成一个平行四边形。(×)
【两个完全相同的梯形才能拼成一个平行四边形】
7、直线和射线都没有端点,所以他们都不能量出长度。(×)
【直线是没有端点,而射线有一个端点。他们都不能量出长度。】
8、四个角是直角的四边形一定是长方形。(√)
【也可能是正方形,而正方形可以说是特殊的长方形。】
9、个位、十位、百位、千位、万位……都是计数单位。(×)
【个、十、百、千、万……都是计数单位,个位、十位、百位、千位、万位……是数位】
10、过直线外一点画已知直线的垂线,只能画一条。(√)
三、应用题。
1、一本书共156页,每天看25页,看了3天,第4天从哪一页看起?
【先算出前3天已经看到了哪一页,再加上1就是第4天开始看那一页。】
25×3+1=76
答:第4天从第76页看起。
2、在捐资助残活动中,三年级三个班,平均每个班捐款75元,四年级捐款总数是三年级捐款总数的2倍少48元。四年级一共捐款多少元?
75×3×2-48=402(元)
3、教室的面积48平方米,如果用边长是4分米的方砖铺,共需要多少块?
48平方米=4800平方分米
4800÷(4×4)
=4800÷16
=300(块)
答:(略)
4、小红有135根小棒,小芳有31根小棒。小红想让小芳的小棒和自己的一样多,她每次从自己的学具盒里拿出13根给小芳,需要拿多少次?
【要先算出小红比小芳多出的小棒,再将多出的小棒两人平均,最后用所得平均数除以13,就可以算出需要拿的次数。】
(135-31)÷2÷13
=104÷2÷13
=52÷13
=4(次)
答:(略)
5、购物中心玩具柜购进了75个足球,每个售价20元。全部卖出后赚了600元,每个足球的进货价格是多少元?
【根据“
进货总价÷进货数量=进货单价
”列式。此题关键是先计算出:进货总价=售出总价(75×20)-所赚的钱(600)。】
(75×20-600)÷75
=900÷75
=12(元)
6、皮鞋厂四月份生产皮鞋420双,平均每天生产多少双?
【注意四月份有30天】
420÷30=14(双)
7、2008年苏果电器第一季度彩电的销售情况是:一月份销售258台,二月份(29天)销售339台,三月份销售222台。第一季度平均每天销电多少台?
【总销量÷总天数=每天销售量】
(258+339+222)÷(31+29+31)
=819÷91
=9(台)
8、工程队第一天修路450米,第二天修530米,还剩98米未修。已修的长度是未修的多少倍?
【简便记法:甲是乙的多少倍=甲÷乙】
(450+530)÷98
=980÷98
=10
9、王叔叔家准备把一间长9米宽5米的房间铺上地砖,每平方米需要16块地砖,王叔叔一共要买多少块地砖?
【先计算出房间地面的面积,再乘每平方米的地砖数量。】
9×5×16=720(块)
10、6辆同样的卡车为发电厂运864吨煤,每辆每次能运12吨。这些煤要多少次才能运完?(用两种以上方法解答)
【方法1是先计算6辆车每次可以运多少吨。】
方法1:864÷(12×6)=12(次)
【方法2是先计算只用一辆车每次运12吨需要运多少次。】
方法2:864÷12÷6=12(次)
11、会议室的长12米,宽8米。现要铺上边长是8分米的地砖,这个会议室要铺多少块地砖?(用两种方法解答)
12米=120分米
8米=80分米
【方法1:用会议室地面的面积÷一块地砖的面积】
方法1:(120×80)÷(8×8)=150(块)
【方法1:用会议室地面的长、宽分别除以地砖的边长,所得的商再相乘。】
方法2:(120÷8)×(80÷8)=150(块)
12、一块长方形的绿地宽8米,面积为560平方米。如果宽要增加到24米,长不变。扩大后的绿地面积是多少?
【先计算出长方形的长,再乘以新的宽。】
560÷8×24=1680(平方米)
13、课桌的单价是56元,椅子的单价是14元。张老师带900元钱买这样的课桌椅,最多能买多少套?
900÷(56+14)
=900÷70
≈12(套)
【据实际情况,最后得数使用去尾法保留整数。】
14、王叔叔从县城出发去王庄乡送化肥。去的时候他的速度只有60千米每小时,用4小时到达王庄乡,返回的时候用了3小时。返回时平均每小时行多少千米?
【路程÷时间=速度】
60×4÷3=80(千米/小时)
15、一本288页的故事书,丁丁12天看完。一本162页的科技书,冬冬每天看18页。丁丁和冬冬平均每天看的页数相差多少?
288÷12-18=6(页)
16、新星果园一角共有8040棵果树,其中苹果树有14行,每行420棵,其余的都是桃树,已知桃树18
行,每行多少棵?(先补问题,再解答)
【先算出桃树总棵数,再除以桃树的行数。】
8040-(420×14)=2160(棵)
2160÷18=120(棵)
17、玩具厂要生产3000套电动智力玩具,计划用12完成,实际每天生产了300套,实际用了多少天?(先补上一个适当的条件,再解答)
3000÷300=10(天)
人教版六年级数学上册易错题集锦
一、填空题。
1、一种盐水的含盐率是20%,盐与水的比是(
)。
2、生产同样多的零件,小张用了4小时,小李用了6小时,小张和小李工作效率的最简比是(
)。
3、从甲地到乙地,客车要行驶4时,货车要行驶5时,客车的速度与货车的速度比是(
),货车的速度比客车慢(
)%。
4、100克糖溶在水里,制成的糖水的含糖率为12.5%,如果再加200克水,这时糖与糖水的比是(
)。
5、若从六(1)班调全班人数的1/10到六(2)班,则两班人数相等,原来六(1)班与六(2)班的人数比是(
)。
6、把甲队人数的1/4调入乙队,这时两队人数相等,甲队与乙队原人数的比为(
)。
7、六(1)班今天到校40人,请病假的5人,该班的出勤率是(
)。
8、把一个半径是10cm的圆拼成接成一个近似的长方形后,长方形的周长是(
),面积是(
)。
9、(
)米比9米多40%
,
9米比(
)少55%
,200千克比160千克多(
)%;160千克比200千克少(
)%;16米比(
)米多它的60%;(
)比32少30%。
10、钟面上时针的长1dm,一昼夜时针扫过的面积是(
)。
11、一根水管,第一次截去全长的1/4,第二次截去余下的2/3,两次共截去全长的(
)。
12、某种皮衣价格为1650元,打八折出售可盈利10%.那么若以1650元出售,可盈利(
)元。
13、正方形边长增加10%,它的面积增加(
)%。
二、判断题。
1、某商品先提价5%,后又降阶5%,这件商品的现价与原价相等。(
)
2、在含盐20%的盐水中加入同样多的盐和水后,盐水的含盐率不变。(
)
3、如果甲数比乙数多25%,那么乙数就比甲数少25%。
(
)
4、半径是2厘米的圆,它的周长和面积相等。
(
)
5、直径相等的两个圆,面积不一定相等。
(
)
6、比的前项和后项都乘或除以同一个数,比值大小不变。
(
)
三、选择题。
1、数学小组共有20名学生,则男、女人数的比不可能是(
)。
A.5︰1
B.4︰1
C.3︰1
D.1︰1
2、如图,阴影部分的面积相当于甲圆面积的1/6,相当于乙圆面积的1/5,那么乙与甲两个圆的面积比是(
)。
A、6︰1
B、5︰1
C、5︰6
D、6︰5
3、一杯牛奶,牛奶与水的比是1︰4,喝掉一半后,牛奶与水的比是(
)。
A、1︰4
B、1︰2
C、1︰8
D、
无法确定
4、利息与本金相比(
)
A、利息大于本金
B、利息小于本金
C、利息不一定小于本金
四、解决问题。
1、A、B两地相距408KM,客车和货车同时从A、B两地相对开出,3小时后相遇,已知客车和货车的速度比是9:8,客车每时比货车每时快多少千米?
2、东岗小学组织学生收集树种,五年级收集的树种占总质量的40%,六年级收集的树种占质量的50%,五年级收集的树种比六年级少20千克。五六年级一共收集树种多少千克?
3、一件商品按20%的利润定价,然后又按8折出售,结果亏了64元,这件商品的成本是多少元?
4、将一根384cm的铁丝焊成一个长、宽、高的比是3:2:1的长方体模型。这个模型的长、宽、高各是多少厘米?表面积是多少平方厘米?
5、一块长方形土地,周长是160m,长和宽的比是5:3,这块长方形土地的面积是多少平方米?
6、李明和张华参加赛跑,李明跑到中点时,张华跑了全程的40%,此时两人相距80米,你知道赛程多少米吗?
*7、看一本书,第一天读的页数与未读页数的比是1:3,第二天看了120页,这时已读的与未读页数的比是2:3,这本书有多少页?
参考答案
一、填空题。
1、一种盐水的含盐率是20%,盐与水的比是(1:4)。
2、生产同样多的零件,小张用了4小时,小李用了6小时,小张和小李工作效率的最简比是(3:2)。
【解析:将这批零件看作单位“1”,则小张的工作效率为:1÷4=1/4
小李的工作效率为:1÷6=1/6
两人的工作效率比为:1/4:1/6,化简后就是3:2】
3、从甲地到乙地,客车要行驶4时,货车要行驶5时,客车的速度与货车的速度比是(5:4),货车的速度比客车慢(20)%。
【解析:求速度比的方法同第2题。货车的速度比客车慢((5-4)÷5=20%)】
4、100克糖溶在水里,制成的糖水的含糖率为12.5%,如果再加200克水,这时糖与糖水的比是(1:10)。
【解析:此题关键是要先算出原来的糖水是多少克:100÷12.5%=800(克)。再求加水后糖与糖水的比:100:(800+200)=100:1000=1:10】
5、若从六(1)班调全班人数的1/10到六(2)班,则两班人数相等,原来六(1)班与六(2)班的人数比是(5:4)。
【解析:用方程来解答:设六(1)人数有a人,六(2)班人数有b人。根据题意列出方程后并求解:
通过解方程得出a与b的比为10:8,即六(1)班与六(2)班的人数为10:8,化简后为5:4。 】
6、把甲队人数的1/4调入乙队,这时两队人数相等,甲队与乙队原人数的比为(2:1)。
【解析:方法同第5题。】
7、六(1)班今天到校40人,请病假的5人,该班的出勤率是(88.9%)。
【解析:用到校人数就是出勤人数。出勤人数÷全班人数×100%=出勤率。40÷(40+5)×100%≈88.9%】
8、把一个半径是10cm的圆拼成一个近似的长方形后,长方形的周长是(82.8cm),面积是(314cm2)。
【解析:拼成的长方形的周长就是这个半径为10cm的圆的周长与两个半径的和:3.14×10×2+10×2=82.8cm;长方形的面积等于圆的面积,那么面积就是:3.14×10×10=314平方厘米。】
9、(12.6)米比9米多40%【9×(1+40%)=12.6】 ,
9米比(20)少55%【9÷(1-55%)=20】 ,200千克比160千克多(25)%【(200-160)÷160=25%】;160千克比200千克少(20)%【(200-160)÷200=20%】;16米比(6.4)米多它的60%【16×(1-60%)=6.4
注意:“它”是指16。】;( 22.4 )比32少30%【32×(1-30%)=22.4】 。
【解析:本题主要是考查
单位“1”(总量)、对应量、对应分率之间的关系。单位“1”(总量)×对应分率=对应量】
10、钟面上时针的长1dm,一昼夜时针扫过的面积是(2π dm2)。
【解析:时针的长就是圆的半径,“一昼夜”指24小时,时针走了24小时就是走了两周。π×1²×2=2π(dm²)】
11、一根水管,第一次截去全长的1/4,第二次截去余下的2/3,两次共截去全长的(3/4)。
【解析:1/4+(1-1/4)×2/3=3/4】
12、某种皮衣价格为1650元,打八折出售可盈利10%。那么若以1650元出售,可盈利(450)元。
【解析:本题关键是要先算出进价,原题中的“10%”是针对进价的。设皮衣的进价为x元。(1+10%)x=1650*80%
解得:x=1200。以1650元出售,可盈利:1650-1200=450(元)】
13、正方形边长增加10%,它的面积增加(21)%。
【解析:{[1×(1+10%)]2-1}÷1=21%】
二、判断题。
1、某商品先提价5%,后又降阶5%,这件商品的现价与原价相等。(×)
【解析:错。两个5%的单位“1”不一样。1×(1+5%)×(1-5%)=0.9975
值小于1表示现价比原价少,值大于1表示多。】
2、在含盐20%的盐水中加入同样多的盐和水后,盐水的含盐率不变。(×)
【解析:错。用假设法来验证:假设盐是20克,水是80克,则含盐就是20%。如果分别同时加入10克盐和水,那么这时含盐率就是:(20+10)÷(20+10+80+10)×100%=25%,含盐率变大了。】
3、如果甲数比乙数多25%,那么乙数就比甲数少25%。 (×)
【解析:错。两个25%相对的单位1不同。应该是:甲数比乙数多25%,乙数就比甲数少20%。25%÷(1+25%)=20%】
4、半径是2厘米的圆,它的周长和面积相等。(×)
【解析:错。只能说在数值上相等,但是万物都有单位,周长单位是1维的,面积单位是2维的,怎么可能相等呢?简单地说,周长和面积单位不一样,也不可能互化,所以周长和面积不可能相等。】
5、直径相等的两个圆,面积不一定相等。(×)
【解析:错,是一定相等。直径相等就表示半径也会相等,而半径决定了圆的大小,只要圆的半径相等,它们的大小就会相等,即面积也一定相等。】
6、比的前项和后项都乘或除以同一个数,比值大小不变。(×)
【解析:错。0必须除外。0是不能作为除数的。】
三、选择题。
1、数学小组共有20名学生,则男、女人数的比不可能是(A)。
A.5︰1
B.4︰1
C.3︰1
D.1︰1
【解析:A。
20的因数有:1、2、4、5、10、20,而5+1=6,6不是20的因数;所以不可能是5:1。】
2、如图,阴影部分的面积相当于甲圆面积的1/6,相当于乙圆面积的1/5,那么乙与甲两个圆的面积比是(C)。
A、6︰1
B、5︰1
C、5︰6
D、6︰5
3、一杯牛奶,牛奶与水的比是1︰4,喝掉一半后,牛奶与水的比是(A)。
A、1︰4
B、1︰2
C、1︰8
D、
无法确定
【解析:A。喝掉一半后,浓度不变,牛奶与水的比还是1:4。验证:(1-1×1/2):(4-4×1/2)=1:4】
4、利息与本金相比(C)
A、利息大于本金
B、利息小于本金
C、利息不一定小于本金
【解析:C。利率表示利息与本金的比率;利息可能小于本金,也可能大于本金;所以利息不一定小于本金。】
四、解决问题。
1、A、B两地相距408km,客车和货车同时从A、B两地相对开出,3小时后相遇,已知客车和货车的速度比是9:8,客车每时比货车每时快多少千米?
解:设客车速度为9x,货车速度为8x,根据题意列方程:
(9x+8x)×3=408
17x*3=408
x=408/51
x=8
所以客车每小时比货车快:9x-8x=x=8(千米)
2、东岗小学组织学生收集树种,五年级收集的树种占总质量的40%,六年级收集的树种占总质量的50%,五年级收集的树种比六年级少20千克。五六年级一共收集树种多少千克?
20÷(50%-40%)=200(千克)
3、一件商品按20%的利润定价,然后又按8折出售,结果亏了64元,这件商品的成本是多少元?
解:设这件商品的成本是
x
元
x
-
64=[(1
+
20%)x]
×80%
x
-
64=1.2x
×
0.8
x
-
64=0.96x
x-0.96x=64
0.04x
=
64
x
=
64÷0.04
x
=
1600
答:这件商品的成本是1600
元。
【说明:
8折表示按定价的80%出售。x
-
64表示现价,(1
+
20%)x表示定价,[(1
+
20%)x]
×80%
表示打8折后的售价,即现价。】
4、将一根384cm的铁丝焊成一个长、宽、高的比是3:2:1的长方体模型。这个模型的长、宽、高各是多少厘米?表面积是多少平方厘米?
先算出一条长、一条宽、一条高的和:
384÷4=96cm;
再计算长宽高各是多少:
长:96÷(3+2+1)×3=48cm
宽:96÷(3+2+1)×2=32cm
高:96÷(3+2+1)×1=16cm;
表面积:
(48×32+48×16+32×16)×2=5632(cm2)
5、一块长方形土地,周长是160m,长和宽的比是5:3,这块长方形土地的面积是多少平方米?
长:160÷2÷(5+3)×5=50m
宽:160÷2÷(5+3)×3=30m
面积:50×30=1500(m2)
6、李明和张华参加赛跑,李明跑到中点时,张华跑了全程的40%,此时两人相距80米,你知道赛程多少米吗?
分析:把整个赛程看作单位“1”,那么80米对应的分率是(50%-40%),根据分数除法的意义,用对应量除以对应的分率即可.
解答:
80÷(50%-40%)
=80÷10%
=800(米)
答:这个赛程长800米。
点评:解答此题的关键是找单位“1”,然后用对应量除以对应的分率解决问题。
*7、看一本书,第一天读的页数与未读页数的比是1:3,第二天看了120页,这时已读的与未读页数的比是2:3,这本书有多少页?
人教版二年级数学上册易错题集锦
一、我会填。
1、下图中一共有(
)条线段。
2、下图中有(
)个角,有(
)个直角。
3、把一根绳子对折后,从中间剪开,这时绳子被剪成了(
)段。
4、把一根绳子对折2次后,从中间剪开,这时绳子被剪成了(
)段。
5、一小时=(
)分
6、钟面上有(
)个大格,有(
)个小格。
7、分针从12走到3,走了(
)分钟。时针从12走到3走了(
)时。
8、分针从4走到8走了(
)分钟,时针从4走到8走了(
)时。
9、三角板上有(
)个角,有(
)个直角。
10、9×8-8=(
)×8
7+7+7-7=(
)×(
)
11、2×5表示(
)个(
)或(
)个(
)。
12、3和5相乘写成算式是(
)。
13、3和5相加写成算式是(
)
14、3个5相加写成加法算式是(
),写成乘法算式是(
)
15、2×5=(
),(
)和(
)是乘数,(
)是积,读作(
)用口诀(
)计算。
16、
(1)数一数,上图中有(
)条线段,(
)个角,(
)个直角。
(2)在上图中画一条线段,使它增加3个直角。
二、我会判。
1、1时=100分(
)
2、口诀“四六二十四”表示4个6相乘。(
)
3、口诀“六七四十二”表示6个7相加。(
)
4、角的两边越长,这个角就越大。(
)
5、半小时=30分(
)
6、口诀“五九四十五”改成加法算式是5+9=14。(
)
7、两个数相乘的积一定大于它们的和。(
)
8、7个7相加得14.(
)
9、一个数乘6的积在10——20之间,积一定是12.(
)
10、在乘法计算里,积一定比其中任何一个乘数都大。(
)
11、线段可以量出长度。(
)
12、1米长的铁丝比100厘米长的绳子短。(
)
13、所有的直角都是相等的。(
)
14、直角比任何锐角都大。(
)
15、积是81的算式只有9×9.(
)
16、一个角只有一个顶点。(
)
三、我会列式,我会算。
1、比25多8的数是多少?
2、比25少8的数是多少?
3、3个7相加,和是多少?
4、3和7相加,和是多少?
5、3和7相乘,积是多少?
6、6个5相加,和是多少?
7、6和5相乘,积是多少?
8、3个8减去2个6,差是多少?
9、比65大19的数是多少?
10、比65小19的数是多少?
四、我会解决问题。
1、把8棵树栽成一排,每两棵树之间相隔3米,第一棵树到最后一棵树相距多少米?
2、将8盆花围着花台摆一圈,每两盆花之间相距3米,这个花台一圈有多少米?
3、将一根绳子剪四次,每段长5米,原来这根绳子有多少米?
4、小明和爸爸、妈妈每个栽了6棵树,一共栽了多少棵树?
5、小明和爸爸、妈妈三人栽树,爸爸栽了6棵,妈妈栽了7棵,小明栽了4棵,一共栽了多少棵?
6、把一根木头锯成5段,每锯一次要3分,一共需要多少分?
7、王老师带领4名学生搬花,王老师一次搬4盆,每个学生一次搬两盆,师生一次一共可以搬多少盆?
8、兔妈妈和3个兔宝宝去采蘑菇,兔妈妈采了7个蘑菇,每个兔宝宝采了3个蘑菇,一共采了多少个蘑菇?
9、一根绳子对折后再对折,量得长是8米,这根绳子长多少米?
10、会议室有30把单人椅,8把双人椅,一共能坐多少人?
11、一本故事书80页,小红已经看了50页,剩下每天看9页,4天能看完吗?
12、丽丽一天采四朵花,一星期可以采多少朵花?
13、乐乐看一本故事书,每天看7页,第8天从多少页看起?
参考答案
一、我会填。
1、一共有(10)条线段。
2、有(12)个角,有(2)个直角。
3、把一根绳子对折后,从中间剪开,这时绳子被剪成了(3)段。
4、把一根绳子对折2次后,从中间剪开,这时绳子被剪成了(5)段。
5、一小时=(60)分
6、钟面上有(12)个大格,有(60)个小格。
7、分针从12走到3,走了(15)分钟。时针从12走到3走了(3)时。
8、分针从4走到8走了(20)分钟,时针从4走到8走了(4)时。
9、三角板上有(3)个角,有(1)个直角。
10、9×8-8=(8)×8
7+7+7-7=(7)×(2)
11、2×5表示(5)个(2)或(2)个(5)。
12、3和5相乘写成算式是(3×5)。
13、3和5相加写成算式是(3+5)
14、3个5相加写成加法算式是(5+5+5),写成乘法算式是(5×3)
15、2×5=(10),(2)和(5)是乘数,(10)是积,读作(2乘5等于10)用口诀(二五一十)计算。
16、(1)数一数,上图中有(4)条线段,(4 )个角,(2)个直角。
(2)在上图中画一条线段,使它增加3个直角。
二、我会判。
1、1时=100分(×)
【1时=60分】
2、口诀“四六二十四”表示4个6相乘。(×)
【表示4和6相乘】
3、口诀“六七四十二”表示6个7相加。(√)
4、角的两边越长,这个角就越大。(×)
【角的大小与角的两边长短无关,与两边的张口大小有关。】
5、半小时=30分(√)
6、口诀“五九四十五”改成加法算式是5+9=14。(×)
【改成加法算式应该是:9+9+9+9+9=45】
7、两个数相乘的积一定大于它们的和。(×)
【不一定。如:1×2=2,1+2=3,积比和小了。】
8、7个7相加得14.(×)
【7个7相加就是7×7=49】
9、一个数乘6的积在10——20之间,积一定是12.(×)
【不一定。如:3×6=18】
10、在乘法计算里,积一定比其中任何一个乘数都大。(×)
【错。如:1×2=2
1×0=0,积等于其中一个乘数。】
11、线段可以量出长度。(√)
【对。线段两端都有点,可以量出长度。】
12、1米长的铁丝比100厘米长的绳子短。(×)
【错。1米=100厘米,是同样长。】
13、所有的直角都是相等的。(√)
【对。所有的直角都是90度,角度大小一样。】
14、直角比任何锐角都大。(√)
15、积是81的算式只有9×9.(×)
【错。比如还有:3×3×3×3=81。】
16、一个角只有一个顶点。(√)
三、我会列式,我会算。
1、25+8=33
2、25-8=17
3、7+7+7=21
4、3+7=10
5、3×7=21
6、5+5+5+5+5+5=30
7、6×5=30
8、3×8-2×6=12
9、65+19=84
10、65-19=46
四、我会解决问题。
1、把8棵树栽成一排,每两棵树之间相隔3米,第一棵树到最后一棵树相距多少米?
(8-1)×3=21(米)
【8棵树栽成一排,一共有(8-1)个间隔。间隔数×两棵树之间的距离=第一棵到最后一棵树的距离】
2、将8盆花围着花台摆一圈,每两盆花之间相距3米,这个花台一圈有多少米?
8×3=24(米)
【围成圈的,直接用花的盆数×每两盆花之间的距离】
3、将一根绳子剪四次,每段长5米,原来这根绳子有多少米?
(4+1)×5=25(米)
【剪4次就会得到(4+1)段绳子。】
4、小明和爸爸、妈妈每个栽了6棵树,一共栽了多少棵树?
6×3=18(棵)
5、小明和爸爸、妈妈三人栽树,爸爸栽了6棵,妈妈栽了7棵,小明栽了4棵,一共栽了多少棵?
6+7+4=17(棵)
6、把一根木头锯成5段,每锯一次要3分,一共需要多少分?
(5-1)×3=12(分)
【一根木头锯成5段,要锯(5-1)次。】
7、王老师带领4名学生搬花,王老师一次搬4盆,每个学生一次搬两盆,师生一次一共可以搬多少盆?
4+4×2=12(盆)
8、兔妈妈和3个兔宝宝去采蘑菇,兔妈妈采了7个蘑菇,每个兔宝宝采了3个蘑菇,一共采了多少个蘑菇?
7+3×3=16(个)
9、一根绳子对折后再对折,量得长是8米,这根绳子长多少米?
8×4=32(米)
10、会议室有30把单人椅,8把双人椅,一共能坐多少人?
30+8×2=46(人)
11、一本故事书80页,小红已经看了50页,剩下每天看9页,4天能看完吗?
【计算后面4天看的加上已经看的50页,如果大于80页就能看完,如果小于80页就不能看完。】
9×4+50=86(页)
答:86>80,能看完。
12、丽丽一天采四朵花,一星期可以采多少朵花?
4×7=28(朵)
【一星期是7天】
13、乐乐看一本故事书,每天看7页,第8天从多少页看起?
【第8天从多少页看起?说明前面已经看了7天。】
教学活动基本信息
学科
数学
学段
低段
年级
一年级
课程名称
《两位数加一位数(进位加法)》口算
教材版本
说明
书名(册数):
数学一年级下册
出版社:
北京出版社
授课教师
赵靖霖
课程说明
指导思想与理论依据:
数学是研究数量关系和空间形式的科学。数学素养是现代社会每一个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数字知识与技能,更要发挥数学在培养人的思维能力和创新能力方面的不可替代的作用。
本课以《数学课程标准》的“数学教学要关注学生的生活经验和已有的知识经验”理念为依据,充分关注学生已有知识和经验基础,课前利用前测,了解学生对“两位数加一位数(进位加法)口算”的掌握情况,确定本节课的教学重难点。充分利用信息技术,引导学生有效地辅助学生探究、发现算理。
课件贯穿全课,利用信息技术为学生创设游戏情境,作为学生学习的资源工具、探究工具和评价工具的优势,为学生探究、获得和运用概念提供有效的支持。利用学具,让学生通过自己的操作和展示,把操作—展示—发现—总结特点—巩固知识这一过程体现出来。把自己的理解和对知识的掌握充分的体现,使其产生最大的学习效果。
本次课程的看点:
利用课前的前测,确定教学重难点。游戏化教学串联始终,激发学生的学习积极性。为学生提供工具箱,让学生能够采用多种方法去解决问题。寻宝环节分层练习,让不同水平的学生都能够取得成功。以上这些是本课的最大亮点。
媒材资料准备说明
(所用信息技术手段及其他辅助材料)
1、两人一盒学具(小棒、计数器、两张学习单)。
2、课件(含音频)。
3、按按按。
4、实物投影。
教学背景分析
教材分析:
《两位数加一位数(进位加)》位于北京版小学数学教材一年级下期
,第二单元《加法和减法(一)》。本单元是全册教材的重点内容之一。这部分内容是今后学习万以内的进位加法和四则混合运算的重要基础。
本节课的内容是两位数加一位数(进位加法)的口算,后续还有相关竖式计算的学习。
本节课的内容是在孩子们掌握了“20
以内进位加法”和“100
以内不进位加法”的基础上学习的。
为了引导学生能够把枯燥的算理能够掌握,为学生创设了一个“加法王国”的情景,引导学生通过闯关的形式,贯穿学习过程的始终。在知识新授过程中,为学生提供了工具箱,里面有学具、也有不同的学习单,学生可以选择自己喜欢的方式去解决问题。在展示学生的方法同时,帮助学生总结运用的方法,提炼两位数加一位数(进位加法)口算计算的算理。突出本节课的学习重难点。通过闯关游戏学生达到加法王国的大门口。开启另一项“欢乐寻宝之旅”。根据学生闯关的情况,确定孩子的答题路线,以进行分层练习。然后对学生进行百宝箱的奖励。在学习的过程中,培养学生认真审题等良好的学习习惯。
教学内容分析
教学目标:
本课要完成的单元目标及教法体现:
1、借助小棒、计数器、小正方体等直观模型,理解两位数加一位数进位加法口算的算理,并能够正确计算。
2、在观察、交流等活动中,沟通多种表征方法间的练习,经进一步帮助学生理解“相同数位上的数相加”“个位满10,要向前一位进1”的道理。
3、两位数加一位数(进位加法)口算的有关知识在实际生活中的具体运用,体会数学的价值,体验数学与生活的联系。
4、通过引导同学们认真审题,培养良好的审题习惯。
教学重点:
掌握两位数加一位数进位加法的口算方法,并能正确计算。
教学难点:
理解“相同数位上的数相加”“个位满10,要向前一位进1”的道理。
教学过程
设计意图
具体教学环节(教师及学生活动)
技术使用
通过接龙游戏的口算练习,帮助学生回忆一位数加一位数进位加法、两位数加一位数不进位加法的计算方法:相同数位相加。
总结方法,为后续的学习做准备。
出示前测卷中的题,让学生知道自身存在的问题,有针对性地去学习。
明确本节课的学习内容。
创设情境,激发学生的学习兴趣。
利用重重关卡的形式,引导学生去学习。
由学生的列式引出做法。
为学生提供多种解决问题的学具,鼓励学生采用采用多种方法来解决问题。
利用实物投影展示学生的各种解决问题的方法,体现算法多用性。学生用语言解释自己的方法,同时锻炼了学生的语言表达能力。
老师帮助学生对每一种方法进行归纳总结,帮助学生总结多样的算法和最基础的计算算理“个位满10,向前一位进1。”
总结算法进行巩固。
创设情境巩固新知识。
利用按点检测学生对知识的掌握情况,每一个按点的考察点都是不一样的,对于算理、数位对齐、审题、读题等方面都进行了综合考察。
由每一关的奖励,鼓励学生积极思考,认真学习。
引导学生进入下一个环节,根据学生按点的成绩进行分层练习。
知识还没有完全掌握的孩子做路线一,能够全部做对的孩子做路线二,让学生做适合他能力水平的练习。照顾到每个学生的发展水平和心。
通过学生的作答情况,让学生互相评价贴星星。
进行颁奖,让学生领宝藏,使学生能够在努力学习之后能够得到收获。
总结本节课的学习收获。体现教学重点,回顾总结的方法。
一、复习导入:
今天我们在这里上一节数学课。咱们先来做个“接龙游戏”。吧哪组来?(课件:出示口算)
师:看谁能像孙悟空一样“火眼金睛”,看出这两组口算有什么不同?
师:“2+44=”这道题你是怎么做出来的?
追问:2加的是哪个4?
总结:不管是进位加法,还是不进位加法,我们做题的时候都要注意:相同数位~~?(贴板书:相同数位相加)我们都是想办法先算出有几个十、几个一,再把它们合起来。
师:(课件出示:27+6=)这道题是我们前测卷上的一道题,答案是?33。(课件:出示柱形图)我我们共36人参加测试,其中30人都算对了,但是怎么的得到的这个数,很多人却不能画图的方式表示清楚。今天这节课我们就一起去
“加法王国”中弄明白这一类题中的奥秘。(课件:出示课题)
师:齐读课题(贴板书:两位数加一位数(进位加法))
二、创设情况,探究学习
(课件:加法王国),这么漂亮的“加法王国”大家想去吗?不过这可不是一件容易事。因为在去“加法王国”的路上,有卫兵把守的关卡。我们必须通过这些关卡才能到加法王国。相信大家都是勇敢的小勇士,一定能够克服困难到达加法王国的。我们开始吧。
关卡一:(课件:出示第一关)学习新知识
1、(课件出示:例题)师:卫兵说:要想去加法王国先要过我的第一关。房子里有69把大刀,还回来4把,现在有多少把大刀?
师:你知道了什么?
师:要想求“现在有多少把大刀?”
怎样做的?【生答思考过程】
卫兵说:光说结果可不行,你要说明白是怎样做出来的。
板书算式:69+4
4+69
2、师:(课件:工具箱)老师这里为大家准备了一个工具箱,请您任选其中的一种来表示69+4,时间是3分钟。你也可以做完一种后再选择其他方法,你运用的方法越多越好。老师巡视。
3、学生汇报:我们来跟卫兵汇报一下。师:谁来说一说你是怎样做的?(实物投影演示过程)
(1)小棒:(实物投影下演示)
总结:有哪些同学用的摆小棒的方法?请举手。(课件:演示小棒图)同学们都是把69中个位的9加上1凑成了10,这是什么方法?然后凑成的10要怎么办?【向十位进1】,所以大家用的方法是(贴板书:个位满10,向前一位进1。)
总结:摆小棒是什么方法?(贴板书:摆一摆)
(2)计数器(到前面一边摆一边说)
总结:拨计数器是什么方法?(贴板书:拨一拨)
(3)数数。一个一个数。利用数轴数数。(学生没出示,老师就课件出示)
总结:数数是什么方法?(贴板书:数一数)
(4)画图:袋子图
(5)小正方体图:涂色(课件:出示小正方体图的另一种方法)
这种方法你能看懂吗?70是哪来的呢?为什么74-1?
总结:袋子图和小正方体图涂色是什么方法?(贴板书:画一画)
(6)枝型结构图(学生没出示,老师就课件出示)
(7)写竖式
总结:枝型结构图和写竖式是什么方法?(贴板书:写一写)
(8)其他方法
4、沟通多种方法之间的联系
师:请大家把学具迅速收到工具箱中。比一比那个小组动作最快?
总结:刚才大家想出了许多的方法来解决这道题,其中的许多方法同学们都是先运用凑十法把9凑成10,然后再向十位上进1,也就是向前一位进1,然后再加上剩下的数。(指黑板):请大家齐读:个位满10,向前一位进1。
师:实际上,我们都是再用已经学过的口算方法来解决这道题。
5、你做对了吗?(课件:闯关成功)请你给自己贴一颗小星。
师:大家可太棒了,旗开得胜。下面我们进入第二关。
关卡二:(课件:出示第二关)巩固新知识
卫兵说:(课件:出示56+7)过了第一关,还有我的第二关呢。这关的要求是不许使用任何学具,你能说出这道题是怎么算的吗?
师:那7+56怎么算?
总结:这道题谁的想法跟他们两人的一样?请举手。你们可太棒了!(课件:闯关成功)请给自己贴一颗星。
关卡三:
师:咱们要进入下一个关卡了。(课件:出示按点)
按点1、5+37=(
)
(1)42
(2)87
按点2、哪道题错了?
(1)
64+7=61
(2)27+8=35
师:第一题错在了哪里?
按点3、哪道题对?(
)
(1)59+4=63
(2)
46+9=56
师:第二题错在了哪里?
按点4、47+5=
(
)
(1)先算4+5=9,再算90+7=97
(2)先算7+5=12,再算40+12=52
师:第一题错在了哪里?
师:你们可真是太棒了!翻看成绩。全对的同学有:
。请你们给自己贴一颗星。
师:你们这些小勇士可真棒!一下子就闯了三关。咱们已经到城门口了。(课件:城门)看,米老鼠来欢迎大家了。(课件:加加国王)
加加国王说:孩子们你们好!欢迎来到加法王国。我的城堡中有很多的宝藏,你们想要吗?生:想。那就赶快进入城堡去寻宝吧。
三、巩固练习:欢乐寻宝之旅(课件:两条路线)
师:加加国王说寻宝之路有两条,已经得到三颗星的同学请起立,你们走难一点的路线,就是路线二,那么没有得到三颗星的同学咱们就走路线一,这条路容易一些。看谁能够最终寻得宝藏。
请看你手中的学习单:谁是三颗星的请做路线二,谁不是三颗星的做路线一。
汇报:
师:都做完了吗?同桌两个人互换学习单,请你给同桌来判。对的画勾,错的打点。
(一)
路线一(直接对答案)
师:谁手中的学习单是路线一的?请你现在跟着我判题。
1、第一关(课件:出示)
第二关(课件:出示)
师:谁手中的学习单是全对的,请你给你的同桌贴一颗星。
(二)路线二(直接对答案)
师:谁手中的学习单是路线二的?请你现在跟着我判题。
1、第一关(课件:出示)
第二关(课件:出示)
师:谁手中的学习单是全对的,请你给你的同桌贴一颗星。把学习单还回来。
(二)奖励
师:谁得到了4颗星,请起立。你们太棒了!(课件:出示百宝箱)你们已经找到了城堡中最大的藏宝箱。快来到前面来领取你们的宝藏吧。你们不光得到了宝藏,还被加加国王封为了加法王国的“加加勇士”,大家对他们表示一下祝贺。
师:
其他同学不要灰心,你们虽然没有得到最大的藏宝箱,但也找到了其他的宝藏,由于时间关系,一会儿我们下课在领取。
四、总结
师:快乐的寻宝之旅结束了,相信大家在快乐寻宝的同时还有其他的收获?
谁来说说你有什么收获?
学习的内容在数学书32、33页。
课件:接龙游戏(口算)。
课件:2+4。
贴板书:相同数位相加
课件:27+6=33
课件:柱形图、学生画的图。
课件:课题
贴板书:课题。
课件:加法王国
课件:第一关
课件:例题
放士兵录音
课件:69+4=
板书:69+4=
课件:工具箱
学生打开学具箱选择学具进行操作。
实物投影:展示各种解决方法。
实物投影:摆小棒。
课件:摆小棒。
贴板书:个位满10,向前一位进1。
贴板书:摆一摆。
贴板书:拨一拨。
课件:数轴、数数。
贴板书:数一数。
课件:小正方体图。
贴板书:画一画。
课件:枝型结构图
贴板书:写一写。
课件:闯关成功
课件:第二关
课件:56+7=
课件:7+56=
课件:闯关成功。
课件:第三关
按点1:5+37=(
)
(1)42
(2)87
按点2:哪道题错了?
(1)64+7=61
(2)27+8=35
按点3:哪道题对?()(1)59+4=63
(2)
46+9=56
按点4:47+5=
(
)
(1)先算4+5=9,再算90+7=97
(2)先算7+5=12,再算40+12=52
课件:翻看成绩。
课件:城门
课件:加加国王说话。
课件:两条路线
课件:出示路线一,对答案。
课件:出示路线二,对答案。
中
检
测
(时间:60分钟
满分:100分)
一、填一填。(6分)
上图中一共有(
)个图形。从左边数,长方形排在第(
)个,第(
)个和第(
)个是三角形。从右边数,(
)排在第6个,第(
)个是圆。
二、填一填,连一连。(8分)
1.家的门牌号是由十个十组成的数。
2.家的门牌号是个位上的数比十位上的数小5的数。
3.家的门牌号是由8个十和2个一组成的数。
4.家的门牌号是两个两个地数,86后面的第五个数。
三、按要求完成下列各题。(12分)
1.写出下列各数。
写作
写作
写作
2.读出下列各数。
56读作
84读作
99读作
四、在里填上“>”“
4542
6393
4587
2936
7588
6369
7439
3631
6772
五、看谁先到家。(9分)
六、捉蝴蝶。(6分)
七、分一分。(10分)
1.按不同的形状分一分,在下面涂一涂,填一填。
2.如果分成两组,可以怎样分?
八、数一数。(10分)
九、解决问题。(20分)
1.可以分给(
)个人。(4分)
2.跳走了多少只青蛙?(4分)
3.
(1)柳树可能有多少棵?(画“√”)(3分)
(2)杨树比松树多多少棵?
(3分)
(3)松树比杨树少多少棵?
(3分)
(4)你能提出个数学问题并解答吗?
(3分)
十、写一写。(10分)
期中检测答案
一、6 3 2 4 平行四边形 2
二、
三、1.
36 54 100
2.五十六 八十四 九十九
四、>
五、4 4 9 9 6 9 8 6 9
六、
七、1.略
2.可以按红、黄两种颜色区分,如图
颜色
红
黄
个数
9
10
八、
(4)
(3)
(6)
(4)
(2)
九、1.6
2.38-5=33(只)
3.(1)略
(2)16-7=9(棵) (3)16-7=9(棵)
1
(1)
真理之光上共有(
)个按钮.
(2)
老鼠按钮排第—个,小
马按钮排第(
)个.
(3)
把从左往右数第—个、第四个、第八个按钮圈起来.
(4)
老鼠按钮排第—个,小
兔按钮排倒数第(
)个.
2
在0
里填上II
>
II
、"<”或11=
11.
3
按要求填空.
39
69
78
98
54
100
52
18
29
118
71
60
小
于
62
的
数
大
于
62
的
数
大
于
40
小
千
80
的
数
数数与比较
4
请选出符合以下条件的数填入答案框中,
有几个填几个.
25
100
72
98
60
152
39
80
15
不
大
于
80
的
数
不
小
千
100
的
数
十位比个位数字大的数
5
用下面的三张数字卡片,
你能按要求摆出想要的数吗?
(1)
用这三张卡片能摆出的最大两位数是(
)
(2)
用这三张卡片能摆出的最小三位数是(
)
(3)
用这三张卡片能摆出的最大的数是(
)
(4)
用这三张卡片能摆出的最小的数是(
)
数数与比较
6
—起来玩比年龄的游戏吧!
来猜猜他们的年龄,
给他们排排顺序吧!你知道谁的年龄最大?谁的年龄最小吗?
动物名称
猪弟
狗姐
大象
小猴
哥哥
妹妹
弟
姐
猪
狗
()>()>()>()>()>()
7
请把28、64、46、82这四个数分别填入图中的四个空格里,
使左边的数总大于右边的数,
平移和旋转
教学内容:教材第
30页例2、第31页例3及相关内容。
教学目标:
1.借助日常生活中的平移和旋转现象,初步理解图形的平移和旋转,能直观区分这两种简单的图形变换,会辨认简单图形平移后的图形。
2.经历观察、操作等过程,培养学生的观察能力,发展初步的空间观念。
3.感受图形的运动在生活中的运用,体会数学与生活的密切联系。
教学重点:初步认识平移或旋转现象。
教学难点:根据平移或旋转的特征解决相关问题。
教学准备:小房子学具、多媒体课件。
教学过程
学生活动
(二次备课)
一、情境导入
课件出示教材第28页主题图。
师:游乐场里除了有漂亮的风筝、蝴蝶外,还有很多运动项目。它们的运动方式相同吗?(不同)
师:你能根据他们不同的运动方式分分类吗?今天我们就一起来学习“平移和旋转”。
二、预习反馈
点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
(一)平移。
1.认识平移现象。
(1)像缆车、观光梯、推拉门这些物体的运动,无论是水平方向的,还是竖直方向的,物体本身的大小和方向不发生变化,我们把这种运动现象称为平移。
(2)在生活中,你见过哪些平移现象?(学生自由回答)
(3)这些物体的运动有什么特点?(这些物体都是沿直线运动的,物体本身的大小和方向不发生变化)
2.判断平移后的图形。
课件出示教材第30页例2。
(1)分析题意。
要知道哪几座小房子可以通过平移相互重合,先要根据平移的特征去判断。平移时,可以一次平移,也可以两次平移。
(2)动手操作,用小房子学具移动。
(3)汇报,评价。
说说它们经过怎样平移可以互相重合。
(4)教师小结。
判断哪些图形通过平移可以相互重合,关键是要根据平移的特征来判断。
(5)完成教材第30页
“做一做”。
学生自己完成后汇报展示,并说说自己是怎么想的。
(二)旋转。
课件出示第31页例3。
1.请大家认真观察这些物体,你发现它们是怎样运动的?(这些物体都是绕着某一个点或一个轴做圆周运动的)
2.认识旋转。师:
这些物体都是绕着某一个点或一个轴做圆周运动的,我们把这种运动现象称为旋转。
3.找一找生活中的旋转现象。
4.这些物体的运动有什么特点?(旋转时,物体或图形的形状和大小都不改变;只是本身的方向和位置发生了改变)
5.亲身体验旋转现象。
学生起立,一起来左转2圈,右转2圈。
6.学生用教材第121页的学具照样子做陀螺。
四、巩固练习
1.完成教材练习七第4题。
学生独立观察、判断,全班交流评价。
2.完成教材练习七第6题。
学生独立观察、判断,
全班交流,说明判断的理由。
3.完成教材练习七第8题,综合运用旋转和时间的知识解决问题。
五、拓展提升
下面的运动方式是平移的画“√”,是旋转的画“”。
1.水龙头的水往下滴。
(
√
)
2.拧开水龙头开关。
(
)
3.升降机上升。
(
√
)
4.风扇转动。
(
)
5.推木箱。
(
√
)
六、课堂总结
通过这节课的学习,你有什么收获?还有什么问题?
七、作业布置
教材练习七第5、7题。
根据已有的生活经验展开思考,回答问题,引出新课。
教师根据学生预习的情况,有侧重点地调整教学方案。
观察汇报总结:什么是平移。
找生活中的平移现象。
利用小房子学具动手平移。
自主发言,在生活中发现旋转。
总结旋转的特点。
巩固提高。
板书设计:
平移和旋转
平移:沿直线运动,形状、大小、方向不发生改变,只有位置发生改变。
旋转:绕一个点或轴做圆周运动,形状、大小不发生改变,方向和位置发生了改变。
教学反思:
成功之处:借助生活中的平移和旋转现象,注重为学生提供观察、操作、实践探究的机会,感受平移和旋转的不同,体会数学的趣味和作用,感受数学的魅力。