前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的电阻测量论文主题范文,仅供参考,欢迎阅读并收藏。
关键词:电阻挡,二极管正向电阻
晶体二极管是电子技术中最常用的半导体器件之一,在使用前,通常先要判别其极性、检查其好坏,否则电路不仅不能正常工作,甚至还有可能烧毁二极管和其它元件。在电子技术教学、生产实践过程中,常用万用表的电阻挡来测量晶体二极管极间的正反向电阻,以判别其正负极、检查其单向导电性能的好坏。对于正常的晶体二极管,反向电阻应很大(硅管:万用表指针一般不动,锗管:指针只启动一点),正向电阻应较小。测量时,由于R×1挡电流较大容易使小电流晶体二极管损坏,R×10k挡电压较高容易使低耐压晶体二极管损坏,因此通常选用R×100或R×1k挡。但当我们用万用表不同电阻挡测同一晶体二极管的正向电阻时,会发现电阻值是不同的。例如用MF30型万用表测得某2CZ52B晶体二极管的正向电阻如下:拨到R×10挡时,阻值为58Ω;拨到R×100挡时,阻值为450Ω;拨到R×1k挡时,阻值为3.5kΩ。
为什么会出现这种情况呢?这得结合万用表电阻挡测量电路和晶体二极管正向电阻测量电路两方面来分析。论文参考网。
一、万用表电阻挡测量电路分析
万用表的直流电阻挡实际上是一只多量程的欧姆表,原理如图1所示。图1中:E为电池电压,Rc为表头内阻,R为串联电阻,Rx为被测电阻。根据欧姆定律,图中的电流I=E/(Rc+R+Rx)。显然,I与Rx成非线性关系。由于Rc和R都为已知值,所以被测电阻Rx阻值大,电流I就小,相应的指针偏转角也小。当Rx→∞时,电流I=0,指针不偏转;当Rx=0时,电路中电流最大,指针偏转角最大,为满刻度,此时回路中的电阻为Rc+R,这就是欧姆表的总内阻;当Rx=Rc+R时,电路中的电流恰好为最大电流的一半,指针偏转角为满刻度的一半,指针位于标度尺中间,因此,总内阻Rc+R也被称为欧姆中心值。
为了能测量各种阻值的电阻,欧姆表都制成多量程的,一般万用表中的欧姆挡有R×1,R×10,R×100,R×1k等。对不同量程的电阻挡,在测量电阻时由于采用同一标度尺读数,因而采用不同的分流电阻来改变流过表头的电流,使指针偏转角不同,其原理电路如图2所示。图中,R 3 、R 4 、R 5 、R 6 组成闭路式分流器,使欧姆表分为R×1、R×10、R×100、R×1k四个倍率挡。低阻挡用小的分流电阻,高阻挡用大的分流电阻。例如,R×1挡的分流电阻是R 3 ,R×10挡的分流电阻是R 3 +R 4 。当被测电阻R X 的阻值较大时,则转换开关应接到高阻挡。这时,虽然整个电路的电流因R X 的增大而减小,但由于分流电阻也相应增大,分流减小,所以流过表头的电流仍保持不变,同一指针位置所表示的电阻值相应扩大。因此,被测电阻的实际值应等于标度尺上的读数乘以所用电阻挡的倍率。图2中,R 1 和R 2 组成分压式欧姆调零器。调零电阻R 2 和电阻R 1 串联,可使支路的分流作用限制在一定范围内,R 7 、R 8 和R 9 为各相应挡的串联电阻,它们的作用是使各挡总内阻都等于该挡的欧姆中心值。因此电阻挡不同,欧姆中心值也不同。例如MF30型万用表当拨到R×1挡时,欧姆中心值为25Ω;拨到R×10挡时,欧姆中心值为250Ω;拨到R×100挡时,欧姆中心值为2.5kΩ;拨到R×1k挡时,欧姆中心值为25 kΩ。
由此可以看出,不同电阻挡,欧姆中心值也不一样,当电阻挡越大时,欧姆中心值也越大,此时整个电路的电流将减小,即流过被测电阻的电流就越小。
二、晶体二极管正向电阻测量电路的直流图解分析
若把图1中的被测电阻R X 改为晶体二极管,如图3所示,则该图即为晶体二极管正向电阻测量电路。由于晶体二极管为非线性器件,因此该测量电路属非线性电路,而欧姆定律只适用于线性电路,因此图3电路宜采用图解法分析。图中u D 下端晶体二极管支路伏安特性表达式为i D =f(u D )=I S (e uD/uT -1) ,其对应正向伏安特性曲线如图4中OQP,为一非线性曲线;u D 上端线性支路的特性方程为u D =E-i D (R+Rc),该方程所描述的是图4中的直线MN,其斜率等于-1/(R+Rc)。论文参考网。直线MN与晶体二极管正向伏安特性曲线相交于Q点,Q点即为直流工作点,它反映了晶体二极管直流工作时的正向电压和电流。
图3测量电路中的晶体二极管处于正向直流工作状态,此时所呈现的电阻为正向直流电阻R D 。对应于图4,R D =U Q /I Q ,显然R D 值等于直流工作点Q与原点O间所连直线OQ的斜率的倒数,当工作电流I Q 不同时,Q点会沿着伏安特性曲线而移动,这时Q点与原点间所连直线OQ的斜率就不同,正向电阻R D 值也就不同,而且I Q 越小,R D 越大。
由此可知,当流过被测晶体二极管的正向电流越小时,晶体二极管的正向电阻就越大。
综合上面两个方面的分析,由于万用表电阻测量电路中,电阻挡越大,欧姆中心值越大,流过晶体二极管的电流就越小,又由于晶体二极管正向电阻测量电路中,流过晶体二极管的电流越小,直流工作点Q就越低,直线OQ的斜率越小,因而正向电阻就越大。因此,当用万用表不同电阻挡测同一晶体二极管的正向电阻时,测得的结果是不同的,电阻挡越大,正向电阻也越大。反之,则越小。
那么,究竟用哪一电阻挡测得的电阻值作为晶体二极管的正向电阻呢?一般情况下,取万用表R×1k挡测得的电阻作为其正向电阻。论文参考网。其实,同一晶体二极管在用同一万用表不同电阻挡测时正向电阻不相同,用不同万用表相同电阻挡测时也是不相同的。也就是说,在改变测量条件时,晶体二极管的正向电阻也将随之改变。因此,用万用表电阻挡测量晶体二极管的正向电阻和反向电阻,通常仅仅是用来判别其正负极或检查其单向导电性能的好坏而已,正向电阻具体数值的多少并无实际意义。
参考文献:
[1]文春帆,金受非主编.电工仪表与测量(第二版).北京:高等教育出版社,2004
[2]童诗白,华成英主编.模拟电子技术基础(第三版).北京:高等教育出版社,2001
[3]闵锐,徐勇,孙峥编著.电子线路基础.西安:西安电子科技大学出版社,2003
关键词:钙钛矿锰基氧化物,复合,颗粒表面,晶界,低场室温磁电阻效应
1 引 言
Re1-xMexMnO3(Re=La, Y, Me=Ca, Ba, Sr, Pb, K)型钙钛矿锰氧化物由于具有庞磁电阻效应(CMR)而成为当前材料科学领域的研究热点[1-4].
钙钛矿锰氧化物与Ag形成二相复合体系,分离出来的非磁性金属相Ag和磁性钙钛矿相交错,形成丰富颗粒表面[5-6],从而有效提高材料室温磁电阻效应。本文以La2/3(Ca0.45Sr0.55)1/3MnO3为母相材料,与不同摩尔比的AgNO3掺杂,研究了非磁性Ag离子的掺杂对复合材料电输运特性以及磁电阻效应的影响。
2 实 验
2.1 样品制备
利用甘氨酸-硝酸盐法[7](GNP)法制备了La2/3(Ca0.45Sr0.55)1/3MnO3纳米粉末。取适量该纳米粉末分别与AgNO3按照10:1,10:2,10:3摩尔比混合低场室温磁电阻效应物理论文物理论文,将其在600℃马弗炉中热处理4小时后,在玛瑙研钵中充分研磨,将样品在10MPa压强下压成直径12mm,厚约1mm圆片。在空气环境下,将样品在提拉式炉中逐步升温到1300℃,烧结5小时后自然冷却,从而得到La2/3(Ca0.45Sr0.55)1/3MnO3/xAg纳米复合材料(x=0.1;0.2;0.3)。
2.2 性能测试
样品的XRD图谱由X射线衍射仪测得;利用扫描电子显微镜(SEM)观察样品平均晶粒尺寸,并研究样品形貌;样品的磁性用振动样品磁强计(VSM)测量;电阻率及磁电阻值采用标准四引线法在DSZ-1型磁电阻测试仪上测量。
3 结果与讨论
图1所示是样品La2/3(Ca0.45Sr0.55)1/3MnO3/xAg的X射线衍射图谱(x=0;0.1;0.2;0.3)。谱图与标准X光卡片对照,样品均是单相正交钙钛矿结构。图谱中没有AgNO3的峰出现,可推断AgNO3完全分解成金属Ag,而且Ag的掺杂并没有影响母相锰氧化物的本征结构。
图1. 样品La2/3(Ca0.45Sr0.55)1/3MnO3/xAg的XRD图谱(x=0;0.1;0.2;0.3)
图2所示是样品La2/3(Ca0.45Sr0.55)1/3MnO3/xAg的SEM观测到的形貌图(x=0;0.1;0.2;0.3)。可以清楚地看到添加Ag后的样品有很多小孔,且在大多数小孔中都有一两个直径大约是3~5um小亮珠。对这些小圆珠做能谱分析,结果显示这些亮珠是金属银的颗粒。由于这些金属银发生了团聚现象,在测量样品XRD时也没有银的特征峰出现。由此得出结论:Ag没有进入La2/3(Ca0.45Sr0.55)1/3MnO3的晶格,由于Ag在1000摄氏度以下熔化,所以Ag会发生团聚。
ab
cd
图2 a、b、c、d分别是的扫描电镜图(x=0;0.1;0.2;0.3)
图3是用VSM测量了外加磁场为1T时,La2/3(Ca0.45Sr0.55)1/3MnO3/xAg系列样品的磁矩M和温度T曲线。从图中可以看到添加Ag后的样品磁矩降低,但是居里温度Tc没有变化,都在310K左右。样品饱和磁矩降低,是因为掺杂的Ag为无磁性的物质低场室温磁电阻效应物理论文物理论文,对母相材料的磁性产生稀释作用。Ag填隙在晶粒间,不影响母相材料的固有结构,所以所有样品的Tc都应该与母相材料相同。
图3 La2/3(Ca0.45Sr0.55)1/3MnO3/xAg的M-T曲线(x=0;0.1;0.2;0.3)。
如图4所示是样品La2/3(Ca0.45Sr0.55)1/3MnO3的电阻率和温度曲线及磁电阻效应曲线。样品的零场ρ-T关系曲线表明:高温时样品表现为绝缘体导电行为,电阻率随温度的升高而减少;低温时表现为金属导电行为,电阻率随温度的升高而增大。伴随着绝缘体相向金属相的转变(转变温度为TP为250K),此时电阻率最大。磁电阻计算公式MR=Δρ/ρ(T,H)=. 在低温100K附近的CMR效应是21%,随着温度的升高磁电阻值迅速下降。而在居里点附近,出现了个室温磁电阻效应的峰值为5.2%。
图4 La2/3(Ca0.45Sr0.55)1/3MnO3的图5 La2/3(Ca0.45Sr0.55)1/3MnO3/0.1Ag的
ρ-T和CMR效应曲线 ρ-T和CMR效应曲线
图6 La2/3(Ca0.45Sr0.55)1/3MnO3/0.2Ag的图7 La2/3(Ca0.45Sr0.55)1/3MnO3/0.3Ag的
ρ-T和CMR效应曲线ρ-T和CMR效应曲线
图5、图6、图7依次是Ag添加比为0.1、0.2、0.3的样品电阻率ρ和温度T曲线及磁电阻效应曲线。比对几个样品零场ρ-T关系图可以看出:随着Ag的逐渐增加,转变温度TP均没有变化都是250K左右,但样品的电阻率却明显降低,这主要是因为Ag没有改变母体材料的结构,所以样品的转变温度就没发生变化,但由于Ag的良导电性,在晶粒表明又起到稀释磁性和电阻的作用,因此电阻率有所降低。从几个样品的MR-T关系图中可以看出:在居里点310K附近,掺杂0.1Ag的样品室温CMR为5%;掺杂0.2Ag的样品室温CMR为6.5%;掺杂0.3Ag的样品室温CMR为7 %。随着Ag比例的增加,样品的室温磁电阻效应增强。这可以解释为,Ag掺杂在晶粒之间,有效的改善了样品的晶粒边界低场室温磁电阻效应物理论文物理论文,同时降低边界上的磁无序状态,从而增加本征磁电阻效应。
4 结 论
对于甘氨酸-硝酸盐法制备的La2/3(Ca0.45Sr0.55)1/3MnO3/x Ag(x=0;0.1;0.15;0.2)系列样品的微观结构、磁性、磁电阻性质的研究表明:Ag没有改变母相锰氧化物的本征结构,因此没有改变样品的转变温度TP (250K)和局里温度Tc(300K);但所有样品的磁性和电阻率随Ag的掺杂量增加而降低,这是由于Ag 填隙在晶粒间,并具有良导电性,在晶粒表面起到稀释磁性和电阻的作用;Ag掺杂量的增加,使得La2/3(Ca0.45Sr0.55)1/3MnO3/x Ag体系的室温磁电阻效应逐渐增强到7 %,这是由于Ag掺杂有效的改善了样品的晶粒边界,同时降低边界上的磁无序状态,从而增加本征磁电阻效应。
参考文献
[1]T.Terai,T. Kakeshita,T.Fukuda, T. Saburi,N.Takamoto, K.Kindo, M. Honda,
Phys.Rev.B. ,58(1998),17908.
论文关键词:创设实验环境提高实验复习效率
实验复习是初中物理教学的重点和难点。根据多年来数百份中考物理试卷抽样分析得知,在学生的实验能力考核中,实验题得分率较低,原因是多方面的,但大多数是复习时单纯重复课本中的几大实验,淡化了实验复习效果。事实表明,实验复习应在原有基础上,根据不同实验要求创设出新的实验环境,调动学生积极性,挖掘和拓展概念规律的内涵和外延,增大实验容量,有效利用实验复习时间,更好地培养和发展学生的发散思维能力和操作能力,达到事半功倍的复习效果。
一.创设实验环境,展示实验通性
分析近几年来全国各地中考物理试卷可知,中考物理实验题型基本要求大致为:能分清实验仪器的名称、用途及装置结构;熟悉实验原理、目的及实验器材;能根据实验目的设计实验方案、步骤和有关表格;会画有关示意图;掌握操作过程;会读各种仪表示数;会填写实验报告;会根据原理公式进行相关的计算;会判断实验过程中的操作错误或装置错误;会分析处理实验数据;会分析和排除实验中的故障;会根据条件设计探究性实验。实验复习围绕上述内容进行强化训练大有裨益。创造性是中考物理实验题的灵魂,实验复习着重体现实验内容与创造性紧密联系,突出学以致用的原则,有效促进学生运用学科知识解决实际问题的能力。比如复习用刻度尺测物体长度实验时,设置这样一些情景:用刻度尺能估测矿泉水瓶的容积吗?用刻度尺还能做哪些实验?引导学生积极思考,反馈出多种信息:声学中,验证音调与频率有关;热学中,钢尺和木尺测同一物体的长度不等,说明不同材料的热胀冷缩程度不同;电学中,塑料尺、木尺可做摩擦起电实验、绝缘体实验;力学中,尺可当简易杠杆使用教育学论文,与报纸配合可验证大气压是很大的,可制作跷跷板,特殊长度测量中离不开刻度尺。可谓“一尺激起千层浪”,使之形成科学思维方法,让学生把手里的“冷粑团”加工成美味佳肴。
二.创设实验环境,丰富实验内涵
素质教育替代“应试教育”,旨在全面发展和提高学生的创新能力。新课标的落实给中学物理实验教学带来了生机,为初中物理实验复习创设了有利条件。在实验复习课中,应充分发挥实验室的功效,比如复习电阻和电功率的测量,实验室仍摆出伏安法测电阻的器材,而黑板上的实验要求却大有变化:①若将电流表换成一个已知电阻的小灯泡,能否测出未知电阻和电功率?②将电压表换成已知电阻的小灯泡,能否测出未知电阻和电功率?③伏安法测电阻中,电流表无示数,如何用电压表检查其断路位置?④测小灯泡额定功率时,电源电压为6伏,灯泡额定电压为3.8伏,电压表15伏量程已坏不能使用,其余器材完好,不能换用其他仪器,如何测出小电灯泡的额定功率呢?画出电路图并加以说明。⑤电源电压为4.5伏,现只有一个电流表,一只标有“0.2A”的小灯泡,一个开关和一只“20Ω 2A”的变阻器,若干导线,估计小灯泡的电阻为12.5欧左右,能否测出小灯泡的额定功率?⑥用电能表,秒表如何从测出一个用电器的功率?⑦上述测量中用了哪些近似条件?通过布障设疑,加深知识横向和纵向联系,丰富了实验内涵,又如测量密度实验时,可列出下列条件:①不规则小金属块、细线及轻弹簧、刻度尺、盛有适量水的容器,测金属块的密度。②细杠杆和支架、盛水容器、砝码、细线、刻度尺,测量金属块和密度中国学术期刊网。③弹簧秤、盛水容器、细线、小金属块、未知液体,测量小金属块的密度和未知液体密度。④一些金属粒、烧杯和水、天平、砝码,测量金属粒的密度。⑤压强计、刻度尺,测待测油的密度。⑥U型管和水、刻度尺,测量菜油密度。到此,学生对密度测量有了较深认识,对密度内涵形成丰富认识,复习其他它演示实验及学生实验进亦如此。
三.创设实验环境,拓展实验内容
简单的重复,平铺直叙的讲述不利于实验复习。实验复习课灵活多变,旧题型新包装,使学生有耳目一新的感觉。可以将近几年中考物理实验题型加以整理,梳理成型,归纳成类,通过训练操作逐步形成规律,在新、趣、奇中享受成功的喜悦。如复习密度测量时,附加条件不同,解决方法也各异:①一大池盐水体积为V,给一质量为M的量筒教育学论文,天平和砝码,估测池中盐水里含盐的总质量,写出简要的步骤和最后表达式。②一块坚硬岩石质量约1千克,要求在一般家庭条件下用杆秤为主要测量工具,粗略测量这块岩石的密度,请简要写出测量密度的主要过程。③给你一支弹簧秤、空瓶、水、油,如何测出油密度?④一个量筒,水和金属盒,用这些工具能测出该金属盒的密度吗?若能测出,写出方法和最后的表达式;若不能,还需哪些器材?金属盒能放入量筒内吗?⑤为测石蜡块的密度,无天平量筒,只有两个杯子和一桶水,一根大头针还有一根自行车胎气门芯用的细长橡皮筋,请写出实验原理,操作步骤和最后密度表达式,蜡块可放进杯里。⑥用天平、刻度尺可以测出地图上某地的面积吗?把知识拓展,避免学生背实验步骤、画实验图的呆板复习方法。
总之,在初中物理实验复习教学中,教师要深钻教材,总结规律,紧扣复习内容,创设出新趣奇的实验情境,让学生在问题的情境中不断思索、分析、归纳、总结,发展自己记忆能力、思维能力、动手动脑解决实际问题的能力,使初中物理复习的各个环节如同一支交响乐,达到齐奏谐鸣,异曲同工之效。
关键词:温度,热电阻,端面,Pt100
中图分类号:TM241文献标识码: A
温度是表征物体冷热程度的物理量,是工业生产和科学试验中最普通、最重要的热工参数之一。物理的许多物理现象和化学性质都与温度有关,许多生产过程均是在一定的温度范围内进行的。因此,温度的测量是保证生产正常进行、确保产品、质量和安全生产关键环节。温度不能直接加以测量,只能借助于冷热不同的物体之间的热交换,以及物体的某些物理性质随冷热程度不同而变化的特性,来进行间接测量。利用热平衡原理,我们可以选择某一物体同被测物体相接触来测量它的温度,当两者达到热平衡状态,选择物体与被测物体的温度相同,通过对选择物体的物理量的测量,便可得到被测物体的温度数值。其中,热电阻温度计是不可缺少仪表元器件之一。今天,我就谈一谈我对热电阻温度计的认识。
首先我们说一说热电阻的测温原理、特点:热电阻是中低温区的一种测温元件。热电阻利用物质在温度变化时本身电阻也随着发生变化的特性来测量温度的。热电阻的受热部分(感温元件)是用细金属丝均匀的缠绕在绝缘材料制成的骨架上,当被测介质中有温度梯度存在时,所测得的温度是感温元件所在范围内介质层中的平均温度。它的主要特点是测温精度高,性能稳定。其中铂热电阻的测量精确度最高。
热电阻的结构特点:热电阻通常和显示仪表、记录仪表和变送器配套使用。它可以直接测量各种生产过程中从―200至+600范围内的液体、蒸汽和气体介质及固体表面的温度。
(1)WZ系列装配热电阻:通常由感温元件、安装固定装置和接线盒等主要部件组成,具有测量精度高,性能稳定可靠等优点。实际运用中以Pt100铂热电阻运用最为广泛。
(2)WZPK系列铠装铂热电阻:铠装热电阻是由感温元件、引线、绝缘材料、不锈钢套管组合而成的坚实体,它有下列优点:体形细长,热响应时间快,抗振动,使用寿命长等优点。现在的本钢马耳岭球团厂采用的就是这种热电阻。
(3)防爆型热电阻:隔爆型热电阻通过特殊结构的接线盒,把接线盒内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引起爆炸。大多使用在化工产业中。
(4)端面热电阻:端面热电阻感温元件由特殊处理的电阻丝缠绕制成,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速反映被测端面的实际温度,适用于测量表面温度。
电阻是中低温区最常用的一种温度监测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻测温原理及材料,热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。其次,我们谈一下热电阻温度计的日常维护。我们单单从以上大篇幅的介绍不难看出,热电阻温度计在当今科学技术如此发达的今天得到了较理想的运用。
论文关键词:变压器分析测量预防性试验
论文摘要:预防性试验是保证电力变压器安全运行的重要措施,对变压器故障诊断具有确定性影响,通过各种试验项目,获取准确可靠的试验结果是正确诊断变压器故障的基本前提。
根据《电力设备交接和预防性试验规程》规定的试验项目及试验顺序,主要包括油中溶解气体分析、绕组绝缘电阻的测量、绕组直流电阻的测量、介质损耗因数tgD检测、交流耐压试验、线圈变形试验、局部放电测量等。
1.油中溶解气体分析
在变压器诊断中,单靠电气试验方法往往很难发现某些局部故障和发热缺陷,而通过变压器油中气体的色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效,这已为大量故障诊断的实践所证明。油色谱分析的原理是基于任何一种特定的烃类气体的产生速率随温度而变化,在特定温度下,往往有某一种气体的产气率会出现最大值;随着温度升高,产气率最大的气体依此为CH4、C2H6、C2H4、C2H2。这也证明在故障温度与溶解气体含量之间存在着对应的关系,而局部过热、电晕和电弧是导致油浸纸绝缘中产生故障特征气体的主要原因。变压器在正常运行状态下,由于油和固体绝缘会逐渐老化,变质,并分解出极少量的气体(主要包括氢H2甲烷CH4乙烯C2H4乙炔C2H2一氧化碳CO二氧化碳CO2等多种气体)。当变压器内部发生过热性故障,放电性故障或内部绝缘受潮时,这些气体的含量会迅速增加。这些气体大部分溶解在绝缘油中,少部分上升至绝缘油的表面,并进入气体继电器。经验证明,油中气体的各种成分含量的多少和故障的性质及程度有关,不同故障或不同能量密度其产生气体的特征是不同的,因此在设备运行过程中,定期测量溶解于油中的气体成分和含量,对于及早发现充油电力设备内部存在的潜伏性故障有非常重要的意义和现实的成效,在1997年颁布执行的电力设备预防性试验规程中,已将变压器油的气体色谱分析放到了首要的位置,并通过近些年的普遍推广应用和经验积累取得了显著的成效。电力变压器的内部故障主要有过热性故障、放电性故障及绝缘受潮等多种类型。据有关资料介绍,在对故障变压器的统计表明:过热性故障占63%;高能量放电故障占18.1%;过热兼高能量放电故障占10%;火花放电故障占7%;受潮或局部放电故障占1.9%。而在过热性故障中,分接开关接触不良占50%;铁芯多点接地和局部短路或漏磁环流约占33%;导线过热和接头不良或紧固件松动引起过热约占14.4%;其余2.1%为其他故障,如硅胶进入本体引起的局部油道堵塞,致使局部散热不良而造成的过热性故障。而电弧放电以绕组匝、层间绝缘击穿为主,其次为引线断裂或对地闪络和分接开关飞狐等故障。火花放电常见于套管引线对电位未固定的套管导电管、均压圈等的放电;引线局部接触不良或铁芯接地片接触不良而引起的放电;分接开关拔叉或金属螺丝电位悬浮而引起的放电等。
对变压器故障部位的准确判断,有赖于对其内部结构和运行状态的全面掌握,并结合历年色谱数据和其它预防性试验(直阻、绝缘、变比、泄漏、空载等)进行比较。
同时还要注意由于故障产气与正常运行产生的非故障气体在技术上不可分离,在某些情况下有些气体可能不是设备故障造成,如油中含水可与铁作用生成氢气,过热时铁芯层间油膜裂解也可生成氢,新的不锈钢中也可能在加工过程中或焊接时吸附氢而运行后又缓慢释放,另外,某些操作也可生成故障气体,如有载调压变压器中切换开关油向变压器主油箱渗漏或选择开关在某个位置动作时悬浮电位放电的影响,设备油箱带油补焊,原注入油含有某些气体成分大修后滤油不彻底留有残气等。
2.绕组直流电阻的测量
它是一项方便而有效的考察绕组绝缘和电流回路连接状况的试验,能反应绕组焊接质量、绕组匝间短路、绕组断股或引出线折断、分接开关及导线接触不良等故障,实际上它也是判断各相绕组直流电阻是否平衡、调压开关档是否正确的有效手段。长期以来,绕组直流电阻测量一直被认为是考察变压器绝缘的主要手段之一,有时甚至是判断电流回路连接状况的唯一办法。如在对某变压器低压侧10KV线间直流电阻作试验时,发现不平衡率为2.17%,超过部颁标准值1%的一倍还多,色谱分析不存在过热故障,且每年预试数据反映直流电阻不平衡系数超标外,其它项目均正常,经分析换算后确定C相电阻值较大,判断C相绕组内有断股问题,经吊罩检查后,验证C相确实有一股开断,避免了故障的进一步扩大。通过上述例子可见,变压器直流电阻的测量对发现回路中某些重大缺陷起到了重大作用。
3.绕组绝缘电阻的测量
绕组连同套管一起的绝缘电阻和吸收比或极化指数,对变压器整体的绝缘状况具有较高灵敏度,它能有效检查出变压器绝缘整体受潮、部件表面受潮或脏污以及贯穿性的集中缺陷,如各种贯穿性短路、瓷件破裂、引线接壳、器身内有铜线搭桥等现象引起的半贯通性或金属性短路等。相对来讲,单纯依靠绝缘电阻绝对值大小对绕组绝缘作判断,其灵敏度、有效性较低。一方面是由于测量时试验电压太低,难以暴露缺陷,另一方面也因为绝缘电阻与绕组绝缘结构尺寸、绝缘材料的品种、绕组温度有关,但对于铁芯夹件、穿心螺栓等部件,测量绝缘电阻往往能反映故障,这是因为这些部件绝缘结构较简单,绝缘介质单一,正常情况下基本不承受电压,绝缘更多的是起隔离作用,而不像绕组绝缘要承受高电压,比如我们预试中曾多次通过绝缘摇表发现变压器铁芯一点或多点接地的情况,也曾通过绝缘电阻的测量发现变压器套管瓷件破裂、有裂纹现象。4.测量介质损耗因数tgD
它主要用来检查变压器整体受潮油质劣化、绕组上附着油泥及严重的局部缺陷。介质测量常受表面泄露和外界条件(如干扰电场和大气条件)的影响,因而要采取措施减少和消除影响。现场我们一般测量的是连同套管一起的tgD,但为了提高测量的准确和检出缺陷的灵敏度,有时也进行分解试验,以判断缺陷所在位置。如在对变压器做预试时,发现一相套管介质超标,且绝缘不合格,读数较低,经分析后可能是由受潮引起,后拔出检查发现套管末端底部有水份,套管已整体受潮,经烘干处理后再做试验,各项指标均符合要求。测量泄漏电流和测量绝缘电阻相似,只是其灵敏度较高,能有效发现有些其他试验项目所不能发现的变压器局部缺陷。泄漏电流值与变压器的绝缘结构、温度等因素有关,在《电力设备交接和预防性试验规程》中不作规定,只在判断时强调比较,与历年数据相比,与同类型变压器数据相比,与经验数据相比较等。介质损耗因数tgD和泄漏电流试验的有效性正随着变压器电压等级的提高、容量和体积的增大而下降,因此单纯靠tgD和泄漏电流来判断绕组绝缘状况的可能性也比较小,这主要也是因为两项试验的试验电压太低,绝缘缺陷难以充分暴露。对于电容性设备,实践证明如电容型套管、电容式电压互感器、耦合电容器等,测量tgD和电容量CX仍是故障诊断的有效手段。
5.交流耐压试验
它是鉴定绝缘强度等有效的方法,特别是对考核主绝缘的局部缺陷,如绕组主绝缘受潮、开裂或在运输过程中引起的绕组松动、引线距离不够以及绕组绝缘上附着污物等。交流耐压试验虽对发现绝缘缺陷有效,但受试验条件限制,要进行35KV及8000KVA以上变压器耐压试验,由于电容电流较大,要求高电压试验变压器的额定电流在100mA以上,目前这样的高电压试验变压器及调压器尚不够普遍,如果能对高电压、大电流电力变压器进行交流耐压试验,对保证变压器安全运行有很大意义。
6.线圈变形检测
变压器绕组变形是指在电动力和机械力的作用下,绕组的尺寸或形状发生不可逆的变化,包括轴向和径向尺寸的变化、器身转移、绕组扭曲、鼓包和匝间短路等。绕组变形是电力系统安全运行的一大隐患,一旦绕组变形而未被诊断继续投入运行则极可能导致事故,严重时烧毁线圈。造成变压器绕组变形的主要原因有:
6.1短路故障电流冲击,电动力使绕组容易破坏或变形。电动力的产生是绕组中的短路冲击电流与漏磁相互作用的结果,在运行中,由于辐向和轴向电动力同时作用,可能使整个绕组发生扭转。
6.2在运输或安装中受到意外冲撞、颠簸和震动等。如某供电部门在对35KV、20000KVA主变压器运输途中,遭受强烈撞击。事后在对该变压器交接吊罩检查时,发现油箱下部固定器身的4个螺栓全部开焊裂断,上部对器身定位的4个定位钉全部松动,并在定位板上划出小槽。器身向油枕方向纵向位移11mm,横向位移23mm,绕组对端圈错位,最大达30mm,可看到器身已经完全没有固定装置而处于自由状态,并经过长途运输及多次编组,器身在油箱中摇晃,必然造成变压器损坏。
6.3保护系统有死区,动作失灵,导致变压器承受稳定短路电流作用时间长,造成绕组变形。
【关键词】乳化液浓度;长周期光纤光栅;STM32
Design and Development of the Back-end Meter in FBG Liquid Concentration Sensor
JIANG Xin-rui LI Hui-yuan MENG Guo-ying XU Guo-xian
(China University of Mining and Technology,Beijing 100083,China)
【Abstract】In industrial production,aiming at poisonous,corrosive flammable or explosive liquid and liquid that gaugers can’t reach directly,this subject put forward a kind of coated long period fiber grating sensor.This paper completed the design and development of the back-end meter in the sensor based on ARM microprocessor to the core.Especially in coal mine emulsion concentration measurements,it can achieve online testing which has a wide measuring range and high sensitivity
【Key words】Emulsion concentration;Long period fiber grating;STM32
0 引言
为了解决特殊场合液体浓度测量这一难题,尤其是矿用乳化液浓度测量过程中不能实时检测、测量范围有限、精度灵敏度低等问题,提出了一种镀膜长周期光纤光栅传感器用于液体浓度的测量。它的传感机理是环境折射率改变通过引起纤芯和包层折射率的变化对光纤中的传输模式(纤芯模和包层模的传播常数和模场分布)带来影响,导致纤芯模和包层模之间耦合的相位匹配波长及耦合系数的改变,并最终表现为光栅吸收峰中心波长和强度的变化[1]。它不仅具有LPFG――Long Period Fiber Grating,长周期光纤光栅对周围介质折射率、浓度变化非常敏感、易于制作、附加损耗小、无后向反射和与偏振无关等独特优点,还可测量LPFG不响应的折射率在1.4以下液体的浓度[2],实现了测量范围宽、灵敏度高的实时在线测量。本论文作为其中的重要组成部分,主要完成传感器中以ARM微处理器为核心的后端仪表的设计开发,并在调试阶段实现了LCD液晶屏数据显示,为镀膜长周期光纤光栅液体浓度传感器设计过程中实验数据采集搭建了实验平台。
1 传感器整体结构
传感器的整体结构如图1所示,镀膜LPFG浸在待测液体中,宽带光源发出的光耦合进入光纤光栅中,其中波长与F-P干涉仪腔长吻合的光经干涉仪发生透射,表现为光强最强。输入探测器中进行光电转换,放大后输入后端仪表显示。
图1 传感器整体结构
由于课题前端镀膜长周期光纤光栅传感器部分还在实验阶段,实验数据和实验步骤不完善,目前未能调制出电压信号,所以子课题通过旋动三端可调电阻上的螺钉,改变三端可调电阻的电压,模拟出连续变化的标准模拟电压信号,输入到后端仪表中,经过处理器处理,最终实现显示的功能。
2 硬件选型
硬件整体结构如图2所示。
本文选用基于ARM的32位STM32F103VBT6处理器,通用增强型100脚128K字节闪存LQFP封装,工业级温度范围。STM32的最小系统设计如图2。
2.1 电源模块
STM32F103VBT6为3.3V供电,I/O操作电压范围:0V~3.6V,可承受5V的电压。电源电路如图3所示。
共需2组电源,分别为VCC(5V)和VDD(3.3V),其中VCC(5V)为外设器件供电,VDD(3.3V)为CPU供电。
图2 整体结构
图3 电源电路
2.2 时钟模块
系统时钟的选择是在启动时进行的。复位时,内部8MHz的RC振荡器被选为默认的CPU时钟,随后可以选择外部的8MHz时钟,通过PLL倍频到72MHz。外部时钟电路如图4所示。
2.3 复位模块
后端仪表主要用于显示,所以需要设计复位电路,防止程序在运行过程中跑飞或跑死。微处理器芯片内部已经集成电压检测复位和上电复位电路,因此按键通过串联10K的上拉电阻和100nF的接地电容实现了手动复位的功能,如图5所示。
3 软件设计
(1)AD转换流程图如6所示。
(2)主函数流程图如图7所示。
(3)LCD显示流程图如图8所示。
图4 时钟电路
图5 复位电路
图6 AD转换流程图
图7 主函数流程图
4 结论
编写的程序在MDK软件通过编译后,将板子与PC机相连,按下开关按键给板子上电。此时选择USB转串口选项。(注意:若不事先给板子上电,这步不能成功找到并设置COM口。)最后打开程序下载软件Fly Mcu,找到编译生成的.hex文件,点击开始编程,将编译通过的程序烧写到STM32板子中。旋动三端可调电阻上的螺钉改变其电阻值的大小,便能观察到LCD液晶显示屏上显示出相应的前景色、背景色、文字、单位以及实时变化的ADC输出数值,如图9所示。
图8 LCD显示程序
图9 LCD显示界面
实现了在液晶屏上实时显示模拟电压信号,人机交互界面友好,完成了仪表设计开发。
【参考文献】
实验以其形象、生动、形式多样,蕴藏非常活跃的因素,需要严谨、踏实的治学态度,为学生提供全面发展和个性发展的空间,活化知识结构和训练思维空间,塑造完善品格和为以后从事科研工作打下坚实基础。
在物理新教材中《从微安计改装为欧姆表》一文中仅从理论上予以研究,本人试着从理论分析和实践相结合的角度入手,给予学生充分的自。通过这个实验使学生了解科学实验的一般思路和研究方法,锻炼了学生刻苦耐劳的毅力和严谨治学的态度,取得了学生的共识。
在实验中力求贯穿如下教学原则:
一、教师的主导作用与学生的主动性相结合的原则
创设实验条件,让学生自主性学习实验操作规程和能力训练目标。让学生懂得万用电表的使用,能掌握测量电阻、电流、电压的方法,懂得一些常用电子元件的测量方法、电子器材的操作测量,掌握电烙铁的焊接技术,印刷电路板的制作与加工,化学用品的使用,电动器具的使用和安全注意事项。
二、科学性和思想性原则
培养学生严谨的科学态度和工作方法,深谙电路理论知识是我们的目标。强调电路原理的解读,强化实验的各个环节有条不紊地进行,包含各种仪器仪表的使用、电子元件的测量、电路的焊接和联接、实验数据的测量、表头面板的绘制,需要学生的细心、耐心和恒心。在长期的实验中,思想上会有一些波动和挫折感,适时地进行个别引导是必要的,总体上应进行一些科学家的成长故事的讲座,使学生产生共响,从而深化实验的教学过程。
三、循序渐进和因材施教的原则
要充分了解学生的认识规律和心理特点,进行成功教学方法。在实验中会有迷茫失措的时候,困难会时时困扰每一个学生,发挥成功教学方法的优越性,分阶段进行各个实验环节,使学生在每个阶段都有成就感,体验成功的快乐蕴藏于每一次的成功中。第一阶段:实验器材的准备阶段。包含微安计、电阻、电容器和二极管的准备和电路板的制作。第二阶段:电路的焊接、连接和元件的测量使用。第三阶段:仪表的装配、调试、安装阶段。
四、自主式原则
自主理解控制实验条件、探索物理规律的思维方法,强化图象处理的技能训练,学习排除简单故障的实验方法,不通电电阻测量法,通电电压、电流测量法的应用,认识总结实验技术。
1、实验仪器设备准备阶段
微安计、直流电源、变阻器、变阻器、电阻、微调电阻50mm*50mm的印制电路板、化学用剂fecl3、电动钻(含0.8mm钻头)、万用电表、电解槽、透明胶、电池盒、螺丝、组合工具。
2、实验实施操作阶段
①、根据电路原理图设计绘制电路板,把需要的电路布线结构用透明胶贴上,放入加热的30-50度的fecl3溶液中腐蚀,一个小时左右腐蚀完毕,放入水槽冲洗凉干,用0.8mm钻头在需要连接元件的地方钻孔,用砂纸擦亮铜箔,用电烙铁熔化焊锡均匀涂于铜箔表面,均匀分布焊锡,保护钢箔不被养化.②、根据电路原理图焊接有关元件和连接线路,检测电路各部分是否正常,分为通电测试和不通电测试.③、调节变阻器确定四个是量程的中值电阻,用已知电阻代替电阻变阻箱.④、绘制表头面板刻度。调节变阻器的电阻分别为1、2、3、5、10、15、20、25、30、40、50、100、150、200、250、300、400、500等,根据指针所在位置确定面板刻度。
关键词:变电站设计;电气接地;接地电阻;导体
中图分类号:TM862文献标识码:A文章编号:1009-2374(2010)04-0031-02
变电站的接地系统是维护电力系统安全、可靠运行,保障运行人员和电气设备安全的根本保证和重要措施。近年来,随着电力系统的发展,故障时经地网流散的电流越来越大,故障时地网的电位也随之升高,由于接地措施的缺陷而造成的事故也屡有发生,给运行人员和检修人员的安全带来威胁,同时使一次设备的绝缘遭到破坏,进而扩大事故,给企业带来巨大的经济损失和不良的社会影响。
本论文主要对变电站电气接地技术展开分析讨论,以期获得可靠的电气接地技术的相关方法及经验,并和广大同行分享。
一、电气接地技术概述
接地网作为变电站交直流设备接地及防雷保护接地,对系统的安全运行起着重要的作用。由于接地网作为隐性工程容易被人忽视,往往只注意最后的接地电阻的测量结果。随着电力系统电压等级的升高及容量的增加,接地不良引起的事故扩大问题屡有发生。因此,接地问题越来越受到重视。接地的实质是控制变电站发生接地短路时,故障点地电位的升高,因为接地主要是为了设备及人身的安全,起作用的是电位而不是电阻,接地电阻是衡量地网合格的一个重要参数,但不是唯一的参数。
随着电力系统容量的不断增大,一般情况下单相短路电流值较大。在有效接地系统中单相接地时的短路电流一般都超过4kA,而大部分变电所接地电阻又很难做到0.5Ω。因此,从安全运行的角度出发,不管在什么情况下,都应该验算地网的接触电势和跨步电压,必要时应采取防止高电位外引的隔离措施,这也是我国目前变电站电气接地设计所最常采用的方法。
二、变电站超高电压接地系统设计
(一)入地短路电流
Imax是考虑到换流站长期发展规划时的最大接地短路电流,取值为50kA。
In为发生最大接地短路时,流往变电所主变压器中性点的短路电流。当变压器只有1个中性点,发生所内接地时,In=30%Imax,有2个中性点时,约等于50%Imax。这里假定换流站新建工程是为变压器1个中性点接地,所以发生所内接地时,取In=30%Imax=15kA。
Ke1为短路时,与变电所接地网相连的所有避雷线的分流系数,Ke1应由避雷线的出线回路数确定,出线为1路时,取0.15,2路时取0.28,3路时取0.38,4路时取0.47,5路以上时取0.5~0.58,且应根据出线所跨走廊的分流效果做出相应的增减。这里我们假定避雷线出线回路为2,故Ke1=0.28。
Ke2为所外接地时,避雷线向两侧的分流系数,一般取0.18,这仅适于变电所内有变压器中性点接地的所外接地。
经过公式计算:
I=(Imax-In)(1-Ke1)=(50-15)(1-0.28)≈25.2(kA) (1)
I=In(1-Ke2)=15(1-0.18)=12.3(kA)(2)
比较上述两式,可以得出(1)式的计算结果明显大于(2)式,故取(1)式的计算结果,在乘以发展系数1.2,得出入地电流为I=30.2kA。
(二)接地网面积选择
取土壤电阻率为500Ω•m,接地网埋深为0.6m,网格间距为10m,导体等值半径为0.02m,水平接地网面积从100×100m2逐渐增加到600×600m2。随着接地网面积的增加接地电阻值在不断减少。在200×200m2以后,接地网面积的增加对接地电阻值的降低影响有所减少,这是因为面积增大后,各水平导体之间屏蔽作用增加,对电流的散流有抑制作用,面积越大,屏蔽、抑制作用越明显。
(三)接地电阻
换流站的最大入地短路电流为30.2kA。根据我国电力行业接地规程的规定:有效接地和低电阻接地系统中发电厂、变电站接地装置的接地电阻R一般情况下应满足R
我国电力行业接地规程中还规定:接地装置的接地电阻不符合R
变电站的接地必须与二次系统的安全结合起来考虑,在二者之间求得一个较好的平衡。系统正常工作时地网电位接近于零,而故障时流过地网的电流将在地网接地电阻上产生压降,即地电位升高。如不考虑短路时二次电缆芯线上的感应电位,短路时二次电缆承受的电位差即为地电位升高,该电位差施加在二次电缆的绝缘上,因此地电位升高直接决定于二次电缆的交流绝缘耐压及二次设备的交流绝缘耐压值。综合各方面的因素,如果能够处理通信线的高电位引出问题,变电站的地电位升高取5kV是可行的。
将地电位升提高到5kV,如果换流站的最大入地短路电流为30.2kA,换流站对应接地电阻R应小于0.165344Ω。
(四)接地导体截面积
接地导体截面一般根据热稳定性来确定,通过接地导体的电流最大的情况一般发生在母线单相接地短路故障时,换流站最大单相接地短路电流为50kA,根据我国电力行业标准《交流电气装置的接地》的计算公式有:
S≥ (3)
上式中, S为接地线最小截面,mm2;
IF为流过短路线的短路电流稳定值,A(根据系统5至10年的发展规划,按系统最大运行方式确定);
C为接地线材料的稳定系数,根据材料的种类、性能及最高允许温度和短路前地线的初始温度确定(钢导体K取70,铜导体K取210,铝导体K取120);
tj为短路等效持续的时间,单位为s。
式中,取IF=50000A,tj=0.355,如果材料采用钢材时,C取65,可以得出最小截面积S:S≥455mm2;根据(IEEEStd665-1995)发电站接地标准中的推荐热稳定计算公式:
Sk≥aI(4)
式中,取IF=50000A,tj=0.355,K=60,a=1,可得S≥493mm2。
结合地网的自然腐蚀,应采用的接地体最小截面积应为:
Smin=S(1+a)n
上式中,S为满足热稳定要求的最小截面积;a为接地材料的自然腐蚀率;n为接地网使用年限。
根据相关资料,铜材的年自然腐蚀率为0.2%,普通钢为2.2%,镀锌钢为0.5%,如果选用镀锌钢材,按50年的使用寿命计算,接地体的最小截面积应不小于642 mm2。
三、结语
随着电力系统的发展,电网容量的增大,电力系统发生故障时经接地网流散和电流愈来愈大,短路电流往往会达到几十千安,接地电阻若有很小的误差即可导致难以弥补的损害,所以,近年来变电站电气接地系统的设计,其设计重点已经转向如何准确地测量和计算接地网的接地电阻。
本论文主要针对电气接地系统,给出了详细的接地设计方案和参数计算,对于变电站超高压接地系统的设计,无论是在设计计算还是在系统应用方面,均有一定的借鉴指导意义。
参考文献
[1]陈家斌.接地技术与接地装置[M].北京:中国电力出版社,2002.
[2]何金良.利用周边地理环境降低城区变电所接地电阻[J].中国电力,2001,(11).
论文关键词:碳纤维智能层,智能悬臂梁,传感特性
引言
碳纤维复合材料具有良好的力学性能和稳定的化学性能,作为一种结构材料已被广泛应用于航空航天、土木工程以及人们日常生活中的各个领域。同时,碳纤维复合材料具有良好的导电功能和力电效应(电阻(率)随应变等力学参数线性可逆变化),具有结构自监测和电磁屏蔽等多种智能特性。经过研究发现,树脂基碳纤维复合材料作为一种智能材料,具有良好的灵敏度和稳定性,可通过监测智能层电阻率的变化,从而实现对结构的应变测量。
本文探讨一种“U”型碳纤维树脂基智能层作为传感元件,具有结构简单,稳定性好,灵敏度高等优点,尤其是在树脂基复合材料结构的检测中的应用,相对于其他传感元件(如应变片、光纤传感器件等)而言,其具有本征特性的优势,因而在树脂基复合材料结构监测中具有潜在的应用前景。
1智能悬臂梁实验
1.1测试原理
以悬臂梁结构形式来说明智能层的应用原理,如图1与图2所示。将图2所示长为c的“U”型树脂基碳纤维智能层贴在悬臂梁上部,在自由端施加集中载荷F。由于碳纤维智能层测量的是悬臂梁的线应变,需要确定荷载F与智能层所测线应变之间的关系。
收稿日期:
作者简介:尹春根(1984-),男,在读硕士;武汉,武汉理工大学理学院(430070)