前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能教育总结主题范文,仅供参考,欢迎阅读并收藏。
人工智能技术及其应用的发展历史虽然只有短短的50余年,但是它作为信息技术的前沿领域,对社会经济和发展的影响却越来越大。在基础教育课程改革的大潮中,许多国家意识到基础教育领域开展人工智能教育的必要性,努力把人工智能列入技术类教育的教学内容中。作为师范类院校,教授人工智能课是有必要的。?
(1)为部分优秀的学生将来做更深入的研究打坚实的基础。在面向知识经济的今天,研究获取、表示和使用知识的人工智能学科越来越受到人们的重视。目前人工智能研究被列为中国高技术领域的重点之一。以专家系统为代表的智能化系统在信息技术中也占有重要地位。因此在高等教育中开展人工智能教育和智能化系统的研发,不仅是计算机科学的应用,也是促进各学科服务于国民经济发展的必然趋势。为使人工智能的理论、方法和技术的研究与应用普及和深入,教育重心必须要下移,即从研究生教育向本科教育普及。开展本科层次人工智能普及教育的有效途径之一是在本科高年级开设相关选修课。开展人工智能教育,不仅能够更好地发挥高等院校的育人和科学研究功能,而且能为学生拓宽专业路径,扩大自主学习空间和发展个性创造条件,同时也为营造一个使学生不仅有宽厚、扎实的理论基础,且具综合分析和解决问题能力的环境。?
(2)为将来从教的学生积聚大量的知识。英国早在1999年,人工智能课程已经作为选修课出现在中学的信息与通讯技术(ICT)课程中。许多中小学还通过机器人竞赛活动来激发中小学生学习人工智能的兴趣,使学生不仅提高了用信息技术解决问题的能力,而且培养了多种思维方式,获得了更多的创新空间。美国现行的中学信息技术课程设置中,将人工智能的内容作为“媒体与技术”层面对12年级学生的要求。澳大利亚的部分中学开设的信息处理与技术课程,人工智能、信息系统、算法和程序设计、社会和伦理道德、计算机系统分别作为5个主题共同构成了该课程的教学内容。在该课程的大纲中规定,人工智能部分的教学内容在高中第3学期为12年级的学生开设,教学时间为10周。?
在我国,多年以来中学奥林匹克信息学竞赛中一直包含有人工智能相关的题目,涉及启发式搜索、博弈、智能程序设计等问题。2003年4月,我国教育部正式颁布《普通高中技术课程标准(实验)》,首次在信息技术科目中设立了“人工智能初步”选修模块,标志着我国高中人工智能课程的正式起步。?
我国的新课程标准颁布后,教育部评审并通过了分别由教育科学出版社、广东高教出版社、地图出版社、上海科技教育出版社和浙江教育出版社出版的5套高中《人工智能初步》教材,并开发了相应的教辅材料,包括教师用书和配套光盘等。为了配合中学人工智能课程的实施,国内也推出了一些适合中学生学习与体验的人工智能软件和网络资源。另一方面,一些高校的本科生、研究生也逐步关注中学人工智能教育的开展并将其作为毕业论文的研究选题。一些师范院校适应形势要求,已为师范生开设了与此相关的选修课程。?
2 人工智能的教育及教学条件现状?
通过对本人多年的教学过程进行总结,我校的《人工智能》课程教育现状可总结为如下几点:?
(1)理论知识充裕。但与实践相脱节,特别是在智能科学技术的教育教学方面。尽管知识面相当广泛,而人工智能理论的普及教育以及智能技术的开发与应用仍然十分滞后。?
(2)同其它普通高等院校一样,在本校,人工智能技术的研究与应用尚未普及,甚至比不上其它院校。这不利于培养学生的科研兴趣及创造精神。?
(3)缺乏配套实验教材,实验教学内容缺乏,无法培养学生的研究能力和创新能力。只有开设实验项目,才能使人工智能的相关知识具有研究性和综合性。?
(4)对中小学智能教育的深度及教学方式、教学特点缺乏研究。做为师范类院校,我认为在对学生进行基础知识教育的基础上,要紧抓中小学智能教育的特点对师范类学生进行相关的教育与培训。?
相对于教育现状,我校的《人工智能》课程教学条件现状要稍好一些,其状态如下:?
(1)教材使用国家级规划教材,此教材非常系统地介绍了人工智能的基本原理、方法和应用技术,适合本科及研究生使用。在我们的授课过程中,也会适当为学生提供相关的国内其他先进教材,如中南大学蔡自兴教授的《人工智能及其应用》等。?
(2)为了促进学生自主学习,我们准备了多种类型的扩充性学习资料,加强学生主动学习的意识,包括:课程相关杂志和书籍目录,以及部分重要的参考文献,与人工智能相关的网络资源如优秀BBS、新闻组、网址等。 它们包括了大量的文献资料、本领域研究的前沿动态等。 使用表明,学生非常乐于查阅这些资源。 使学生能通过使用这些资源进行一些人工智能程序设计,探讨一些问题,在课堂讨论中展示他们的收获。?
(3)校园网的普及与不断优化使本课程有优良的实践性教学环境,能充分满足教学需要。我们拥有较充足的多媒体教室和网络教室,为实现本课程教学提供了物质保障。在网络资源建设方面,全校办公室、教室、学生宿舍和教师宿舍都以宽带网相连,这些硬件设备对本课程教学发挥了重要作用,使本课程教学质量得以明显提高。?
3 人工智能教学方法及手段的改革?
针对我们现在所采取的教学方法,我认为存在许多不足,如教学方式比较单一,教学内容偏重理论讲解等,为此,提出以下教学方法的改革:?
(1)通过多种途径激发学生的学习兴趣。课程的学习效果,直接受到学生兴趣和参与意识的影响。一般来讲,《人工智能》作为一门前沿课程,开始学生学习兴趣很大,当开始接触到抽象理论知识及部分算法时,学生往往感到不易接受。 我们通过各种途径和方法, 激发和培养学生的学习兴趣,包括鼓励学生参与某部分知识的扩充性资料查找,预留一定时间请学生负责对此内容进行讲解,布置学生对某个基本成型的实验进行纠错及验证,降低问题解决的难度。学生因此产生兴趣从而做更深度研究。?
(2)进行启发式教学。 我们可以尝试在教学过程中不断提出问题请学生思考,启发学生求解这些问题,鼓励学生提出自己的猜想和解决方案,然后摆出教材中的解决方案,并与同学所提出的观点进行分析和比较,这足以加强学生学习的主动意识和参与意识,提高学生学习的积极性。?
(3)课堂辩论与交互式教学。 组织课堂辩论,讨论的议题可定位为譬如人工智能是否能超过人类智能等有争议的问题。学生通过对这些问题展开激烈争论,激发了学习潜能,明确了学习目标。当然师生间的交流方式还有很多,如邮件互发、QQ留言等,也可在课程网站中的互动平台进行交流。?
(4)分层次因材施教。 在授课过程中,通过对每个具体学生的学习进度、课堂作业情况进行及时评估,对学生提出进一步的学习建议和指导, 实现个性化的教学。 对优秀学生探讨,可以在教学设计和实验设计中要求其选作部分探索性、创新性的功课和实验,以发挥学生个性优势。对于有意于将来从事中小学教育的学生可以在机器人及人工智能技术发展现状等知识层面对其做问题讲解。而那些看似缺乏兴趣的学生,我们可以用多媒体手段如播放人工智能相关电影及科学小片引起其兴趣,实行逐步引导的教学过程。?
另外,我们可以尝试双语教学。 采用中文教材和讲授的同时,注重在课程中的关键词同时用英文表示,并适当指定英文参考短文和英文参考书。使学生能够接触国外文献资料,加深对学习内容的理解,获得更宽广的知识。我们也可以在教学内容安排上,注重理论联系实际,将一些人工智能网络上的虚拟实验给学生进行课外上网练习,从而使学生了解算法的具体运行过程, 通过参与达到知识的理解,掌握基本方法和技术。?
根据现有的条件,我们在教学中可以采用多媒体教学和网络课程教学相结合的方法,充分利用多媒体的丰富表现形式,利用网络课程的交互性、情景化等特点,构筑以学生为主体的《人工智能》课程现代教学模式。 对于抽象知识,可通过动画和视频演示,通过声音和图像展示人工智能的历史、人物和前景,做到学生直接而深刻地看到知识的内涵外延。网络课程能较好地实现交互并使学习过程情景化,通过网络课程的课堂练习和章节练习,教师可以评价学生的学习情况,并给学生提出学习建议,从而提高学生的研究力和创新力。我们也可以给学生播放中学《人工智能》课程课堂教学录像,以使学生看到初高中学生的知识范围及深度;同时给学生播放现有的《人工智能》科学成果,让学生看到理论背后的实践;也可以播放科幻片,激发学生想象的翅膀从而有兴趣把人工智能作为将来深造的方向。《人工智能》是一门较新的课程,改进教学方法和手段不仅要靠教师,也应增加硬件设备的投入。如果人工智能能采用智能辅助教学系统或机器人辅助教学过程逼真、形象,一目了然,这样可大大提高学生的学习效率,尤其是提高学生的观察判断能力、发现问题和解决问题的能力。?
4 人工智能实践教学设计的探讨?
我们可以在教学过程中,适量开设一些实验和设计,提高学生的动手能力,并加深他们对理论知识的理解,降低理论的抽象度,提升理论的实用性。在近两年的教学过程中,我们会适量加入一些人工智能语言的教学过程。例如,在讲解了“野人与传教士过河”等问题后,我们可以让学生使用Visual Prolog或者C ?++?对算法进行实现;在讲解 TSP 问题的遗传算法解决案例后,指出编码方案、初始种群大小、进化代数、交叉率变异率等因素对求解结果的影响,并要求学生通过实验的方式来分析、理解这些问题,并提出“寻找更有利的解决方案”等问题。把学生的兴趣激发后,为解决这些问题,学生会在课外主动查阅相关文献、相互讨论以实现他们所设计的方案,这样既培养了学生善于钻研和勇于创新的精神又提高了学生的实践与创新能力。?
参考文献:?
[1] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1).?
[2] 何元烈,汪玲.“Visual C ?++?”在“人工智能”教学中的应用与探讨[J].广东工业大学学报:社会科学版,2008(8).?
涂序彦曾任中国人工智能学会理事长、学术指导委员会主席,是中国人工智能学会的主要创建人、我国“人工智能”学科的奠基人之一,他提出的“广义智能信息系统论”为“人工智能”学科提供了统一的理论架构,他倡导的多学派兼容、多层次结合、多智体协同的“广义人工智能”学科体系,为现代“人工智能”学科的全面、协调、持续发展,提供了研究开发策略,他提出的“广义智能学”促进了“智能科学技术”新学科的诞生。1988年,他编著的高等学校教材《人工智能及其应用》电子工业出版社,获电子工业部优秀教材一等奖。
1977年,他在中国科学院自动化研究所工作,主持“控制论组”,与北京市中医院合作,研究开发我国第一个中医专家系统“关幼波中医肝炎诊断治疗程序”,这也是世界第一个中医专家系统。1985年,主持“国家经济信息专家系统关键技术”研究,提出大型“多级专家系统”新方法,获国家“七,五”攻关重大成果奖。
1960年,在第一届国际自动控制联合会IFAC世界大会,创立多变量控制系统的新原理:“协调控制”理论,他提出的升船机多电机同步的“协调控制”方法应用于三峡工程。1981年,在《科技管理与科学学》发表“论协调”,提出创建“协调学”新学科。
1977年,涂序彦发表我国“大系统理论及应用”首篇论文,1985年,创立“大系统控制论”,1994年,撰写出版《大系统控制论》专著,发展“控制论”的新学科。
1979年,根据国情,他创立具有中国特色的“最经济控制”理论,提出天文科学卫星“最经济姿态控制”新方法,在《自动化学报》发表了关于“最经济控制”多篇论文。
1980年,总结有关“生物控制论”的科研成果,主持编著我国第一本《生物控制论》专著,由科学出版社出版,重点研究“人体控制论”,他提出“针麻-多级协调控制过程”,“经络-人体控制系统”新学说。
1977年,涂序彦发表我国“智能控制及其应用”首篇论文,开拓“智能控制”新技术,1985年,提出“多级自寻优、自协调控制”新方法,1990年,参与发起主办“全球华人智能控制与智能自动化”大会,任大会主席之一。2004年,在国际“人工生命与机器人”AROB学术会议宣读论文“Intelligent Control System based onArtificial Life”。
1985年,在IFAC/IFORS/IFIP国际学术会议,涂序彦提出“智能管理”(Intelligent Management)新概念,开拓我国“智能管理”新方法、新技术,1995年,撰写《智能管理》专著,由清华大学出版社出版。2010年,他和马忠贵博士撰写《协调智能调度》专著,由国防工业出版社出版。
1995年,在“人工智能”与计算机“仿真技术”相结合的基础上,涂序彦提出“智能仿真”的概念与系统架构,2009年,应邀在中国计算机仿真高层论坛作“协同智能仿真”大会报告。
2000年,开发“智能信息推拉”技术、“基于公共知识库的智能通信”系统,2004年,在中国人工智能学会智能信息网络学术会议,作大会报告“智能通信与智能网络”,2005年,提出“互动智能通信”的概念,2008年,他和马忠贵博士撰写《智能通信》专著,由电子工业出版社出版。
2002年,涂序彦发起并主持中国人工智能学会首届“人工生命及应用”学术会议,提出“广义人工生命”的概念和类谱,2003年,在国际“人工生命与机器人”AROB学术会议宣读论文“Generalized Artificial LifeRace&Model”,2004年,主编《人工生命及应用》论文集,2005年,北京邮电大学出版社。
2002年,涂序彦与曾广平教授等合作,提出“软件人”的新概念,2003年,获国家自然科学基金项目“计算机网络环境中的虚拟机器人一软件人”支持,2004年,提出“广义软件人”,2007年,总结相关研究开发成果,撰写《“软件人”研究及应用》专著,由科学出版社出版。2008年,主持InternationalConference on Humanized Systems,作大会主题报告“Advanced Intelligence,Humanics,SoftMan”。
2002年,涂序彦与韩力群教授合作,提出“多中枢自协调人工脑”的新概念,2004年,在AROB国际学术会议“Study of ArtificialBrain based on Multi-Centrum Self-Coordination Mechanism”,2009年,总结相关研究开发成果,撰写《多中枢自协调人工脑》专著,由科学出版社出版。
2003年,他在中国人工智能学会第十届全国人工智能学术大会报告中,提出“人工智能”的姐妹学科:“人工情感”的新学科架构。2004年,在北京主持召开中日国际学术会议,作大会报告“Artificial Emotionand its Applications”,提出“IntelligentAnimation,Intelligent Game,IntelligentFilm&Television”。
1991年,在全国“智能控制”学术会议的大会报告中,涂序彦提出“智能控制论”新学科架构,2010年,他与王枞教授等合作,撰写出版《智能控制论》专著,在科学出版社出版。
2004年,在“智能系统”国际学术会议,涂序彦提出“拟人系统”新概念,2005年,在中国武汉,发起并主持第一届“拟人系统”国际学术会议,他提出创建“拟人学”新学科,2008年,在中国北京,主持召开“拟人系统”国际学术大会。
2005年,他的诗集《糊涂集》包括:理智篇、山水篇、情感篇等涂诗四百首,由北京邮电大学出版社出版。
众所周知,技术水平给定前提下,生产一定数量产品可以有资本和劳动的不同组合,所有可能组合的轨迹就是等产量线。技术的进步推动等产量线不断向原点移动,而每次产业革命都会引起移动过程的质变。纵观产业发展历史,蒸汽时代、电气时代均显著推动了资本(表现为机器)对劳动(主要是体力劳动)的替代,导致生产要素的重组。人工智能掀起的是资本(表现为机器人)对劳动(主要是脑力劳动)的替代,无疑将触发新的质变。
人工智能l展将经历三个阶段:第一个阶段是逻辑智能。该阶段智能以模拟人的逻辑思维为主,可凭借强大的记忆力、存储力在完全信息下执行单一领域的任务并达到顶尖水平。阿尔法狗(AlphaGo)就是典型的例子;第二阶段是抽象智能,该阶段智能以模拟人的抽象思维为主,具备经验推理能力和归纳总结能力,在已知领域里,即使信息不完备,也能做出正确判断或最优决策;第三阶段是灵感智慧,该阶段智能以模拟人的灵感思维为主,尽管在未知领域,仍可以触类旁通,瞬间直抵事物本质或产生新思想。可见,人工智能对脑力劳动的替代逐级深入,对产业的冲击也将逐级增强。即便如此,现阶段产业发展的核心仍然是人才,面对人工智能的逐级替代,产业发展更需要重新审视人才培养的逻辑与重心,塑造以高阶智力为主导的人才核心竞争力。
一是培养向机器学习的能力。目前人工智能已在第一阶段取得突破性进展,未来会呈现人机协作、各有所长的局面。人机沟通将是日常生产所需的基本技能。不仅如此,机器的计算、记忆、搜索、识别等功能远远超过人类,人们需要设法向机器学习,高效归纳人工智能的计算结果,并尝试利用人工智能的计算结果开发全新的思维方式,重新思考产业发展的模式和规律。
二是提升综合专业能力。人工智能在执行单项具体任务时会超越人类,但是短期内,在对事物的总结、判断、推理等方面以及对美学、艺术的认知方面,人工智能还与人类有较大的差距。产业发展需要重视培养人的综合能力,不仅是对逻辑判断、抽象概括和经验推理的综合能力,还是对感性判断和理性思考、自然科学与人文艺术相结合的能力。例如教育产业中,数学、物理、化学等单科知识性为强项的教师将被替代,产业发展更需要培养能够设计综合性课程,激发学生右脑潜能并加以应用的教师。
关键词:人工智能;教学改革;学习心理;考核方式
中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2012)06-0152-02
虽然人工智能的发展历史只有五十余年,但它已经广泛应用于专家系统、机器翻译、图像处理和机器人技术等领域。随着人工智能技术对社会经济发展的影响不断增大,人工智能课程不再是计算机专业独有的专业课程,国内外很多高校在自动化、智能交通等专业都开设了选修课,甚至在高中的信息技术课程中也在推广设置。吉林大学硕士专业“模式识别”将《人工智能》设为专业学位课程,同时也将其设为汽车、机械等其他学科的选修课程。由于研究生相关基础知识水平参差不齐,课程内容又比较抽象、生涩,为了提高教学质量,在本次教学改革过程中充分考虑学生学习新知识的心理演变过程,认真研究教学内容、教材、教学方法等诸多方面,力求在教授基本原理的同时,培养学生对智能系统进行理论分析、设计并编程实现的能力,为后期的论文研究阶段打下坚实的基础。本次教学改革受到了吉林大学研究生课程体系建设和核心课程建设项目的资助。
一、教学内容
教学改革的关键是教学内容。人工智能与统计学、心理学、语言学、计算机科学、生物学、控制论等都有交叉关系,学科涉及的内容十分庞大。人工智能学科知识的繁多与授课学时有限之间的矛盾比较突出。作为国内模式识别专业的领军院校,如中科院智能所、清华大学、上海交通大学和南京理工大学等,他们所开设的《人工智能》课程学时和内容也不尽相同。我们参考了上述院校的授课内容,同时考虑到本校本学科的学术研究方向,精心归纳、优化教学内容,力争做到教学内容系统、精炼和实用。目前,我们讲授的教学内容主要包括:智能化智能体系统、盲目搜索方法、启发式搜索方法、局部搜索方法、约束满足问题、博弈树搜索方法、知识表示方法、不确定知识与推理、规划与机器学习等,共40学时。
另外,人工智能领域中新问题、新理论交错涌现,这就要求教学大纲要定期修订,教学内容要及时更新,同时教师也需要不断提高自身的学术水平,以便提高硕士课程的研究性内涵。
二、教材选用
要搞好课程建设,教材是一个很关键的问题。我们广泛阅读和研究了国内外的经典教材,经过一番斟酌之后,我们选用了Stuart Russell和Peter Norvig所著的《人工智能-一种现代方法(第二版)》。首先,选用国外教材能够更快地追踪最新研究成果。同时该教材已经被世界上900多所大学采用,符合促进高校的教学内容向国际水准靠拢、与国际接轨的理念。另外,人民邮电出版社在2002年曾经出版该书的英文版的第一版,双语学习能有助于提高学生的英语水平,为学生后续的查阅英文文献,甚至发表英文文章奠定基础。
三、教学方法
在国内,比较有影响的是中南大学以蔡自兴教授为首的教学团队为计算机科学与技术本科专业开设的人工智能课程,该课程在2003年被评为全国高等学校首批精品课程[1]。2007年该课程又开始进行全国双语教学示范课程建设,成绩斐然[2]。多年来,我们不断汲取同行的成功教学经验[3],结合本学科的硕士专业特点、考虑学生的知识结构和实践能力,不断改革和尝试,总结了一套行之有效的教学方法。我们一切以学生为主体,在教学过程中充分考虑学生学习新知识的心理演变过程,采用灵活多变的教学手段。让学生从感兴趣,保持兴趣,到收获用所学知识解决实际问题的成功喜悦,并进一步增强投身于科研论文研究的热情。
课程伊始,通过多媒体演示人工智能技术已取得的杰出成就,激发学生的学习兴趣。然后布置学生查阅资料,列举人工智能发展史上的重要事件和最新研究的热点问题,课上再组织学生做报告。通过上述活动,一方面拓展了学生的专业视野,另一方面锻炼了学生的表达能力。
随着课程内容的深入,让学生组成兴趣小组,任意选择问题实例,利用每节课学习的理论、算法不断地更新该实例的解决方案,评价性能优劣。学习小组可以培养学生科研协作的精神。另外,课堂上每组轮流做报告阐述各自的研究进展,演示编程效果。其他同学或给出修改意见,或提出个人观点。最后老师及时总结,引导学生提高分析问题的深入性和广泛性。充分的课堂讨论能够提高学生多角度思维的能力,培养学生善于钻研和勇于创新的精神。同学间的这种学术交流也可以让学生有机会了解彼此的学习状况与能力,促进学生展开良性的学习竞赛,也为学生接受和理解老师最后给出的课程成绩做了心理铺垫。老师总结时要对学生的努力多肯定,激发他们的学习热情和潜能,让他们感到学习知识的快乐。
四、考核方式
实践表明笔试测验的方式不能全面反映学生的学习情况,所以本课程尝试采取自选实验设计题目,根据实验报告、上机演示结果和口试等方式综合评定成绩。其中,实验报告要求学生根据实验题目详细介绍设计思路,阐述编程方法,分析实验结果。口试是老师当场就报告中的问题提问,并对学生的回答进行讲评。课程成绩中,实验报告设计分析占60%,上机成果演示占30%,口试占10%。
通过实验设计的考核方式,学生的学习积极性得到了很大的调动,充分发挥了学生的自主创新能力,锻炼了学生知识综合应用技能。但美中不足的是该方式不像笔试那么客观,学生的成绩容易受教师的主观性影响。另外,人工智能作为一门学位课,其成绩往往直接影响学生的奖学金评定,学生和相关领导对成绩的评定原则十分关心和重视。为了减少人为因素对学生成绩的干扰,避免师生因课程成绩产生分歧,我们规定了完善的考核细则。考核细则发给同学,作为实验报告的首页,方便记录每一个环节上学生的得分情况,做到成绩评定有据可查。
非笔试的成绩评定方式对任课教师的要求也提高了,我们教师团队还规定了详细的教师工作守则。首先要求教师认真细致地阅读学生的实验报告,给出报告得分,并准备口试时提问的问题,得分和问题都要在实验报告的首页做好记录。询问每个同学的问题都不能重复,上机演示和口试环节都是公开的。问题可以是设计不合理的思路,或是阐述不清的步骤等,教师要注意掌握问题的数量,尽量做到均衡。上机演示时,学生经常因为紧张而漏掉部分功能的演示,因此,教师要跟学生加强沟通。口试时,根据学生的状态,可以给予适当启发,但要在成绩评定上做出相应调整。经过多年的摸索,我们将上机演示按照实验报告成绩的倒序方式进行,这样有利于在口试过程中由浅入深,逐渐加深问题的难度,有效避免重复。教师评价时应严格缜密,让学生正确认识自己的设计水平,对课程成绩的认定跟老师达成一致。
经过教学团队的不懈努力,“模式识别”专业的“人工智能”课程建设在教学内容、教学方法、教材选用、考核方式等方面的研究都取得了一些成绩,教学实践表明教改措施已见成效,教学质量有了明显提高。
参考文献:
[1]刘丽珏,陈白帆,王勇,余伶俐,蔡自兴.精益求精建设人工智能精品课程[J].计算机教育,2009,(17):69-71.
关键词:人工智能;全英文教学;教学内容改革;教学模式改革
1 实施全英文教学的必要性
随着国际学术交流的日益活跃以及国际化办学的趋势发展,借鉴国外著名大学的办学理念和管理模式,利用世界优质教育资源,提升教育教学水平,造就具有国际竞争能力的复合型创新人才,正成为我国教育改革与发展的新方向。
智能化是人类社会技术发展的必然趋势。作为计算机科学与技术专业课程体系中的核心课程之一,人工智能的地位正随着该学科的不断发展和其技术的广泛应用迅速提高,而且在非计算机领域,具有不同专业背景的学者也通过这个年轻的领域发现新思想和新方法。由于人工智能课程内容涉及计算机科学以及边缘学科的新理论、新方法与新技术,因此在该课程中开展全英文教学不仅可以让学生充分了解人工智能日新月异的发展,还可以促进本科教学与国际接轨,在培养国际化创新人才方面具有十分积极的现实意义。
2 当前国内全英文教学存在的主要问题
笔者对当前国内高校人工智能课程全英文教学的现状进行调查分析,调查对象为软件工程专业本科三年级学生,调研问卷共58份。调查项目、内容及结果见表1。
从项目1和2的调查结果看,大部分学生认为开展全英文教学有必要,其在提高英语应用能力、增强自己的就业竞争力以及了解国际前沿等方面有很大帮助。然而,由于全英语教学在我国尚处于起步阶段,进行全英语教学的效果并不十分理想,其教学试点与实践尚存在一些亟待解决的问题,主要表现在如下几个方面。
(1)对全英文教学的理解存在偏差。从项目3~5的调查结果看,教师不能正确处理好全英文教学与专业英语课教学的关系,使全英文教学变为纯英语课教学或专业英语课的翻版。大部分学生还是希望教学授课语言以双语为主或以中文为主、英文为辅,多媒体课件形式为中英文相结合。
(2)全英文教学达不到预期的教学效果。从项目6和7的调查结果看,虽然一些大学花了很大代价邀请国外一流教授专家讲授课程,但由于人工智能课程理论性强、难度大,学生很难适应全英文课程教学。
(3)缺乏内容全面和难度适中的教材。从项目8和9的调查结果看,一些大学在实施人工智能课程全英语教学时直接引进原版英文教材,但这对本科生来说,原版英文教材内容偏多、难度较大,学生学习时不免有诸多畏难情绪。
(4)师资匮乏。从项目10的调查结果看,学生对承担全英文教学教师的满意程度普遍不高。实际上,全英文教学对承担课程教学的教师要求很高,他们不仅需要具备专业知识,而且还要掌握英语应用技能,而现阶段国内高校中能承担全英语教学的师资仍然十分匮乏。
综上所述,如何改革全英文教学模式,讲授哪些教学内容,采用何种科学的教学方法与手段,是值得我们思考和关注的教学改革重点和难点。
针对以上这些问题,我们深入研究人工智能课程的特点,对现有教学模式、内容及方法进行全方位探索和改革,制订全英文教学计划,对促进教学工作、提高教学质量、培养国际创新型人才起重要作用,其重要意义具体体现在以下3个方面。
(1)探索如何将理论知识传授、综合能力培养与英语交流运用三者有机结合,建立全英文教学的新型模式,这将对更新教学理念和探索适合于计算机软件人才培养的教学方法产生深远影响。
(2)全英文课程教学能够让学生掌握最先进的人工智能国际前沿技术,开阔国际视野,有利于培养复合型、实用型、具有国际竞争力的高层次创新人才。
(3)全英文教学改革的探索与实践能够促进国内教育向国际教育迈进。
3 全英文教学内容改革
建立完善的全英语教学体系,需要有系统而完整的教学内容。我国计算机科学与技术本科专业人工智能课程课时一般只有36学时,因此我们需要考虑从什么角度组织教学内容,才能让学生比较容易地理解、熟悉和掌握人工智能的原理、方法与技术,从而显著提高教学效果。
与国内教学内容相比,国外教学更注重分析问题的思维方法和解决问题的应用能力,对提高学生的学习兴趣以及培养学生的创新能力十分有益,但是原版内容过多,且大多以国外政治、经济、文化、社会和生活为背景,对于我国学生来说,理解某些内容和背景比较困难。因此直接套用原版教学内容往往存在一定问题,我们需要在引进、消化和吸收国外经典教材内容的基础上,有选择性地挑选合适内容。国外经典教材编写思路不尽相同,一些经典人工智能教材及主要内容见表2。
人工智能的基本思想和主要内容是研究人类智能活动规律和用于模拟人类某些智能行为的基本理论、方法和技术。从表2中可以看出它们的共同点,即人工智能应围绕“智能”这个核心,但由于智能本身非常复杂,难以用单一的理论与方法描述,需要从不同的抽象层次刻画智能这个主题。我们认为,人工智能的主要内容可按图1所示划分为不同层次并确定讲授顺序。
在最底层,神经网络与演化计算(适应性原理与仿生机制等)辅助感知以及与物理世界的交互;抽象层反映知识在智能中的角色和创建以及围绕问题求解的知识的抽象、表示和理解;更高层则提出学习、规划、推理的模型和方式;应用层构造智能化智能体以及具有一定智能的人工系统,让计算机实现以往需要人的智力才能完成的工作。除了将人工智能课程的教学内容划分为这4个层次,为保证教学内容的循序渐进性,还可按照抽象层更高层最底层应用层顺序安排教学内容。
4 全英文教学模式改革的实施关键
针对以上国内全英文教学中存在的主要问题,我们提出人工智能课程全英文教学模式改革的实施关键,包括全英文课堂教学模式的重定位,“二三二”模式教学方法的改革,集先进性、前沿性和实用性为一体的教学内容创新以及全专业英语教学团队的打造。
4.1 全英文课堂教学模式的重定位
人工智能课程教学以培养学生掌握专业基础知识、培养实践动手与应用能力以及提高英语交流水平三者相结合为主要目标,分两个阶段进行,国内教师与国外教师共同授课。首先,国内主讲教师讲授人工智能课程的基础原理、模型和方法,可采用集中授课、案例教学和课堂实践等教学方式,使学生掌握人工智能的一般基础知识;在此基础上,再邀请国际知名外籍教师为学生讲授人工智能国际前沿技术,包括集中授课和专题研讨。经过基础学习,学生一般已掌握人工智能基础知识,因此对于外籍教师所讲授的学科前沿等内容能够准确理解和把握。与单纯采用全英文教学或单纯邀请外籍教师授课相比,该模式能收到较好的预期效果。“1+1”全英文双课堂教学模式如图2所示。
4.2 “二三二”模式教学方法的改革
实行全英语教学后,由于使用英文教材及中外教育背景存在差异等因素,我们在教学过程中对教学方法进行一定程度的调整和改进,包括全英文授课形式、案例教学、教学内容以及教学手段等方面;配合“1+1”全英文双课堂教学模式,提出图3所示的“二三二”模式教学方法,培养学生成为具有综合能力、创新能力、国际视野和英语技能的复合型人才。
该教学方法模式包括:(1)过渡式全英文与沉浸式全英语两大英语教学方式;(2)激励自主式、启发互动式、体验学习式三大学习法,激发学生学习兴趣,使学生牢固掌握人工智能基础理论与方法;(3)参与学习式和自我展示式两大学习法,培养学生综合运用知识的能力和创新能力。
在全英文课堂授课过程中,我们需要注重把握英语与专业的比例。首先,不能一味地追求全英文授课的形式而忽视教学效果;其次,还需要为学生提供一个良好的语言学习环境,在实际教学中注重培养学生良好的英语思维习惯,从根本上提高学生的英语水平。
人工智能课程包含大量概念,内容抽象,算法复杂,学生往往难以理解与掌握。将案例教学方法引入课程教学能有效提高学生的学习兴趣,获得较好的预期教学效果,但要达到理想的教学目标,仅仅靠课堂教学远远不够,还需要拓展第二课堂。有计划地邀请国外人工智能专家和教授到大学进行专题讲座,鼓励学生参加相关的课外科研/科技活动,使得学生能够体验式地、自主地学习,更好地了解人工智能新技术,从而进一步激发学生的学习热情。构建案例教学和课堂实践的双课堂教学模式,不仅能够丰富教学内涵,而且可以充实学科前沿知识并拓宽学生的国际视野。
4.3 集先进性、前沿性和实用性为一体的教学内容创新
除了引进、消化和吸收国外经典教材内容以外,我们还需要逐步建立起具有自身特色的教学内容,以保证教学内容集先进性、前沿性和实用性为一体。
(1)先进性。我们提出教学与科研相结合,以科研带动教学发展的新思路。教师可结合自己的人工智能及其相关领域的科研项目,将科研最新研究成果以及学科前沿知识进行梳理与优化并有机融入课程教学中,确保教学内容的先进性,有效提高教学改革的质量。
(2)前沿性。对人工智能发展较快的领域,如智能计算、数据挖掘等,还需更新和补充全英文教学内容,同时可以邀请国际知名大学教授共同研究与探讨教学内容,保证课程内容具有一定的前沿性,通过实现全英语教学保证课程与国际接轨。
(3)实用性。在讲授基础理论知识的基础上,还应注重实践的应用,增强学生的动手操作能力,以符合素质教育必须注重实践的要求。教师可结合教学中的基本理论知识,适当补充案例与实例,使得教学内容与实际相联系,丰富课程内涵并提高教学效果。
4.4 全专业英语教学团队的打造
师资力量直接影响教学效果。师资的匮乏是现阶段全英语教学面临的主要问题之一。虽然一些教师具有较扎实的人工智能学科功底,但不能熟练地运用英语进行授课,而有些教师则知识结构单一,缺少人工智能及其相关学科间的交叉与融合,因此我们需要多渠道、多层次地打造既具备专业知识,又具有学科交叉与融合能力,同时掌握英语技能的全英语教师队伍。将科研与教学相结合,利用与国外人工智能及相关领域学术带头人建立的合作关系优势加强交流与合作,争取申请国际合作科研项目,利用科研提高教师的教学质量、专业水平和英语技能。
5 全英文教学的具体实施
我们在软件工程专业本科三年级学生的人工智能课堂上实施全英文教学,具体实施过程如下。
(1)国际软件学院成立教学主管部门领导小组、从事教学研究的骨干教师组成的全英文教学工作小组以及由教学督导组成的监管小组,三者之间相互配合并共同促进,保障全英文教学工作的顺利推进与落实。领导小组对全英文教学的师资培训、人才引进、多媒体网络资源开发、实验室建设、教材编写等予以政策支持;教学工作小组制订全英文教学工作规划和年度计划;监管小组定期对工作小组的教学完成情况进行评估。
(2)在课程教学中,打破国内常规教学方式,建立开放式全英文教学模式,教学形式多种多样。教学方式以“1+1”双课堂教学模式为核心,以讲授与专题讨论相结合的方式,围绕基本原理、方法与技术展开教学,激发学生自主学习与创新学习的热情。
(3)国际软件学院在人工智能相关领域承担并完成了一批国家与省部级科研课题,而且取得了一些有影响的研究成果,形成了自己的学科特色和优势。2006年,国际软件学院聘请被誉为世界“人工大脑”领域先驱的美国犹他州州立大学计算机系Hugo de Gaffs教授担任武汉大学全职教授和学院国际人工智能研究室主任。
(4)聘请与国际软件学院有合作协议的国立首尔大学计算机科学与工程学院Bob McKay教授专职来校为本科生讲授人工智能技术前沿。同时,利用国外学者来武汉大学顺访的机会,请其为学生作学术报告,使学生了解国际最新人工智能技术,如邀请曾经在麻省理工学院从事过7年博士后研究的宋森研究员进行“理解大脑与仿制大脑”的讲座等。
(5)国际软件学院在遴选教师到与学院有教学和科研合作的国外大学进修时,优先考虑给本科生授课的全英文教师,并将全英文教学能力作为选拔条件,以教师的学术进修带动全英文教学建设,使学科和专业建设与全英语教学队伍打造相结合,全面推进全英语教学工作的开展。
6 结语
人工智能是计算机科学与技术专业的重要课程,目前正面临着知识更新和教学改革的紧迫任务。笔者以实施全英文教学为契机,针对目前国内全英文教学中存在的亟待解决的主要问题,提出人工智能全英文教学内容与教学模式改革的新思路。
(1)以智能为核心,从不同抽象层次刻画智能主题,构造人工智能最底层、抽象层、更高层以及应用层4大模块内容。
(2)突破传统教学模式,对全英文教学模式进行重定位,提出“1+1”全英文双课堂教学模式。
(3)提出“二三二”模式教学方法的改革方案,培养具有综合能力、创新能力、国际视野、英语技能的复合型人才。
(4)提出教学与科研相结合,以科研带动教学发展的新思路,进行集先进性、前沿性和实用性为一体的教学内容创新。
关键词:智能科学与技术;科学研究;专业建设
中图分类号:G642 文献标识码:A
1 引言
智能科学与技术学科以计算机科学为基础,结合了认知科学、信息学、控制科学、生命科学、语言学等学科的相关理论和研究方法,是一门新兴的交叉学科,将成为21世纪信息科学研究的制高点和信息产业价值的主要提升点。
在国外,许多著名高校都设立了“人工智能”专业并授予智能科学专业学位:世界多数知名的理工类院校都设立有人工智能研究所或实验室,进行智能科学专业的研究生培养及科研工作。在国内,智能科学与技术专业起步则较晚:2003年12月5日,教育部正式批准北京大学信息科学技术学院设立“智能科学与技术”本科专业,这标志着我国“智能科学与技术”专业的诞生。
厦门大学在智能科学与技术领域已经有多年的研究积累和师资储备。2006年12月,教育部正式批准厦门大学设立“智能科学与技术”本科专业,2007年6月6日,厦门大学智能科学与技术系经学校批准成立,并于2007年9月迎来了第一届本科生。本文将简要介绍近几年来厦门大学“智能科学与技术”专业的建设情况。
2 厦门大学智能科学与技术相关领域的科学研究进展
厦门大学在智能科学与技术领域的研究已开展了多年。早在1988年,学校就成立了校级科研机构――“厦门大学人工智能与计算机研究所”,目前,经厦门大学批准,正式更名为“厦门大学人工智能研究所”。它是一个以实用智能技术研究为主、集基础研究与应用开发于一体的研究机构,是厦门大学组建智能科学与技术系的主要基础。
厦门大学智能科学与技术系面向国际学科发展趋势和国家发展的重大需求,利用人工智能研究的方法和手段,不断开辟新的研究领域,逐渐确立了语言信息处理、认知计算、智能信息检索、中医信息处理、视频图像处理、智能机器人等主要研究方向。在语言信息处理方面,现设手写汉字识别、自然语言理解、机器翻译、语料库技术等研究领域;在认知计算方面,现设觉知计算、脑机接口、机器感觉、隐喻逻辑等研究领域;在智能信息检索方面,现设文本信息过滤、信息检索、信息提取、智能数据挖掘、Web挖掘等研究领域;在中医信息处理方面,现主要研究开发多媒体中草药智能查询系统、基于舌象中医智能体检系统;在视频图像处理方面,现设图像数据库、生物特征识别、遥感图像、地理信息系统等研究领域。2008年,系里引进了被称为“人工大脑之父”的著名学者Hugo de Garis教授,并以他为首组建了人工大脑研究室,该研究室的目标是,经过三年左右的时间,建设中国首个人工大脑。
经过十几年的不懈努力,我们在上述研究领域均取得了一批有影响的重要研究成果,在我国学术界具有一定的学术地位,获得数十项国家和省部级项目经费的支持。目前在研的项目有国家自然科学基金项目3项、国家863项目2项、国家863子项目2项、福建省自然科学基金项目1项、福建省科技计划重点项目2项。在汉字识别、词语切分标注、语法分析、词义消歧、指代消解、语言神经基础、汉语理解策略、网上信息的选择翻译、统计机器翻译、语音识别与合成、计算机音乐、计琴学等诸多方面进行了有特色的研究,形成了具体的算法,并且还提出了一种系统性的协动计算理论,出版专著5部,数百篇,其中近三年被EI、SCI等检索的论文达200余篇。
在基础理论研究的基础上,智能科学与技术系还十分注重产学研结合,先后与北京德威特电力系统自动化有限公司和深圳名人电脑等公司进行合作研发,广泛开展应用系统的研制开发,主要包括:手写汉字机器识别系统、汉语分词和词性标注系统、机器翻译系统以及网上汉语文本分类和信息过滤系统。其中,手写汉字机器识别系统获浙江省教育厅科学技术进步三等奖:机器辅助汉英互翻系统获福建省科技厅科技进步三等奖;汉语分词和词性标注系统获得2003年863中文信息处理评测第二名:机器翻译系统(包括XMMT汉英机器翻译系统、Matrix英汉机器翻译系统、Light英汉机器翻译系统和Neon英汉双向机器翻译系统)在863智能接口评测中多次名列前茅,形成多项产品,技术授权国内多家单位使用。
在科研平台建设方面,智能科学与技术系发挥厦门大学多学科交叉的优势,联合人文学院、外文学院和海外教育学院华文系的学术力量,于2003年成立了“厦门大学语言技术中心”,其中,汉外多语言机器翻译为主攻方向之一。2006年获批了“智能信息技术福建省高校重点实验室”;目前,以人工大脑相关内容为研究核心的“福建省仿脑智能系统重点实验室”也已获批。
3 厦门大学“智能科学与技术”专业建设情况
厦门大学智能科学与技术系现有一个本科专业(智能科学与技术),三个学术型硕士学位授予专业(人工智能基础、模式识别与智能系统、计算机应用技术),一个“计算机技术”工程硕士培养方向(智能工程及网络安全方向),一个博士学位授予专业(人工智能基础)。现有在校本科生近90人,硕士研究生80多人,博士研究生25人,博士后2人。本系教职工近30人,其中:教授5人,副教授5人,80%具有博士学位或者博士在读,40岁以下的年轻教师占2/3。
3.1 本科生专业建设
在本科生培养方面,厦门大学智能科学与技术系的目标是要求学生能够有效和系统地掌握本学科的理论基础,比较深入地理解智能科学与技术理论;培养具有一定的分析、综合和创新能力,能够承当智能信息系统设计、开发和智能科学与技术学科教学任务的,德、智、体全面发展的科学技术工作者:毕业生适宜到科研机构、学校、技术或行政管理部门、公司、厂矿等企事业单位从事科技研究、应用开发、信息管理和教学工作,也可以进一步攻读该专业及相关专业的硕士学位。
为了实现上述目标,我们遵循“宽口径、厚基础、抓关键、重实践”四项基本原则,制定了较合理的教学计划,在本科一、二年级安排公共基本课程、校通识教育课程、院系通修课程;从二年级下学期开始结束院系通修课程,转而推出部分学科通修课程,向专业化过渡,三年级开始加入方向性选修课程。其中,公共基本课程621学时、33学分;校通识教育课程262学、15学分;学科通修课程1544学时、90学分;方向性课程120学时、分;学科跨方向性课程108学时、6学分。这样的安排能真正使学生在获得扎实而宽厚的理论基础、合理的知识结构的同时,培养较强的获取新知识的能力和创新精神。
为了能切实提高学生的动手实践能力,我们在办学过程中十分重视和强调实践环节的训练并倡导理论与实际 相结合,已经规划建设一个特色实验室――“仿脑认知与智能机器人”实验室,可支撑仿脑认知与智能机器人两个方向相关课程的教学实验,总经费预算100万元。依托该实验室,结合相关课程,高年级本科生可以进行“心理物理测试实验”、“眼动测试实验”、“面部表情与脑电对照实验”、“行为学与智能关系测试实验”、“机器人避障行走路径规划”、“机器人目标识别与跟踪”、“机器人声控实验”、“机器人智能语言翻译”、“机器人足球比赛”等众多特色实验。
3.2 研究生专业建设
厦门大学智能科学与技术系的研究生培养以加强创新能力的培养为核心,以加强基础课、专业课,实验实践教学、论文创新写作、促进理论与实践相结合为重点,包含硕士研究生和博士研究生两个培养层次。其中,硕士研究生层次又分为学术型研究生和工程硕士两种类型,分别进行培养。
在学术型硕士研究生培养方面,我们的目标是培养适应智能科学与计算机科学的发展,适应国家社会发展与进步事业需要的,德、智、体、美全面发展,系统地掌握本学科基本概念、基本原理、基本方法、基本技能的,具有创新能力、理论联系实际的高级专门人才和能适应未来从事基础研究、应用基础研究、技术开发研究和工程应用研究之人才。毕业生适宜到科研部门、学校从事科学研究和教学工作;适宜到计算机产业相关的企事业单位从事智能科学与计算机科学技术的开发研究、应用与管理等工作;可以继续攻读智能科学与计算机科学及其相关学科的博士学位。目前包含“人工智能基础”、“模式识别与智能系统”和“计算机应用技术”三个专业。其中,“人工智能基础”专业包含如下培养方向:认知科学理论、认知逻辑学、计算语言学、智能计算方法、艺术认知与计算、脑高级功能成像等;“模式识别与智能系统”专业包含如下培养方向:计算机视觉、机器翻译系统、智能中医诊断系统、机器音乐、模式识别、音频信息处理等:“计算机应用技术”专业包含如下培养方向:人工智能应用技术、自然语言处理技术、智能信息检索技术、多媒体综合应用技术、图像与视频处理技术、虚拟现实技术等。
在工程硕士培养方面,目前智能系招收“计算机技术”工程硕士――B方向(智能工程及网络安全)的工程硕士研究生,目标是培养具有扎实的计算机学科专业知识和工程技术能力,掌握现代智能与网络科学前沿知识,在智能工程与网络安全方向具有一定研究深度和项目研发能力的高层次应用型人才。培养方向包括:嵌入式智能家居、视频图像处理、网络视觉监控、模式识别与智能系统、智能机器人、网络内容监管、黑客与网络攻防技术、网络信息安全、信息检索与信息过滤、自然语言处理、机器翻译、语音识别与合成、智能中医信息处理、人工大脑、虚拟现实技术等。
在博士研究生培养方面,设有“人工智能基础”博士学位授予专业,目标是培养基础扎实,具有创新意识,对某一领域有全面深入了解或对某一应用领域有独立解决实际问题的能力,能够解决前人未能解决的科学问题或社会发展中亟待解决的技术问题的高级专业人才:其研究工作对科学技术或社会经济的发展具有明显贡献,为人工智能技术发展和应用提供新的基础或新技术、新方法。培养方向包括:人工智能以及应用技术、艺术认知与计算、数据挖掘技术、认知神经科学、软计算方法及其应用、智能多媒体信息处理、脑功能成像技术等。
4 总结与展望
关键词:智能控制;教学策略;卓越工程师;模糊控制;神经网络
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)23-0029-02
智能控制作为自动化类专业的一门专业课程,要求学生了解控制学科发展的方向和前沿,熟悉智能控制的主要理论分支、数学基础以及发展趋势等,掌握基本智能控制方法的结构和算法,为未来实际工程应用奠定一定的基础。当前,在国内外备受关注的CDIO模式即把“构思(Conceive)―设计(Design)―执行(Implement)―运作(Operate)”作为工程教育的环境背景,按照产品生命周期构建课程体系,以课堂和项目相结合的方式进行主动学习,使学生达到预想的学习目标。
考虑到安徽工程大学(以下简称“我校”)自动化专业被确定为教育部“卓越计划”试点专业,如何通过智能控制课程教学改革来提高教学质量,充分借鉴CDIO先进的教育理念,推行卓越工程师培养计划,提高大学生的创新技能、实践技能,协调课程体系对培养目标支撑力不强以及与我国产业发展和结构的调整不相适应的矛盾,创建适应新形式发展需要的课程教学体系,同时促进我国智能控制学科发展,是我校授课老师所面临和亟待解决的问题。
一、智能控制课程分析
1.智能控制发展历程
智能控制是一种新型自动控制技术,代表了自动控制的最新发展阶段。[1]20世纪90年代中期之后,智能控制日益成熟,在工业、农业、家用、军事等领域得到了广泛的应用,据统计,2012年全球智能控制市场规模接近6800亿美元,而我国智能控制行业规模也已经达到4200亿元。
智能控制思潮第一次出现于20世纪60年代由Leonaes等人首次正式提出,[2]到了1987年,IEEE控制系统学会和计算机学会在美国费城联合召开了智能控制国际学术讨论会,智能控制正式作为一门新学科,登上历史舞台,而“智能控制”课程是在智能控制学科建立之后开设的。
国内首部“智能控制”教材,是在1990年由中南大学蔡自兴教授编写电子工业出版社出版,蔡教授把递阶控制、专家控制、模糊控制、神经控制、学习控制作为智能控制课程的初步框架和主要研究分支。[1]随后,王耀南、李士勇、李人厚、孙增圻等专家也编写了智能控制相关教材。这些教材出版对我国智能控制课程教学发挥了积极的作用,为智能控制学科建设和人材培养做出突出贡献。[3]
近年来,国内学者对智能控制的研究十分活跃,举行各种与智能控制有关的学术讨论会,如全球智能控制与自动化大会(World Congress on Intelligent Control and Automation,WCICA)、中国智能自动化会议(Chinese Intelligent Automation Conference,CIAC)、中国控制会议(Chinese Control Conference,CCC)、中国控制与决策会议(Chinese Control and Decision Conference,CCDC)等,这标志我国智能控制作为独立学科已正形成。[2]
2.智能控制理论体系
随着科学技术的发展,智能控制理论和技术得到不断的发展和完善,受到越来越多科研工作者的关注。常规的智能控制方法主要包括:模糊控制、神经网络控制、分级递阶控制、专家系统控制以及其他仿人智能控制等。[3,4]
(1)模糊控制:将人类专家对特定对象的控制经验,运用模糊集理论进行量化,转化为可数学实现的控制器,从而实现对被控对象的控制,其主要包括输入模糊化、模糊规则库、模糊推理以及输出逆模糊化四个部分。
(2)神经网络控制:是人工智能、认知科学、神经生理学、非线性动力学等学科的交叉热点,它利用大量的人工神经元按一定的拓扑结构互连,构建具有仿人控制的功能。神经网络虽然不善于显式表达知识,但具有很强的学习能力和自适应能力,能够任意逼近复杂的非线性系统,对高度非线性和严重不确定性系统的控制方面具有良好效果。
(3)分级递阶控制:是从工程控制论的角度总结人工智能与自适应、自学习和自组织的关系之后逐渐形成的,主要由组织级、协调级和执行级构成。其中组织级起主导作用,涉及知识的表示与处理,主要应用人工智能;协调级在组织级和执行级间起连接作用,涉及决策方式及其表示,采用人工智能及运筹学实现控制;执行级是底层,具有很高的控制精度,采用常规自动控制。
(4)专家系统控制:是指具有模糊专家智能的功能,采用专家系统技术与控制理论相结合的方法设计的控制策略,它是人工智能应用领域最成功的分支之一,由知识库、推理机、解释机制、知识获取系统以及综合数据库五个部分组成。在工业过程控制中主要呈现直接专家控制和间接专家控制两种形式。
二、智能控制课程教学改革
1.理论教学
UNESCO在2010年的工程学报告中指出,工程是人类面临的最大挑战和机遇,为了满足卓越工程师培养计划要求,我校重新修订课程教学大纲,调整了各知识点的学时分配,扩大了知识面的覆盖范围,并提高了实验内容所占学时比例,注重实践环节内容设置。在课程建设考虑理论与实践的均衡,避免理论与实践用脱节,教材选用为王耀南主编、机械工业出版社出版的《智能控制理论及应用》,[5]总共设计30个学时,具体如图1所示。概述部分为2个学时,主要讲解智能控制理论的历史背景、研究现状以及未来的发展趋势;模糊控制与神经网络控制是本课程主要讲解部分,分别安排9个学时;分级递阶控制与专家系统控制部分要求学生以了解为主,因此分别安排4个学时;最后,剩余2个学时讲解当前最新的一些智能控制方法,目的为扩展学生的视野。
考虑到“智能控制”课程涉及的知识面较为广泛,因此,在教学过程中,教师主要担负组织者、引导者的职责,课堂上注重采用启发式的教学模式,并增加案例讲解,让学生明确课程教学服务于国家战略需要和行业需要,如:液浮陀螺仪温控系统的模糊控制策略设计、单级倒立摆系统的神经网络PID控制器的设计、数控机床专家系统设计等。鼓励学生自由探讨,实现教学环节中的互动,提高学生的认知能力。
2.实践教学
本课程专业性很强,学生缺少对智能控制方法的感性认识,且受学时数的限制,因此鼓励学生自主学习,充分利用课余时间。[6]每次课后,有针对性地预留课外作业,引导学生复习、预习,这有利于老师教学内容的精练讲解,学生对智能控制的熟悉掌握,引导学生注重工程能力和自主学习能力的提高。
另外,在“智能控制”教学计划中,安排6个学时作为实验课,让学生独自设计相关智能控制器,培养学生的实践动手能力,增加对模糊控制系统、神经网络控制系统分析和设计的熟练程度。实验采用先讲解、后实验、再总结的方式进行。为了保证实践教学质量,每20位学生安排1名指导教师。实验前,要求学生实验之前完成预习报告;实验中学生每人一台机,独立记录实验过程和实验结果,教师全程答疑辅导;实验后学生及时上交实验报告,其内容包括:实验名称、内容、方法、步骤、结果及个人心得、体会。
3.教学手段
为了适应时代的发展,授课借助先进的教学软件。在相关理论知识点展开前,可通过实例模拟让学生初步了解相关方法,再切换到理论知识的讲解,以帮助学生做到思维的自然过渡。
课堂还采用多媒体教学,以提高学生获取信息的效率。多媒体课件制作过程中,力求图文并茂,能吸引学生的注意力,这有利于实现情景式的教学,充分调动学生的主观能动性,变被动教育为主动教育,使学生加深对知识的理解。[7,8]
4.考核方式
本课程理论性较强,为避免“一张试卷定乾坤”带来的弊端,课程成绩采用多元化考核制度,主要包括:平时成绩(30%)、实验成绩(30%)和期末考试成绩(40%)。
三、结束语
综上所述,我国的智能控制教育已取得了可喜成绩,我校在研究专业培养目标和现有教学资源基础上,借鉴国内相关高校成功教学经验,并不断完善智能控制学科教学的方法、手段、策略,研究制订新的大纲,开发设计多媒体课件,与时俱进,紧密围绕“卓越工程师培养计划”的重点和目标,为培养敢创新、会创造的高质量人才不断努力。
参考文献:
[1]蔡自兴,张钟俊.智能控制的理论与实践[J].中南矿冶学院学报,1989,(6):644-650.
[2]陈爱斌,肖晓明,魏世勇,等.智能控制的学科发展与学科教育[J].现代大学教育,2006,(3):102-105.
[3]涂象初.关于智能控制的几个问题[J].科学通报,1991,(7):481-485.
[4]张德江.智能控制技术现状与展望[J].长春工业大学学报,2002,
(S1):58-61.
[5]王耀南,孙炜.智能控制理论及应用[M].北京:机械工业出版社,2011.
[6]朱建红,张蔚,顾菊平,等.基于卓越工程师目标的教学策略改进研究[J].中国电力教育,2013,(5):90-91.
[7]林健.卓越工程师教育培养计划专业培养方案研究[J].清华大学教育研究,2011,32(2):47-55.
关键词:产生式系统;人工智能;教学实践
中图分类号:TP3-05 文献标识码:A DOI:10.3969/j.issn.1003-6970.2015.05.007
0 引言
产生式系统是人工智能中的一个经典部分。产生式系统的教学在人工智能的教学具有承上启下的作用。首先,学生需要理解知识表中的逻辑表示方法之后才能更容易地学习该部分,这里,产生式系统表现出承接作用;其次,理解了产生式系统,才能更容易地学习人工智能中其他相关知识。正是因为产生式系统具有承上启下的作用,该部分的教学对于学生的融合贯通起着关键作用。此外,编写产生式系统可以训练学生的逻辑能力,也可以作为计算机语言教学的良好实例。
对于产生式系统部分的教学,主要目的在于:让学生理解产生式系统的基本构造,并能利用产生式系统求解问题。在我们的教学中,要求学生能够使用产生式系统解决一些有趣的智力题,从而真正体现机器求解智力问题的能力。
为了达到该目的,我们在七个学期的课程上进行了各种探索。本文通过总结这七个学期的经验,提出产生式系统教学中需遵循的“兴趣导向,实践优先,开发活泼”的教学思路。
1 教学实践案例
在本教学实践案例中,共选择了2006―2007学年两个学期、2007―2008学年第一个学期、2010―2011学年两个学期,2011―2012学年两个学期作为考察对象。在授课中,分为《人工智能A》和《人工智能B》两种教学形式。选择《人工智能B》的班级不进行上机实验操作,而选择《人工智能A》的班级需要在计算机上完成相应的实验。
为了达到形象化教学的目标,在产生式系统的教学中,选择了一个智力题作为算法求解目标。该题目常称为量水问题,可简单描述如下:
有两个无刻度标志的空水壶,分别可装4升和3升的水。设另有一个10升的水壶装满了水。各个水壶之间仅可以相互倾灌。问如何通过倒水或灌水操作,量出2升的水来。
该问题是一个典型的智力问题。对于大学生来讲,该问题并不困难。但是,用计算机来求解确实一个具有挑战性的问题,因为,学生们不仅仅是自己会求解该问题,还要让机器也能做到。
1.1 教学情况说明
为了考察实践编程环境的影响,对于《人工智能B》的班级,仅进行理论教学。教学步骤为:1)简单介绍产生式系统的构成:数据库、规则库、推理机;2)讲授水壶之间倾倒的所有规则;3)给出程序,将程序中的各条语句与理论一一对应说明。
对程序部分,则教授由教师所编写的程序。具体教学内容如下:
1)首先定义数据库中的变量,即水壶中已存水的数量。定义了三个变量,并赋予初值。程序用C语言可以写作如下语句:
1.2 教学效果说明
对于所有班级的学生,都组织书面考试。考试的题目就是默写整个程序。由于选课学生的专业不同,因此,卷面成绩的波动较大。数学专业的学生选择的是《人工智能B》,从卷面上看,小错漏较多,说明多数是靠背诵过关。自动化专业和计算机科学与技术专业的学生选择的是《人工智能A》,多数情形下表现略好。然而,在前五个学期的教学实践中,教师先行给出了程序,相反地,学生错漏的出现率较高,说明学生的依赖心理较重,靠背诵过关;在后两个学期中,教师没有先行给出程序,卷面成绩反而上升,小错漏减少,说明学生理解的程度较高。这部分的结果表明:实践环节对教学效果的影响很大,加入实践环节能显著提高教学效果。
除开书面考试成绩的比较,当没有先行给出程序时,学生们最主要的进步是在实验环节。由于没有程序,学生们开动脑筋,对于量水问题给出了很多其他的方案。在2010―2011学年,学生提出了用宽度优先、深度优先等搜索策略来改进随机推理机制,以获得最简单的倒水方案,并给出了正确的源程序。在2011―2012学年第二个学期,学生们又提出了一个意想不到的新策略。
学生提出的策略是:每次将4升壶的水倒入3升壶,3升壶的水倒入10升壶,而10升壶的水倒满4升壶。由于从数学上看,数字4和3互质,且相差仅仅为1,因此,这一个循环倾倒的策略总能获得2升水。即使是换成要量出5升水等形式,也很容易地能得到。
学生所提出的策略从编程上看,更为简单,也能达到以前程序的效果,充分说明了大学生的创新能力。
从以上两次学生提出的创新思路,尤其是后一次的思路来看,教学效果要远远好于以前的固定刻板的教学模式,说明在开放式情形下,学生的创造性能够得到发挥。
因为实践环节对教学效果非常重要,在后面两个学期的教学中,我们着重强调了提升学生兴趣的教学环节,增加了学生编写程序的积极性。
2 经验总结
从这个教学案例中,可以总结出这么几方面的经验:
1)在产生式系统的教学中,切忌只是从理论到理论。从理论到理论的方式会使得学生失去基本的兴趣。当失去基本的兴趣以后,学生将不再配合学习,从而使得后续的教学更为艰难。
2)最好采用案例教学的方式。采用案例教学的方式会使得学生更容易理解,更容易接受。对于案例的选择,可以选择传教士过河问题、量水问题、八皇后问题等学生喜闻乐见的智力题,要求学生用计算机程序的方式解决。在案例的选择上,要坚持简单原则,太复杂的程序学生会不太喜欢。从实践上看,量水问题比传教士过河问题要简单,因此,建议多选择这样的案例。
3)相信学生,从而给学生表现的机会。大学生处于创造力的高峰时期,如果能够激发学生的兴趣,则学生自然会在兴趣的指引下发挥其创造力,给出更简单更有效的方案。
4)实践优先。由于长期的应试教育的熏陶,大学生普遍具有“等、靠、要”的思想。如果不给予实践的机会,多数大学生们通常不会去尝试求解难度较大的问题。在实践中,要避免将学生看作机器,不能要求学生完全按照实验操作规程进行操作。这样的标准化、刻板化的实践的确从表面上看实验报告更漂亮,但实际上,学生多数情况下是知其然,不知其所以然。从教学的本质上讲,这样做是违背教学规律的。
5)理论升华。在实践完成以后,教师一定要抓住机会,将程序中的各个部分与理论中的各个部分对应起来。这样学生才能够融会贯通,真正理解产生式系统。
总而言之,对于产生式系统这样的知识点,在实践中采用“兴趣导向,实践优先,开放活泼”的教学思路是可行的。
关键词:人工智能;人类智能;思维;技术元素
1 基本概念界定
1.1 人工智能
人工智能是在20世纪中期以后产生的学科,人工智能就是用机器模拟人类的智能活动,从而用机器代替人类行使某些方面的职能。人工智能是通过探索人的感觉和思维的规律来模拟人的智能活动,电子计算机是人工智能的媒介和基础。阿伦・图灵说:“如果一台计算机能骗过人,使人相信它是人而不是机器,那么它就应当被称作有智能。”如果以此为标准来界定机器的智能,那么人工智能的发展之路仍然任重道远。
1.2 人类智能
智能简单地说就是智慧与能力,是综合、复杂的精神活动功能,是人运用自己已有的知识和经验来学习新知识、新概念并且把知识和概念转化为解决问题的能力。智能活动往往和记忆力、感知力、思维、判断、联想、意志等有密切的联系,人类的智能表现在能够进行归纳总结和逻辑演绎,人类对视觉和听觉的感知以及处理都是条件反射式的,大脑皮层的神经网络对各种情况的处理是下意识的反应。
1.3 什么是思维
思维是事物的一般属性和内在联系在人脑中的间接的、概括的反映。思维的形式包括概念、理解、判断、推理等。思维往往借助于语言来表达,由直接的感受即感性思维转化为理性,透过现象看到事物的本质,发现普适性的规律。芒福德说人类是“精神的制造者”而不仅仅是“工具的制造者”,因为人类具备思维能力。
2 基于“技术元素”视角下的人工智能
“技术元素”这一说法是凯文・凯利提出的,技术元素就是从人类意识中涌现出的一切东西,包括技术具象的工具,也包括文化、 法律、社会机构和一切智能创造物。凯文・凯利说:“科技是人类的发明,也是生命的产物。”居所是动物的技术,是动物的延伸部分,人类的延伸部分是技术元素,科技发明是我们基因创造的躯体的外延。
2.1 人工智能是技术进化的成果
凯文・凯利认为人类的延伸由思维产生,因为思维具有创造力,才促使了技术的进步,才创造出了以往没有创造出的东西,所以,“如果说科技是人类的延伸,那也与基因无关,而是思维的延伸。因此科技是观念的延伸躯体”。
技术元素伴随着语言、工具的诞生成为人类不可或缺的伙伴,从古至今,除了极少的例外,各种技术都没有消失,而是进化成不同形态的技术。人工智能作为一种科技物种,随着技术的进步而产生发展,是技术进化的成果。
2.2 人类与技术共同进步
一切生物都有天然的借助外力的本领,从钻木取火到航空航天,人类经历了漫长的发展,或者说是进化,技术作为一种手段、一种工具从来都与人类相伴相生。“技术元素”赋予技术以生命,人是技术进化的动力,而技术的进化也促进了人类社会的发展,二者是密不可分的。科技与人类正在逐渐融合,或者说人类已经成为科技最适合的载体;“技术元素”的发展虽然具有一定程度的自主性,但是它的发展轨迹从某种意义上来说也是人类意志的体现。人作为技术发展的动力之一与“技术元素”同步运动。
3 人工智能能否超越人类
对于这个问题人们有两种极端的看法:一是认为人工智能必将取代人类,不久的将来人类会沦为机器的奴隶;二是对人类的主体地位有着极度的自信,认为机器始终都是被人控制。前者的依据是人工智能的发展极其快速,超越了人类智能的进化速度,人工智能取代人类只是时间问题。后者的依据是人工智能不具有生命特征,无法融入生物圈从而和自然发生联系,只能作为人类活动的工具而存在。我更偏向于第二种观点,是基于以下几个原因:
3.1 缺乏创造性的“特长生”
人工智能开发出的机器可能是某一个领域的“特长生”却不是全才。比如AlphaGO是围棋特长生却不能唱歌,计算器是数字计算的天才却不能陪人聊天,情感机器人负责陪伴和情感安慰却不能真正懂得人类的喜怒哀乐,如此等等,它们按照既定的程序运行,各司其职、各得其所,不会偏离轨道也不懂得创造。
塞缪尔说:“机器不能输出任何未经输入的东西。”目前最先进的机器人也是依赖于软件运行,软件是通过人来完成更新升级,人工智能实际上是人类智能的外在表现。人体是一个复杂而庞大的系统,人有特定的背景和生活习惯,人脑的发育会受到所经历的事件和社会环境的影响,能够灵活运用,组合所接受的信息,具备综合分析问题的能力。人脑的控制系统复杂和精密程度远远超过智能机器人,因此,人工智能在技术上不及人类智能,它依赖人类智能而进化,能够胜任人类制定的任务,却缺乏人类智能的创造性。
3.2 不能思维的人工智能
在回答“机器能否思维”的时候,我们首先应该对思维进行界定,思维是人脑特有的功能。人脑是一个高度发达的系统,是人类意识活动的物质载体。“电脑思维”在功能上会向人脑思维不断接近,但是两者之间存在不可消除的界限,“电脑思维”是一个简单的逻辑过程,模拟人脑思维功能和思维信息过程,它在本质上区别于人类思维。人脑思维除了能够接受外部信息以外,还能对信息进行主观的加工。人们已经能制造出类人机器人,可是它不能和人一样思维吗,因为思维不仅仅是人脑的生理机能,离开社会实践和人际交往是不能产生思维的。
3.3 是辅助而非替代
人工智能简单明了地说就是人类用来改造世界的技术手段,是辅的工具,而不是对人类的替代。人工智能出现的历史并不久远,前文说到了技术和人类的共同进化,当人类有能力利用工具来处理复杂繁琐的工作时,这是人类的进化,也是工具的进化。
人工智能被用于帮助人类进行某项工作,才能解放人力,人类智能才可以更好发挥主动性和创造性。人工智能承担了人类活动中基础的、不可或缺的、复杂的工作,从而使人类智能转向更核心的科研创造以及思维和判断上来。在人与人工智能的关系上,二者是相辅相成、相互补充的,而不是互相排斥、完全替代
4 结束语
人工智能与人类智能的关系是互为补充、相互制约的,人与技术的融合是必然的。目前人工智能的更新升级必须依赖与人类智能,人类智能的进化程度关系到人工智能的先进程度“技术元素”的进化也要受到社会条件的制约。人工智能可能在某一方面出强大的功能,但是它缺乏思维和创造性,这一点是致命的缺陷,工具作为人类器官的延长,是人类智能的外化之物,被人类智能的发展程度所局限。
参考文献
[1]凯文・凯利.科技想要什么[M].熊祥译.北京:中信出版社,2011.
[2]尹传红.当机器智能超越人类[N].中国科学报,2015,04(03).