前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的测控技术论文主题范文,仅供参考,欢迎阅读并收藏。
装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最核心的技术。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。
数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域:(1)机械制造技术;(2)信息处理、加工、传输技术;(3)自动控制技术;(4)伺服驱动技术;(5)传感器技术;(6)软件技术等。
1数控技术的发展趋势
数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现展的大趋势。从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面[1~4]。
1.1高速、高精加工技术及装备的新趋势
效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(CIRP)将其确定为21世纪的中心研究方向之一。
在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。这些都对加工装备提出了高速、高精和高柔性的要求。
从EMO2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右。目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床。美国CINCINNATI公司的HyperMach机床进给速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60000r/min。加工一薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国DMG公司的双主轴车床的主轴速度及加速度分别达12*!000r/mm和1g。
在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~1.5μm,并且超精密加工精度已开始进入纳米级(0.01μm)。
在可靠性方面,国外数控装置的MTBF值已达6000h以上,伺服系统的MTBF值达到30000h以上,表现出非常高的可靠性。
为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。
1.25轴联动加工和复合加工机床快速发展
采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。
当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。因此促进了复合主轴头类型5轴联动机床和复合加工机床(含5面加工机床)的发展。
在EMO2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工。德国DMG公司展出DMUVoution系列加工中心,可在一次装夹下5面加工和5轴联动加工,可由CNC系统控制或CAD/CAM直接或间接控制。
1.3智能化、开放式、网络化成为当代数控系统发展的主要趋势
21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。
为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题。目前许多国家对开放式数控系统进行研究,如美国的NGC(TheNextGenerationWork-Station/MachineControl)、欧共体的OSACA(OpenSystemArchitectureforControlwithinAutomationSystems)、日本的OSEC(OpenSystemEnvironmentforController),中国的ONC(OpenNumericalControlSystem)等。数控系统开放化已经成为数控系统的未来之路。所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。
网络化数控装备是近两年国际著名机床博览会的一个新亮点。数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。国内外一些著名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在EMO2001展中,日本山崎马扎克(Mazak)公司展出的“CyberProductionCenter”(智能生产控制中心,简称CPC);日本大隈(Okuma)机床公司展出“ITplaza”(信息技术广场,简称IT广场);德国西门子(Siemens)公司展出的OpenManufacturingEnvironment(开放制造环境,简称OME)等,反映了数控机床加工向网络化方向发展的趋势。
1.4重视新技术标准、规范的建立
1.4.1关于数控系统设计开发规范
如前所述,开放式数控系统有更好的通用性、柔性、适应性、扩展性,美国、欧共体和日本等国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范(OMAC、OSACA、OSEC)的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和规范的制定,预示了数控技术的一个新的变革时期的来临。我国在2000年也开始进行中国的ONC数控系统的规范框架的研究和制定。
1.4.2关于数控标准
数控标准是制造业信息化发展的一种趋势。数控技术诞生后的50年间的信息交换都是基于ISO6983标准,即采用G,M代码描述如何(how)加工,其本质特征是面向加工过程,显然,他已越来越不能满足现代数控技术高速发展的需要。为此,国际上正在研究和制定一种新的CNC系统标准ISO14649(STEP-NC),其目的是提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程,乃至各个工业领域产品信息的标准化。
STEP-NC的出现可能是数控技术领域的一次革命,对于数控技术的发展乃至整个制造业,将产生深远的影响。首先,STEP-NC提出一种崭新的制造理念,传统的制造理念中,NC加工程序都集中在单个计算机上。而在新标准下,NC程序可以分散在互联网上,这正是数控技术开放式、网络化发展的方向。其次,STEP-NC数控系统还可大大减少加工图纸(约75%)、加工程序编制时间(约35%)和加工时间(约50%)。
目前,欧美国家非常重视STEP-NC的研究,欧洲发起了STEP-NC的IMS计划(1999.1.1~2001.12.31)。参加这项计划的有来自欧洲和日本的20个CAD/CAM/CAPP/CNC用户、厂商和学术机构。美国的STEPTools公司是全球范围内制造业数据交换软件的开发者,他已经开发了用作数控机床加工信息交换的超级模型(SuperModel),其目标是用统一的规范描述所有加工过程。目前这种新的数据交换格式已经在配备了SIEMENS、FIDIA以及欧洲OSACA-NC数控系统的原型样机上进行了验证。
2对我国数控技术及其产业发展的基本估计
我国数控技术起步于1958年,近50年的发展历程大致可分为3个阶段:第一阶段从1958年到1979年,即封闭式发展阶段。在此阶段,由于国外的技术封锁和我国的基础条件的限制,数控技术的发展较为缓慢。第二阶段是在国家的“六五”、“七五”期间以及“八五”的前期,即引进技术,消化吸收,初步建立起国产化体系阶段。在此阶段,由于改革开放和国家的重视,以及研究开发环境和国际环境的改善,我国数控技术的研究、开发以及在产品的国产化方面都取得了长足的进步。第三阶段是在国家的“八五”的后期和“九五”期间,即实施产业化的研究,进入市场竞争阶段。在此阶段,我国国产数控装备的产业化取得了实质性进步。在“九五”末期,国产数控机床的国内市场占有率达50%,配国产数控系统(普及型)也达到了10%。
纵观我国数控技术近50年的发展历程,特别是经过4个5年计划的攻关,总体来看取得了以下成绩。
a.奠定了数控技术发展的基础,基本掌握了现代数控技术。我国现在已基本掌握了从数控系统、伺服驱动、数控主机、专机及其配套件的基础技术,其中大部分技术已具备进行商品化开发的基础,部分技术已商品化、产业化。
b.初步形成了数控产业基地。在攻关成果和部分技术商品化的基础上,建立了诸如华中数控、航天数控等具有批量生产能力的数控系统生产厂。兰州电机厂、华中数控等一批伺服系统和伺服电机生产厂以及北京第一机床厂、济南第一机床厂等若干数控主机生产厂。这些生产厂基本形成了我国的数控产业基地。
c.建立了一支数控研究、开发、管理人才的基本队伍。
虽然在数控技术的研究开发以及产业化方面取得了长足的进步,但我们也要清醒地认识到,我国高端数控技术的研究开发,尤其是在产业化方面的技术水平现状与我国的现实需求还有较大的差距。虽然从纵向看我国的发展速度很快,但横向比(与国外对比)不仅技术水平有差距,在某些方面发展速度也有差距,即一些高精尖的数控装备的技术水平差距有扩大趋势。从国际上来看,对我国数控技术水平和产业化水平估计大致如下。
a.技术水平上,与国外先进水平大约落后10~15年,在高精尖技术方面则更大。
b.产业化水平上,市场占有率低,品种覆盖率小,还没有形成规模生产;功能部件专业化生产水平及成套能力较低;外观质量相对差;可靠性不高,商品化程度不足;国产数控系统尚未建立自己的品牌效应,用户信心不足。
c.可持续发展的能力上,对竞争前数控技术的研究开发、工程化能力较弱;数控技术应用领域拓展力度不强;相关标准规范的研究、制定滞后。
分析存在上述差距的主要原因有以下几个方面。
a.认识方面。对国产数控产业进程艰巨性、复杂性和长期性的特点认识不足;对市场的不规范、国外的封锁加扼杀、体制等困难估计不足;对我国数控技术应用水平及能力分析不够。
b.体系方面。从技术的角度关注数控产业化问题的时候多,从系统的、产业链的角度综合考虑数控产业化问题的时候少;没有建立完整的高质量的配套体系、完善的培训、服务网络等支撑体系。
c.机制方面。不良机制造成人才流失,又制约了技术及技术路线创新、产品创新,且制约了规划的有效实施,往往规划理想,实施困难。
d.技术方面。企业在技术方面自主创新能力不强,核心技术的工程化能力不强。机床标准落后,水平较低,数控系统新标准研究不够。
3对我国数控技术和产业化发展的战略思考
3.1战略考虑
我国是制造大国,在世界产业转移中要尽量接受前端而不是后端的转移,即要掌握先进制造核心技术,否则在新一轮国际产业结构调整中,我国制造业将进一步“空芯”。我们以资源、环境、市场为代价,交换得到的可能仅仅是世界新经济格局中的国际“加工中心”和“组装中心”,而非掌握核心技术的制造中心的地位,这样将会严重影响我国现代制造业的发展进程。
我们应站在国家安全战略的高度来重视数控技术和产业问题,首先从社会安全看,因为制造业是我国就业人口最多的行业,制造业发展不仅可提高人民的生活水平,而且还可缓解我国就业的压力,保障社会的稳定;其次从国防安全看,西方发达国家把高精尖数控产品都列为国家的战略物质,对我国实现禁运和限制,“东芝事件”和“考克斯报告”就是最好的例证。
3.2发展策略
从我国基本国情的角度出发,以国家的战略需求和国民经济的市场需求为导向,以提高我国制造装备业综合竞争能力和产业化水平为目标,用系统的方法,选择能够主导21世纪初期我国制造装备业发展升级的关键技术以及支持产业化发展的支撑技术、配套技术作为研究开发的内容,实现制造装备业的跨跃式发展。
强调市场需求为导向,即以数控终端产品为主,以整机(如量大面广的数控车床、铣床、高速高精高性能数控机床、典型数字化机械、重点行业关键设备等)带动数控产业的发展。重点解决数控系统和相关功能部件(数字化伺服系统与电机、高速电主轴系统和新型装备的附件等)的可靠性和生产规模问题。没有规模就不会有高可靠性的产品;没有规模就不会有价格低廉而富有竞争力的产品;当然,没有规模中国的数控装备最终难以有出头之日。
在高精尖装备研发方面,要强调产、学、研以及最终用户的紧密结合,以“做得出、用得上、卖得掉”为目标,按国家意志实施攻关,以解决国家之急需。
在竞争前数控技术方面,强调创新,强调研究开发具有自主知识产权的技术和产品,为我国数控产业、装备制造业乃至整个制造业的可持续发展奠定基础。
参考文献:
[1]中国机床工具工业协会行业发展部.CIMT2001巡礼[J].世界制造技术与装备市场,2001(3):18-20.
[2]梁训王宣,周延佑.机床技术发展的新动向[J].世界制造技术与装备市场,2001(3):21-28.
摘要:简要介绍了当今世界数控技术及装备发展的趋势及我国数控装备技术发展和产业化的现状,在此基础上讨论了在我国加入WTO和对外开放进一步深化的新环境下,发展我国数控技术及装备、提高我国制造业信息化水平和国际竞争能力的重要性,并从战略和策略两个层面提出了发展我国数控技术及装备的几点看法。装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最核心的技术。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径
数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域:(1)机械制造技术;(2)信息处理、加工、传输技术;(3)自动控制技术;(4)伺服驱动技术;(5)传感器技术;(6)软件技术等。1数控技术的发展趋势数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现展的大趋势。从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面[1~4]。1.1高速、高精加工技术及装备的新趋势
效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(CIRP)将其确定为21世纪的中心研究方向之一。
在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。这些都对加工装备提出了高速、高精和高柔性的要求。
从EMO2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右。目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床。美国CINCINNATI公司的HyperMach机床进给速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60000r/min。加工一薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国DMG公司的双主轴车床的主轴速度及加速度分别达12*!000r/mm和1g。
在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~1.5μm,并且超精密加工精度已开始进入纳米级(0.01μm)。
在可靠性方面,国外数控装置的MTBF值已达6000h以上,伺服系统的MTBF值达到30000h以上,表现出非常高的可靠性。
为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。
1.25轴联动加工和复合加工机床快速发展
采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。
当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。因此促进了复合主轴头类型5轴联动机床和复合加工机床(含5面加工机床)的发展。
在EMO2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工。德国DMG公司展出DMUVoution系列加工中心,可在一次装夹下5面加工和5轴联动加工,可由CNC系统控制或CAD/CAM直接或间接控制。1.3智能化、开放式、网络化成为当代数控系统发展的主要趋势
21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。
为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题。目前许多国家对开放式数控系统进行研究,如美国的NGC(TheNextGenerationWork-Station/MachineControl)、欧共体的OSACA(OpenSystemArchitectureforControlwithinAutomationSystems)、日本的OSEC(OpenSystemEnvironmentforController),中国的ONC(OpenNumericalControlSystem)等。数控系统开放化已经成为数控系统的未来之路。所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。
网络化数控装备是近两年国际著名机床博览会的一个新亮点。数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。国内外一些著名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在EMO2001展中,日本山崎马扎克(Mazak)公司展出的“CyberProductionCenter”(智能生产控制中心,简称CPC);日本大隈(Okuma)机床公司展出“ITplaza”(信息技术广场,简称IT广场);德国西门子(Siemens)公司展出的OpenManufacturingEnvironment(开放制造环境,简称OME)等,反映了数控机床加工向网络化方向发展的趋势。1.4重视新技术标准、规范的建立1.4.1关于数控系统设计开发规范
如前所述,开放式数控系统有更好的通用性、柔性、适应性、扩展性,美国、欧共体和日本等国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范(OMAC、OSACA、OSEC)的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和规范的制定,预示了数控技术的一个新的变革时期的来临。我国在2000年也开始进行中国的ONC数控系统的规范框架的研究和制定1.4.2关于数控标准
数控标准是制造业信息化发展的一种趋势。数控技术诞生后的50年间的信息交换都是基于ISO6983标准,即采用G,M代码描述如何(how)加工,其本质特征是面向加工过程,显然,他已越来越不能满足现代数控技术高速发展的需要。为此,国际上正在研究和制定一种新的CNC系统标准ISO14649(STEP-NC),其目的是提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程,乃至各个工业领域产品信息的标准化。
STEP-NC的出现可能是数控技术领域的一次革命,对于数控技术的发展乃至整个制造业,将产生深远的影响。首先,STEP-NC提出一种崭新的制造理念,传统的制造理念中,NC加工程序都集中在单个计算机上。而在新标准下,NC程序可以分散在互联网上,这正是数控技术开放式、网络化发展的方向。其次,STEP-NC数控系统还可大大减少加工图纸(约75%)、加工程序编制时间(约35%)和加工时间(约50%)。
目前,欧美国家非常重视STEP-NC的研究,欧洲发起了STEP-NC的IMS计划(1999.1.1~2001.12.31)。参加这项计划的有来自欧洲和日本的20个CAD/CAM/CAPP/CNC用户、厂商和学术机构。美国的STEPTools公司是全球范围内制造业数据交换软件的开发者,他已经开发了用作数控机床加工信息交换的超级模型(SuperModel),其目标是用统一的规范描述所有加工过程。目前这种新的数据交换格式已经在配备了SIEMENS、FIDIA以及欧洲OSACA-NC数控系统的原型样机上进行了验证。2对我国数控技术及其产业发展的基本估计我国数控技术起步于1958年,近50年的发展历程大致可分为3个阶段:第一阶段从1958年到1979年,即封闭式发展阶段。在此阶段,由于国外的技术封锁和我国的基础条件的限制,数控技术的发展较为缓慢。第二阶段是在国家的“六五”、“七五”期间以及“八五”的前期,即引进技术,消化吸收,初步建立起国产化体系阶段。在此阶段,由于改革开放和国家的重视,以及研究开发环境和国际环境的改善,我国数控技术的研究、开发以及在产品的国产化方面都取得了长足的进步。第三阶段是在国家的“八五”的后期和“九五”期间,即实施产业化的研究,进入市场竞争阶段。在此阶段,我国国产数控装备的产业化取得了实质性进步。在“九五”末期,国产数控机床的国内市场占有率达50%,配国产数控系统(普及型)也达到了10%。
纵观我国数控技术近50年的发展历程,特别是经过4个5年计划的攻关,总体来看取得了以下成绩。
a.奠定了数控技术发展的基础,基本掌握了现代数控技术。我国现在已基本掌握了从数控系统、伺服驱动、数控主机、专机及其配套件的基础技术,其中大部分技术已具备进行商品化开发的基础,部分技术已商品化、产业化。
b.初步形成了数控产业基地。在攻关成果和部分技术商品化的基础上,建立了诸如华中数控、航天数控等具有批量生产能力的数控系统生产厂。兰州电机厂、华中数控等一批伺服系统和伺服电机生产厂以及北京第一机床厂、济南第一机床厂等若干数控主机生产厂。这些生产厂基本形成了我国的数控产业基地。
c.建立了一支数控研究、开发、管理人才的基本队伍。
虽然在数控技术的研究开发以及产业化方面取得了长足的进步,但我们也要清醒地认识到,我国高端数控技术的研究开发,尤其是在产业化方面的技术水平现状与我国的现实需求还有较大的差距。虽然从纵向看我国的发展速度很快,但横向比(与国外对比)不仅技术水平有差距,在某些方面发展速度也有差距,即一些高精尖的数控装备的技术水平差距有扩大趋势。从国际上来看,对我国数控技术水平和产业化水平估计大致如下。
a.技术水平上,与国外先进水平大约落后10~15年,在高精尖技术方面则更大。
b.产业化水平上,市场占有率低,品种覆盖率小,还没有形成规模生产;功能部件专业化生产水平及成套能力较低;外观质量相对差;可靠性不高,商品化程度不足;国产数控系统尚未建立自己的品牌效应,用户信心不足。
c.可持续发展的能力上,对竞争前数控技术的研究开发、工程化能力较弱;数控技术应用领域拓展力度不强;相关标准规范的研究、制定滞后。
分析存在上述差距的主要原因有以下几个方面。
a.认识方面。对国产数控产业进程艰巨性、复杂性和长期性的特点认识不足;对市场的不规范、国外的封锁加扼杀、体制等困难估计不足;对我国数控技术应用水平及能力分析不够。
b.体系方面。从技术的角度关注数控产业化问题的时候多,从系统的、产业链的角度综合考虑数控产业化问题的时候少;没有建立完整的高质量的配套体系、完善的培训、服务网络等支撑体系。
c.机制方面。不良机制造成人才流失,又制约了技术及技术路线创新、产品创新,且制约了规划的有效实施,往往规划理想,实施困难。
d.技术方面。企业在技术方面自主创新能力不强,核心技术的工程化能力不强。机床标准落后,水平较低,数控系统新标准研究不够。
3对我国数控技术和产业化发展的战略思考3.1战略考虑
我国是制造大国,在世界产业转移中要尽量接受前端而不是后端的转移,即要掌握先进制造核心技术,否则在新一轮国际产业结构调整中,我国制造业将进一步“空芯”。我们以资源、环境、市场为代价,交换得到的可能仅仅是世界新经济格局中的国际“加工中心”和“组装中心”,而非掌握核心技术的制造中心的地位,这样将会严重影响我国现代制造业的发展进程。
我们应站在国家安全战略的高度来重视数控技术和产业问题,首先从社会安全看,因为制造业是我国就业人口最多的行业,制造业发展不仅可提高人民的生活水平,而且还可缓解我国就业的压力,保障社会的稳定;其次从国防安全看,西方发达国家把高精尖数控产品都列为国家的战略物质,对我国实现禁运和限制,“东芝事件”和“考克斯报告”就是最好的例证。3.2发展策略
从我国基本国情的角度出发,以国家的战略需求和国民经济的市场需求为导向,以提高我国制造装备业综合竞争能力和产业化水平为目标,用系统的方法,选择能够主导21世纪初期我国制造装备业发展升级的关键技术以及支持产业化发展的支撑技术、配套技术作为研究开发的内容,实现制造装备业的跨跃式发展
强调市场需求为导向,即以数控终端产品为主,以整机(如量大面广的数控车床、铣床、高速高精高性能数控机床、典型数字化机械、重点行业关键设备等)带动数控产业的发展。重点解决数控系统和相关功能部件(数字化伺服系统与电机、高速电主轴系统和新型装备的附件等)的可靠性和生产规模问题。没有规模就不会有高可靠性的产品;没有规模就不会有价格低廉而富有竞争力的产品;当然,没有规模中国的数控装备最终难以有出头之日。
在高精尖装备研发方面,要强调产、学、研以及最终用户的紧密结合,以“做得出、用得上、卖得掉”为目标,按国家意志实施攻关,以解决国家之急需。
在竞争前数控技术方面,强调创新,强调研究开发具有自主知识产权的技术和产品,为我国数控产业、装备制造业乃至整个制造业的可持续发展奠定基础。
参考文献:
[1]中国机床工具工业协会行业发展部.CIMT2001巡礼[J].世界制造技术与装备市场,2001(3):18-20.
[2]梁训王宣,周延佑.机床技术发展的新动向[J].世界制造技术与装备市场,2001(3):21-28.
测控专业主要课程 精密机械与仪器设计、精密机械制造工程、模拟电子技术基础、数字电子技术基础,微型计算机原理与应用、控制工程基础、信号分析与处理、精密测控与系统等。
测控专业主干学科:光学工程、仪器科学与技术。
测控专业主要实践性环节:包括军训、金工、电工、电子实习,认识实习,生产实习,社会实践,课程设计,毕业设计(论文)等。
测控专业就业方向 本专业毕业具备精密仪器设计制造以及测量与控制方面的基础知识与应用能力,能在国民经济各部门从事测量与控制领域内有关技术、仪器与系统的设计制造、科技开发、应用研究、运行管理。该专业既可以进入生产工程自动化企业从事自动控制、自动化检测等方面的工作,也可以在科研单位进行仪器仪表的开发和设计,同时还可以在工程检测领域、计算机应用领域找到适合本专业个人发展的空间。
测控专业培养要求 毕业生应获得以下几方面的知识和能力:
1. 具有较扎实的自然科学基础,较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力;
2. 较系统地掌握本专业领域宽广的技术理论基础知识,主要包括机械学、电工电子学、光学、传感器技术、测量与控制、市场经济及企业管理等基础知识;
3. 掌握光、机、电、计算机相结合的当代测控技术和实验研究能力,具有现代测控系统与仪器的设计、开发能力;
4. 具有较强的外语应用能力;
论文关键词:IEEE1588,时间同步,测控系统
随着信息网络通信技术的迅猛发展,数据传输网络化已经成为测控系统新的发展方向。由于测控通信系统对于数据传输的实时性、精确性、稳定性要求非常严格,所以现代科技对时钟同步更高,即要求时间上不仅要精确,更要一致。将时钟同步技术运用与测控结点,可以避免因时钟不同步而带来的时空无法正确衔接对应的弊端。时钟同步理念运用于从空通信系统的重要意义即在于(1)及时接收信息,进而对该信息进行合理的解释;(2)使测控系统的各项设备能够更好的协调配合工作。
1 网络化测控系统时间同步协议的选择
目前,我国采用的时钟同步技术主要有三种,分别是网络时间同步协议(Network Time Protocol,简称NTP),全球定位系统(Global Position System,简称GPS)、北斗时钟同步和IEEE1588精确时间同步协议(Precision Time Protocol,简称PTP)。下面我们通过阐述各种技术的主要特点,以供因材选择需要使用的技术。
1.1 NTP技术,从名称即可知其与网络有关,它的主要特点在于不仅成本低,而且可靠性强,但是不足之处在于精确度不高,仅能达到1-50ms(因特网)、0.1ms(局域网)毫秒级的精确度。
1.2 GPS技术在国家发展建设的各个领域都发挥了巨大的作用,其主要特点在于不仅能够24小时实时自动测量,而且能够实现集测量距离、定位空间、定位时间三功能于一体的高标准技术。另外,GPS具有高精度的技术,其精确度可达到10~100ns的纳秒级别。这种高精度的技术,也对外在适用条件即卫星能见度方面作出了高标准的要求,硬件设施方面还需要安装接受卫星信号的各种设备,因此其适用场合有限。
1.3 IEEE1588精确时间同步协议PTP技术具有计算量相对较小,能够快速定位时间,相关配置维护工作也相对简单,低成本等特点。该技术与NTP都是与网络有关的时钟同步协议,但这种技术比NTP的精确度更高,可以与GPS相媲美,而且不需要连接与卫星相关的设备。该项技术支持边界时钟和透明时钟,支持这两种时钟可以使PTP技术避免由与网络相关的设备限制网络覆盖面问题的发生。
综上所示,IEEE1588协议技术在时间同步方面较NTP、GPS更具优势,具有在各个场合实现时间同步测控的功能。
2 IEEE1588协议(PTP)原理和系统组成
2.1 原理
IEEE1588技术需要通过偏差测量和延时测量两个阶段实现时钟同步。下面分别介绍这两个阶段的运行原理:偏差测量阶段的功能在于尽量修正或消除主从时钟的时间差。工商管理论文用来修正主时钟和从属时钟的时间差。该阶段在修正时间偏差的过程中,主时钟一般每秒(时间可根据需求设定)同步信息,并且在的同时记录时间。如图1所示,假设首先主从时间分别为Am、As,在Bm的时间点,主时钟发送C时间同步信息,并且记录C时间同步信息的时间Bm。在Bs的时间点从属时钟接收到C时间同步信息,并且记录C时间同步信息的时间Bs。其次主时钟通过D信息发送准确时间,根据公式将计算出从属时钟收到D信息与主时钟的时间差。最后,依据计算出的偏差将当地的时钟调整成语设备相同的时间即可完成时间同步的工作。
2.2系统组成
IEEE1588协议系统是按照一定的结构网络分布的,该系统中的逻辑单位是域,主从时间的同步在域设备中进行。设备的主从同步端口由实时时钟组成,主端口在下面,从端口在上面。系统中的时钟频率由高级主时钟决定。PTP系统中的设备较多,主要包括普通、边界、端到端透明、对等透明时钟等。
PTP系统运作的方式主要有两种,分别为纯软件方式、硬件辅助方式两种。,根据时间戳产生的方式的不同,分为纯软件方式和硬件辅助方式。前者没有硬件的辅助,仅仅使用软件完成时间同步需要的所有功能,最终因演示抖动产生时间差,时间同步的精度不高。而硬件辅助方式则是由软件、硬件统统协调,达到高精度时间同步的目标。
3 IEEE1588的测控系统时间同步功能实现
IEEE1588协议通过外置模块实现测控系统的时间同步,在外置模块的主导下,系统时钟与主机达到时频同步的节奏,即在时间、时间单位、频率、相位等方面主从时间都相同。系统工作方案见图2:
4结束语
信息网络技术的高速发展,带动着测控系统的更新与变革,网络化已经成为发展趋势。时间同步是各测控设备的关键技术。只有使网络测控设备提供的时间同步,才能够使设备的测控结果精确,为测控结果的正确性提供有力的保障。本文通过比较各种同步技术的特点,最终锁定,IEEE1588协议,关键在于其具有高精确度、适用场合广泛、定位时间迅速、系统工作程序简单易操作等优点。该技术在网络化测控系统中的应用,在测控系统时间同步方面实现了新的突破,将对我国测控系统的网络信息化发展具有划时代的意义。
参考文献
[1] 李聪,IEEE1588时钟同步技术在分布式系统中的应用[D].西安:西安工业大学,2010.
[2] 黄健,刘鹏,杨瑞民,IEEE1588精确时钟同步协议从时钟设计[J].测控技术与仪器仪表,2010.
关键词:变电站,综合自动化,结构模式,发展趋势
变电站综合自动化系统是一种以计算机为主,将变电站的一、二次设备(包括测量、信号、控制、保护、自动、远动等)经过功能组合形成的标准化、模块化、网络化的计算机监控系统。变电站综合自动化,是将变电站的二次设备经过功能的重新组合和优化设计,利用先进的计算机技术、自动化技术和通信技术,实现对全变电站的主要设备和输配电线路的自动监视、测量、控制和微机保护,以及与调度通信等综合性的自动化功能。
1变电站综合自动化的结构模式
1.1 集中式结构
集中式一般采用功能较强的计算机并扩展其I/O接口,集中采集变电站的模拟量和数量等信息,集中进行计算和处理,分别完成微机监控、微机保护和自动控制等功能。论文参考。集中式结构也并非指只由一台计算机完成保护、监控等全部功能。多数集中式结构的微机保护、微机监控和与调度等通信的功能也是由不同的微型计算机完成的,只是每台微型计算机承担的任务多些。
1.2 分布式结构
该系统结构的最大特点是将变电站自动化系统的功能分散给多台计算机来完成。分布式模式一般按功能设计,采用主从CPU系统工作方式,多CPU系统提高了处理并行多发事件的能力,解决了CPU运算处理的瓶颈问题。各功能模块(通常是多个CPU)之间采用网络技术或串行方式实现数据通信,选用具有优先级的网络系统较好地解决了数据传输的瓶颈问题,提高了系统的实时性。分布式结构方便系统扩展和维护,局部故障不影响其它模块正常运行。该模式在安装上可以形成集中组屏或分层组屏两种系统组态结构,较多地使用于中、低压变电站。
1.3 分布分散(层)式结构
分布分散式结构系统从逻辑上将变电站自动化系统划分为两层,即变电站层(站级测控单元)和间隔层(间隔单元)。也可分为三层,即变电站层、通信层和间隔层。
该系统的主要特点是按照变电站的元件,断路器间隔进行设计。将变电站一个断路器间隔所需要的全部数据采集、保护和控制等功能集中由一个或几个智能化的测控单元完成。测控单元可直接放在断路器柜上或安装在断路器间隔附近,相互之间用光缆或特殊通信电缆连接。这种系统代表了现代变电站自动化技术发展的趋势,大幅度地减少了连接电缆,减少了电缆传送信息的电磁干扰,且具有很高的可靠性,比较好的实现了部分故障不相互影响,方便维护和扩展,大量现场工作可一次性地在设备制造厂家完成。
2 我国变电站自动化发展阶段
按系统模式出现顺序可将变电站自动化发展分为三个阶段:
第一阶段:面向功能设计的集中式RTU加常规保护模式
80年代及以前,是以RTU为基础的远动装置及当地监控为代表。该类系统实际上是在常规的继电保护及二次接线的基础上增设RTU装置,功能主要为与远方调度通信实现“二遥”或“四遥”(遥测、遥信、遥控、遥调);与继电保护及安全自动装置的联结通过硬接点接入或串行口通信较多。此类系统称为集中RTU模式,目前在一些老站改造中仍有少量使用,此阶段为自动化的初级阶段。
第二阶段:面向功能设计的分布式测控装置加微机保护模式。单元式微机保护及按功能设计的分散式微机测控装置得以广泛应用,保护与测控装置相对独立,通过通信管理单元能够将各自信息送到后台或调度端计算机。特点是继电保护(包括安全自动装置)按功能划分的测控装置独立运行,应用了现场总线和网络技术,通过数据通信进行信息交换。此系统电缆互联仍较多,扩展性功能不强。
第三阶段:面向间隔、面向对象(Object-Oriented)设计的分层分布式结构模式。随着计算机技术、网络及通信技术的飞速发展,采用按间隔为对象设计保护测控单元,采用分层分布式的系统结构,形成真正意义上的分层分布式自动化系统。目前国内外主流厂家均采用了此类结构模式。110kV以下电压等级变电站,保护测控装置要求一体化、110kV几以上电压等级保护测控大多按间隔分别设计,对超高压变电站的规模比较大的系统,为减少中间环节,避免通信瓶颈,要求装置直接上以太网与监控后台通信,甚至要求保护和监控网络独立组网,由于采用了先进的网络通信技术和面向对象设计,系统配置灵活、扩展方便。论文参考。
3变电站综合自动化发展趋势
3.1 保护监控一体化
这种方式在35kV及以下的电压等级中已普遍采用,今后在110kV及以上的线路间隔和主变三侧中采用此方式也已是大势所趋。它的好处是功能按一次单元集中化,利于稳定的进行信息采集以及对设备状态进行控制,极大地提高了性能效率比。其目前的缺点也是显而易见的:此种装置的运行可靠性要求极高,否则任何形式的检修维护都将迫使一次设备的停役。可靠性、稳定性要求高,这也是目前110千伏及以上电压等级还采用保护和监控分离设置的原因之一。随着技术的发展,冗余性、在线维护性设计的出现,将使保护监控一体化成为必然。
3.2 人机操作界面接口统一化、运行操作无线化
无人无建筑小室的变电站,变电运行人员如果在就地查看设备和控制操作,将通过一个手持式可视无线终端,边监视一次设备边进行操作控制,所有相关的量化数据将显示在可视无线终端上。
3.3 防误闭锁逻辑验证图形化、规范化、离线模拟化
在220kV及以上的变电站中,随着自动化水平的提高,电动操作设备日益增多,其操作的防误闭锁逻辑将紧密结合于监控系统之中,借助于监控系统的状态采集和控制链路得以实现。而一座变电站的建设都是通过几次扩建才达到终期规模,这就给每次防误闭锁逻辑的实际操作验证带来难题,如何在不影响一次设备停役的情况下模拟出各种运行状态来验证其正反操作逻辑的正确性?图形化、规范化的防误闭逻辑验证模拟操作图正是为解决这一难题而作,其严谨性是建立在监控系统全站的实时数据库之上的,使防误闭锁逻辑验证的离线模拟化成为可能。
3.4 就地通讯网络协议标准化
强大的通讯接口能力,主要通讯部件双备份冗余设计(双CPU、双电源等),采用光纤总线等等,使现代化的综合自动化变电站的各种智能设备通过网络组成一个统一的、互相协调工作的整体。
3.5 数据采集和一次设备一体化
除了常规的电流电压、有功无功、开关状态等信息采集外,对一些设备的在线状态检测量化值,如主变的油位、开关的气体压力等等,都将紧密结合一次设备的传感器,直接采集到监控系统的实时数据库中。高技术的智能化开关、光电式电流电压互感器的应用,必将给数据采集控制系统带来全新的模式。
变电站综合自动化系统是近10多年发展起来的多专业综合技术,是变配电系统的一次革命。随着中国国民经济持续快速发展,社会对电力的需求与日俱增,各行各业对电力质量的要求越来越高,各种智能技术的普遍应用,使得变电站自动化管理和无人值守已是一种必然趋势和必然选择。论文参考。对常规人工控制为主的传统变电站,实施以微机监控为主的综合自动化系统建设,是新时期开创我国电力系统优质、安全、经济运行和全面提升电力自动化水平重大的举措,对巩固和加强电能在中国能源结构中的主导和战略地位,都具有十分迫切和深远意义。
【参考文献】
[1]张惠刚.变电站综合自动化原理与系统[M].北京:中国电力出版社,2004.
[2]江智伟.变电站自动化新技术[M].北京:中国电力出版社,2006.
[3]林栩栩、陆继明.变电站综合自动化技术的发展[J].大众用电,2004
关键词:单片机;智能家居;环境监测控制;传感器
中图分类号:TP332.3 文献标识号:A
A Smart Home Environment Monitoring System based on MCU STC12C5A60S2
CHEN Rongkun 本文由wWW. DyLw.NeT提供,第一 论 文 网专业写作教育教学论文和毕业论文以及服务,欢迎光临DyLW.neT
(Department of Electronic and Information Engineering, QuanZhou Institute of Information Engineering, Quanzhou, Fujian 362000,China)
Abstract: This paper introduces a microcontroller STC12C5A60S2 as the core, which can be used to monitor, control, alarming and display the smart home environment.The system uses sensor technology, microcontroller technology, etc., to achieve the indoor home environment temperature and humidity, light illumination collection, equipment operation and stop control, display and state alarm and other functions. Through the actual test, it has the application value of modern intelligence in the field of smart home environment.
Keywords: Single Chip Microcomputer;Smart Home;Environmental Monitoring Control;Sensor
0引 言
近年来,随着现代家庭生活水平及选择需求的不断提升,智能家居环境监测控制系统在改善现代人居的生活质量和完善生存环境方面正日渐发挥着其实效且重要的技术推动作用。基于此,本文即针对一套智能家居环境监控系统的研发设计而展开了如下研究。具体来说,该系统可对室内温湿度、光照度进行数据采集;还可将通过传感器采集的数据和预设置的参数进行比较,再利用单片机进行编程控制,从而实现智能家居的合理功能配设,并最终获得理想满意实践效果。
1 系统方案设计
系统以STC12C5A60S2型单片机为中央控制器,主要由温湿度检测模块、光照度检测模块、键盘模块、显示模块、风扇及照明模拟模块、报警提示模块和电源模块组成。系统方案如图1所示。
图1 室内环境监测控制系统原理框图
Fig.1 Block diagram of indoor environment monitoring control system
为了节约系统成本、提高系统稳定性及利于维护维修,系统采用模块化设计方式。该系统的主要功能是根据传感器采集的数据与预设定的参数值进行比较,进而通过单片机系统程序来控制相关模块的运行和停止。由图1可见,温湿度、光照度传感器模块可用于实时采集家居环境的数据;键盘模块则用于设定温湿度和光照度的范围;而显示模块将用于显示温湿度和光照度等级及舒适度情况。除此之外,模拟模块即用于设备运行与停止情况的仿真模拟;特别地,LED报警提示模块会用于当温湿度、光照度数据超过预设定值时来进行闪烁报警指示[ ]。
2 系统硬件设计
由于STC12C5A60S2集成度较高,只需要一块单片机加上一些必要的外围电路就可以完成硬件设计。
2.1 最小控制系统
基于系统的要求,芯片选用的是STC系列单片机STC12C5A60S2。其中复位电路、单片机STC12C5A60S2构成最小控制系统。实现电路如图2所示。
图2 最小控制系统电路
Fig.2 Minimum control system circuit
STC12C5A60S2是一款运算速度快、抗干扰能力强、超低功耗、并可支持SPI在线编程的单片机,其内部自带2路PWM控制器、2个定时器、2个串行口支持独立的波特率发生器、3路可编程时钟输出、10位AD转换器、一个SPI接口。时下,则因其价格低廉、功能完善,已在电子行业获得广泛认可和大量应用。
2.2温湿度传感器电路
温湿度传感器电路采用了DHT系列的数字式温湿度传感器DHT11。DHT11是一款内含有已校准数字信号输出的温湿度复合传感器,但仅有一个单总线制串行输出接口,这一配置使系统集成电路变得简易快捷。只是,由于传感器的单总线制特性,造成其发送和接收皆须为三态特性,因而外接上拉电阻,其在常规状态下将呈现为高电平[ ]。具体电路如图3所示。
图3 温湿度传感器电路
Fig.3 Temperature and humidity sensor circuit
2.3光照度传感器电路
光照度传感器电路选用的是BH系列光照传感器BH1750,BH1750 是一种用于两线式串行总线接口的数字型光强度传感器集成电路。这种集成电路可以根据收集的光线强度数据来调整液晶或者键盘背景灯的亮度,并利用自身的高分辨率探测较大范围的光强度变化。设计电路如图4所示。
图4 光照度传感器电路
Fig.4 Illumination sensor circuit
2.4 液晶显示电路
液晶显示电路采用的是LCD12864。LCD12864是一种低电压低功耗、具有4/8位并行、2线或3线串行多种接口方式,内部含有国标一级、二级简体中文字库的点阵图形液晶显示模块;其显示分辨率为128×64, 内置8 192个16*16点汉字,和128个16*8点ASCII字符集;利用该模块灵活接口方式及简单、方便的操作指令,即可构成全中文人机交互图形界面;而且可以显示8*4行、16*16点阵的汉字,并可完成图形显示。由该模块构成的液晶显示方案与同类型的图形点阵液晶显示模块相比,不论硬件电路结构或显示程序都要简洁许多,且该模块的价格也略低于相同点阵的图形液晶模块[ ]。
2.5 风扇及照明模拟电路
风扇及照明模拟电路选用的是NPN系列的8050三极管,其原理即是利用三极管的开关工作状态。具体地,当监测智能家居环境温湿度数值和预设置数值对比不一样时,单片机将输出PWM1信号控制风扇(本文用马达)进行智能调节;当监测室内光照度比较暗时,单片机将输出PWM2信号控制室内照明,相应地进行室灯照明度的智能调节。反之亦然。基本电路如图5所示。
图5 风扇及模拟照明电路
Fig.5 Alarm and analog lighting circuit
2.6键盘电路
键盘模块电路是由4个轻触式按键 S1-S4和最小控制系统组合构建而成。键盘功能设定:按键S1第一次按下修改预设值,而后再按下S2键、S3键或S4键进行参数设置,设置完成后,再按下S1键,参数设置成功。S2键按下就是对任一参数进行设置;S3键和S4键按下则进行相应的加1或减1操作。如果并未按下S1键,即按下了S2键、S3键或S4键,将保持前状态继续进行,数据显示也不会发生改变。
2.7电源电路
单片机及外围电路都需要直流5V工作电压,均由变压器次级线圈输出 ,经由整流、滤波、稳压而得到[ ]。其对应电路如图6所示。
图6 电源电路
Fig 6. Power supply circuit
除以上各电路模块之外,还需要各种信号控制温湿度、光照度、液晶显示、风扇及照明、报警等。各功能模块均通过I/O接口连接至单片机,单片机将集中处理这些信号并作出回应,从而将各个模块连通整合在一起。另外,为了提高系统的抗干扰性能,在有可能出现干扰的输入及输出通道还设置并加强了一定的隔离措施。
3系统软件设计
采用8052内核,具有64K FLASH的程序存储器和1280字节的外部RAM数据存储器,系统选用C语言[ ]进行开发。软件采用模块化设计,重点包括主程序、初始化程序、数据处理显示程序、温湿度传感器DHT11程序、光照度传感器BH1750程序、控制电路程序等。并且将任务分成不同的模块处理,保证系统的稳定性。系统程序流程如图7所示。
图7系统程序流程图
Fig.7 System flow chart
4 系统调试结果 本文由wWW. DyLw.NeT提供,第一 论 文 网专业写作教育教学论文和毕业论文以及服务,欢迎光临DyLW.neT
STC12C5A60S2单片机能监测控制智能家居环境系统的运行与停止,并将监测控制数据显示在LCD上。当监测智能家居环境温湿度数值和预设置数值对比不一样时,单片机将输出PWM1信号控制风扇(本文用马达)进行智能调节;当监测室内光照度比较暗时,单片机将输出PWM2信号控制室内照明,也就是智能调节室灯的照明度。反之亦然。
5 结束语
本文研究开发了集温湿度、光照度监测控制为一体的智能家居环境系统,采用了高精度的传感器,并利用C语言编程,实现智能家居环境参数的精准测量。结果表明,该系统测量结果准确,符合智能家居环境的监测控制要求。
关键词:万能工具显微镜 光栅位移传感器 DSP 误差分析与补偿
万能工具显微镜、分度头、光学测角仪是用传统方法对长度和角度等几何量的测量的常用工具。基于测量精度高、抗干扰能力强、长期稳定性好等优点,这些仪器在几何量测量中扮演重要角色。作为测量仪器中的大型光学仪器,万工显功能特别强大。它可以通过多种方法并结合附件在直角坐标及极坐标下进行各种几何量的测量,在精密测量中使用十分广泛。然而随着现代科技的发展,对精密测量的精度、效率等方面也提出了越来越高的要求,要求光学测量仪器达到高精度、高效率、智能化。
设计应用光栅数显技术,能使万工显测量、读数实现数字化。这种数字化的智能测控系统用以解决老旧万工显操作繁琐、人为误差大、工作效率低等问题。这将是一个很有实际意义的课题,它可以对很多院校和厂矿这类老旧仪器进行改造,提高了读数精度和自动化程度,其在精密测量领域具有广泛的应用和实际的意义。
1 系统需求分析
本课题是基于成熟测量工具万工显的技术升级改造,既要保持原有仪器的精度和稳定性,又要降低测量难度,所以要选择适用于万能工具显微镜改造升级并且经济实用的位移传感器;为避免误差积累影响系统精度,需自行设计机械安装方案;为避免错位松动影响系统稳定,需严格遵守安装说明。
1.基于DSP技术的信号细分及数据采集电路模块设计
原有仪器测量精度较高,稳定性好。改造升级后要达到甚至超过原来的测量精度,保持更好的稳定性。在满足这些要求的情况下,选择DSP技术对信号细分和数据采集。
2.功能软件的设计与开发
为了使样板、螺丝、齿轮、滚刀等的检测从不可能到可能,从不精确到精确,从复杂到简单。自行设计万能工具显功能软件,实现简单几何元素、基本几何元素、组合几何元素等规划测量功能。同时,系统完成了万能工具显微镜数字显示仪表的图形测量、图形构造、图形预置、公制/英制转换、坐标摆正、直角坐标/极坐标转换、参数设置、用户提示等先进的仪表功能的实现。
2.光栅检测原理及光栅位移传感器选型
1.光栅检测原理
光栅位移传感器也称光栅尺或计量光栅,由标尺光栅和光栅读数头两部分组成,指示光栅则装在光栅读数头中。标尺光栅一般固定在机床活动部件上,光栅读数头装在机床固定部件上。目前计量光栅的位置检测技术发展已相当成熟,被广泛用于角度位移检测,也可用于直线位移检测。
2. 光栅信号细分及数据采集
光栅的刻划密度基本上决定了光栅尺的分辨率。然而工艺水平限制光栅的刻划密度受,而且从成本来讲刻花线数越多,就越昂贵,因此很难依靠提高刻划密度来提高光栅尺的分辨率。采用光栅信号细分技术是提高光栅尺分辨率的另一途径。光栅测量系统本就有较高的分辨率,若再配合电子细分则可以达到很高的分辨率,并且随着电子技术的飞速发展,细分实现越来越简单、可靠。根据本课题实用型升级改造的要求,光栅信号细分技术来提高光栅尺的分辨率。
3.软件开发环境
软件开发环境采用为CCS(Code Composer Studio)集成开发环境,该环境下编程代码的可读性更好、可移植性更高,便于二次开发。
1.开发环境
CCS是一种针对TMS320系列DSP的集成开发环境,提供有环境配置、源文件编辑、程序调试、跟踪和分析等工具。它支持如下开发周期的所有阶段:设计、编程和编译、调试、分析。
2.系统软件总体设计
良好的设计方案可以减少软件的代码量,提高软件的通用性、扩展性和可读性。本系统的设计方案和步骤如下:
(1)根据系统设计要求的功能需求,逐级划分模块;
(2)明确各模块之间的数据流传递关系,力求数据传递少,以增强各模块的独立性便于软件编制和调试;
(3)确定软件开发环境,选择设计语言,完成模块功能设计,并分别调试通过;
(4)按照开发式软件设计结构,将各模块有机的结合起来,即成一个较完善的系统。
本系统的核心部分是DSP的软件设计,只有对光栅位移传感器数据正确采样,之后的位移量测量才有实际意义。DSP软件一般包括初始化程序、数据采集程序、中断服务程序、按键处理程序、显示子程序及实现各种算法的功能模块。
4.智能测控系统的精度分析
1.光栅尺的细分误差
依据光栅尺结构的原理,检测光栅尺的长度尺寸值误差都是按照0.02mm为单位布置测量点,刚刚好都是0.02mm节距的整倍数。对小于0.02mm读数的处理则是通过系统内插细分来完成。实验中用精度为0.1um的电感测微仪,以1um距离为间隔反复检测光栅尺的细分误差,可以得出其误差都小于±0.5um的结论。
2.数字显示系统的的检定
查阅万工显检定规程中的相关条款,需要对读数装置的示值误差、读数装置的回程误差和示值误差进行检定。
3.示值误差的检定
检定示值误差也就是光栅尺的准确性。首先要选择检定标准,一般选择已经做过检定的玻璃刻度尺,要求其极限误差不大于0.5um;依据规程的规定横、纵向的示值误差分别进行检定。如果没有玻璃刻度尺,也可以选择万工显上原有的刻度尺作为标准与光栅尺进行比对。万工显原附有的示值误差表,还可以依此进行修正,光栅尺各被检点的实际误差由此来确定,若有超差再用线性补偿系统进行补偿。
5.总结与展望
本课题研究并设计基于光栅数显技术和DSP测控技术的万工显智能测控系统。本系统力图将传统的万工显改造成智能化、数字化的万工显,从而实现万工显检测过程的高精度、高效率。自行设计编程万能工具显微镜测控软件,扩展万工显的测量功能,使一些量的检测由复杂到简单,由不可能到可能。
目前整个系统只是实现了老旧万能工具显微镜的数字化显示和智能化的基本操作,并没有实现自动读数、自动测量等高级功能,所以在系统的改进设计上可以考虑开发自动读数和自动驱停模块,从而提高万能工具显微镜的智能化程度。■
参考文献
[1] 陈智君.便携式万工显自动读数系统的设计研究[D]:[硕士学位论文]. 天津大学,2005
[2] 屠恒海.嵌入式光栅数显测量系统的研究[D]:[硕士学位论文]. 哈尔滨理工大学,2008
【论文摘要】通过结合国内牵引供电综合自动化现场教学需求,根据实际工程项目提出并设计了一种适合供电段操作和运行维护人员的教学培训系统,该方案软硬件结合,具有投资低,便于学员快速入门上岗,也便于升级换代的特点。
1引言
随着铁路大规模提速,东南沿海主要千线正在逐步实现电气化,牵引变电站基本采用了最新的综合自动化技术,对于新建供电段和既有旧的电气化线路,对值班和运行维护及管理人员都提出了较高的专业供电技能要求,采用以往的课堂教学模式难以直观对学员进行系统培训,同时由于现场设备都在投运状态,无法满足学员的操控需求。借鉴国内国际经验,采用全仿真模拟教学软件进行教学已经在飞行员、机车司机等职业培训领域得到推广,但该类系统投资巨大,对学员文化和专业基础要求高,难于适应基层站段人员的应用需求。
因此,有必要采用全新的综合自动化教学培训方式对学员进行仿真培训。设计的教学培训系统首先要直观,便于学员操作,尽量与现场应用模式保持一致,这样通过教学培训可快速满足岗位上岗要求,能很快适应现场的工作,安到厕利地完成操作维护任务。同时也要利用计算机网络和流行的多媒体教学的手段,加速学员的知识培养和动手操作,从设备内部熟悉系统的工作原理和掌握故障排查方法。
2设计原则
为实现基层运行人员快速熟悉和掌握现场综合自动化的目标,充分利用软硬件资源,按典型牵引变电所进行设备配置,一次设备全部采用模拟方式,主变和电容等一次设备可在现场进行知识讲解,断路器和隔离开关为保证操作的直观性,需要配备模拟机构。由于电站设备的备用设计,可按半个牵引变电站进行硬件系统配置,实际操控完全满足全站的操作要求,对于备用电源自投,可采用软件模拟方式进行培训教学。考虑到需要进行保护模拟和测量模拟,需要外配电压电流源,通过其调节可直观进行保护试验和测量观察。
系统构筑一台服务器,通过服务器对保护测控设备进行操作,通过服务器建立基于TCP/IP协议的局域网,配置一定数量的学员机,使资源得到共享,每台学员机都可通过服务器抢占控制权,对保护测控设备进行操作,当不操作设备时,每台学员机可进入仿真环境进行仿真模拟培训。
模拟培训软件采用先进实用的计算机应用软件,对电气化铁路综合自动化系统的牵引供电原理、保护原理、所内实际操作演练、故障模拟、工程应用等进行教学,同时能够软件模拟正常状态下的倒闸作业以及事故状态下的处理手段,同时系统配置评价考核子系统,具备丰富的实用题库,可对学习效果进行基本评估,以确认学员的学习能力和检验学员的知识掌握程度,为保证现场设备运行安全提供人力资源保证。
牵引供电培训系统由保护测控盘、机构及故障模拟盘、电压电流源、控制台、联网微机和服务器组成。组网采用星型高速以太网连接,保证多媒体信息量带宽要求。全部采用多媒体电脑,具有先进的多媒体教学功能。硬件系统的配置将保证系统有足够的冗余度,云博机的内存、CPU时间和硬盘空间均应保证有40%以上的余量。
3牵引供电综合自动化教学仿真系统组网方案
教学培训系统组网示意图如下:
4培训系统主要功能
4.1教学部分
采用组网微机进行系统模拟操作和仿真培训。系统正常工作时只有一台主机可对保护测控盘进行操作,当该机操作时,其他计算机无法登陆进行保护侧控盘操作,只能进行仿真模拟操作,当无主机对保护侧控盘操作时,每台计算机都可抢占主机地位,对保护测控盘进行操作。系统(TE`I’S)采用多媒体计算机系统,应用视频处理技术,通过高分辨率彩色屏幕,来表现电气化铁路综合自动化系统的构成,并通过艺术处理,来形象地表现电气化铁路综合自动化系统的运行方式,系统组网、组屏方式,后台监控软件及保护测控盘的控制操作、保护装置的原理及操作,资料查询等内容。利用多媒体丰富的图形、图象及数字化处理技术,提供友好的人机界面,使学习者身临其境地进行实习操作,创造最佳的教学环境。教学部分内容主要包括牵引供电系统原理,保护原理,综合自动化系统装置原理,图纸说明系统和工程应用部分。
4.2仿真模拟部分
主要针对以下部分进行仿真:综合自动化系统的监控后台软件,备自投,保护测控盘的柜体,电铁馈线保护装置,电铁变压器差动保护装置,电铁变压器后备保护装置,电铁变压器本体保护,电铁并补保护测控装置。由于需要培训的操作主要是针对后合监控系统可遥控的开关和刀闸的操作,以及各保护装置的操作。因此仿真培训系统采用仿真的设计。包括供电系统的正常手动/遥控控分、控合,远方/当地投入退出,操作方法按照实际系统的操作规程进行。以及事故处理,如开关状态故障,变压器:差动保护、重瓦斯等本体故障、轻瓦斯等告警故障、高压过流、低压A过流、低压B过流等,110kV进线失压,馈线过流、距离保护I段Ⅱ段、电流速断、电流增量保护等,电容器速断、过流、谐波过流、差压、差流、过压、低压等。
本文就是利用单片机控制制冷机从而达到温度控制的目的。在本设计中利用温度传感器AD590可实现温度采集。经A/D转换器ADC0809实现模拟-数字转换。送单片机来实现整个设计的要求,可以实现时间,温度,故障代码显示等功能。
本系统具有高精度,高灵敏性,高可靠性等特点。可以高速采集数据,具有实时性,并且具有很强的抗干扰能力和自动循环及自动诊断能力。
关键词:制冷机,AT89C51,AD590,温度控制
Title Temperature control system of refrigeration machine
Abstract
Refrigeration plane our country every profession and trade technological transformation carry on corollary equipment that equipment's introducing need badly at present, Improve product quality , the important equipment which enterprises upgraded too. And the traditional one observes and controls the method and adopt the simulation way from measurement to showing, the data are gathered slowly, does not possess real-time character , anti-interference ability is bad. Measure the precision and totally rely on with the characteristic of the hardware. Since the one-chip computer comes out , arise at the historic moment too instead of relevant observing and controlling the instrument, especially the figure tests the combination of the one-chip computer of technology. The technology of the one-chip computer is with its high efficiency even more, high accuracy, the multi-functional advantage replaces the traditional method of observing and controlling gradually.
This text utilize one-chip computer control refrigeration plane to purpose to achieve temperature control. Utilize temperature sensor AD590 to realize temperature is gathered in this design. Realized simulation- the figure is changed by converter ADC0809 of A/D. Give it comes to be whole without being realized demand that design to one-chip computer,can time, temperature now not real, such functions as the trouble code shows.
This system has high accuracy, high sensitivity, such characteristics as high dependability ,etc.. Can gather the data at a high speed , have real-time character, and have very strong anti-interference ability and automatic circulation and diagnose ability automatically.
Keyword: Refrigeration machine, AT89C51, AD590,Temperature control
目 录
第一章 绪论 ………………………………………………………………………………1
1.1 选题背景………………………………………………………………………………1
1.2 压缩机的分类和工作原理……………………………………………………………4
1.2.1空气压缩机的分类…………………………………………………………4
1.2.2空压机的组成及工作原理 ………………………………………………5
1.3 制冷机温度控制要求 ………………………………………………………………6
第二章 方案论证 …………………………………………………………………………8
第三 章 单片机 …………………………………………………‥………‥…………10
3.1 AT89C51单片机简介 ………………………………‥… ……‥…………………10
3.2 主要性能参数 ………………………………………‥……………………………10
3.3 主要功能特性概述 …………………………………‥……………………………11
3.4 引脚功能说明 ………………………………………‥……‥‥‥‥……………11
3.5 时钟震荡器 ……………………………………‥……‥‥‥‥‥………………13
第四章 硬件电路设计………………………………………‥……‥‥……‥………14
4.1温度测量环节的设计 ………………………………………………‥‥…………14
4.1.1 集成温度传感器AD590 …………………………………………………14
4.1.2 电压跟随器-通用运放UA741……………………………………………15
4.1.3 运算放大器0P-07 ………………………………………………………16
4.1.4 A/D转换器 ADC0809…………………………………………‥‥………17
4.2 可编程并行接口8255设计………………………………‥………………………20
4.2.1 并行通信与接口 …………………………………………………………20
4.2.2 8255A的编程结构……………………………………‥…………………20
4.2.3 8255A的引脚功能…………………………………………………………22
4.2.4 8255A的工作方式…………………………………………………………23
4.3显示电路设计 ………………………………………‥‥…………………………25
4.3.1 键盘部分设计 ……………………………………………………………25
4.3.2 显示环节设计 ……………………………………………………………25
4.4 复位及看门狗电路设计…………………………………………‥‥‥…………26
4.4.1 DS1232的结构及特点 ……………………………………………………26
4.4.2. DS1232的功能 …………………………………………………… ……27
4.4.3 使用注意事项……………………………………………………………28
4.5 时钟电路设计 ………………………………………………………………………28
4.5.1 DS1307实时时钟简介………………………………………………………29
4.6电源系统设计 ………………………………………………………………………32
4.7驱动器的选用 ………………………………………………………………………34
4.8光电隔离 ……………………………………………………‥……………………35
4.9控制电路的分析与设计……………………………………………………………37
4.9.1电磁继电器 ………………………………………………………………37
4.9.2压力继电器的选择 ………………………………………………………37
4.9.3 热继电器 …………………………………………………………………37
第五 章程序设计…………………………………………………………………………39
5.1主程序:主要实现制冷机的温度控制工艺 ………………………………………40
5.2温度控制子程序………………………………………………………………………44
5.3将显示缓冲区中的温度值送显示子程序…………………‥………………………45
5.4压力,负载消斗子程序………………………………………………………………47
5.5键值子流程……………………………………………………………………………48
5.6排水测试处理子程序…………………………………………………………………49
5.7是否有键按下判断子程序 …………………………………………………………50
第六章软件设计部分 ………………………………………………‥…………………51
结束语 ………………………………………………………‥‥‥‥‥………………63
致谢 …………………………………………………………………‥…………………64
参考文献 …………………………………………………………………………………65
第一章 绪论
1.1 选题背景
本设计是利用单片机控制制冷机来达到控制温度的目的.
制冷机是我国目前各行业技术改造和进行设备引进所急需的配套设备,也是提高产品质量,企业升级的重要设备。广泛的应用与汽车,机械,纺织,化工,仪器仪表,电子,医疗卫生等行业。在工业上,压缩空气作为一种仅次于电力的第二大动力源,以被广大企业界所公认
压缩式制冷机:该种制冷机由电动机提供机械能,通过压缩机对制冷系统作功。制冷系统利用低沸点的制冷剂,蒸发时,吸收汽化热的原理制成的。其优点是寿命长,使用方便,目前世界上91~95%的制冷机属于这一类。
一般制冷机的绝大多数都是压缩型。吸收型属于少数。压缩型的制冷机中的液体制冷剂在蒸发器中蒸发,变成制冷剂气体。这气体被活塞和气缸组成的压缩机压缩后导入冷凝器中,在这里气体再被冷凝器成为液体制冷剂。压缩机中电动机的旋转运动转换为往复运动,气缸中的制冷剂被往复运动所压缩。也就是说压缩机相当于人体的心脏,起到了循环血液的作用如下图就是一个封闭式压缩机。
图1.1 封闭式压缩机
封闭型压缩机的电动机是直接和压缩部分相连接的。压缩机全体成为一个整体装起来,另外为了避免产生热量,以致温度上升,电动机用制冷机油和制冷气体进行冷却。
国外溴化锂制冷机的发展过程
美国是溴化锂制冷机的创始国,目前日本、前苏联等国的溴冷机也都有较大的发展。
美国开利公司于1945年试制出第一台制冷量为523KW(45×104kcal/h)的单效溴冷机,开创了利用溴化锂水溶液为工质对做为吸收剂的吸收式制冷新领域。美国不仅创造了单效溴冷机,而且在世界上又率先研制出了双效溴冷机。现已研制出了直燃型、热水型和太阳能型等新型溴冷机。同时还研制了冷温水机组和吸收式热泵等新机组。
日本一家汽车公司于1959年研制出制冷量为689KW(60×104kcal/h)的单效溴冷机,1962年茬原制造所又研制出双效溴冷机。日本溴冷机无论在生产数量、性能指标、应用范围和新技术、新产品研制等方面,均超过了美国,成为世界上溴冷机研究与生产领先的国家。特别是燃气两效温水机组的产量很大,约占世界上溴冷机生产总台数的2/3;目前已致力于第三种吸收式热泵和溴化锂热电并供机组的研制工作。
前苏联奔萨化工厂于1965年研制出2908KW(250×104kcal/h)溴冷机。目前溴冷机的应用范围已从化纤厂扩展到其它纺织厂、橡胶厂酿酒厂、化工厂、冶金厂和核电站。
中国溴化锂制冷机的发展过程
我国研制溴冷机起步于60年代初期,至今已有四十多年,其发展过程大体分为四个阶段:
研制阶段 60年代初船舶总公司704所(原六机部704所)、一机部通用机械研究所与高等院校以及设备制造厂通力合作,试制了两台样机。1966年上海第一冷冻机厂试制出了制冷量1160KW(100×104kcal/h)全钢结构的单效溴冷机,安装于上海国棉十二厂。60年代末期,许多单位都着手研制单效溴冷机,这一研制工作持续到了70年代初期。
单效机生产应用阶段 70年代初先后有上海、青岛、天津、北京和长沙等地的棉纺厂为了适应生产的需要,各自设计与制造了单效溴冷机。继而更多地区也都自行设计制造单效溴冷机,尤以上海、天津两地更为突出。以天津为例,70年代初至80年代初,制造出3480KW(300×104kcal/h)大型溴冷机七台,总制冷能力达到24360KW(2100×104kcal/h)。单效溴冷机在这一时期虽然有了较大发展,但仍有许多问题尚待解决,如严重的腐蚀、冷量的衰减和机器的寿命等,限制了溴冷机的进一步发展。
双效机生产应用阶段 80年代初期开始研制双效溴冷机,并于1982年由开封通用机械厂生产出1744KW(150×104kcal/h)双效溴冷机组。双效机组的热力系数可提高到1.1以上,而单效机组一般为0.6~0.7,双效机组的蒸汽单耗比单效机减少约1/2,冷却水量减少约1/3,是值得提倡的节能型制冷机组。86年我厂研制出省内首台双效溴冷机1160KW(100×104kcal/h)并首家通过省级鉴定。
多种新型机研制应用阶段 80年代末期国家计委提出,凡有蒸汽等热源的地区要发展溴冷机;1991年我国在世界禁用氟里昂(CFC)生产与使用的“蒙特利尔议定书”上签了字,这对进一步发展溴冷机创造了良好条件。大专院校、科研院所和制造厂家共同协力,一方面在加紧改进与提高双效溴冷机的加工技术和性能水平,另一方面也竟相研制新型的多种溴冷机。现已推出的和正在研制的有热水型、直燃型、低压型、降膜式溴冷机和吸收式热泵等。
溴化锂溶液的特性
在溴化锂吸收式制冷机中,水作为制冷剂用来产生冷效应,溴化锂溶液作为吸收剂,用来吸收产生冷效应后的冷剂蒸汽。因此,水和溴化锂溶液组成制冷机中的工质对。
溴化锂水溶液是由固体的溴化锂溶质溶解在水溶剂中而成。常压下,水的沸点是100℃,而溴化锂的沸点为1265℃。供制冷机应用的溴化锂,一般以水溶液的形式供应。性状为无色透明液体;浓度不低于50%;水溶液PH值8以上。
20℃时溴化锂溶解至饱和时量为111.2克,即溴化锂的溶解度为111.2克。溶解度的大小与溶质和溶剂的特性的关,还于温度有关,一般随温度升高而增大,当温度降低时,溶解度减小,溶液中会有溴化锂的晶体析出而形成结晶现象。这一点在溴冷机中是非常重要,运行中必须注意结晶现象,否则常会由此影响制冷机的正常运行。
溴化锂溶液对普通金属有腐蚀作用。尤其在有氧气存在的情况下腐蚀更为严重。
溴化锂制冷原理
溴化锂吸收式制冷原理和蒸汽压缩制冷原理有相同之处,都是利用液态制冷剂在低温、低压条件下,蒸发、汽化吸收载冷剂的热负荷,产生制冷效应。所不同的是,溴化锂吸收式制冷是在利用“溴化锂-水”组成的二元溶液为工质对,完成制冷循环的。
在溴化锂吸收式制冷机内循环的二元工质中,水是制冷剂。水在真空状态下蒸发,具有较低的蒸发温度(6℃),从而吸收载冷剂热负荷,使之温度降低。溴化锂水溶液是吸收剂,在常温和低温下强烈地吸收水蒸气,但在高温下又能将其吸收的水分释放出来。吸收与释放周而复始制冷循环不断。制冷过程中的热能为蒸汽,也可叫动力。
传统的测控方法,由于从测量到显示采用模拟方式,数据采集速度慢,不具备实时性,抗干扰能力差。精度测量完全依赖于硬件特性,因为不具备软件线性化处理功能,传感器的非线性严重影响测控精度。而采用线性化好的传感器又增加了测控系统成本,因此,为保证安全生产,提高生产效率,必须对传统的测控方法加以改进。
自单片机问世以来,与其相关的测控仪器也应运而生,尤其是数字测控技术单片机的结合。单片机技术的发展更是以高效率。高精度,多功能的优势逐渐取代传统工业生产过程的模拟测试手段。与传统的测控技术相比,智能化测控系统具有以下几个优点:
(1)具有高精度,高灵敏性和高可靠性等优点。
(2)具有直观,操作方便等功能。
(3)具有很强的抗干扰能力。
(4)可高速采集数据,具有实时性。