前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的稳压电源主题范文,仅供参考,欢迎阅读并收藏。
【关键词】单片机 稳压电源 连续可调 ADC
经过前期的调查研究统计,发现大多高校的电工实验设备在进行戴维南定理验证实验过程当中当两个电源同时作用时造成低电压电源输出升高的问题,例如我校的电工实验设备在进行该实验的过程中,当电源一(6V)与电源二(15V)两电源同时作用一系统时往往会造成电源一电压升高从而造成实验结果不正确。而且大多高校使用的电工实验设备与我校的电工实验设备原理相同,都存在上述问题。遂开发出基于STC89C51单片机的数字化控制的电工实验用可灌入式稳压电源,使实验过程中电源一输出稳定,从而保证实验结果准确。
该项目最大的特色及创新点是创造性的以单片机为核心,组成数据处理电路,在检测与控制软件支持下,通过对电源电压进行数据采样与设定数据比较,从而调整和控制电工实验设备中电源的输出。
采用模拟电路的可调稳压电路是用一个多档开关来控制输出电压,而所谓的显示系统只是再多档开关的每个档的旁边注明电压值。随着电子行业的发展,他不耐用的弊端已经使它逐渐离开了历史的舞台。
一、系统硬件部分
(一)STC89C51主控部分。
STC89C51主控部分是系统控制核心,主要负责对电工实验设备的输出电压进行采样并与手动设定的参考电压进行对比,而后通过控制数字电位器的阻值来实现对稳压电源的调节,并且对输出的电压值进行实时显示。STC89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用高密度非易失存储器制造技术工艺,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,STC的STC89C51是一种高效微控制器。
(二)采样电路。
图2 采样电路
(三)变压稳压电路。
变压电路将工频220V/50Hz电压经过降压、整流、滤波后输入给稳压芯片。LM317是应用最为广泛的电源集成电路之一,它不仅具有固定式三端稳压电路的最简单形式,又具备输出电压可调的特点。此外,还具有调压范围宽、稳压性能好、噪声低、纹波抑制比高等优点。LM317是可调节3端正电压稳压器,在输出电压范围1.2伏到37伏时能够提供超过1.5安的电流,此稳压器非常易于使用,故本设计采用LM317为稳压芯片。
(四)直流稳压输出控制电路。
数字电位器也称数字可编程电阻器,是采用CMOS工艺制成的数字-模拟混合信号处理集成电路,能在数字信号的控制下自动改变滑动端的位置,从而获得所需要的电阻值。数字电位器本身就是一个包含控制接口、存储器和电阻的系统,它是通过软件和控制接口进行编程的,因此,在调节过程中不会产生电噪音。故本项目采用数字电位器控制输出电压。
二、结束语
本系统操作自动化,系统的整个测量过程如数据的采集、传输与处理以及显示等都用微控制器来控制操作,实现测量过程的全部自动化。本设计具有友好的人机对话能力。与此同时,智能直流稳压电源还通过显示屏将仪器的测量数据的处理结果及时告诉操作人员,使系统的操作更加方便直观。
参考文献:
[1]谭浩强,张基温,唐永炎.C语言程序设计教程[M]. 北京:高等教育出版社,1992.
[2]张友德等.单片微型机原理、应用与实验[M]. 上海:复旦大学出版社,2006.
[3]尹建华,张惠群.微型计算机原理与接口技术[M]. 北京:高等教育出版社,2003.
关键词:直流稳压电源 线性电源 开关电源 基本类型
一、线性直流稳压电源
(一)晶体管串联式直流稳压电源。其在线性放大状态工作,具备反应快,电压稳定度高,负载稳定度高,输出纹波电压小,噪声较小等特点。针对电路技术而言,其控制电路使用元件较少。针对调整管的开关特性,滤波器的高频性能等要求较少,因此可靠性较高。其最大缺点是工作效率较低。只能通过降低调整管上的压降,减少调整管上的损耗来提高效率。具体解决策略为:一是PNP和NPN晶体管互补:串联式稳压电源输出电源电流较大时,通常调整管都要接成共集电极的达林顿组合管。因为在晶体管电参数相同情况下在保持电流放大倍数相等的情况下,互补连接的组合调整管的集射极压降减少了,因而电源的效率得到提高;二是偏置法:一般共集电极组合管集射间的压降一定程度上取决偏置电流。采用偏置连接法当输出电流一定时可以有效的提高电源效率;三是开关稳压器作前置予调节:在输入-输出电压差比较大,输出电流也比较大的场合,采用开关稳压器作串联式稳压器的前置予调节也是提高电源效率的有效办法。开关予调节还可以设置在电源变压器的原边。
(二)集成线性稳压器。集成稳压器在早期市场上应用较多,产量较大,主要分为半导体单片式集成稳压器、混合式集成稳压器两类。两类集成稳压器的电路形式、封装、电压、电流规格各不相同。集成稳压器分为定电压、可调、跟踪、浮动集成稳压器多种。然而无论何种形式,其大都由基准电压源、比较放大器、调整元件即功率晶体三极管和某种形式的限流电路组成。部分集成稳压器内部还有逻辑关闭电路和热截止电路。集成稳压器与由分立元件组成的稳压器比较,集成稳压器的优点非常明显,成本低,体积小,使用方便,性能好,可靠性高。
(三)恒流源网络稳压电源。恒流网络稳压是串联稳压电源的基本特点之一,其能够有效提高电源稳定性,在集成稳压器中应用较为广泛。分立元件组成的串联稳压器大都应用了恒流技术。应用晶体管场效应管与恒流二极管等元件能够实现恒流。恒流二极管在分立元件的串联稳压器中应用较为便利。
二、开关直流稳压电源
开关直流稳压电源主要指功率调整元件以“开、关”方式工作的直流稳压电源。早期的磁放大器开关直流稳压电源是利用铁芯的“饱和”、“非饱和”两种状态进行“开、关”控制,是一种低频磁放大器。此期间出现的可控硅相控整流稳压电源也属于开关直流稳压电源。之后,高频开关功率变换技术得以迅猛发展,出现了变换器方式的高频开关直流稳压电源。
(一)去除工频变压器。去除工频电源变压器而采用直接从电网整流输入方式,是开关电源减少体积和重量的重要举措之一。去除工频变压器已成为当代先进开关电源的基本特点。无工频变压器的开关电源与各种有工频变压器的直流稳压电源相比,其具有体积小、重量轻、效率高等优点。开关电源的电路形式已实现多种多样。从调制技术来看,其包括脉宽调制型、频率调制型、混合调制型几类,其中脉宽调制占绝大多数。目前出现了完全无变压器的开关电源,即连高频变换器都不需要。这种电源的最大特点是体积还可比现在的无工频变压器开关电源小的多,而且没有绕制的变压器等器件,能够集成电路工艺制作。
(二)提高开关电源频率。现代开关电源的最显著特点是开关频率不断提高,无论是晶体管开关电源、可控硅开关电源、场效应管开关电源,均在实现向高频化方向发展。随着功率IGBT和MOSFET的出现,开关电源的工作频率已从早期典型的20KHz逐步提高到兆赫范围甚至G赫范围。
(三)控制电路实现集成。早期开关电源的控制电路由分立元件构成,电路设计和调试维修都较为复杂,不利于开关电源的推广应用。为了适应开关电源的迅速发展,集成化的开关电源控制电路被研制成功,而且功能日益完善。开关电源控制电路集成化,极大地简化了开关电源的设计,提高了开关电源的电性能和可靠性,并且具有体积小、成本低等优点。
(四)关键元器件高频化。为适应开关电源快速发展需要,开关电源应用的主要元器件也在快速发展,高频化是其基本目标。开关电源中的开关元件-功率晶体管、可控硅、场效应管等均在提高工作频率上发挥着重要作用。特别是功率管IGBT复合管,MOSFET场效应管的出现,最为引人注目,其不仅把开关频率提高到1MHz-lGHz,并且具有开关特性好、驱动功率小、不存在二次击穿、避免热奔等特殊优点。此外,大电流肖特基势垒的出现极大地改善了低电压电流开关电源的整流效率,其具有开关速度快、反向恢复时间短,正向压降地等优点。在滤波过程中,电容器等器件也要在材料、结构工艺诸方面进行研制,以适应开关电源高频化需求。
(五)实现全数字化控制。开关电源的控制已从模拟控制,模数混合控制,发展为全数字控制阶段。全数字控制是未来的发展趋势所在,并且已在许多功率变换设备中得到广泛应用。然而,过去数字控制在DC/DC变换器中应用较少。近年来,开关电源的高性能全数字控制芯片已经逐步开发应用,欧美已有多家公司开发并制造出开关变换器的数字控制芯片及软件。全数字控制数字信号与混合模数信号相比能够标定更小量,芯片价格较低;针对电流检测误差能够实现精确数字校正,电压检测更为精准;能够实现快速灵活的控制设计等。
关键词:开关电源 保护电路 系统设计
1引言
直流开关稳压器中所使用的大功率开关器件价格较贵,其控制电路亦比较复杂,另外,开关稳压器的负载一般都是用大量的集成化程度很高的器件安装的电子系统。晶体管和集成器件耐受电、热冲击的能力较差。因而开关稳压器的保护应该兼顾稳压器本身和负载的安全。保护电路的种类很多,这里介绍极性保护、程序保护、过电流保护、过电压保护、欠电压保护以及过热保护等电路。通常选用几种保护方式加以组合,构成完善的保护系统。
2极性保护
直流开关稳压器的输入一般都是未稳压直流电源。由于操作失误或者意外情况会将其极性接错,将损坏开关稳压电源。极性保护的目的,就是使开关稳压器仅当以正确的极性接上未稳压直流电源时才能工作。利用单向导通的器件可以实现电源的极性保护。最简单的极性保护电路如图1所示。由于二极管D要流过开关稳压器的输入总电流,因此这种电路应用在小功率的开关稳压器上比较合适。在较大功率的场合,则把极性保护电路作为程序保护中的一个环节,可以省去极性保护所需的大功率二极管,功耗也将减小。为了操作方便,便于识别极性正确与否,在图1中的二极管之后,接指示灯。
3程序保护
开关稳压电源的电路比较复杂,基本上可以分为小功率的控制部分和大功率的开关部分。开关晶体管则属大功率,为保护开关晶体管在开启或关断电源时的安全,必须先让调制器、放大器等小功率的控制电路工作。为此,要保证正确的开机程序。开关稳压器的输入端一般接有小电感、大电容的输入滤波器。在开机瞬间,滤波电容器会流过很大的浪涌电流,这个浪涌电流可以为正常输入电流的数倍。这样大的浪涌电流会使普通电源开关的触点或继电器的触点熔化,并使输入保险丝熔断。另外,浪涌电流也会损害电容器,使之寿命缩短,过早损坏。为此,开机时应该接入一个限流电阻,通过这个限流电阻来对电容器充电。为了不使该限流电阻消耗过多的功率,以致影响开关稳压器的正常工作,而在开机暂态过程结束后,用一个继电器自动短接它,使直流电源直接对开关稳压器供电,如图2所示。这种电路称之谓开关稳压器的“软启动”电路。
开关稳压器的控制电路中的逻辑组件或者运算放大器需用辅助电源供电。为此,辅助电源必须先于 开关电路工作。这可用开机程序控制电路来保证。一般的开机程序是:输 入电源的极性鉴别,电压保护开机程 序电路工作辅助电源工作并通过限流电阻 R对开关稳压器的输入电容器C充电 开关稳压器的调制电路工作,短路限流电阻开关稳压器 稳定工作。
在开关稳压器中,刚开机时,因为其输出电容容量大,充到额定输出电压值需要一定时间。在这段时间内,取样放大器输入低的输出电压采样,根据系统闭环调节特性将迫使开关三极管的导通时间加长,这样一来,开关三极管就会在这段期间内趋于连续导通,而容易损坏。为此,要求在开机这一段时间内,开关调制电路输出给开关三极管基极的脉宽调制驱动信号,能保证开关三极管由截止逐渐趋于正常的开关状态,故而要加设开机保护以配合软启动。
4过电流保护
当出现负载短路、过载或者控制电路失效等意外情况时,会引起流过稳压器中开关三极管的电流过大,使管子功耗增大,发热,若没有过流保护装置,大功率开关三极管就有可能损坏。故而在开关稳压器中过电流保护是常用的。最经济简便的方法是用保险丝。由于晶体管的热容量小,普通保险丝一般不能起到保护作用,常用的是快速熔断保险丝。这种方法具有保护容易的优点,但是,需要根据具体开关三极管的安全工作区要求来选择保险丝的规格。这种过流保护措施的缺点是带来经常更换保险丝的不便。
在线性稳压器中常用的限流保护和电流截止保护在开关稳压器中均能应用。但是,根据开关稳压器的特点,这种保护电路的输出不能直接控制开关三极管,而必须使过电流保护的输出转换为脉冲指令,去控制调制器以保护开关三极管。为了实现过电流保护一般均需要用取样电阻串联在电路中,这会影响电源的效率,因此多用于小功率开关稳压器的场合。而在大功率的开关稳压电源中,考虑到功耗,应尽量避免取样电阻的接入。因此,通常将过电流保护转换为过、欠电压保护。
转贴于 5过电压保护
开关稳压器的过电压保护包括输入过电压保护和输出过电压保护。开关稳压器所使用的未稳压直流电源诸如蓄电池和整流器的电压如果过高,使开关稳压器不能正常工作,甚至损坏内部器件,因此,有必要使用输入过电压保护电路。用晶体管和继电器所组成的保护电路如图3所示。
【关键词】multisim;稳压电源;仿真
Abstract:It is easy to change the parameter of the power circuit,it is intuitive to check waveform and numerical variation of the output voltage,which has high-accuracy simulation and without real hardware devices,improved efficiency of design,saving circuit cost,that is the series power supply circuit is simulated by multisim.
Keywords:Multisim;Power circuit;Simulate
1.引言
Multisim已经广泛应用于电子电路的分析和设计中,它不仅使得电路的设计和试验的周期缩短,还可以提高分析和设计能力,实现与实物试制和调试相互补充,最大限度地降低设计成本。使用Multisim软件来仿真电路,具有效率高、精度高、可靠性高和成本低等特点1。如今要用multisim设计一个单相小功率(小于100W)的直流稳压电源,电源的指标参数如下:(1)输入电压220V,50Hz;(2)输出直流电压范围:8V~13V,连续可调,额定输出电压为9V;(3)最大输出电流0.1A;(4)纹波系数低于0.1%。
从给出的条件可知,输入与输出之间电压值相差很大,故需要一个降压环节;经过降压以后的交流电还需变成单方向的直流电,这就是整流环节;但是其幅值变化很大,若作为电源去供给电子电路时,电路的工作状态也会随之发生变化而影响性能;需要利用滤波电路将其中的交流成分滤掉,留下直流成分;此时电源还受电网电压波动和负载变化的影响,故要稳压。所以要经过降压、整流、滤波、稳压四个步骤2,如图1所示。
图1 稳压电源的框图
又依据第4)点知电源的纹波系数很低,输出的电源的稳定性的质量很高(很低的纹波),又有较强的带负载能力,见第3)点,所以选用串联稳压电源电路来实现电路的仿真。串联稳压电源电路的结构见图2所示。
图2 串联稳压电源的结构
2.主要仿真元件的选取
2.1 变压器的选择
对比Ui=220V,Uomax=13V的值, 故选择降压后的电压值略大于13V,选择变压器的变比N=14,降压后电压U2≈16V。由于Multisim 对变压器的仿真效果不理想。所以直接选用U2≈16V,f=50Hz的交流电源AC_POWER,见图3。
2.2 二极管的选择
流过整流二极管的正向电流ID>0.45U2/R,反向峰值电压URM>2U2
即:ID>=0.01A,URM>45V
选用multisim中的1N4003,见图3。
2.3 电容大小的选择
在负载变化时,相同电容的滤波效果不一样;在电容变化时,相同负载时其滤波效果也是不一样。总体的选取原则是RLC[3],其中T=0.02S,即RLC,在表1至表2中仿真了不同的RL和C时输出电压中纹波的大小。图4是不同电容时滤波的输出电压的仿真波形。
2.4 稳压电路中调整管稳压管等选择
稳压管选用UZ =4.9V的稳压管作基准电压,因为输出电压为7V~14V,故在稳压环节中取样部分应该是可调的,应该满足
选用RW=R上=R下=1K,所以:
调整管的选择:因为输出最大电流0.1A,所以在稳压环节中由于调整管是和负载时串联的关系,负载流过的最大电流为0.1A,出于裕量选调整管的集电极的额定电流IC应该大于0.3A,选用调整管型号为ICZ655,它与BC548A构成达林顿管,提高带负载能力,满足最大电流为0.1A的要求。
3.仿真电路的绘制和仿真结果的对比
3.1 仿真电路的绘制
依据上面的分析,绘制电路如图3所示。
图3 串联稳压电源电路的仿真图
3.2 仿真数据对比
(1)开关J1、J3、J4闭合,观测整流、滤波后不同RL、C时输出电压的纹波值和输出电压的值。
当RL=1k和200欧时,改变电容的值,测出输出电压值及其纹波值见表1和表2。
表1 RL=1k不同电容值对应的值
C 纹波电压 Uo RLC
1000 uF 16.125 mV 15.31V 1s
470uF 16.831mV 15.219v 0.47s
220 uF 176 mV 15.197V 0.22s
20 uF 1.5V 13.425V 0.02
表2 RL=200欧不同电容值对应的值
C 纹波电压 Uo RLC
1000 uF 301.021mV 14.788V 0.2s
470uF 394.109mV 14.744V 0.094s
220 uF 769.382mV 14.221V 0.044s
20 uF 3.63V 10.566V 0.004
比较表1和表2可知负载改变时,特别是负载较重时,其纹波明显加大,输出电压UO的大小也与负载有关,负载越大,输出电压平均值越低。
增加C的容量,可以使得滤波的效果得到改善,但是在满足RLC后,输出电压UO的大小纹波的变化并不很明显,所以选用470uF的电容进行滤波。
(2)开关J1、J3、J5闭合,观测整流、滤波、稳压后输出电压的纹波值和输出电压的值。见表3所示。图4是电容为470uF时稳压前和稳压后输出电压Uo的波形对比,从仿真结果看,稳压后的波形更加平滑稳定。
表3 断开R7,连接R5稳压后的数值
负载RL 纹波电源压 Uo
R=空载 337.111u 9.088v
R=1K 656.375u 9.088v
R=500 656.375u 9.088v
R=200 656.375u 9.088v
R=100 656.375u 9.088v
对比表1~表3的数据可知,经稳压后,输出电压Uo的较稳定,其中的纹波值明显减小,基本为一定值,即约为0.6mV 。
纹波系数=纹波电压/输出电压
=0.6m/9*100%
=0.006%<0.1%
图4 稳压前后波形对比
输出电压UO的仿真测试值的范围为:
UOMAX=13.082V≈13V,UOMIN=6.957V≈7V
4.结束语
利用multisim仿真电源电路,可以直观的观测电路中的电压参数值,方便的查看关键点的波形,能提高电路的设计效率,节省实物电路的制作时间和成本,故值得大力推广应用[4]。
参考文献
[1]力.基于multisim8的电压串联负反馈放大器仿真[J].电子科技,2013,26:140-142.
[2]陈梓城.模拟电子技术应用[M].北京:高等教育出版社,2003.
[3]任俊园,李春然.电容滤波电路工作波形的multisim仿真分析[J].电子设计工程,2012,11:10-11.
关键字: 直流电源; 低纹波; 双电池; 通断原则
中图分类号: TN86?34; TP303+.3 文献标识码: A 文章编号: 1004?373X(2016)14?0150?04
Design and implementation of low?ripple dual battery DC regulated power supply
LI Jie, CHENG Weibin, FENG Du, MAN Rongjuan
(School of Electronic Engineering, Xi’an Shiyou University, Xi’an 710065, China)
Abstract: In order to realize the low?ripple output of the power supply, a low?ripple dual battery DC power supply was designed with the ripple control method, which can switch from the low power state to full power state automatically. The ripple characteristic test for the power supply was performed. The original signal is transmitted to the main control circuit through the voltage acquisition circuit, and then the main control circuit is used to control the charging and supplying power selection circuit according to the on?off principle of the relay switch and collected voltage signal. The power supply battery can realize +5V voltage output in one channel and adjustable voltage output in two channels through the linear voltage adjustment circuit. The low ripple DC voltage regulator output from charging state to supplying power state was implemented. A coaxial?cable testing device was adopted in power supply ripple test. The test data shows that the low ripple DC regulated power supply has good running condition and greater advantage in ripple control in combination with other DC power supply, and its output voltage is stable.
Keywords: DC power supply; low ripple; dual battery; on?off principle
0 引 言
提高参数测量精确度的重要方法是降低各类误差,其中直流电源纹波是产生误差的主要根源之一。二极管工频整流后直流电源有较大的工频纹波,需要较大容量滤波器件;开关电源采用高频工作,滤波器件体积和容量降低[1],但存在高频纹波,虽然通过增加电路滤波器件可降低纹波,有时可达几毫伏,但仍达不到高精度测量的要求[2]。
本身没有纹波的直流电池供电是一种较好的选择,可以得到高质量的直流电源供应,但单一电池的容量有限,需要充电。有些电源采用交流供电、电池备用的方式,可保证交流失电后一段时间内的供电,交流供电时的纹波仍然存在。
为了克服了现有工频整流稳压电源和开关电源纹波控制技术的不足,以及电池容量有限不能持续低纹波输出的问题,本文设计了一种基于STC89C54的低纹波双电池直流稳压电源。
1 硬件电路原理
系统的硬件主要包括控制主电路、电压采集电路、充电选择电路、供电选择电路、线性电压调整电路、可充电电池以及电源适配器,电路结构如图1所示。
控制主电路包括单片机STC89C54、A/D转换器PCF8591和LCD12864。PCF8591把模拟型的电压信号转换成数字信号,供单片机进行信号处理;单片机根据当前电池的充、供、欠、满4种状态和继电器通断原则,实现对双电池充电和供电的最优控制;液晶显示器显示各个电池的充、供、欠、满4种状态,并且实时显示各个电池当前电压以及充电电池的充电电流,为使用者提供便捷。
电压采集电路由分压电阻、运算放大器和充电电流采样电阻组成,电池端电压首先通过分压电阻分压,再由运算放大器调整到可采集的电压范围,最后传输到PCF8591进行A/D转换,而充电电流采样电阻的作用是把充电电流信号转换成电压信号。
充电选择电路和供电选择电路分别是由两个继电器开关和两个二极管组成[3],控制主电路遵循通断原则控制继电器闭合与断开,在保障持续供电的前提下,尽可能使稳压电源低纹波输出。线性电压调整电路采用线性稳压模块、滤波电路和缓冲电路来稳定输出和降低开关调整产生的谐波,以此实现稳定的低纹波输出。可充电电池选择12 V电池,并配备相应的电源适配器。双电池低纹波直流稳压电源供电原理图如图2所示。
2 硬件电路设计
2.1 控制主电路设计
控制主电路是以自带看门狗的单片机STC89C54为控制核心,A/D转换器PCF8591输出的数字信号和充供继电器开关的通断情况作为单片机的输入信号,LCD12864为显示输出,单片机遵循以下几个通断原则控制双电池的充供电:
(1) 该电池充电开关需要闭合时,必须同时满足:
① 该电池处于未充满状态;
② 该电池的供电开关处于断开状态(即该电池不供电);
③ 另一电池的充电开关处于断开状态(即两个电池不同时充电)。
(2) 该电池充电开关需要断开时,只需满足其一即可:
① 该电池处于充满状态;
②该电池的供电开关即将闭合(即需要该电池供电);
③另一电池的充电开关即将闭合(即两个电池不同时充电)。
(3) 该电池供电开关需要闭合时,必须同时满足:
① 该电池处于不欠电状态;
② 该电池的充电开关处于断开状态(即该电池不充电);
③ 另一电池的供电开关即将断开(即两个电池不同时供电,但为了保证后级供电,需要该电池供电开关闭合后,另一电池供电开关才能断开)。
(4) 该电池供电开关需要断开时,只需满足其一即可:
① 该电池处于欠电状态;
② 该电池的充电开关即将闭合(即该电池需要充电);
③ 另一电池的供电开关已经闭合(为保证后级供电,另一电池供电开关闭合后,该电池供电开关才能断开)。
如图2所示,以上四条通断原则逻辑关系可总结为:
式中:B1Q,B1M分别代表B1电池欠电和B1电池满电。
以通断原则为根本控制思想,完成软件程序的编写和调试,是实现低纹波、稳定、持续供电的核心思路。
2.2 电压采集电路设计
由于电池充电时,采集到的电池端电压是充电器的端电压,不能只用电池端电压值来判断电池是否满电,所以需要电池端电压信号采集电路和充电电流信号采集电路配合使用[4?5]。
电池端电压信号采集电路又可分为正极性电池电压信号采集和负性电池电压信号采集,由于所选择的串行A/D转换芯片PCF8591可识别0~5 V电压信号[6];故正极性电池电压信号需通过一组分压电阻分压为0~5 V,再接电压跟随器即可采集成功;而负极性电池电压信号由于负电压的特殊性,需先通过分压电阻分压为反相运算放大器可识别的电压范围内,然后选择合适的放大倍数,反向放大到合适的电压区间[7]。负极性电池端电压信号采集电路如图3所示。
充电电流信号采集电路也可分为正极性充电电流信号采集和负性充电电流信号采集。采集到信号实际上是电压信号,但是考虑到功耗问题,所选用的采样电阻十分小,故采集到的电压信号十分微弱,所以分别需要通过同相比例放大器和反向比例放大器来放大采集到的微弱电压信号,并且在放大器输入端加入了RC滤波电路来抑制干扰。
这样就使得所有电压信号满足PCF8591芯片的采集范围,为后级控制主电路的信号输出提供参考。正极性充电电流信号采集电路如图3所示。
2.3 其他电路设计
除了控制主电路和电压采集电路,该系统还包括充电选择电路、供电选择电路、线性电压调整电路、可充电电池和电源适配器。
这几部分电路中,充电选择电路和供点选择电路分别是由两个5 V继电器和两个二极管组成,由单片机根据通断原则依次输出高低电平来控制各个继电器的导通和断开,二极管的单向导通性,保证了充电电流或者供电电流的单向性;线性电压调整电路通过三块线性稳压模块分别可实现一路5 V和两路可调电压输出,稳压模块前级输入和后级输出分别并联0.1 μF普通电容和100 μF电解电容来对输入/输出电流滤波和缓冲,达到稳定输出和降低开关调整谐波的目的,以此实现稳定的低纹波输出。
线性稳压模块的性能要求输入电压比输出电压高2~3 V,所以本设计选择无纹波的12 V可充电电池为后级电路提供低纹波直流电压,前级交流充电选择与之匹配的电源适配器提供充电电流。
3 软件系统设计
低纹波双电池稳压电源开始上电,程序初始化完成,接着将采集到的电压信号A/D转换并显示于LCD12864,然后控制主电路判断双电池是否均欠电,若均欠电,则充满一个电池,再依次执行A/D转换子程序、电池状态扫描子程序、供电子程序、充电子程序以及液晶显示子程序;若至少一个电池不欠电,则直接执行后级子程序。设计流程图如图4所示。
4 电源纹波测试分析
电源制作并调试完毕后,采用同轴电缆测试装置来对电源进行纹波测试,在被测电源的输出端接RC电路后经输入同轴电缆后接示波器的AC输入端,具体连接方法如图5所示[8]。
示波器选用RIGOL公司的DS1204B,在示波器的设置方面,应注意尽量使用示波器最灵敏的量程档,打开AC耦合和带宽限制功能,表笔选用同轴电缆,并设置衰减比为1倍[9?10]。
根据以上方法,分别对普通直流电源(兴隆NS?3)、可编程直流电源(RIGOL DP832)和本设计的低纹波直流电源进行纹波对比,三种电源输出电压均为5 V,测量结果如图6所示。
由图6可知,普通直流电源输出纹波为5.36 mV,可编程直流电源输出纹波为2.88 mV,低纹波直流电源输出纹波为400 μV。
纹波对比试验结果可知,同环境、同电流以及同负载情况下,本文设计的低纹波直流电源输出纹波电压低于500 μV,在输出纹波方面优于其他直流电源。
5 结 语
设计的低纹波直流电源可以准确识别电池电压和充电电流,并能遵循开关通断原则实时控制继电器,控制状况良好。输出纹波对比试验表明:本设计在纹波控制方面具有较大优势,是实现高精度参数测量的有效途径。
目前,该低纹波双电池直流稳压电源已成功应用到旋转导向钻井测斜仪中,电源工作稳定可靠,参数测量精确度明显提高。
注:本文通讯作者为程为彬。
参考文献
[1] 贾洪成.一种新型的直流稳压[J].电气时代,2000(4):22?23.
[2] 刘金涛,田书林,付在明.一种高精度低纹波的DC?DC电源设计[J].中国测试,2010,36(6):62?64.
[3] 陈霖,王丽文,钱渭,等.继电器的选择和使用[J].机电元件,2011,31(6):43?49.
[4] 乔波强,侯振义,王佑民.蓄电池剩余容量预测技术现状及发展[J].电源世界,2012(2):21?26.
[5] JIANG Jiuchun, WEN Feng, WEN Jiapeng, et al. Battery management system used in electric vehicles [J]. Power electronics, 2011, 45(12): 2?10.
[6] 周剑利,郭建波,崔涛.具有I2C总线接口的A/D芯片PCF8591及其应用[J].微计算机信息,2005,21(7):150?151.
[7] 崔张坤,梁英,龙泽,等.锂电池组单体电压采集电路的设计[J].沈阳理工大学学报,2011,30(3):29?33.
[8] 程惠,任勇峰,王强.电源纹波的测量及抑制[J].电源技术,2012,36(12):1899?1900.
[9] 高增鑫.基于RIGOL数字示波器的电源纹波自动测量系统[J].世界产品与技术,2008(10):87?88.
关键词:无级;可调直流电压源;晶振测试
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2015)05-0235-02
The Design of Stepless DC Regulated Power Supply with Crystal Test
ZHENG Qi , SHANG Dong-mei , BAI Yun , AN Jing-yu , HAN Juan
(Xi'an University of Science and Technology,Engineering Training Center, Xi'an 710000, China)
Abstract: As an important part in quality-oriented education of undergraduate education practice, our school is a compulsory training course in science and engineering, electrical and electronic design in this course, with no exception of adjustable regulated power supply is used, as well as the crystal vibration tester. In order to meet the urgent needs of the electrical and electronic training courses in our school, has been developed with the test crystals stepless adjustable dc regulated power supply. This paper mainly introduces the stepless adjustable with the test crystals is main part of dc regulated power supply, working principle and application.
Key words: stepless. adjustable dc voltage source; crystal vibration test
作为理工科类大学生锻炼动手能力的最基础的电工电子实训课程-电工电子设计实训课程是我校面向理工类本科生的必选基础实训课程,覆盖面大、学生多、工作量大。提供给学生选择及要求学生选做的多个实训套件需要的电源不同。为了能够提供实训中不同套件的电源,需要具有可调直流电源。本文所述电源分为无级可调直流稳压电源及测试晶振两个模块。基于该实训课程需要的所购的可调直流稳压电源成本较高,数量有限,故研制该仪器以解决现存问题。该带测试晶振的无级可调直流稳压电源比专门的仪器相比,体积小巧,价格低廉、使用方便。晶振测试可用于51单片机12MHZ晶振的测试,市面上测试晶振的仪器比较少、且价格较高,51单片机的晶振经测试后再焊,可避免焊上坏的导致不易拆除、更换。
1 带测试晶振的无级可调直流稳压电源的主要性能
可调直流稳压电源能够任意输出1.3-36V以内的直流电压,误差达到10%左右;实训所用晶振的测试误判率5%左右。
2 电原理图、方案及设计
2.1 无级可调直流稳压电源模块
电路主要应用了LM317。LM317是美国国家半导体公司的三端可调正稳压器集成电路。其输出电压范围是1.2V-37V,最大负载电流为1.5A。使用时只需外接两个电阻即可设置输出电压。它的线性调整率和负载调整率比标准的稳压器好。LM317过载保护、输出短路保护、安全区保护等多种保护电路。使用输出电容能改变瞬态响应。调整端使用滤波电容能得到比标准三端稳压器高得多的纹波抑制比。典型线性调整率0.01%,典型负载调整率0.1%。80dB纹波抑制比。输出短路保护,过流、过热保护,安全区保护。标准三端晶体管封装。
Vout≈1.25V*(1+R3/R2)
用LM317制作可调稳压电源,常因电位器接触不良使输出电压升高而烧毁负载。如果增加一只三极管(如下图所示),在正常情况下,T1的基极电位为0,T1截止,对电路无影响;而当W1接触不良时,T1的基极电位上升,当升至0.7V时,T1导通,将LM317T的调整端电压降低,输出电压也降低,从而对负载起到保护作用。
2.2 晶振测试模块
主要通过三极管和周边元件构成电路满足“巴克豪森准则”(即公式a),(环路增益不能太大,否则也不起振,)形成震荡,使晶振起振,如果不起振,那么晶振就是坏的,从而鉴别晶振的好坏。
|H(jω0)|R1
2.3 仪器设备硬件设计电原理图
2.3.1晶振测试模块电路原理图如图1所示。 印制板为PCB板1。
2.3.2可调直流电压源模块电原理图如图2所示。印制板为PCB板2。
3 带测试晶振的无级可调直流稳压电源的应用及使用
3.1 带测试晶振的无级可调直流稳压电源的应用
该设备可作为需要直流电压源套件的电源:收音机电源、门铃电源、报警器电源、功放电源、收音机电源、51单片机电源,另外晶振测试模块可用于51单片机晶振测试。
3.2 带测试晶振的无级可调直流稳压电源的使用
输出端正极(红鳄鱼夹)接电路正极,输出端负极(黑鳄鱼夹)接电路负极。将220V的电源线插头插在市电插座上。打开开关1,直流电压源指示灯(红)亮,调节旋钮,输出电压变化,其值显示在电压表头上;另外,打开开关K2,测试晶振,晶振电源指示灯(红)亮,如果晶振是好的,晶振质量绿指示灯亮,否则绿指示灯不亮。
3.3 带测试晶振的无级可调直流稳压电源的调试
调试过程:测试晶振的电源指示灯串联的限流电阻阻值1.8K,原先过于偏低,发光二极管发烫,经过多次试验最终选定合适值为5.1K;无级可调直流电压源原先设计的可调电位器(用于调节输出电压)为4.7K,电压输出偏低,经过调试,最终确定为6.8K,电压输出符合要求;LM317选用铁壳封装,否则温度过高容易高温损坏。
参考文献:
[1] 姜爱婷,杨毅,杨静. 高频开关直流屏的设计[J]. 山东工业技术,2013(12):41-38.
关键词:MSP430;开关电源;PWM;升压斩波
Design of Switching Regulated Power Supply Based on MSP430
WANG Xiaolei,WU Birui,JIANG Qun
(hongyuan Institute of Technology,hengzhou,450007,China
Abstract:This pape introduces a system structure of switching power supply based on MSP430 single chip computer and a total design project.The hardware includs load resistance of rectifier-filter circuits,boost chopper circuit,PWM driving circuit and protection circuit.The software adopts C language writing,to complete some designs of high precision A/D data acquisition of 12 bit,overload protection,in the meantime,it has the functions of setting of keyboard and display of real-time value.
eywords:MSP430;switching power supply;PWM;boost choppingオ
1 引 言
MSP430系列单片机是美国TI公司生产的新一代16位单片机,是一种超低功耗的混合信号处理器(Mixed Signal Processor,它具有低电压、超低功耗、强大的处理能力、系统工作稳定、丰富的片内外设、方便开发等优点,具有很高的性价比,在工程控制等领域有着极其广泛的应用范围。开关Boost稳压电源利用开关器件控制、无源磁性元件及电容元件的能量存储特性,从输入电压源获取分离的能量,暂时把能量以磁场的形式存储在电感器中,或以电场的形式存储在电容器中,然后将能量转换到负载。对DC-DC主回路采用Boost升压斩波电路。
2 系统结构和总设计方案
本开关稳压电源是以MSP430F449为主控制器件,它是TI公司生产的16位超低功耗特性的功能强大的单片机,其低功耗的优点有利于系统效率高的要求,且其ADC12是高精度的12位A/D转换模块,有高速、通用的特点[1]。这里使用MSP430完成电压反馈的PI调节;PWM波产生,基准电压设定;电压电流显示;过电流保护等。
系统框图如图1所示。
3 硬件电路设计
3.1 DC/DC转换电路设计
系统主硬件电路由电源部分、整流滤波电路、DC/DC转换电路、驱动电路、MSP430单片机等部分组成。交流输入电压经整流滤波电路后经过DC/DC变换器,采用Boost升压斩波电路DC/DC变换[2],如图2所示:
式(1中,I1,为输出电流,电感储能的大小通过的电流与电感值有关。在实际电路中电感的参数则与选取开关频率与输入/输出电压要求,根据实际电路的要求选用合适的电感值,且要注意其内阻不应过大,以免其损耗过大减小效率采样电路。对于电容的计算,在指定纹波电压限制下,它的大小的选取主要依据式(2:
3.2 采样电路
采样电路为电压采集与电流采集电路,采样电路如图3所示。其中P6.0,P6.1为MSP430芯片的采样通道,P6.0为电压采集,P6.1为电流采集。
电压采集因为采样信号要输入单片机MSP430内部,其内部采样基准电压选为2.5 V,因此要将输入的采样电压限制在2.5 V之下,考虑安全裕量则将输入电压限制在2 V以下,当输入电压为36 V时,采样电压为:12/(12+200)×36=2.04 V,符合要求。
电流采集采用康铜丝进行采集。首先考虑效率问题,康铜丝不能选择过大,同时MSP430基准电压为2.5 V,且所需康铜丝需自制。考虑以上方面在康铜丝阻值选取上约为0.1 Ω。
3.3 PWM驱动电路的设计
电力MOSFET驱动功率小,采用三极管驱动即可满足要求,驱动电路如图4所示。
由于单片机为弱电系统,为保证安全需要与强电侧隔离,防止强电侧的电压回流,烧坏MSP430,先用开关光耦进行光电隔离,再经三极管到MOSFET的驱动电路IR2101。MSP430产生的PWM波,经过光耦及后面的IR2101芯片,在芯片的5管脚输出的PWM波接到MOSFET的门极G端,使其工作。IR2101是专门用来驱动耐高压高频率的N沟道MOSFET和 IGBT的。它是一个8管脚的芯片,其具有高低侧的输出参考电平。门极提供的电压范围是10~20 V。
3.4 保护电路的设计
过电流保护是一种电源负载保护功能,以避免发生包括输出端子上的短路在内的过负载输出电流对电源和负载的损坏。当电流大于限定值的时候,使用继电器常闭触点断开进行保护。用MSP430单片机控制继电器的常开常闭的吸合,实现自动恢复电路工作的功能[3]。如图5所示:
4 软件设计
MSP430单片机内部具有高、中、低速多个时钟源,可以灵活地配置给各模块使用以及工作于多种低功耗模式,大大降低控制电路的功耗提高整体效率;430F449有ADC12模块能够实现12位精度的模数转换、硬件乘法器以及带有PWM输出功能的TIMERA和TIMRB定时器,使得整个电路不需要任何扩展就能完成对电源输出电压、电流的实时采集、PI控制、PWM输出;同时MSP430F449带有内部LCD驱动模块,直接将液晶显示屏连接在芯片的驱动端口即可,电路结构极为简单。本设计的软件采用C语言编写,整个程序包括的子模块有:键盘控制模块、A/D电压和电流采集模块、PI控制模块和PWM波发生模块等几个部分[4],软件流程图如图6所示。
键盘控制和显示模块:通过键盘可实现电压参考值的设定,电压电流的切换显示。通过LED实现参考电压的设定与显示,通过LCD显示电压和电流的采集值。
AD电压和电流采集模块:通过MSP430单片机的12位A/D转换模块,对系统输出的电压值和负载电流进行采集。PI控制模块:此模块用来对系统输出电压进行控制,使输出电压稳定[5]。其控制原理如图7所示。PWM波发生模块:利用MSP430单片机的TimerB定时器的比较功能,产生驱动MOSFET的信号[6]。
5 实验结果分析
通过单片机MSP430软件设计,对PI调节选定合理参数及开关频率,能达到稳压的效果,使以上前3个指标能达到良好的效果。而能否对纹波电压限制,主要在于整流滤波电路中电容,因此高耐压的支撑电解电容的选取是重要的。
在选定开关元件之后,效率主要受开关频率的影响、储能电感的内阻以及线路中其他器件损耗影响,因此在器件选取上要注重其损耗的高低。对此系统的进行综合测试,结果如表1所示。
6 结 语
本开关稳压电源设计采用低功耗的TI公司的16位单片机MSP430F449片机最小系统板为控制核心,以PWM控制技术,闭环PI调节,高精度的12位A/D转换为基础,完成了采样值显示与设置电压值的功能和参数指标。实验结果表明:通过单片机MSP430软件设计,对PI调节选定合理参数及开关频率,能达到稳压的效果。
参 考 文 献
[1]Jiang Yinping.Intelligent Flow Totalizer Based on MSP430 Mixed Single Microcontroller[J].IEEE Sensors Applications Symposium,2007(2:1-6.
[2]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000.
[3]刘陵顺,鲁芳.一种高精度开关稳压电源的设计[J].仪表技术,2001,29(4:45-46.
[4]沈建华,杨艳琴.MSP430系列16位超低功耗单片机原理与应用[M].北京:清华大学出版社,2004.
[5]江莺,王宏华.0C196C单片机开关稳压电源的设计[J].2004,33(6:99-100.
本文结合国内相关技术研究成果,综合考虑投资成本及应用效果,提出了井组数字化控制柜交直交稳压电源解决方案。
【关键词】交直交稳压电源 感应电压 电源浪涌
数字化技术在油田的广泛应用,让油田的管理效率得到大幅度的提高。但由于生产区电压质量不高、天气原因、燃气发电等原因造成数字化前端系统供电电压不稳定,电源浪涌,频繁切换,对没有供电保护的井组数字化设备正常运行产生了一定影响,甚至造成设备损坏,增加维护成本。因此给井组数字化设备提供一款稳压电源是非常重要的。
1 现状分析
1.1 油区供电现状分析
1.1.1 电压质量不高对供电的影响
我厂白豹油田供电情况复杂,白7增、白19增、白一联附近区域供电电压偏低,白13增附近区域供电电压偏高,无法提供平衡稳定的三相正弦波形的供电压,供电质量差会引起用抽油机、井组数字化设备的效率和功率因数降低,损耗增加,寿命缩短,损坏率较高。
1.1.2 浪涌造成的影响
浪涌现象对数字化设备正常运行造成的影响主要有两方面原因:
白豹油田因各类供电线路检修造成各区块累计停电次数每年高达50次以上,来电后抽油机与井组数字化设备同时直接供电启动,强大的浪涌现象伴随产生过大的瞬间电流,造成井组数字化设备的损坏。
白豹油田变压器安装地势高,易受雷击产生过大的瞬间电流,造成井组数字化设备的损坏。
1.1.3 燃气发电对供电的影响
我厂白豹油田应用燃气发电机供电井组较多,达20%左右。由于井组供气量不稳或发电设备自身原因造成输出电压不稳,无法提供较稳定的电压,直接损坏井组数字化设备。
1.2 由于供电品质低造成的损失
1.2.1 直接损失
2010年白豹油田由于电压质量不高造成井场数字化设备的烧毁现象较多,设备更换及维护费用偏高,共计损失费用64万。
1.2.2 间接损失
供电系统不正常导致数字化设备损坏,造成数据采集中断,严重影响数字化系统的正常使用,资料录取、现场监控等功能的失效为生产管理带来诸多不便。
2 对策研究
2.1 目前的保护措施
按照油田公司相关数字化建设标准要求,仅有的浪涌保护器也未规定型号及具体的技术要求。根据运行现状来看,目前的保护措施不能有效对井组数字化设备起到保护作用。主要原因有两点:
(1)目前使用的浪涌保护器质量不高,自然气候条件恶劣易造成电气保护设施的损坏。
(2)由于抽油机启动瞬间产生远大于稳态的峰值电流与电压,以及雷击产生的瞬间电流过大,都会击穿浪涌保护器,造成井组数字化设备损坏。
2.2 需求分析
2.2.1 所需稳压电源分析
由于井组数字化设备使用环境比较恶劣,所以电源应能在高温及低温条件下稳定运行。所需稳压电源应能消除电网供电电压变化大、供电频率不稳定、电压畸变严重(谐波分量高)、闪变等综合性电压质量问题,并具有输出波形纯净、稳压范围宽、精度高、重量轻、体积小、价格低等特点。
2.2.2 市场调研
根据所需稳压电源特点,调研目前市场主流的稳压电源主要有三类:
(1)磁饱和稳压电源:其性能优良,但价格很高且体积庞大而笨重,电压反应电路是工作在线性状态,调整管上有一定的电压降,在输出较大工作电流时,致使调整管的功耗太大,转换效率低。
(2)UPS电源:具有一定的稳压效果且停电后在一定时间内持续供电的功能。但UPS电源运行受环境影响较大,主要对室内用电设备起到保护措施,所以无法应用在井组。
(3)电子式稳压电源:大多为民用产品,达不到工业使用要求,且变压范围较小(160V~220V),不能满足井组数字化建设需求。
3 解决方案
3.1 交直交稳压电源设计技术原理
一般交直交电源主要有两大种类:线性放大型和PWM开关型,根据目前的技术发展,我们采用了目前最先进的双PWM正弦波脉宽调制技术,主动元件IGBT模块设计,瞬时值反馈、正弦脉宽调制等技术。
本电源为适应供电电源电压波动范围大、浪涌、畸变、闪变的供电特点,采用了整流、调制、稳压、中间回路电压反馈的直流稳压输出。
3.2 交直交稳压电源特点
体积小:稳压电源内部采用集成度高、功能强大的大规模集成电路,并使用全新的现代化器件,如新型高频功率半导体器件使电源高频化,电源高频化可以缩小体积重量,新型磁性材料和新型变压器,如集成磁路、平面磁芯、新型元器件。特别改善二次整流管的损耗,变压器及电容小型化,并同时采用表面安装技术,使电源体积和重量都可减少许多。并且使用模块化电源组成电源系统,功率器件的模块化、电源单元的模块化,将开关器件的驱动保护电路安装到功率模块中;将一些硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接达到缩小体积和重量的目的。
价格低:随着半导体技术和微电子技术的高速发展,集成度高、功能强大的大规模集成电路和全新的高性能低价器件的出现,并且大规模生产使之价格降低。此电源采用了大规模集成电路和全新的高性能低价器件,使用模块化电源组成电源系统,并且以数字电路为基础,大大减少了硬件数量,降低故障率,且数字信号处理技术日趋完善成熟,这些都使此电源的价格更低。
3.3 技术指标
(1)输入电压范围 130-300V;
(2)输出电压 220V±3%;
(3)波形失真度
(4)功率因数大于0.95;
(5)工作温度 -15~60℃;
(6)具有输出短路、过流保护;
4 效果分析
4.1 性能对比
交直交电源与性能较高的磁饱和参数稳压电源比的优点:
(1)体积小、重量轻(便于客户装卸)
(2)输入功率因数达到0.95,使得自身的损耗大大降低。
(3)可与发电机组搭配使用(磁饱和稳压电源因输入的频率范围窄,所以当用户那里停电并采用发电机组供电时,则不能使用)
(4)输出电压稳定
(5)输出的波形好(失真度小
(6)能消除电网供电电压变化大、供电频率不稳定、电压畸变严重(谐波分量高)、闪变等综合性电压质量问题,为数字化系统提供电压稳定、净化的交流电源。
5 结论
交直交稳压电源的实验成功,能为井组数字化系统提供一款性价比高、稳定可靠的交流供电电源,彻底解决供电质量问题,有效保护井场数字化设备,避免经济及其它损失。
关键词:智能型矿用本安电源;STM32F103;CAN总线;电路设计;煤炭开采 文献标识码:A
中图分类号:TD611 文章编号:1009-2374(2017)05-0222-03 DOI:10.13535/ki.11-4406/n.2017.05.108
随着煤矿现代化程度的不断提高,对煤矿供电的可靠性、安全性提出越来越高的要求。本安电源是煤矿井下的重要电气设备,它的安全运行是现代化煤矿中其他矿井下各类电气设备高效率、高质量运转的保证。但是由于矿井下特殊的工作环境和其他原因,目前,煤矿井下本安电源的管理还存在若干问题:首先,矿井下本安电源种类繁多、独立性强,若不在现场很难检测它们的工作状态;其次,这些电源的功能参数各不相同,电源的维护管理也不统一。如果矿井下现场设备的供电情况不能在第一时间获取,一旦发生电源故障,不仅影响设备运行,还可能导致重大事故的发生。
近年来,数字矿山的提出使得本安电源已经由独立的外部设备产品发展成为整个通信系统不可分割的一部分。这不仅要求本安电源具备传统的供电、防爆等功能,而且应该通过CAN通信接口、以太网通信接口或458总线等具备智能通讯的能力,以实现本安电源可方便快捷的接入数字通信系统中。基于此,本文提出了一种智能型矿用隔爆兼本安型直流稳压电源的设计,能够解决当前电源独立、管理不规范、供电情况不明以及电源故障情况等,实现本安电源的网络化、智能化。
1 智能型本安电源结构
本安型电路是指在规定的试验条件下正常工作或在规定的故障状态下产生的电火花和热效应均不能点燃规定的爆炸性气体混合物的电路。智能本安型电源的设计目的是保证操作者的人身安全、防止出现事故后电源故障、电源不正常时能够自我修复或及时断电报警、通过网络控制与监测电源工作情况等。因此,智能本安电源的设计采用降压、整流、稳压、过流过压保护、充电及快速切断模块、CAN通信接口模块、微控制器模块。本文设计的本安电源原理框图如图1所示。
交流电通过隔爆电磁开关直接控制整个电源的交流输入,再将交流电输入变压器降压,经整流、滤波、稳压电路1输出直流电,给蓄电池充电。用过整流、滤波、稳压电路2输出的直流电给负载供电,经过切换电路,所选择的一路输出电压经过稳压、多重过流和过压保护电路输出可靠的本安电源。微控制器STM32F103模块主要采集的备用蓄电池电压值、本安输出电压值以及各种报警状态等参数。CAN通信接口模块将微控制器STM32F103模块采集的数据传输至网络,通过上位机对各种数据进行分析统计,给出当前电源的运行情况,监控室也可以通过网络控制电源的输出状态,实现电源的智能化、网络化管理。
2 电源硬件原理与实现
该本安电源由交流变压及整流滤波电路、直流稳压电路、多重保护电路、充电及切换电路、微控制器系统电路、CAN接口电路等组成。
2.1 交流变压及整流滤波原理
由于是煤矿井下电网供电的本安型电气设备,则降压所用的变压器采用R型隔离变压器,其输入侧采用变压器抽头方式。变压器输出24V和25V两组交流电压,整流滤波后输出直流电压,其中一路给本安输出,另一路给蓄电池充电。如图1所示,上面一路从变压器25V输出侧引出,经整流滤波电路1,通过稳压充电电路,为蓄电池充电;下面一路从变压器24V输出侧引出,经整流滤波电路2,输出约32V的直流电压,与蓄电池的输出电压通过切换电路进行比较后选择一路经LM2576HV稳压开关电路,为本安输出提供电源。
2.2 直流稳压开关电路
稳压电路核心器件采用可调的LM2576HV-ADJ开关稳压集成电路,解决了传统的固定式稳压器和电位器调压时精度不足的问题。LM2576HV内置有完善的保护电路,包括电流限制和热关断电路等,利用该器件只需很少的器件便可构成高效稳压电路,此外,该芯片还提供了工作状态的外部控制引脚,该引脚的电平受微控制器STM32F103控制。
2.3 过压、过流保护电路
由于井下存在众多可燃性气体,当出现电路因过压、过流而导致负载短路或者火花时,严重影响到煤矿的安全。故本安电源的设计中必须通过多重的过流、过压保护电路,防止事故发生,该设计性能的好坏将直接影响整个系统是否具有实用的价值。如图2所示,本安电源输出电路整体思想是控制MOS管Q5和Q6的导通或关断来实F的,电源过压过流时,三极管Q4导通,集电极输出18V,使得P沟道MOS管Q5截止;同时,N沟道MOS管Q6的G极电平为0,使Q6截止从而切断负载的输出。
当电路出现过流或短路故障时,如图2所示,电阻R32的电流增大,导致过流检测点VIN_I的电压大于阀值 [ ],经过图3中比较器LM393(U3)的处理,使得输出端(U3的第7脚)呈低电平,再经过比较电路LM393(U6)的处理,使得U6的第7脚输出为低电平,这个低电平信号直接控制图2中的三极管Q4,使Q4导通,Q5截止,切断本安电源的输出,起到过电流或短路保护作用。另一路过流或短路保护电路控制MOS管Q6,原理与其一致。