前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能培训教育主题范文,仅供参考,欢迎阅读并收藏。
近年来大数据、云计算等信息技术飞速发展,人工智能在一些特殊领域(如图像识别、语音识别、自然语言等)不断取得突破性进展。人工智能作为新的技术驱动力正引发第四次工业革命,为医疗、教育、能源、环境等关键领域带来新的发展机遇。人工智能专家预测,人工智能在通用技术领域可能尚不能替代人类,但在一些特殊领域,人工智能将会淘汰现有的劳动力。在国外,许多国家纷纷把人工智能作为国家发展的重要竞争战略,我国学者也密切关注着人工智能的最新理论进展和实践应用,国务院于2017年7月颁布《新一代人工智能发展规划》,明确人工智能发展的重点策略。“人工智能变革教育”的潮流,引发了教育研究领域的“人工智能热”。当前全球范围内,人工智能在教育领域的大量研究和应用催发形成了教育人工智能概念。目前梳理学术上关于研究人工智能与教育的文献主要集中于:
(一)教育理念的革新。“人机一体”将成为未来新的教育方式[1],由新技术和新手段的出现所应运而生的智慧教育[2],将对原有教育进行改进和完善。智能技术在改变教育的手段和环境的同时,还有利于构建出系统解决教育问题的教育新体系,从而真正触及教育的根本[3]。
(二)关注技术的革新。机器深度学习、智能学习的算法、视觉识别以及智能语言识别这些基础技术的突破,为人工智能的教育应用奠定了坚实的基础[4]。
(三)探究教育的应用。人工智能在学校教育中的学业测评、交叉学科、角色变化等应用领域具有巨大潜力,教师角色内涵也将在与人工智能的协同共存中发生改变。AI监课系统能够数据化、可视化评估教师的授课情况,将人工智能技术的运用渗透到整个教学过程中,教师可以根据评分实时调整授课内容,以促进个性化学习,从而提升教学效果。教育深受技术发展的影响,新技术融入教育并促进教育方式的转变已成为必然趋势。一方面技术为教育提供了新的、更加广阔的可能性;另一方面技术具有变革人类的教育方式与学习方式的能力。然而,技术是一把“双刃剑”,如何获取或实现以人工智能为代表的新兴信息技术所拥有的特征、优势与功能,使其在教育中最大限度地发挥其应有的价值呢?人工智能技术如何继续被安全使用到教育领域?如何通过教育变革来促进新兴信息技术在教育教学中的广泛与深入应用,实现教育深层次革命等问题,是目前需要关注和探讨的主要问题。
1人工智能时代下教育变革的背景
1.1人工智能的内涵及具备的强大能力
人工智能最早由美国达特茅斯学院于1956年提出,其研究主要包括机器人、图像识别、自然语言处理、语音识别等,实质是一种自动感知、学习思考并做出判断的程序。人工智能具有自主学习、推断与革新的能力,推动了图像识别、自然语言处理等方面的技术突破。人工智能同时具有理性判断力、超强的工作力,只要电力供应不断,几乎可以无限制地工作下去,而且适应不需要情感投入的工作。它的超强能力,源于三个重要的技术:深度学习、大数据和强算力。
1.2人工智能时代的机遇和挑战
人工智能在精力、记忆力、计算力、感知力以及进化力等方面与人类相比,具有突出优势。在医药领域,人工智能的出现使普通民众可以享受更为高效、稀缺的医疗资源,解决医疗诊断领域诊断质量不均衡、医生资源不足等问题。在教育领域,人工智能促进教学质量进一步提升、教师角色多样化、学生学习能力的提升;为教育研究提供新技术和数据支撑;极大拓展了教育研究新视域;使教育在立德树人方面、教育方法创新方面、教育手段和环境方面以及教育服务供给方式方面均发生改变。然而,看到人工智能以其强大的处理能力带来机遇的同时,也需要正视人工智能带来的新挑战。在人工智能浪潮冲击下,如何借助人工智能发展的机遇推进教育的变革与创新?人工智能技术如何继续被安全使用?首先,人工智能专家大都认为,人工智能将会淘汰大量现有的依靠非脑力劳动为生的劳动力,需要培养人工智能时代的新型劳动力。而且,人工智能技术本身的不太成熟使很多人工智能技术只是应用在儿童教育领域,再者,人工智能潜在的道德伦理问题缺乏法律制度规范。除此之外,人工智能时代将对社会结构以及人的地位构成挑战。综上所述,人工智能时代所带来的机遇是大于挑战的。教育需适应人工智能技术所带来的突破和飞跃,不断调整和更新教育的方向和目标,实现育人成人的发展目标。
2人工智能与教育变革
2.1人工智能与教育目的的变革
人工智能带来的巨变不仅影响人类未来如何发展,而且极大释放了人类的生产力,这些在一定程度上使得人类需要重新思考教育是何目的。人工智能影响教育目的的变革主要表现在:第一,人工智能可能会使人类陷入精神危机。这源于两方面的结果:一方面,人工智能将取代大部分人的工作岗位,工作的丧失将会导致人的价值和尊严丧失。另一方面,人工智能技术的发展将可能导致所有基于自由主义的想法破产,转而人类所拥有的价值和尊严可能转化为一种“算法”,人工智能带来的职业替代风险在教育领域同样存在,主要是对教师角色的挑战。第二,人工智能有利于培养人的学习能力。从某种角度上讲,人工智能剥夺人的就业机会,但同时,人工智能助教机器人将协助教师实现个性化指导,从而有利于将学习的过程视为寻求自我价值和意义的过程。除此之外,人工智能有利于使教育注重培养人的精神能力,这种精神能力大致包括实践动手能力、价值追求能力以及创造能力,从而有利于学生知识以便于更好地完善自我、丰富自我,使教育跳脱“知识为本”的陷阱,发挥“立德树人”的正向作用。
2.2人工智能与学习方式的变革
第一,深度学习。深度学习也称为深度结构学习或者深度机器学习,是一类算法的集合。深度学习概念的提出,一方面尊重了教学规律,另一方面也是应对人工智能时代下的挑战。深度学习在机器学习、专家系统、信息处理等领域取得了显著成就,提倡学教并重、认知重构、反思教学过程,进而达到解决问题的目的。第二,个性化学习。个性化学习区别以往传统班级课堂授课,尊重学生的个性发展,因材施教。人工智能技术与大数据的应用有利于学生享受个性化的学习服务,可提供个性化的学习内容,可视化分析学生的学习数据,快速提高学生的学习效率。第三,自适应学习。自适应学习是指人工智能基于对个体学习进行快速反馈的基础上,根据学习者特征,为其推荐个性化的学习资源和学习路径,从而最大程度上适应学生的学习状态,是实现个性化学习的重要手段。人工智能技术有利于快捷、科学地判断学生的学习状态,进行学习反馈;持续收集学生的学习数据,其中包括学习目标、学习内容;高效地为学生提供海量的学习资源。
2.3人工智能与学习环境的变革
首先,有利于搭建灵活创新的学校环境。不仅可以使空间规划更具弹性,而且可以调节性增强物理环境。其次,人工智能时代的教育区别于以往传统教育强调的统一秩序,更注重个体的用户体验。创客空间、创新实验室等学习环境的不断增加以及人工智能技术的不断发展,个性化的空间环境与学习支持将改变目前学习的学习空间环境。除此之外,随着对话交互技术的逐渐成熟与不断普及,有利于实现虚实结合的立体化实时交互。VR、AR等技术的同步协作也有利于搭建新的学习环境,满足学习者的一系列要求。脑机互动技术的突破有利于实现将人工智能植入人脑,从而改变人类自然语言的交流方式。最后,人工智能通过即时、准确、高效的大数据分析有利于进行精准且个性的学习评价与反馈。人工智能将综合收集所有同学的学习记录,互相比对、优化,从而进行综合提升。更为重要的是,人工智能的人脸识别以及语音识别技术可以运用到教师的教学过程中,进行学生的学习情绪感知,学习状况的了解,从而促进学生学习的科学化;智慧校园、智慧图书馆等的出现,为教学环境的建设提供重要参考。
3人工智能在教育领域的应用
人工智能被认为是最有潜力和影响力的教育信息化技术,将通过人工智能数据挖掘分析、3D打印、模拟仿真等技术的应用,实现人工智能与教育的深度融合,对计算机辅助教学、个性化教育服务、教育人工智能生态环境等产生根本影响。2018年《地平线报告》(高等教育版本)指出了教育领域的信息化发展,未来一段时间内将通过人工智能与信息技术的结合,进而影响教育阶段的不同过程。具体见表1所示。
关键词:人工智能;英语教育;积极影响;消极影响
人工智能概念是20世纪五六十年代正式提出的,随着信息技术的不断发展,人工智能已成为一门新的技术科学。时至今日,人工智能技术的发展经历了人工智能起步期、专家系统推广期和深度学习期等阶段,而在应用领域也取得了重大突破,如Google的无人驾驶技术和运用深度学习算法的AlphaGo战胜围棋冠军等。除此之外,人工智能已被日益广泛地应用于经济社会各个领域,在教育领域亦是如此。2018年教育部就印发了《高等学校人工智能创新行动计划》,要求进一步提升高校人工智能领域科技创新、人才培养和服务国家需求的能力。因此,人工智能必将不断被融合到教育领域,并为大学教育变革提供新方式。基于人工智能的机器学习、人机交互与知识图谱等技术方法,可以为大学英语教师在课堂教学、备课与教学研究等多个方面提供支撑;可以为大学英语教学管理与治理提供决策支持;可以为大学生英语自主学习和教师备课提供智能推荐支撑。目前,学者们已对人工智能对英语教育的影响进行了相关的研究。如高华伟分析了外语作文智能评阅与形成性评价融合策略;刘洋针对人工智能技术与高校英语教学的相互关系,通过调查问卷和访谈等方式,分析了现有计算机辅助语言学习软件和系统的不足,并提出了相应的解决策略;张艳璐对人工智能在给英语教学带来机遇的基础上,探究了人工智能在大学英语教学中的应用;赵生学分析了人工智能时代大学英语教学的变革与策略;严燕分析了人工智能时代英语教学促进学生深度学习的路径。在人工智能时代,人工智能技术必将对大学英语教育领域各个方面产生重大影响,如大学英语人才培养目标、教学内容、教学计划、教学策略、教学模式、成绩评价体系与英语领域科研等方面。针对此,本文在现有研究的基础上,重点从教师和学生两个层面分析人工智能对大学英语教育的积极影响和消极影响,并提出相关建议,以期为大学英语教师教学与大学生英语学习提供参考。
一、人工智能的积极影响
人工智能技术在大学英语教育领域的应用,将对大学英语教学资源、教学模式与大学生二语习得等方面产生积极作用,主要体现为以下几个方面。
(一)丰富了大学英语教与学资源人工智能技术的发展与应用为大学英语教与学提供了丰富的资源。如互联网上含有丰富的英语视频与图片等资源;在线教育平台也提供了大量的英语课程资源,如中国大学生慕课、雨课堂等,它们各具特色,可为教师与学生提供多样化选择。因此,人工智能技术一方面可为大学英语教师提供丰富的教学素材,同时还可根据大学生学习目标与学习习惯等为其英语学习提供丰富的课外资料。同时,很多网络资源可下载或者回放,这样可以使得大学生的英语学习不再受到时间与空间的限制。特别是对于教育资源缺乏的地区而言尤为重要,可以在很大程度上解决教育资源不平衡问题。其中,百度教育大脑的智能备课系统便是典型应用案例。其依托百度人工智能、大数据和云平台的优势,整合了丰富的优质资源。对于教师而言,此平台可按照教学进度为教师提供经过筛选的教学素材,节省教师的备课时间,提高其工作效率。
(二)丰富了大学英语的教学方式传统的大学英语授课往往以线下课堂教学方式为主,而人工智能技术的使用丰富了大学英语单一的教学方式。可利用网络平台,如雨课堂、慕课平台等,开展大学英语线上教学模式或者线上线下混合教学模式。新的教学模式有利于教师在大学英语教学过程中采用不同的教学策略。使用新的教学模式和不同的教学策略可以提高大学生学习英语的兴趣,进而有助于提高大学生英语习得的效率。
(三)提高了大学生英语习得的效率由于英语习得是一个复杂的心理过程,与大学生的情感因素、学习动机等密切相关。采用人工智能技术的大学英语线上教学方式,使得教师与学生之间不是面对面的交流互动,可以在一定程度上缓解学生焦虑、害怕等情绪,有利于学生的英语学习。动机是英语习得中重要的非智力因素,也是影响大学生英语习得效率的重要内在因素之一。学习动机与使用另一种语言的兴趣密切相关。而人工智能技术采用丰富的英语学习资源以及英语教学方式的多样化,这些有助于提高学生学习英语的兴趣,进而增强学习英语的动力。
(四)形成了大学生英语习得分析数据库人工智能技术是以大数据为依托,可以跟踪和记录大学生英语课堂学习和课后学习等各种信息数据,进而可形成大学生英语习得数据库。基于大数据分析与人工智能技术方法,如数据挖掘、关联性分析和回归预测等,可以挖掘大学生英语学习背后的规律特征,了解到每个学生的具体情况。进而构建每个学生的英语学习画像,如学生的线上学习状态、课程作业完成情况、测试成绩和学习方式等。可为教师形成可视化的学生个体和班级整体的学情分析报告。因此该数据库有利于教师掌握每位学生的英语学习状态,掌握学生个体差异,为调整教学方式、教学方法与策略提供支撑。同时,上述数据为大学英语教学与大学生英语习得的研究也提供了数据支撑。
二、人工智能的消极影响
人工智能在大学英语教育领域对教师与学生发挥着积极的作用,同时对他们也产生了一些消极的影响,主要体现为以下几个方面:
(一)对教师的消极影响由于大学英语课堂教学存在一定的缺陷,往往需要改进此教学方式。而人工智能技术的应用,虽有助于大学英语教学改革,但还需要教师熟练掌握人工智能相关技术的使用,会给信息技术能力比较薄弱的教师造成压力。借助人工智能平台,大学英语教学不受时间、空间和学生人数等影响,势必会减少大学英语教师的需求,造成大学英语教师面临失业的压力。进而影响大学英语教师的工作积极性,以及大学英语教学质量。
(二)对学生的消极影响根据语言资本理论与期望价值理论,大学生英语学习的期望价值主要是经济期望价值。而大学生英语学习的期望价值与学习目的和行为密切相关。比如大学生英语学习经济期望价值主要体现为学习英语对未来找工作很重要,可以增加经济收入。而人工智能技术在语言领域的应用,势必会影响大学生对英语学习的期望价值。如人工智能翻译机的出现,使得各种语言之间翻译非常容易。即使不懂英语,也可使用它进行英语交流。因此,人工智能技术在英语领域的应用,将降低大学生英语学习的期望值,进而影响他们英语学习的兴趣与目的。
(三)对师生关系的消极影响基于人工智能技术的大学英语教学,将改变传统的以教师为中心的模式,使得教师在教学过程中的中心地位得到弱化。学生通过人工智能技术,可以很好地收集到自己需要的各种英语学习资源,如在线课程、英语讲座视频和英语文本资料等,甚至可以通过自学的方式完成英语学习任务。但这些将弱化教师与学生之间的互动以及情感,从而隔阂了教师与学生之间的关系。
谷歌研发的自动驾驶汽车已经累积了数十万英里的安全驾驶记录,预计数年内,这种无需人类驾驶的车辆将广泛投放市场。但随之而来的一个伦理性问题是:如果无人驾驶汽车出了车祸,责任应该归结于谁?如果搭乘车主的无人驾驶汽车,正要经过一座狭窄的桥,桥对面忽然开来了满载儿童的校车,这座桥无法容载两辆车,必须要有一辆车马上掉下桥去,才能保障另一辆车的安全。那么,无人驾驶汽车是会毫不犹豫地冲上前去,为车主清除隐患,把校车撞下桥去呢,还是自杀性地开下桥,牺牲车主以保全更多儿童的性命安全?
类似的伦理疑问还包括:如果你或你的家人突发重病,但无人驾驶汽车却拒绝超速赶往医院,你该怎么办?如果有家长让未成年的孩子喝酒,家佣机器人是否应当马上启动报警程序?
人工智能时代已经到来,机器人的智能化程度大幅提升,机器人已拥有了从经验中自我学习的能力,还能对现实问题作出快速反应。但有关人工智能、机器人的伦理性问题,却比单纯的技术问题更难得以解决。
在卡普兰看来,相比于过去的智能化机器,机器学习已有了本质的区别,已经“发展出自己的直觉力,然后用直觉来行动”,这也将使得机器人可以更为踊跃地进入人类世界,接管过去仅能由人执行完成的形形的工作。在过去,投放到医学、工业等多种领域的机器人,都存在精准性、力量性、持久性不足等问题,使得机器人适应环境的能力较差,只能在启动之前尽可能精准地设定,但随着机器感知领域的突破和发展,“未来的机器人可以看到、听到、做计划,还能根据混乱而复杂的真实世界来挑战自己”。
卡普兰预言,终有一天,随着传感器、反应器以及无线通信的不断进步,人工智能将以合成智能的方式,与人体甚至其他物体合而为一――“未来看起来会比你想象中的更像过去”。
智能时代毫无疑问会释放出更多的技术红利,但风险也不可小觑。卡普兰特意提到,随着在金融交易中越来越多地加入人工智能,高频交易程序一方面减少了市场震荡,另一方面却会将风险转嫁给一般的交易者,让交易者获得的交易价格偏离于最佳价格。这种情况在商业领域中也有表现,比如全球知名电商企业亚马逊通过复杂算法,使得不同顾客在不同时段获得的报价各有不同,并通过智能化的购买数据分析,推出更具诱惑力的促销方案,诱导顾客购买更多原本不需要购买的、实际上也并不那么价廉物美的商品。从目前情况来看,在合成智能方面投入最多的企业,无不热衷于将之应用于操控用户的注意力和购买力。
更进一步的风险在于,由于人工智能的设计仅仅服务于单一目的,因而未曾考虑是否存在副作用。比如,人工智能会抢在他人之前,(帮助主人)抢占车位,会在大萧条之前恶意抢购超市货架上的所有应急商品 ;与人对弈的机器人,不排除会使用“黑社会”式的手段,包括威胁对手的家人,破坏对手的交通工具。
要避免人工智能对社会体系甚至人类安全造成威胁,相关的智能设备、机器人开发和使用的伦理准则及立法,都应尽快提上议事日程;并且,在人工智能开发过程中,在增强单纯的技术能力的同时,也应尝试赋予它一种人类式的“感受同情和怜悯的能力”。
>> 人工智能将如何威胁人类文明? 人工智能如何改变教育 人工智能将改变什么 人工智能占领世界之前 BAT如何布局人工智能 人工智能超越人类会如何 人工智能 用科学改变培训和管理 人工智能将改变经济等3则 人工智能如何应用于智慧城市 人工智能如何作用于投资理财 如何让人工智能造福人类? 人工智能如何促进经济发展? 人工智能如何成为必需品 微软:如何正确理解人工智能 科大讯飞 人工智能如何挣钱 AI WORLD2016世界人工智能大会60载演变 人工智能迎来新纪元 人工智能将在这些领域改变人类生活 人工智能将改变信息安全,但不会一蹴而就 CES Asia上海开幕 人工智能将改变人类生活 3D打印,将如何改变这个世界 常见问题解答 当前所在位置:l.
Crevier, Daniel, AI: The Tumultuous Search for Artificial Intelligence, New York, NY: BasicBooks, 1993, p.115. Moravec explains, "Their initial promises to DARPA had been much too optimistic. Of course, what they delivered stopped considerably short of that. But they felt they couldn't in their next proposal promise less than in the first one, so they promised more."
?DCMP=OTC-rss&nsref=online-news.
The Singularity Is Near: When Humans Transcend Biology是Raymond Kurzweil于2005年出版的关于未来学的书籍。中文译著已由机械工业出版社于2011年10月1日出版发行,译著书名为“奇点临近”。
[英]尼克・波斯特洛姆:《超级智能:路线图、危险性与应对策略》,北京:中信出版股份有限公司,2015年,Kindle位置:328/5236。
.
.
[英]尼克・波斯特洛姆:《超级智能:路线图、危险性与应对策略》,Kindle位置:2416/5236。
Frankenstein or The Modern Prometheus,又译作《弗兰肯斯坦》,后世有部分学者认为这部小说可视为科幻小说或恐怖小说的始祖。
见翟振明:《虚拟现实比人工智能更具颠覆性》,《高科技与产业化》,2015年11月。
[英]尼克・波斯特洛姆:《超级智能:路线图、危险性与应对策略》,kindle版位置:685/5236。
[英]尼克・波斯特洛姆:《超级智能:路线图、危险性与应对策略》,kindle版位置:867/5236。
翟振明:《有无之间――虚拟实在的哲学探险》,北京大学出版社,2007年。(Zhai, Philip, Get real: A philosophical adventure in virtual reality,Rowman& Littlefield, 1998.)
详见翟振明、李丰:《心智哲学中的整一性投射谬误与物理主义困境》,《哲学研究》,2015年06期。
见于:Dick J. Bierman and Stephen Whitmarsh, "Consciousness and Quantum Physics: Empirical Research on the Subjective Reduction of the State Vector," in Jack A. Tuszynski (Ed), The Emerging Physics of Consciousness, 2006, pp. 27-48.C. M. H. Nunn et. al.,"Collapse of a Quantum Field May Affect Brain Function," Journal of Consciousness Studies, 1994, 1(1), pp.127-139.
Anderson, Michael, and Susan Leigh Anderson, "Machine ethics: Creating an ethical intelligent agent," AI Magazine 28.4 , 2007, p.15.
Stuart Russell, "Moral Philosophy Will Become Part of the Tech Industry," http:///4026723/stuart-russell-will-ai-overtake-humans/.
哲学家丹尼尔・丹尼特在其著作《意识的解释》(Consciousness Explained)里错误地认为,人也不过是一台有灵魂的机器而已,为什么我们认为:“人可以有智能,而普通机器就不能”呢?有的哲学家认为如果弱人工智能是可实现的,那么强人工智能也是可实现的。比如西蒙・布莱克本(Simon Blackburn)在其哲学入门教材Think里说道,一个人的看起来是“智能”的行动并不能真正说明这个人就真的是智能的。我永远不可能知道另一个人是否真的像我一样是智能的,还是说她/他仅仅是看起来是智能的。布莱克本认为这个“他心问题”是一个主观认定的问题。本文引入量子力学解释方向,就是试图回答意识和智能的认定问题的可能途径的问题。量子力学中的遥距纠缠,很可能就是解决“他心问题”的有效途径,最后并不需要诉诸“主观认定”。这种认定的实现,也许才是真正的“奇点来临”。
(中山大学哲学系博士研究生彭晓芸是本文的共同作者)
责 编M郑韶武
算起来,在线教育的争夺战是在三年之前开始的。2013年8月“学而思”网校正式更名为“好未来”,作为最早发力在线教育的一家公司,发展了布局相对完整的中小幼教育专业门户网站群――e度教育网,该网站由育儿网、幼教网、奥数网、中考网、高考网、留学网等多个网站构成。此后,新东方、学大网等一票传统教育机构纷纷发力于在线教育。
根据《2015年中国在线教育白皮书》数据显示,2011到2014年间,中国在线教育市场规模增速均保持在17%以上,最高增速达到21.84%;市场规模从2011年的575亿元增至2015年的1171亿元,预计到2021年在线教育市场规模将达到2830亿元。在线教育用户突破2亿人,在线教育项目数量已经超过3000个。
如今,BAT、网易等互联网巨头也争相跨界进入教育领域……
争相布局
10月,网易宣布其有道词典用户突破6亿。这意味着,网易的产品已经可以在在线语言培训市场占有一席之地。2007年推出有道词典以来,网易在互联网巨头之中率先“误入”在线教育行业,并逐渐形成有道翻译官、有道口语大师、网易云课堂等产品矩阵。
语文学习产品――有道语文达人,引进职业教育与通识教育等课程、推出网易云课堂企业版产品等等动作,都说明了网易在在线教育各个细分领域重度垂直、精耕细作的野心。
与此同时,阿里巴巴终于也按捺不住。在10月宣布启动“星火计划”,称未来将会大力扶持生产优质内容的个体老师以及中小型教育机构。比如调用周边资源,引入专业第三方扶持基金等,以此为中小创业群体提供高效的变现机制。
自去年12月成立教育事业部以来,百度在教育领域的布局正在加快。除了在传统的教师资源方面,百度推出了专为教师服务的互联网平台“百度优课”。百度在线教育的一大特色在于其教育信贷市场。百度CFO李昕曾在Q3财报电话会议上表示,百度要借助人工智能和大数据技术,从教育领域进入互联网金融。
据百度透露的数据,在教育信贷领域,百度已与超过700家教育培训机构达成合作,学生通过在线填写信息,线下和教育机构确定培训意向,审核通过后,即可获得“百度有钱花”提供的学费贷款,实现分期交学费。
腾讯坐拥QQ和微信两大社交平台,其固有用户与在线教育针对用户重合度之高,不容小觑。去年,腾讯将这一优势应用于教育信息化领域――分别以QQ和微信为基础推出QQ智慧校园和腾讯智慧校园,为各类学校提供一体化互联网智慧解决方案,范围涵盖学校管理、教务教学、校园生活等方面。扶持优质内容方面,腾讯也不甘落后推出了名师计划,旨在帮助名师实现知识经济化,扩大知识生产力与传播力,同时提供标准化服务与资源扶持。
加之腾讯出手向来大方。今年2月,腾讯3.2亿元投资新东方在线,而目前新东方在线申请挂牌已经获批,将登陆新三板。按照最近一次股票发行的价格来算,新东方网的总市值达到了31.72亿元,而腾讯当初的投资金额也由3.2亿元升值到了3.9亿元,平均每个月赚了1400万元。
线上线下结合
近年来在线教育的项目虽多,但往往良莠不齐,真正实现盈利的更是少数。
互联网教育研究院在2015年调查了400家在线教育公司,结果显示,有70.58%的公司处于亏损状态,13.24%的公司处于持平状态,仅有16.18%的公司保持盈利状态。同时,其报告还指出,由于新进入的项目非常多,而且有一部分项目已经死亡,整体上盈利的在线教育企业预计不超过5%。
在这个资本的“寒冬”,包括老师来了、36号教师、轻舟网等在线教育创业项目,都相继倒下。一位多年从事在线教育的业内人士向《中国经济信息》记者分析:“一个项目从开端投入资金到逐步发展,进入盈亏平衡状态,至少需要3到5年的时间。”作为一个更重视长期发展循环的行业,在线教育前期需要投入大量资金,而后期课程的制作、平台的维护以及产品的营销和推广,都需要团队极大的耐心和毅力。
随着在线教育行业的发展,平台的竞争,已经从最初的野蛮走向有序,从跑马圈地走向深耕细作,优质的教育内容成为巨头们的抢夺焦点。还有一些业内人士指出在线教育的一些弊病,例如在线教育APP更多是单向机械灌输,缺乏线下辅导为学生的知识体系做一个完整的梳理以及打通思维知识上的逻辑关联。
信天创投合伙人张俊熹对《中国经济信息》记者分析,线上与线下的结合将会是在线教育接下来发展的趋势。以留学教育为例,“以前的出国留学只是在国内做一些语言培训,但是长周期的链条并没有被开发出来,出国后的实习、就业、移民、置业等等,有很多内容可以深入挖掘。”张俊熹说。
尽管在线教育市场前景广阔,但在创新工场投资总监张丽君的眼里,其实它每个细分领域的市场规模并不大。而且,与其他行业不同,教育行业的内容不能完全规模化复制,往往面对不同的时期和对象,都需要重新做,因此并不容易找到大的市场。
今年在线教育还有一个创新动作就是与AR、VR合力。正如李彦宏多次在公开场合强调的,人工智能是百度核心的核心。人工智能之于百度教育的重要性也不例外。
11月,百度教育“教育云”平台,宣布百度教育生态将依托人工智能技术,朝着内容化、智能化、个性化方向发展。百度教育事业部总经理张高透露,人工智能在百度教育的布局分成内容的数字化、学习的个性化与交互的拟人化三个部分。不过,业内声音普遍认为,鉴于教育行业自身的慢热特点以及技术发展尚在初期等原因,人工智能与教育的融合还需要一个漫长的过程。
[关键词]人工智能;人才培养;AI技术人才
一国家对于高校人工智能教育的发展的重视
面对AI技术如火如荼地发展,我们国家对AI人才和人才培养都非常重视。2017年3月“人工智能”在政府工作报告中曾提及四次,指出要推动人工智能和实体经济深度融合。2017年7月20日国务院《新一代人工智能发展规划》[4]。《规划》指出完善人工智能领域学科布局,设立人工智能专业,推动人工智能领域一级学科建设,尽快在试点院校建立人工智能学院,增加人工智能相关学科方向的博士、硕士招生名额。鼓励高校在原有基础上拓宽人工智能专业教育内容,形成“人工智能+X”复合专业培养新模式,重视人工智能与数学、计算机科学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合。加强产学研合作,鼓励高校、科研院所与企业等机构合作开展人工智能学科建设。
二企业对于人工智能人才的需求
市场上AI技术人才非常稀缺,据腾讯研究院联合boss直聘的《2017全球人工智能人才白皮书》[5]显示:目前,全球大约有30万人从事AI工作。截止到2017年10月,中国人工智能人才缺口至少在100万以上。2017年头10个月,AI人才需求量是2016年的近两倍,2015年的5.3倍之多,年复合增长率超200%。百度、腾讯、阿里巴巴、京东等互联网巨头都在挖掘AI人才,纷纷开出了高额的薪资。2017年薪资最高的十个职位中AI类岗位占到1/2,其中语音识别、NLP、机器学习等职位平均月薪资超过2.5万元。
三高校AI人才培养的思考
高校具有多学科、高层次人才集中的特点,具备计算机与多学科交叉融合的优越条件;且大部分学校都开设有数学、物理等基础学科,具备夯实数学理论基础的条件;且人员相对固定,便于沟通交流,具备共同开展AI课题,促进发展AI技术的人力条件。但是遗憾的是我国开设人工智能课程的高校较少,2018年只有33所高校设立了智能科学与技术专业[6]。面对AI发展的火爆,国家对于AI人才发展的重视以及企业对于AI人才的严重需求,高校作为人才培养的主要来源,是不是应该思考AI人才的培养呢?AI人才可以分为三类:拔尖人才,研究性人才和应用型人才,呈金字塔性。当下已经有一批名牌大学开展了AI方向拔尖人才的培养,如北京大学图灵班、中国科技大学人工智能技术学院、西安交通大学人工智能拔尖人才培养实验班,南京大学计划成立人工智能学院等。但是金字塔的底层、中层更需要庞大的AI技术人才,如应用开发人员、数据工程师、AI和机器学习工程师、AI系统架构师、AI产品经理等岗位的人才,同样值得重视。很多专家都表示AI人才需要数学基础好、专业理论全面、具备一些工程基础,且有自主学习的能力。本文从夯实数学基础、人工智能方向课程的建设、实践能力的培养、自主学习能力的培养四个方面阐述高校关于AI人才培养的一些思考。
1奠定扎实的数学基础
在学习AI技术时,几乎所有专家学者都提出需要扎实的数学功底,数学功底的厚重程度决定了在AI技术上走多远。高等院校计算机专业都开设有“高等数学”“线性代数”“概率论”等数学课程,但是课时、难易程度不足,学生对于数学不够重视,或者觉得晦涩难懂,学习效果并不十分理想,因此加强数学基础的工作刻不容缓。可以通过必修和选修等方式开设“数据分析”“统计机器学习”“凸优化”等课程;通过微课或者MOOC等方式巩固数学基础的学习;通过优秀科普读物,如《数学之美》《编程之美》等书籍的推荐阅读激发学生兴趣;通过开展校内学术讨论、数学竞赛等方式促进学生学习数据的动力,逐步达到夯实数据功底的目的。
2人工智能方向课程的建设
很多高校计算机专业课程中只开设有《人工智能》导论,有的甚至没有。智能科学与技术专业开设有“人工智能”“计算机视觉”“机器人学导论”“计算智能”这几门课程,但是在编程、算法等方面不足。那么AI技术人才应具备哪些专业能力呢?如何从专业角度培养AI技术人才呢?2018年1月CSDN了“AI技术人才成长路线图”[7],通过专业路径和实战路径两方面介绍了AI技术人才需要具备的知识。需要具备Python、C++、Linux、CUDA编程知识,需要学习机器学习课程、掌握TensorFlow框架。该路线图中列出了机器学习算法工程师、数据科学家等10个岗位AI人才应具备专业知识和能力。微软公司也推出AI人才培养的10门免费课程,如“AI导论”“数据科学会用到的Python语言-导论”“AI领域运用的数学概要”“数据和分析所需要的道德与法律”“数据科学概要”“机器学习法则”“深度学习”“强化学习”“微软专案项目之人工智能”。同时在“文字和自然语言识别”“语音识别”“计算机视觉和图像识别”中选择其一。Google在人工智能学习网站开设有《MachineLearningCrashCourse(简称MLCC)》的免费课程[8],由机器学习概念、机器学习工程、机器学习现实世界应用示例三个部分组成。Intel近期也了三门免费的AI课程,分别是“机器学习基础”“深度学习基础”和“TensorFlow基础”[9]。AndrewNg在Coursera上也推出了机器学习的课程,且用比较通俗的语言讲解机器学习中各个算法。最近在Deeplearn-ing.ai和Coursera平台又开设了5门深度学习课程[10]。综上所述,不同的研究机构都着眼于AI编程基础、AI算法、AI框架、AI实践这几个方面。那么高校也可以借鉴这些经验,通过三个阶段分层次的开展相应的课程。
3实践能力的培养
AI技术不能纸上谈兵,必须动手实践才能真正掌握,可以从以下几个方面着手培养学生的实践动手能力。(1)设计教学环节时多从工程应用的角度来介绍,激发学生的兴趣,培养学生解决问题的能力。要求学生新手编程编程实现模型,充分理解算法的含义和原理到实现的过程。(2)在掌握一定的机器学习知识后,鼓励学生尽早走进实验室,接触科研工作。可以从一些AI应用方向作为入手,使学生了解自己的兴趣点、培养科学研究能力。(3)鼓励学生参加算法比赛。目前有很多AI方向的竞赛,如Kaggle上的挑战赛,国内阿里天池大数据竞赛等。通过参加竞赛刺激学生学习AI的动力和热情,使得解决问题的能力和实践动手能力都会大幅度提高。(4)鼓励学生到工业界实习。很多专家都指出AI人才应该具备一定工程基础。确实,学术界往往追求算法的性能,而工业界更重视经济效益和解决问题的有效性。到企业学习可以快速了解行业发展的框架,掌握算法转化到产品的过程。
4自主学习能力的培养
AI技术发展速度很快,要求不断地学习才能跟上节奏。可以从以下几个方面来培养学生的自主学习能力。(1)平时教学中,可以给出一些小型的项目,让学生自己寻求解决的方案,并把它作为考试成绩的依据之一。(2)提供给学生免费的AI慕课资源,让学生更好的学习和巩固相关知识。(3)课外可以开展学术讨论或者通过社团等方式开展AI方向的研讨,交流,给学生一个学习的平台,让学生尝试选择自己感兴趣的方向。也可以介绍一些近期的AI会议内容,开阔学生的眼界,使其了解AI发展的动态。(4)鼓励高年级学生订阅Arxiv,关注机器学习的顶级会议,如ICML/NIPS等。通过研读论文,动手完成论文中的实验发现新问题;或者扩展感兴趣的论文的实验部分;或者尝试寻求论文中有价值的地方,找到自己的研究方向。
据统计,2017年中国人工智能核心产业规模超过700亿元,随着各地人工智能建设的逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,年复合增长率将达31.7%。
随着人工智能技术的不断成熟,人工智能创业的难度逐步降低,越来越多的创业公司加入人工智能的阵营。
2018年被称为人工智能爆发的元年,人工智能技术应用所催生的商业价值逐步凸显。人工智能逐步切入到社会生活的方方面面,带来生产效率及生活品质的大幅提升。智能红利时代开启!资本、巨头和创业公司纷纷涌入,将人工智能拉到了信息产业革命的风口。
如何把握产业动向,抓住风口机会?创业邦研究中心凭借在人工智能等前言科技领域持续研究、洞察的能力,在对国内人工智能创业公司进行系统调研的基础上,推出《2018中国人工智能白皮书》,对人工智能的核心技术、主要应用领域、巨头和创业公司的布局、未来发展态势和投资机会进行了深度解析。
第一部分人工智能行业发展概述
1.人工智能概念及发展
人工智能(Artificial Intelligence, AI)又称机器智能,是指由人制造出来的机器所表现出来的智能,即通过普通计算机程序的手段实现的类人智能技术。
自1956年达特茅斯会议提出“人工智能”的概念以来,“人工智能”经历了寒冬与交替的起起伏伏60多年的发展历程。2010年以后,深度学习的发展推动语音识别、图像识别和自然语言处理等技术取得了惊人突破,前所未有的人工智能商业化和全球化浪潮席卷而来。
人工智能发展历程
2.人工智能产业链图谱
人工智能产业链可以分为基础设施层、应用技术层和行业应用层。
A基础层,主要有基础数据提供商、半导体芯片供应商、传感器供应商和云服务商。
B技术层,主要有语音识别、自然语言处理、计算机视觉、深度学习技术提供商。
C应用层,主要是把人工智能相关技术集成到自己的产品和服务中,然后切入特定场景。目前来看,自动驾驶、医疗、安防、金融、营销等领域是业内人士普遍比较看好方向。
人工智能产业链
资料来源:创业邦研究中心
第二部分人工智能行业巨头布局
巨头积极寻找人工智能落地场景,B、C 端全面发力。
资料来源:券商报告、互联网公开信息,创业邦研究中心整理
第三部分机器视觉技术解读及行业分析
1.机器视觉技术概念
机器视觉是指通过用计算机或图像处理器及相关设备来模拟人类视觉,以让机器获得相关的视觉信息并加以理解,它是将图像转换成数字信号进行分析处理的技术。
机器视觉的两个组成部分
资料来源:互联网公开信息,创业邦研究中心整理
2.发展关键要素:数据、算力和算法
数据、算力和算法是影响机器视觉行业发展的三要素。 人工智能正在像婴儿一样成长,机器不再只是通过特定的编程完成任务,而是通过不断学习来掌握本领,这主要依赖高效的模型算法进行大量数据训练,其背后需要具备高性能计算能力的软硬件作为支撑。
深度学习出现后,机器视觉的主要识别方式发生重大转变,自学习状态成为视觉识别主流,即机器从海量数据里自行归纳特征,然后按照该特征规律使图像识别的精准度也得到极大的提升,从70%+提升到95%。
3.商业模式分析
机器视觉包括软件平台开发和软硬件一体解决方案服务。整体用户更偏向于B端。软件服务提供商作为技术算法的驱动者,其商业模式应以“技术层+场景应用”作为突破口。软硬件一体化服务供应商作为生态构建者,适合以“全产业链生态+场景应用”作为突破口,加速商业化。
(1)软件服务:技术算法驱动者—“技术层+场景应用”作为突破口
这种商业模式主要是提供以工程师为主的企业级软件服务。有海量数据支撑,构建起功能和信息架构较为复杂的生态系统,推动最末端的消费者体验。
此类商业模式成功关键因素:深耕算法和通用技术,建立技术优势,同时以场景应用为入口,积累用户软件。视觉软件服务按处理方式和存储位置的不同可分为在线API、离线SDK、私有云等。
国内外基础算法应用对比
资料来源:互联网公开信息,创业邦研究中心整理
(2)软硬件一体化:生态构建者—“全产业链生态+场景应用”作为突破口
软硬一体化的商业模式是一种“终端+软件+服务”全产业链体系。成功的因素是大量算力投入,海量优质数据积累,建立算法平台、通用技术平台和应用平台,以场景为入口,积累用户。亮点是打造终端、操作系统、应用和服务一体化的生态系统,各部分相辅相承,锐化企业竞争力,在产业链中拥有更多话语权。
4.投资方向
(1)前端智能化,低成本的视觉解决模块或设备
从需求层面讲,一些场景对实时响应是有很高要求的。提供某些前端就本身有一定计算能力的低成本的视觉模块和设备将有很大市场需求。前置计算让前端设备成为数据采集设备和数据处理单元的合体,一方面提升了处理速度,另一方面可以处理云端难以解决的问题。
机器视觉在消费领域落地的一个障碍是支持高性能运算的低功耗、低价位芯片选择太少。从低功耗、高运算能力的芯片出发,结合先进的算法开发模块和产品,这类企业将在机器视觉领域拥有核心竞争力。
(2)深度学习解决视觉算法场景的专用芯片
以AI芯片方式作为视觉处理芯片有相当大的市场空间。以手势识别为例,传统的识别方案大都基于颜色空间,如 RGB,HSV ,YCrBr,无法排除类肤色物体及黑色皮肤对识别精度的干扰。借助深度学习,如通过 R-CNN 训练大量标注后的手势图像数据,得到的模型在处理带有复杂背景及暗光环境下的手势识别问题时,比传统方案的效果好很多。
(3)新兴服务领域的特殊应用
前沿技术带来的新领域(如无人车、服务机器人、谷歌眼镜等),对机器视觉提出了新要求。机器视觉可以让机器人在多种场合实现应用。服务机器人与工业机器人最大的区别就是多维空间的应用。目前国内的机器视觉,涉及三维空间、多维空间,其技术基本上处在初始阶段,未来存在较大市场增长空间。
(4)数据是争夺要点,应用场景是着力关键
机器视觉的研究虽然始于学术界,但作为商业应用,能解决实际问题才是核心的竞争力。当一家公司先天能够获得大量连续不断的优质场景数据,又有挖掘该数据价值的先进技术时,商业模式和数据模式上就能形成协同效应。创业公司要么通过自有平台获取数据,要么选择与拥有数据源的公司进行合作,同时选择一个商业落地的方向,实现快速的数据循环。
第四部分智能语言技术解读及行业分析
1.语音识别技术
(1)语音识别技术已趋成熟,全球应用持续升温
语音识别技术已趋成熟,全球应用持续升温。语音识别技术经历了长达60年的发展,近年来机器学习和深度神经网络的引入,使得语音识别的准确率提升到足以在实际场景中应用。深度神经网络逐步找到模型结构和调参算法来替代或结合高斯混合算法和HMM算法,在识别率上取得突破。根据Google Trends统计,自2008年iPhone及谷歌语音搜索推出以来语音搜索增长超35倍。百度人工智能专家吴恩达预测,2020年语音及图像搜索占比有望达到50%。Echo热销超过400万,带动智能音箱热潮。
(2)语音识别进入巨头崛起时代,开放平台扩大生态圈成主流
语音识别即将进入大规模产业化时代。随着亚马逊Echo的大卖,语音交互技术催生的新商机,吸引大大小小的公司构建自己主导的语音生态产业链。各大公司纷纷开放各自的智能语音平台和语音能力,欲吸引更多玩家进入他们的生态系统。
(3)语音识别技术发展瓶颈与趋势
低噪声语料下的高识别率在现实环境使用中会明显下降到70-80%,远场识别、复杂噪声环境和特异性口音的识别是下一个阶段需要解决的问题。
麦克风阵列类前端技术不仅是通过降噪和声源定位带来识别率的提高,带环境音的语料的搜集、标注可用于模型的训练,有助于打造更新一代的语音识别引擎技术。语音巨头已经在布局。
在IOT包括车载领域,云端识别并非通行的最优方案,把识别引擎结合场景进行裁剪后往芯片端迁徙是工程化发展的方向。
2.自然语言处理(NLP)发展现状
(1)多技术融合应用促进NLP技术及应用的发展
深度学习、算力和大数据的爆发极大促进了自然语言处理技术的发展。深度学习在某些语言问题上正在取得很大的突破,比如翻译和写作。2014年开始LSTM、Word2Vec以及Attention Model等技术研究的进展,使DL有了路径在语义理解领域取得突破,并且已经有了明显的进展。对话、翻译、写作新技术成果里都开始逐渐混合入DL的框架。2014-2015年,硅谷在语义理解领域的投资热度剧增。
深度学习能最大程度发挥对大数据和算力资源的利用,语义理解的发展还需要深度学习、搜索算法、知识图谱、记忆网络等知识的协同应用,应用场景越明确(如客服/助理),逻辑推理要求越浅(如翻译),知识图谱领域越成熟(如数据饱和度和标准性较强的行业),技术上实现可能性相对较低。在各种技术融合应用发展的情况下,具备获取一定优质数据资源能力并可结合行业Domain knowledge构建出技术、产品、用户反馈闭环的企业会有更好的发展机会。
(2)NLP主要应用场景
问答系统。问答系统能用准确、简洁的自然语言回答用户用自然语言提出的问题。基本工作原理是在线做匹配和排序。比如 IBM 的 Watson,典型的办法是把问答用FAQ索引起来,与搜索引擎相似。对每一个新问题进行检索,再将回答按匹配度进行排序,把最有可能的答案排在前面,往往就取第一个作为答案返回给用户。
图像检索。同样也是基于深度学习技术,跨模态地把文本和图片联系起来。
机器翻译。机器翻译的历史被认为与自然语言处理的历史是一样的。最近,深度学习被成功地运用到机器翻译里,使得机器翻译的准确率大幅度提升。
对话系统。对话系统的回复是完全开放的,要求机器能准确地理解问题,并且基于自身的知识系统和对于对话目标的理解,去生成一个回复。
(3)创业公司的机遇
1)机器翻译方面:经过多年的探索,机器翻译的水平已经得到大幅度提升,在很多垂直领域已经能够在相当大程度上替代一部分人工,机器翻译技术的商业化应用已经开始进入大规模爆发的前夜。
2)应用于垂直领域的自然语言处理技术
避开巨头们对语音交互入口的竞争,以某一细分行业为切入点,深耕垂直领域,对创业公司也是一个不错的选择。
第五部分人工智能在金融行业的应用分析
人工智能产业链包含基础层、技术层、应用层三个层面。基础层的大数据、云计算等细分技术被应用到金融征信、保险、理财管理、支付等金融细分领域;技术层的机器学习、神经网络与知识图谱应用于金融领域的征信与反欺诈、智能投顾、智能量化交易,计算机视觉与生物识别应用于金融领域的身份识别,语音识别及自然语言处理应用于金融领域的智能客服、智能投研;应用层的认知智能应用于金融领域的智能风控。
人工智能在金融行业的典型应用情况
资料来源:创业邦研究中心
第六部分人工智能在医疗行业的应用分析
1.人工智能在医疗行业的应用图谱
人工智能在医疗行业的应用潜力巨大,目前在健康管理、辅助诊疗、虚拟助理、医学影像、智能化器械、药物挖掘和医院管理等领域均有企业在布局,其中医学影像、药物挖掘、健康管理,辅助诊疗、虚拟助理的应用发展速度较快。
图 人工智能在医疗行业的应用图谱
资料来源:创业邦研究中心
2.人工智能在医疗行业的具体应用场景
医学影像。人工智能应用于医学影像,通过深度学习,实现机器对医学影像的分析判断,是协助医生完成诊断、治疗工作的一种辅助工具,帮助更快的获取影像信息,进行定性定量分析,提升医生看图/读图的效率,协助发现隐藏病灶。 人工智能通过影像分类、目标检测、图像分割、图像检索等方式,完成病灶识别与标注,三维重建,靶区自动勾画与自适应放疗等功能,应用在疾病的筛查、诊断和治疗阶段。目前较为火热的应用有肺部筛查、糖网筛查、肿瘤诊断和治疗等。
药物挖掘。人工智能在药物研发上的应用可总结为临床前和临床后两个阶段。临床前阶段:将深度学习技术应用于药物临床前研究,在计算机上模拟药物筛选的过程,包括靶点选择、药效和晶型分析等,预测化合物的活性、稳定性和副作用,快速 、准确地挖掘和筛选合适的化合物或生物,提高筛选效率,优化构效关系。临床后阶段:针对临床试验的不同阶段,利用人工智能技术对患者病历进行分析,迅速筛选符合条件的被试者,监测管理临床试验过程中的患者服药依从性和数据收集过程,提高临床试验的准确性。
虚拟助理。医疗虚拟助理是基于医疗领域的知识系统,通过人工智能技术实现人机交互,从而在就医过程中,承担诊前问询、诊中记录等工作,成为医务人员的合作伙伴,使医生有更多时间可以与患者互动。医疗虚拟助理根据参与就医过程的功能不同,主要有智能导诊分诊,智能问诊,用药咨询和语音电子病历等方向。
第七部分智能驾驶行业分析
1.智能驾驶行业产业链
智能驾驶行业的中心业务是以Google、百度为代表的智能驾驶操纵解决方案提供商和以特斯拉、蔚来为代表的成车厂商。该类厂商,上接上游软硬件提供商,下接公司和消费者,在整个业务链中扮演至关重要的一环。
产业链上游厂商多为细分技术提供商,如深度学习、人机交互、图像识别和新材料、新制造新能源等。
智能驾驶产业链图谱
资料来源:创业邦研究中心
2.智能驾驶市场分析
伴随着 ADAS 技术的不断更新,推断全球 L1-L5 智能驾驶市场的渗透率会在接下来 5年内处于高速渗透期,然 后伴随半无人驾驶的普及进入稳速增长期。在未来的 2025 年无人驾驶放量阶段后,依赖全产业链的配合而进入市场成熟期。预测到2030年,全球 L4/5 级别的自动驾驶车辆渗透率将达到 15%,单车应用成本的显着提升之 外,从 L1-L4 级别的智能驾驶功能全面渗透为汽车产业带来全面的市场机会。
按照 IHS Automotive 保守估计,全球 L4/L5 自动驾驶汽车产量在 2025 年将接近 60 万辆,并在 2025- 2035 年间获得高速发展,年复合增长率将达到43%,并在2035年达到2100万辆。另有接近 7600 万辆的汽车具备部分自动驾驶功能,同时会带动产业链衍生市场的大规模催化扩张。
根据独立市场调研机构 Strategy Engineers 的预测,L4 高度自动驾驶等级下,自动驾驶零部件成本约在 3100 美元/车,其中硬件占比 45%,软件占比 30%,系统整合占比 14%,车联网部分占比 11%。按照全球 1 亿辆量 产规模计算,理想假设所有车辆全部达到 L4 高度自动驾驶水平,那么全球自动驾驶零部件市场规模在 2020 年 将达到 3100 亿美元。
第八部分中国人工智能企业画像分析
随着人工智能技术的不断成熟,人工智能创业的难度逐步降低。创新的大门吸引众多创业企业进入。为了观察行业风向,助力创新企业发展,创业邦研究中心对国内200多家人工智能创业公司进行了系统调研,从发展能力、创新能力、融资能力等多维度指标,评选出“2018中国人工智能创新成长企业50强”。
地域分布
全国88%的人工智能企业聚集在北京、上海、广东和江苏。其中,北京人工智能企业最多,占比高达39.66%;其次是上海,人工智能企业占比达21.55%;位列第三的是广东,人工智能企业占达15.52%。北京以领先全国其他地区的政策环境、人才储备、产业基础、资本支持等,成为人工智能创业首要阵地;华东地区的上海、江苏、浙江均有良好的经济基础和科技实力,人工智能应用实力雄厚,也聚集了一批人工智能垂直产业园;广东互联网产业发达,企业对数据需求强烈,依靠大数据产业链推动人工智能产业发展。
行业分布
从行业大类分布来看,行业应用层的企业占比最大,为56.03%;其次是应用技术层的企业,占比达31.04%;基础技术层的企业占比最小,仅为12.93%。随着人工智能技术的发展,人工智能与场景深度融合,应用领域不断扩展,行业应用公司比重不断提升。在基础层技术方面,国际IT巨头占据行业领先地位, 国内与国际差距明显,中小初创企业很难进入。
从行业应用来看,智能金融企业占比最大,为16.92%;其次是机器人企业,占比达15.38%;位列第三的是智能驾驶和智能教育,占比均为12.31%。金融行业的强数据导向为人工智能的落地提供了产业基础,智慧金融被列入国家发展规划中,庞大的金融市场为人工智能落地带来了发展前景。机器人作为人工智能产业落地输出, 目前市场需求较大,商业机器人占据较大份额。中国智能驾驶市场在资本推动下进入者较多,企业积极推动应用落地,百度、北汽等大型企业尝试商业化落地智能驾驶汽车。人工智能推动教育个性化落地,相关初创企业涉入教育蓝海,推动智慧教育的发展。
收入情况
收入分布在500-10000万之间的企业最多,占比达49.14%;500万以下的企业位居其次,占比达 26.72%;位列第三的是10000-100000万之间的企业,占比为17.24%。
最新估值
企业最新估值均在亿元级别,且分布较为均衡。三成企业估值超过15亿元,还有企业估值达到百亿级别,如优必
选科技、达闼科技和商汤科技等,将来或将跻身人工智能独角兽企业。(备注:分析样本量剔除一半未披露企业)
第九部分典型企业案例分析
1.Atman
企业概述
Atman由来自微软的人工智能科学家和产业经验丰富的产品团队创办,提供专业领域机器翻译、机器写作、知识图谱、大数据智能采集挖掘等语言智能产品,致力于成为医学、新闻、法律等专业领域语言智能专家,为专业领域用户赋能,推动专业领域用户进入人工智能时代,助力专业领域文字智能水平实现跨越式提升。Atman已为强生、新华社参考消息、北大法宝、君合律师事务所等世界领先药企、新闻媒体、法律服务机构开发机器翻译、机器写作、知识图谱、大数据智能采集挖掘等语言智能产品。
目前Atman在北京和苏州两地运营,能快速响应全国各地客户需求。
企业团队
创始人&CEO:马磊
清华大学计算机系毕业,曾先后在微软研究院和工程院担任研究员和架构师,机器学习专家、多次创业者、曾主导多项人工智能重大项目,和申请国际专利共计15+项。
Atman公司核心团队由来自微软、百度、法电等领域高端人才和资深技术人才组成,公司员工40人,其中硕士以上学历占比60%,技术开发人员占比70%,一半以上来自微软亚洲研究院和工程院。
核心技术与产品
技术方面,擅长机器学习(深度学习、强化学习、群体智能)在复杂问题的应用,和国际专利15项,Atman神经网络机器翻译系统于2016年9月首秀,早于谷歌的GNMT,专业领域翻译效果在公测标准和行业客户测试中均持续领先。核心产品为垂直领域机器翻译、机器写作、知识图谱抽取构建、大数据智能挖掘等语言智能产品。
Atman的机器翻译产品可自动翻译编辑专业文献、报告、音视频和网页,支持私有部署和云端混合部署,提供包括数据隐私安全以及自学习的端到端解决方案。
机器写作可对海量数据进行快速搜索、过滤、聚类,根据行业需求自动生成专业文档,适用于所有专业写作场景,可大幅减少专业报告写作过程中的繁复工作,大幅提升专业领域写作效率。
知识图谱可实现海量数据的语义检索、长链推理、意图识别、因果分析,形成一个全局知识库。大数据智能采集挖掘系统为专业领域用户提供智能数据源管理、海量专业数据获取和非结构化数据自动解析并结合知识图谱提供auto-screening、知识重构、专业决策辅助,帮助用户建立强大的以专业大数据为基础的业务辅助能力。
2.黑芝麻
企业概述
黑芝麻智能科技有限公司是一家视觉感知核心技术与应用软件开发企业,2016年分别在美国硅谷和上海成立研发中心,主攻领域为嵌入式图像、计算机视觉,公司核心业务是提供基于图像处理、计算图像以及人工智能的嵌入式视觉感知平台,为ADAS及自动驾驶提供完整的视觉感知方案。
目前公司和博世、滴滴、蔚来、上汽、上汽大通、EVCARD、中科创达、车联天下和云乐新能源等展开深入合作,提供基于视觉的感知方案;除此之外,公司还在消费电子、智能家居等领域布局为智能终端提供视觉解决方案。目前公司已经完成A+轮融资。
企业团队
团队核心成员来自于OmniVision、博世、安霸、英伟达和高通等知名企业,平均拥有超过15年以上的产业经验,毕业于清华、交大、中科大和浙大等知名高校。
创始人&CEO:单记章此前在硅谷一家全球顶尖的图像传感器公司工作近20年,离职前担任该公司的技术副总裁一职,工作内容覆盖了图像传感器研发和设计、图像处理算法研发和图像处理芯片设计。
核心技术和产品
在汽车领域,黑芝麻可提供车内监控方案(DMS),自动泊车方案(AVP),ADAS/自动驾驶感知平台方案。黑芝麻智能科技提供的解决方案包括算法和芯片两个核心部分:黑芝麻感知算法从基础的控光技术,到面向AI的图像处理技术出发来提高成像质量,以及应用深度神经网络训练,结合视频处理和压缩技术,形成从传感器端到应用端的处理过程;黑芝麻芯片平台采用独有的神经网络架构,包括独有的图像处理,视频压缩和计算机视觉模块,与黑芝麻视觉算法结合,采用16nm制程,设计功耗2.5w,每秒浮点计算达20T。
3.乂学教育
企业概述
乂学教育,成立于2014年,是一家网络教育培训机构,采用人工智能和大数据技术,为学生提供量身定制学习解决方案和个性化学习内容。核心团队来自美国Knewton、Realizeit、ALEKS等人工智能教育公司,销售团队有全国40亿toC销售额的经验。
企业自主研发了针对中国K12领域的学生智适应学习产品,其核心部分是以高级算法为核心的智适应学习引擎“松鼠AI”,该产品拥有完整自主知识产权,能够模拟真实特级教师教学。企业发表的学术论文得到了全球国际学术会议AIED、CSEDU、UMAP认可,并在纽约设计了人工智能教育实验室,与斯坦福国际研究院(SRI)在硅谷成立了人工智能联合实验室。
主要产品
学生智适应学习是以学生为中心的智能化、个性化教育,在教、学、评、测、练等教学过程中应用人工智能技术,在模拟优秀教师的基础之上,达到超越真人教学的目的。该产品性价比高,以人工智能+真人教师的模式,做到因材施教,有效解决传统教育课时费用高,名师资源少,学习效率低等问题。
智适应学习人工智能系统
智适应学习人工智能系统模拟特级教师,采用图论、概率图模型,机器学习完成知识点拆分和个人学习画像,采用神经网络、逻辑斯蒂回归和遗传算法为学生实时动态推荐最佳学习路径,实现个性化教育。
业务模式
线上与线下,2B和2C相结合。以松鼠AI智适应系统教学为主,真人教师辅助,学生通过互联网在线上学习课程。开创教育新零售模式,授权线下合作学校,已在全国100多个城市开设500多家学校。
4.云从科技
企业概述
云从科技成立于2015年4月,是一家孵化于中国科学院重庆研究院的高科技企业,专注于计算机视觉与人工智 能。云从科技是人工智能行业国家队,是中科院战略先导项目人脸识别团队唯一代表,唯一一家同时受邀制定人 脸识别国家标准、行业标准的企业。2018年,云从科技成为祖国“一带一路”战略实行路上的人工智能先锋,与 非洲南部第二大经济体津巴布韦政府完成签约。
云从科技奠定了行业领导地位: 国家肯定,国家发改委2017、2018年人工智能重大工程承建单位;顶层设计,唯一同时制定国标、部标和行标的人工智能企业;模式创新,三大平台解决方案,科学家平台、核心技术平台和行业应用平台。
企业核心团队
创始人
周曦博士,师从四院院士、计算机视觉之父—ThomasS.Huan黄煦涛教授,专注于人工智能识别领域的计算机视觉 研究。入选中科院“百人计划”,曾任中国科学院重庆研究院信息所副所长、智能多媒体技术研究中心主任。
周曦博士带领团队曾在计算机视觉识别、图像识别、音频检测等国际挑战赛中7次夺冠;在国际顶级会议、杂志 上发表60余篇文章,被引用上千次。
核心技术团队
云从科技依托美国UIUC和硅谷两个前沿实验室,中科院、上海交大两个联合实验室上海、广州、重庆、成都四 个研发中心组成的三级研发架构。目前研发团队已经超过300人,80%以上拥有硕士学历。
技术优势
全方位多维智能学习模块适应不同场景要求;模块化设计为在工业视觉、医学影像、自动驾驶AR等领域扩展打下良好基础。
云从科技具有高技术壁垒:世界智能识别挑战赛成绩斐然,在CLEAR、 ASTAR、 PASCAL VOC、 IMAGENET、FERA以及微软全球图像识别挑战赛上共计夺得7次世界冠军;在银行、公安等行业智能识别技术 PK实战中,85次获得第一;2018年,云从科技入选MIT全球十大突破性技术代表企业。
在跨镜追踪(ReID)技术上取得重大突破。Market-1501,DukeMTMC-reID,CUHK03三个数据同时集体刷 新世界记录, Market-1501上的首位命中率达到96.6%,首次达到商用水平。
正式在国内“3D结构光人脸识别技术”,可全面应用于手机、电脑、机具、设备、家电。相较以往的2D人 脸识别及以红外活体检测技术,3D结构光人脸识别技术拥有不需要用户进行任何动作配合完成活体验证的功能, 分析时间压缩到了毫秒级以及不受环境光线强弱的影响等诸多优点,受到国际巨头公司的关注。
行业应用
目前国内有能力自建系统的银行约为148家。截止2018年3月15日,已经完成招标的银行约为121家,其中云从科 技中标了88家总行平台,市场占有率约为72.7%;在安防领域推动中科院与公安部全面合作,通过公安部重大课题研发火眼人脸大数据平台等智能化系统,在民航领域,已经与中科院重庆院合作覆盖80%的枢纽机场。
5.Yi+
企业概述
北京陌上花科技是领先的计算机视觉引擎服务商,为企业提供视觉内容智能化和商业化解决方案。致力于“发现视觉信息的价值”。
旗下品牌Yi+是世界一流的人工智能计算机视觉引擎,衣+是时尚商品搜索引擎。公司在图像视频中对场景、通用物体、商品、人脸的检测、识别、搜索及推荐均达到领先水平。
目前公司和阿里巴巴、爱奇艺、优酷土豆、中国有线、CIBN、中信国安、海信、华为、360等数十家顶级机构/产品深度合作,通过提供边看边买引擎、图像视频内容分析引擎、人脸识别引擎等基于视觉识别技术的数据结构化产品服务于海量用户,同时帮助政府机构、广电系统、内容媒体、零售商、电商、视听设备等行业实现智能分析、智能互动与场景营销。目前公司已经获得B轮融资。
企业团队
团队成员来自于斯坦福、耶鲁、帝国理工、新加坡国大、南洋理工、清华、北大、中科院等名校及谷歌、微软、IBM、英特尔、阿里巴巴、腾讯、百度、华为等名企。
创始人&CEO:张默
北京大学软件工程硕士, 南洋理工大学创业创新硕士。连续创业者, 曾任华为算法工程师、微软WindowsMobile工程师、 IBM SmarterCity 架构师,北方区合作伙伴经理,主机Linux中国区负责人,中国区开源联盟负责人,年销售额数亿。 2013年创业于美国硅谷和新加坡,2014年6月在中国设立北京陌上花科技有限公司。
核心技术与产品
技术方面,在国际顶级计算机视觉竞赛ImageNet中,成绩曾超过谷歌、斯坦福等,2015-2016年2年获得十项世界第一。2018年3月,人脸识别准确率位列LFW榜首。Yi+通过遵循无限制,标记的外部数据协议。 Yi+的系统由人脸检测,人脸对齐和人脸描述符提取组成。使用多重损失和训练数据集训练CNN模型,其中包含来自多个来源的约10M个图像,其中包含150,000个人(训练数据集与LFW没有交集)。在测试时, Yi+使用原始的LFW图像并应用简单的L2norm。图像对之间的相似性用欧氏距离来测量,最终取得优异成绩。
公司的核心产品主要包括视觉搜索引擎,图像视频分析引擎以及人脸识别和分析引擎:
行业解决方案
针对营销、安防、相机和电视的不同特点,推出相应解决方案。
营销+AI。场景化广告方案中,大屏AI助理信息流推荐、神字幕、物体/人脸AR动态贴图、video-out、场景化角标与广告滤镜等形式的广告内容推荐,适用于快消、汽车、电商、IT、金融、旅游服务等多个行业。
智慧城市+AI。使用计算及视觉助力智慧城市,在智慧安防、智慧交通、智慧园区等方面提供解决方案。在智慧安防实时识别上,实时处理直播摄像头信息,算法反应敏捷,相应迅速。建立智慧园区方案模型,考虑扩展性&灵活性、数据管理、松散耦合性、安全性、实时整合性以及功能性和非功能性需求等技术方案要素,从业务和技术两方面整合解决方案实现步骤。
电视+AI。电视+AI的解决方案赋予智能电视多样播放能力和营销能力。
相机+AI。相机更具交互能力。用户通过搜索关键字标签同步展示图片,打通相册和购物一站式体验。准确识别人物属性特征,动态适应表情变化,可以在视频以及图像中对人脸实时检测,基于深度学习技术,进行人脸相似度检测,实现面部关键点定位、妆容图像渲染,试用与粉底、唇彩以及眼影等多种虚拟试装方式。实时检测摄像头中出现的物品、场景和人脸等,添加AR效果,SDK支持本地检测、识别、追踪,平均检测帧率可达到25fps。
新零售+AI。Yi+新零售解决方案是基于公司自主研发的人脸识别、商品识别和其他图像识别算法技术为核心,建立一整套基于人脸、商品的智能零售门店管理方案。Yi+新零售解决方案主要包含数据采集、算法模型说明和部署方案三部分,其中数据采集包括人脸数据采集、商品数据采集;算法模型说明包括识别算法训练、商品识别、识别输出;部署方案包括本地部署、云端部署、本地部署与云端部署结合。
6.擎创科技
企业简介
擎创科技成立于2016年,专注于将人工智能和机器学习赋予传统IT运维/企业运营管理,为企业客户提供智能运维大数据分析解决方案,从而取代和改善对高技能运维人员严重依赖的现状。2017年,擎创科技已实现全年2000万营收,迅速成为国内AIOps领域的领跑者和中流砥柱。2018年初,擎创科技完成了数千万人民币的A轮融资,由火山石投资领投,晨晖创投、元璟资本及新加坡STTelemedia跟投。
核心团队
擎创团队的核心成员主要由BMC、微软等美国企业服务上市公司的运维老兵,与新浪、饿了么等知名互联网公司的大数据、算法专家组成,核心团队成员至少拥有10年以上的行业经验。其中CEO杨辰是国内最顶级的B端销售,曾带领团队获得10倍的业绩增长;CTO葛晓波拥有长达15年的企业级软件开发和运维经验;而产品总监屈中泠则来自甲方,创业前为浦发硅谷银行企业架构师,深知甲方对企业运维产品的需求。这个曾经深耕于运维企业服务市场的团队,如今在智能运维企业服务赛道继续领跑,让擎创科技成为最懂企业的客户,最值得企业客户信赖的软件厂商。
主要产品
“夏洛克AIOps” 作为擎创自主研发的大数据智能运维主打产品,自2016年上线以来,已从1.0版本升级至1.9版本,可应用在金融、大型制造业、铁路民航、能源电力等涉及国家发展和民生问题的多种行业。在2017全球运维大会上,夏洛克AIOps获得由中国信息通信研究院与高效运维社区联合颁发的“年度最具影响力AIOps产品”奖。
“夏洛克AIOps”充分利用自研算法辅助客户实现IT运维价值,结合客户的现有情况,规划从传统ITOM至AIOps智能运维的一站式路径,助其运营落地,由此打破数据孤岛,建立统一的大数据智能分析平台,实现以人工智能为核心,驱动传统IT运维监、管、控三个层面,并将相关运维数据及业务数据实时展现。
“夏洛克AIOps”拥有多项自研算法,犹如运维界的福尔摩斯,能迅速发现并定位运维问题的根因,实现秒级排障,最大程度避免企业产生重大损失。更有价值的是,“夏洛克AIOps”还能通过长期的数据积累和机器学习,运用新型深度神经网络算法对企业的业务数据进行预测,帮助企业提前规划IT资源,高效预防各类黑天鹅事件的发生。
商业模式
目前,擎创科技已与多家金融和制造行业标杆客户形成稳定的合作关系,包括浦发银行、浦发硅谷银行、国家开发银行、上海铁路局、银联、海尔、浙江能源等。针对不同客户,采用个性化的商业模式进行服务,目前主要有私有模式和SaaS模式两种,都具有较强的可复制性。
核心优势
2021年行动计划
为落实2021年市委1号文和《南京市关于加快应用场景开发建设2021年行动方案》(宁新产业办〔2021〕1号)要求,2021年全市将1000个应用场景,其中下达我区80个以上应用场景的目标任务,为确保目标任务顺利完成,特制定本行动计划。
一、总体要求
应用场景一般是指在城市基础设施建设运营管理、产业发展、民生服务等领域,对新技术新产品有应用需求的各类工程、项目。通过应用场景开发建设,可以推进新技术新产品的示范应用和迭代升级,助力新技术新产品推广应用。
——在搭建主体上。应用场景可分为产业发展、城市治理、民生服务等类别,不完全由政府主导,更强调政府“搭台”,企业“出题”和“答题”。搭建主体可包括政府部门、事业单位、团体组织、企业等各类主体。
——在技术应用上。通过对5G、人工智能、云计算、大数据、区块链、工业互联网、量子通信等产业链领域先进技术的应用,通过系统性解决方案完成搭建,促进新产品新技术的落地验证或迭代升级。
——在项目特质上。应用场景必须具备开放性和吸附性,通过对外合作,完成场景建设。通过场景建设,对外输出可复制推广的成功经验和模式。
——在建设方案上。应用场景必须有明确具体的建设方案和投资主体,经过论证项目切实可行,一般为在建项目,或者已经具备建设实施的基本条件即将开工建设的项目。
二、主要目标
加快5G、人工智能、区块链、大数据、工业互联网、量子通信等先进技术集成创新和融合应用,提高城市治理能力和精细化管理水平,促进产业转型发展,培育和壮大新增长极,保障和改善民生,为各类市场主体创新成果应用提供更多市场机遇,有力支撑更高水平现代化国际性城市中心建设。2021年,围绕产业发展、城市治理、民生服务等领域80个以上的应用场景。
三、重点任务
(一)围绕产业发展,开发一批经济数字化应用场景
1. 拓展数字化制造场景。加大智能制造装备、新能源汽车等产业链应用场景开发力度。围绕数据采集和感知、高清视频、机器视觉、精准远程操控、现场辅助、数字孪生等六类典型应用场景,鼓励制造业企业积极探索“5G+工业互联网”融合应用,推动智能化、数字化转型。实施企业内网升级工程,引导和支持重点企业应用5G、IPv6、TSN、工业PON等新技术部署企业内网,实现生产设备的广泛互联和数据互通。加快促进省市重大科技成果转化,支持未来网络与实体经济深度融合,深化工业互联网在先进制造业领域的应用。(责任单位:区发改委,各园区)
2. 拓展数字化文旅场景。结合零售、餐饮、出行等服务业数字化转型,加大应用场景开发力度,助推平台经济、共享经济、在线经济等新兴服务经济发展。围绕内容创作、设计展示、信息服务、消费体验等文化领域关键环节,推动人工智能、大数据、超高清视频、5G、VR等技术应用,促进传统文化产业数字化升级,培育新型文化业态和文化消费模式。深挖采集重点旅游区域基础数据,导入VR、AR能力,建设以社交媒体为主导的营销渠道,为游客提供个性化智能服务。(责任单位:区文旅局、商务局,区委宣传部,各园区)
3. 拓展数字化消费场景。提升潮流街区数字化消费场景,激发数字消费潜力。积极引入新零售新服务业态,打造汇集5G应用、刷脸支付、网红直播为一体的新消费商圈,建设环境舒适、购物便捷、科技感强的网红街区,塑造城市消费新形态。推广直播线上带货等新场景,推动无接触服务向住宿、生鲜零售、物流、金融等应用场景延伸。(责任单位:区商务局,各园区)
4. 拓展数字化金融场景。引导金融机构积极探索应用区块链、人工智能等技术,提高金融行业运转效率、优化服务流程、降低交易成本、保障交易安全。建设数字金融平台,丰富平台应用场景,持续优化平台各功能板块,将平台打造为以技术驱动、生态共建、数据融合、价值共享为特色的数字金融平台。引导金融行业在智能客服、智能身份识别、智能营销、智能风控、智能投顾、智能量化交易等业务中,拓展“人工智能+金融”应用场景,形成标准化、模块化、智能化、精准化的风险控制系统。(责任单位:区金融监管局,各园区)
(二)围绕城市治理,开发一批治理数字化应用场景
5. 智慧政务。探索运用区块链等技术提升数据共享和业务协同能力,重点推进电子证照、电子档案、数字身份等居民个人信息的全链条共享应用。打造企业服务平台,实现惠企政策与企业精准匹配,推出数字化服务企业的应用场景。强化新技术在“互联网+”监管领域的应用,推动实现线上监管和“非接触式”监管。(责任单位:区行政审批局、发改委、信息中心,各园区、街道)
6. 智慧警务。建设市域社会治理现代化指挥中心,打造智慧警务应用生态和智慧家园平台,推进智能安防建设。推进政法各部门间的数据共享和业务协同以及执法监督、法律服务、特殊人群管理等全方位联动应用。以人工智能、大数据、物联网、5G等前沿科技为重点,构建符合现代警务机制和社会治理要求的新一代智慧警务体系,做强智慧警务支撑。(责任单位:区委政法委、建邺公安分局、区司法局,各园区、街道)
7. 智慧交通。聚焦汽车自动驾驶与交通安全、智慧公路建设、城市交通靶向治理等领域,推动5G、大数据、云计算、人工智能、北斗导航等技术在智慧交通的应用示范。实施数据驱动打造“新型公交都市”行动计划。聚焦智慧轨道交通建设与运营等典型应用场景,围绕智慧车辆、智能维护、智慧建设、智慧制造等,推动机器人、环境智能感知及控制、智能安检、北斗导航、5G、建筑信息模型(BIM)等技术在轨道交通项目中推广应用。(责任单位:区发改委、建设局,各园区)
8. 智慧生态。积极参与全市生态环境智慧应用平台建设,健全水灾害监测预警、灾害防治、应急救援体系。支持大气、水、土壤等生态环境质量监测与评估,污染物及温室气体排放控制与污染源监管等领域关键产品研发与集成示范应用,持续推动环境质量改善,切实维护生态安全。积极建设“智慧园林一张图”。(责任单位:区发改委、生态环境局、城管局,各园区、街道)
9. 智慧应急管理。建设城市安全综合应用系统,开展城市风险多变量预警分析模型研制和城市风险源标注。开展危化品全流程管理信息化系统建设,形成企业安全信用脸谱,深化建设应用,强化指挥信息网安全边界防护,推进融合通信系统建设。(责任单位:区应急管理局、信息中心,各园区、街道)
10. 智慧城管。建设城管大数据运行管理平台,推进系统同构、数据同构,提升协同治理效能、问题预警发现能力和处置效率。加大生活垃圾分类投放收运等关键产品研发与集成示范应用力度,科技助力垃圾分类。建设服务城市精细化管理及城市安防、交通管理的智慧灯杆,拓展智慧停车、智慧井盖等应用场景。(责任单位:区城管局、城管水务集团,各园区、街道)
11. 智慧建设。构建建设工程综合服务管理平台,实现建设工程全流程、全区域、全要素监管。推动先进技术赋能城市建设和建筑业应用场景的开发。(责任单位:区建设局、城建集团,各园区、街道)
12. 新型基础设施。推进城市公共基础设施数字化建设改造。加快交通、水电气热等市政领域数字终端、系统改造建设。加快5G网络规模部署和商业应用,推进车站、社区、商场等重点区域5G基站和配套网络建设,推进骨干网、城域网扩容,推动家庭宽带千兆、百兆接入普及。推进工业、交通、物流等重点领域物联感知设施部署。探索开展无人机、机器人运转所需配套设施建设。(责任单位:区发改委、建设局、城建集团,各园区、街道)
(三)围绕民生服务,开发一批民生数字化应用场景
13. 聚焦社区生活。开展“美丽家园”行动,加强人工智能技术在车牌识别、人脸识别、区域管控、异常行为分析等方面融合应用,推进住宅小区尤其是老旧小区安防监控设备增设和改造。逐步提升小区特别是老旧小区的数字化和智慧化水平,利用智慧家园(智慧物业)管理平台,实现政务服务协同化、业主自治在线化、居民生活便捷化。(责任单位:区房产局、公安分局、新城房产集团,各街道)
14. 聚焦医疗健康。在医疗健康领域引入人工智能、5G、区块链、物联网、身份认证等技术,加快推进“智慧医院”“互联网医院”建设,围绕医院智能化管理、智能化诊疗等关键环节,加快预导诊机器人、语音录入、人工智能辅助诊疗等技术布局,推动医院内部流程再造,提高医疗质量和效率。拓展云计算、人工智能等技术在影像读片、病症筛查、远程医疗等领域的应用场景建设。(责任单位:区卫健委,各园区、街道)
15. 聚焦现代教育。探索人工智能、区块链、5G等先进技术在教育领域的应用场景开发开放。推动未来教室建设、综合素质评价、在线学习、学业测评、体能测评、校园安全、招生和培训等方面的智能化工作,逐渐形成教育大数据,通过大数据分析推动教育现代化。建设以移动终端、智慧教室、智慧校园、智慧教育云等为主要标志的智慧教育环境,推动场景示范应用。(责任单位:区教育局,各园区、街道)
16. 聚焦智慧房产。以全国住房租赁市场发展试点为契机,着重打造市场监测、租赁监管、智慧物业、智慧房安等智慧房产重点示范子项目应用,协同探索城市治理新模式。(责任单位:区房产局,各园区、街道)
17. 聚焦智慧水务和电力。推动信息技术与水务业务深化融合,基本完成智慧水务总体框架搭建,统筹推进水务调度、排水管理、河湖管理应用系统开发,建成智慧水务平台。鼓励面向智能配电网的5G技术融合应用,实施智能化管理,进行实时监测和预警,提高电网安全性和经济性。(责任单位:区水务局,各相关园区、街道)
18. 聚焦智慧文体。不断提升文化科技融合建设水平,发展数字出版、游戏动漫、影音娱乐、小视频、直播等一批文创应用场景建设。丰富工业设计、工艺设计、建筑设计、环境设计等多元化场景内容。(责任单位:区委宣传部、区文旅局,各园区、街道)
附表:1. 重点应用场景项目登记表
2. 重点应用场景项目汇总表
附表1
重点应用场景项目登记表
应用场景
项目名称
应用场景
所在区域
建邺区
应用场景
所属领域
¨产业发展:(具体细分领域)
¨城市治理:(具体细分领域)
¨民生服务:(具体细分领域)
¨其他领域:(具体细分领域)
应用场景
搭建单位
搭建单位简介
注:不超过150字
搭建单位性质
¨国家机关 ¨事业单位 ¨社会团体 ¨国有企业 ¨民营企业
¨外资企业 ¨其他(请注明)
搭建单位联系人
姓 名
手机号码
应用场景简介
注:不超过200字
应用场景
建设实施方案
一、建设背景和可行性分析
二、建设思路和目标
包括对产业发展的示范带动,对本地新技术、新产品的集聚与使用等。
三、建设主体及建设内容
四、进度安排
五、资金概算
六、保障措施(其它)
可另附页
照片
请提供搭建单位宣传图片1-2张,应用场景项目图片1-2张,照片不小于1MB,照片不要复制在WORD文档中,连同该表放在同一文件夹中一并提交。(如有视频,也可提供)
附表2
重点应用场景项目汇总表
序号
应用场景
所属类别
具体细分领域
应用场景建设区域
应用场景项目名称
应用场景
搭建单位
项目起止日期
项目投资额 (万元)
应用场景概述(不超过200字)
欢迎合作
的方向
是否有本区企业参与(具体合作情况)
是否应用南京市创新产品(产品名称及使用情况)
联系人
联系
方式
1
城市治理
智慧
政务
XX区
XX
单位全称
2020.03-
2023.03
3000
例:以物联网、云计算、大数据、人工智能等为支撑,建设数据中台和业务中台,加快各类信息资源的整合共享。项目建设将为南京市软件企业提供新技术研究和新产品应用机会。
……
例:1、物联网感知层技术
2、大数据分析与挖掘技术
3、人工智能计算机视觉技术
4、数字孪生技术
……
……
……
XX
填:手机号码
2
一、智能制造风靡全球,培养现代劳动者迫在眉睫
《世界教育信息》:尊敬的陈副会长,您好!很高兴您能接受我刊的专访。根据《赫尔辛基新闻》的报道,据波士顿咨询集团近期估算,在今后5年内,机器人将在芬兰普及,这就意味着大概6~10万份工作将由机器人代替,这对于人口只有500多万的芬兰已经是不小的比例。中国是一个人口大国,这一趋势在中国也有所显现。您认为这种趋势会对中国有怎样的影响呢?
陈宇:当前的世界和中国已经明显处于一个生产力水平和文明的重大转型期。回顾历史,农业文明主要靠对生物能量的征服和开发;工业文明主要靠对石化能量的征服和开发;正在到来的未来文明,已经表现出将主要靠对人工智能和人造生命的能量的征服和开发的趋势。
比如,日本在对比了中日两国制造业后得出一个结论:中国制造业生产一线有7000万名工人,平均月薪3600元人民币;日本制造业生产一线仅有700万名工人,而平均月薪达1.4万元人民币,约是中国的4倍。所以,日本的制造业在薪资方面相对中国没有任何优势。为此,日本计划研发、生产和投入使用3000万台可以24小时工作(3倍于人的工作时间)的工业机器人,相当于增加了9000万名制造业工人,而机器人的“平均月薪”仅合900元人民币,这无疑将一举扭转日本制造业的劣势。事实上,未来5~15年,智能机器人、智慧制造和人工智能将席卷全球,改变传统产业。据我所知,现在中国的大型企业,无论国营、民营还是外资,也都在全力研制机器人,如富士康科技集团已经准备用100万名机器人取代100万名工人。因此,从就业的角度看,首当其冲受到最大威胁的是中国生产和服务一线的1.2亿从事体能劳动的操作执行型工人(即所谓的“蓝领”队伍),而欧美国家的这种类型的工人早在过去近40年中几乎被中国工人全部取代了。在新一轮科技革命浪潮中,欧美国家主要受到威胁的不是一线产业工人,而是从事初级知识技能型劳动的所谓“白领”队伍。美国的一项研究估计,最近5年全球将有500万工人被机器人取代。我觉得,这个数字实在是太保守了,仅在中国就应当不止这个数量。显然,近期如何为面临重大产业转型的中国劳动者大军开发和寻找新的工作岗位(这些岗位是存在的),同时对他们进行适应性转产转业转岗培训(这种教育培训特别困难),是我国职业教育、成人教育、继续教育和在职在岗培训领域迫在眉睫的重要任务。这项工作急需教育部门和劳动部门的紧密协调与合作。
二、越来越多的人将在未来从事智能劳动,教育要在其中发挥重要作用
《世界教育信息》:英国《每日邮报》2016年7月27日报道,澳大利亚工程师马克・皮瓦茨(Mark Pivac)开发出世界首台全自动砌砖机器人“哈德良”(Hadrian)。它可以一天24小时不间断工作,每小时能砌1000块砖,两天内就能砌完一栋房子。由此可见,智能机器人已经能够在某些方面代替人类。您刚才也提到了中国劳动者要“转型”。那么,“转型”的突破口在哪里?
陈宇:转型的突破口无疑是教育,下面我想谈谈面向2030年的教育。我国教育包括两个主要部分――城市教育和农村教育。但是,近40年来形成的中国新产业工人(即农民工群体) 及其子女,一直在大中城市及其边缘聚集,他们不可能再回到过去的村庄,只能生活在城市郊区或者新形成的小城镇。他们所需要的是职业教育,他们也是职业学校的主要生源。随着我国城镇化运动的发展,以及人口生育政策的调整(二胎化),在2030年前后会形成新的教育需求高峰。届时,中国将有80%的人口居住在城市。不同层次的人群都会强烈地追求更加体面的劳动和就业,也就必然追求更高质量的城市教育、职业教育和乡村教育。这将对2030年的中国教育提出巨大而严峻的挑战。毫无疑问,考虑2030年的教育也离不开上述“人工智能、智慧生产、智能机器人,以及生物技术和基因工程将成为未来生产力的主体”这个大背景。我们只能在这个大背景下想清楚,我们到底要让全国的孩子“学什么、怎么学、 为什么而学”,下面我想举一个例子来说明。
据悉,在阿尔法围棋(AlphaGo)战胜李世石的激励下,世界各国机器人研发机构都提出了自己明确的发展目标。其中,特别引人注目的有3个国家的机构:一是华盛顿大学图灵中心开发的美国考试机器人,其目标是在美国高中生物考试中取得满分(100分),据说目前考试机器人已经能够达到60分;二是日本国立情报学研究所开发的日本高考机器人,其目标是考入东京大学,据说目前也能够达到录取标准的一半以上水平;三是中国科委有关部门立项,科大讯飞、清华大学、北京大学、中科院等参与研制的类人答题机器,近期目标是通过高考进入一本学校,而远期目标则是超越95%以上的考生,考上清华大学或北京大学。显然,如果从阿尔法围棋战胜李世石的经验看,考试机器人要实现这些目标一点都不难,因为各国高考试题和变化范围根本不可能和围棋同日而语。所以,我们应当充分认识到,今后,“应试教育”的意义会越来越被质疑。我们要彻底改变我国各级各类学校的教育方向和教学方法,摈弃只能适应前工业时代的那一套以文论为中心、以复述为主要方法的教育理念;对工商时代的先进教育理念,要积极、有选择地吸收。比如,美国盛行的科学、技术、工程、艺术和数学(Science-Technology-Egineering-Arts-Maths,STEAM)的理念就有许多以目标为导向、实际有效的内容。不过,美国的这套标准现在也暴露出难以完全适应时代迅速发展的弱点。因此,更重要的是,我们要面向未来,深刻观察并高度概括时代特点和文明发展方向,抓住未来文明的基本特征,找到创建新型教育和推动其发展的突破口和关键点。
我最近与多位产业和职业专家讨论,深感面对存在大量未知因素的未来时代和未来文明时需要教育观念的根本改变――教育的核心任务是帮助人构建起符合时代精神的思维方式,而不是教授具体内容。纵观中国历史,农耕时代需要的是一种文论思维方式,所以最重要的是读经史子集、做八股文章;工业时代需要的是一种产业思维方式,所以“学好数理化,走遍天下都不怕”;而未来时代是数字技术时代,人们最需要的是一种数码思维方式。因此,我们必须从小就让孩子熟悉“ 0、1”概念、接触计算机程序和计算机编码,对数码空间有充分的感性认识和想象能力。非如此,我们难以培养出最能适应新时代的人力资源。
无数事实证明,不论在哪个层面上,具有数码思维方式(亦称“数码基因”)的人最能够适应新的时代和新的趋势。比如,世界上影响最大的、最具引领方向的顶级创新企业的创始人比尔・盖茨、乔布斯、扎克伯格、 马斯克、拉里佩奇和谢尔盖布林等,都有深厚的计算机技术背景,也就是“数码基因”。而且,他们的事业都起步于计算机编程。至今相对落后的大国印度,由于从小学就抓了普及计算机知识、计算机使用和计算机编程等,他们培养的新生劳动力有很强的“数码基因”,大量人员从事全球计算机软件外包工作,还有大批人才直接进入美国高科技公司,如谷歌、微软等。硅谷科技公司高管和技术领军人物中,印度人已经占到1/3。印度总理莫迪去年造访硅谷时居然有5万印度人报名参加欢迎会,由于场地等原因,最后来了1.8万人。难怪他敢在硅谷夸下海口说:“21世纪属于印度!”
由于人工智能和智慧制造的发展,大量新产生的职业、岗位和工作都和计算机使用、计算机控制和计算机编程密切相关。人类新一轮的生产力释放,已经从材料、能源领域, 进入信息和生命领域。过去看似与计算机不相干的生物科学,最终都可以阐述为“生命基因作为一种软件密码的破译和排序”的数码问题。显然,处于平行发展的数码技术和生物技术的紧密融合,正在成为人类新科技力量发展不可阻挡的前锋。据此,我的具体建议就是,一定要在城乡教育中,从小学一年级开始就让孩子们接触计算机、使用计算机、习惯计算机技术,进而掌握计算机编程。当然,这种计算机教育一定不能再是封闭的、生硬的、死记硬背的;相反,应当是活泼的、开放的、自由创造的、高度激发孩子热情和兴趣的,一定要让孩子通过计算机编程来表达自己的艺术想像力和无限创造性,培养他们对数码世界的直觉和理性。
《世界教育信息》:那么,我国城乡就业和职业更替变化的趋势有哪些呢?
陈宇:人类的劳动活动可以简单地从两个维度来区分:第一,以体能为主,还是以智能为主?第二,是规则性的,还是非规则性的?如果以第一个条件为X轴,以第二个条件为Y轴,我们可以作出如下矩阵,以表示今天社会上实际存在的四个工作区域(见图1)。
其中,第一区域为规则性体能劳动(图中左下角)――从事这一区域工作的人员通常被称为“蓝领”,是目前我国产业工人中人数最多的群体。但是,这种劳动最容易被智能制造和各种各样的产业机器人或服务机器人所完全取代。这一趋势无可阻挡,我们必须认清这一历史潮流并作出相应对策。
第二区域为规则性智能劳动(图中右下角)――从事这一类工作的人员通常被称为“中低层员工”或“普通白领”,他们是目前我国员工队伍中人数仅次于第一区域的大群体。一方面,这一类工作现在也面临被人工智能、专业软件、智能机器人大量取代的趋势,其中包括了相当一部分管理工作。因此,现在欧美已经流行这样一种说法:“你能接受一位机器人老板吗?”但另一方面,由于人工智能、智能机器和人造生命的发展,大量属于人机接口、人机界面、人机协调,以及相应的人与人关系的新职业、新岗位、新工作被创造出来。同时,对越来越多的机器人的使用、管理、监控、维护、修理等工作也发展起来,成为这一区域中产生的新工作的主体。因此,这一区域将成为接收和容纳从上一区域中排挤出来的大量劳动者的主要领域。当然,进入这一区域的劳动者都需要相应的教育和训练。而一个人有无“数码基因”,对他能否迅速接受这一领域的教育培训或者再教育再培训非常重要。
第三区域为非规则性智能劳动(图中右上角)――这一区域是至今无法被人工智能和人造生命取代的人类专属工作区域,其典型工作又可以分为“专业性思考”和“复杂性对话”两大类,主要涉及从零到一的原创性活动;同时涉及商业运行模式的创造、组织和实现等活动。这一区域的工作是人类劳动活动中最精华的部分。这一区域的活动覆盖了科学家、政治家、发明家、创造家、创新式企业家、 高级管理专家以及多数艺术家的劳动。从一定意义上说,从事这一区域劳动的人才的数量多少、水平高低和成果大小,决定了一个国家的软实力。