前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的高中数学函数与方程主题范文,仅供参考,欢迎阅读并收藏。
一、函数与方程思想分析
数学方法是解决问题的程序,它具有一定的可操作性,并且能够支配教学实践活动.数学思想是数学的灵魂,但是它是内隐的,必须通过数学方法等外显要素将其表达出来.用教学成果去解决问题称为方法,用教学成果探讨它的价值和意义则是思想.
1.函数的思想核心
函数是一种有着运动变化的模型,在高中阶段函数思想贯穿数学课本的始终,任何一个数的运算我们都可以将其改造成函数,函数思想的实质就是用联系和变化建立其一种特定的关系.函数的核心思想在于图像和性质,从函数的性质和图像出现所展开的分析是非常具有条理性的.在解题中,我们可以已知条件中的方程、不等式问题都化为函数为题来解答,根据函数的性质来为方程求解提供相关支持.同时在实践教学中我们发现,如果将不等式、方程等问题运用函数思想来解答,能够起到极好的简化操作步骤,让解题思路清晰明了的呈现出来.
2.方程的思想核心
方程思想的本质其实是认识方程的概念,通过利用方程或是方程组的观察来进行问题的处理.函数的问题能够通过方程来解答,同样方程的问题我们也可以通过函数来解答,二者的关系式十分微妙的,如果能够找到其中的关系,那么高中函数与方程的解题就能够轻而易举实现了.方程思想的核心在于从函数关系出发,通过构建函数关系所对应的方程式式来进行求解.
我们可以通过一个例子来进行具体说明:函数与方程的转换十分简单,我们可以将常规的y=f(x)转化为一般方程f(x)-y=0,那么在具体的解答过程中,我们就可以通过解最普遍的二元方程组来完成此题.如果题目中还涉及函数的定义域、值域等问题,我们都可以通过方程思想加以解答,往往还能达到事半功倍的效果.
二、函数与方程求解案例分析
对于函数思想与方程思想研究,我们可以更多的从实际案例中进行分析.通过构造函数关系为出发点,然后以所构造的函数图像及性质为切入点,然后在解决所对应的方程中的问题,这也是函数与方程思想的核心所在.
例1定义x1满足条件2x+2x=5,同时x2满足条件:2x+2log2(x-1)=5,求x1+x2的值.
分析从题目中我们可以发现,条件中所给出的未知数满足的条件是超越了方程的类型的.此类方程我们无法通过直接计算的方式得出答案,因此我们要寻找超越方程的联系,先将方程进行转换为函数,然后在求解,这也是函数与方程思想的变形.
解题首先,我们将方程2x+2x=5定义为①,将方程2x+2log2(x-1)=5定义为②,然后进行同等函数变化.将①的两边同时“-2x”的方式,得到2x-1=52-x.将方程②也进行相同的变化,可以得到log2(x-1)=52-x.下来我们可以对方程①和②进行分析,将它们转化为函数模式.
方程①可以视作函数a(y=2x-1)与函数by=52-x在坐标系相交中所产生交点M的横坐标数值;方程②可以视作cy=log2(x-1)与函数by=52-x在坐标系相交中所产生交点N的横坐标数值.
通过上述方程,我们可以运用方程与函数的思想将方程转化为函数求解.通过观察我们可以知道方程①所对应的函数a和方程②所对应的函数c都还可以进一步的处理,即我们可以发现a由y=2x这个函数向右平移一个单位得到的,方程c是由y=log2x这个方程向右平移一个单位得到的.而y=2x与y=log2x关于y=x,因此我们可以判定a与c关于y=x-1对称,即y=x-1与b是相互垂直的.联立y=x-1与b可以求出相交点P的坐标为P74,34,而且M,N关于点P对称,所以我们可以得出x1+x2=74×2=72
三、函数与方程思想解题归纳
在高中数学解题中,我们可以将函数与方程思想作为解题的指导思想来运用,首先分析学生的基础水平,根据学生的数学水平来进行课程设计,帮助培养学生的数学能力.对于这种方程与函数的转化解题,我们可以先引导学生自主思考,然后在分别从函数和方程的思想进行解析,引导学生自主将两种思想进行结合解题.
函数与方程的思想我们可以将之作为一种解题策略,这是基于数学知识存在的,同时它又不仅局限于数学知识.它也是一种指导思想,教师可以通过学生的学习层次,提出不同的要求,并且有意识的培养学生此种解题思想.我国数学教育往往更加注重应试而忽略了教育中的思维能力的表达.只有教师对此十分重视,才能够在教学过程中将之渗透给学生,培养学生的数学思维.
【关键词】初高中数学教学 衔接 研究
一、探究初高中数学教学衔接背景
(一)初高中数学教学内容上有很强的延续性,初中数学是高中数学学习的基础,高中数学是建立在初中数学基础上的延续与发展,在教学内容上、思想方法上,均密切相关。没有初中数学扎实的基础,学生将无法适应高中阶段的数学学习。因此,从教学内容、数学思想方法上,理顺初高中数学之间的关系,进而在初中阶段强化初高中衔接点的教学,为学生进一步深造打下基础,是初中数学教学必须研究的重要课题。
(二)初高中数学教学衔接研究,主要从初高中数学教学内容、基本的数学思想方法、中考数学的导向性作用,新课程标准对数学教学的要求,高中数学教学对初中数学教学的要求等方面进行综合性研究,试图找出初高中数学教学衔接的相关关键点,从而为初中数学教学提出有用的建议,对初中数学教学为适应学生高中数学学习进行有效地定位。
二、研究目的与意义
(一)找出初高中数学教学衔接的相关关键点,从而为初中数学教学提出有用的建议,对初中数学教学为适应学生高中数学学习进行有效地定位。
(二)从教学内容、数学思想方法上,理顺初高中数学之间的关系,进而在初中阶段强化初高中衔接点的教学,为学生进一步深造打下基础。
(三)为学生有效适应高中阶段的数学学习打好基础,提高教师对新课程理念以及学科课程目标的全面、深刻地理解;
(四)为初中数学教学设置一个知识上限,研究对象为初中数学教学内容的深度与广度。为学生进入高中后能有效适应高中的数学学习。
三、研究内容
(一)初、高中数学课程教学衔接内容的教学要求:
与以前知识、高中教师原有认知相比认为存在但初中已删除需衔接的内容
1.常用乘法公式与因式分解方法:立方和公式、立方差公式、两数和立方公式、两数差立方公式、三个数的和的平方公式,推导及应用(正用和逆用),熟练掌握十字相乘法、简单的分组分解法,高次多项式分解(竖式除法)
2.分类讨论:含字母的绝对值,分段解题与参数讨论,含字母的一元一次不等式
3.二次根式:二次根式、最简二次根式、同类根式的概念与运用,根式的化简与运算
4.代数式运算与变形:分子(母)有理化,多项式的除法(竖式除法),分式拆分,分式乘方
5.方程与方程组:简单的无理方程,可化为一元二次方程的分式方程,含绝对值的方程,含有字母的方程,双二次方程,多元一次方程组,二元二次方程组,一元二次方程根的判别式与韦达定理,巩固换元法
6.一次分式函数:在反比例函数的基础上,结合初中所学知识(如:平移和中心对称)来定性作图研究分式函数的图象和性质,巩固和深化数形结合能力
7.三个“二次”:熟练掌握配方法,掌握图象顶点和对称轴公式的记忆和推导,熟练掌握用待定系数法求二次函数的解析式,用根的判别式研究函数的图象与性质,利用数形结合解决简单的一元二次不等式
8.平行与相似:介绍平行的传递性,平行线等分线段定理,梯形中位线,合比定理,等比定理,介绍预备定理的概念,有关简单的相似命题的证明,截三角形两边或延长线的直线平行于第三边的判定定理
9.直角三角形中的计算和证明:补充射影的概念和射影定理,巩固用特殊直角三角形的三边的比来计算三角函数值,识记特殊角的三角函数值,补充简单的三角恒等式证明,三角函数中的同角三角函数的基本关系式
10.图形:补充三角形面积公式(两边夹角、三边)和平行四边形面积公式,正多边形中有关边长、边心距等计算公式,简单的等积变换,三角形四心的有关概念和性质,中点公式,内角平分线定理,平行四边形的对角线和边长间的关系
11.圆:圆的有关定理:垂经定理及逆定理,弦切角定理,相交弦定理,切割弦定理,两圆连心线性质定理,两圆公切线性质定理;相切作图,简单的有关圆命题证明,介绍四点共圆的概念及圆内接四边形的性质,巩固圆的性质,介绍圆切角、圆内角、圆外角的概念,等分圆周,三角形的内切圆,轨迹定义
12.其它:介绍锥度、斜角的概念,空间直线、平面的位置关系,画频数分布直方图
(二)数学思想方法在初高中数学教学衔接中运用。高中数学教学中要突出四大能力,即运算能力,空间想象能力,逻辑推理能力和分析问题解决问题的能力。要渗透四大数学思想方法,即数形结合,函数与方程,等价与变换,划分与讨论,这些思想方法在高中教学中充分反映出来。在初中数学教学中教师有意识的培养学生的数学思想方法,以适应高中教师在授课时内容容量大,从概念的发生发展、理解、灵活运用及蕴含其中的数学思想和方法,注重理解和举一反三、知识和能力并重的要求。
四、实施初高中教学衔接具体做法
初高中教学衔接研究方法宜采取初、高中一线教师合作研究方式,对初、高中数学教学内容、数学思想方法、考试导向作全面的比较分析,提出对初中数学适应性学习教学的要求,为初中数学教学指定出适应高中教学的具体目标,从而解决长期以来初高中教学脱节的问题。
(一)实验法:“分组合作教学”,提炼出初中教学衔接的具体内容,时机、内容、有效性合作。
初中参加实验班级每周授课时间设置为5+2模式,即5节课为正常完成教学任务时间,2节课为根据教学进度找到高初中知识衔接点进行实时渗透,引导学生进行自主探究,对课本要求的知识点进行深化理解。
(二)总结法:参与实验教师做教案设计,活动记实,具体教学衔接内容的研究,教学反思等。
【关键词】 高中数学;不等式教学;数学思维
前 言
高中数学是所有学生整个学习过程中非常重要的一个阶段,而不等式教学则是高中数学中的核心内容. 数学思维可以帮助学生更轻松地学习和掌握不等式知识,通过多样化的思维方式,激发学生对不等式知识的学习兴趣,主动地参与不等式学习,提高学生的学习成绩.
一、数学思维的概述
(一)数学思维的具体定义
数学思维是一种概括性的思考方式,是对相关经验进行不断的总结和归纳之后,提出的以逻辑推理为主的规则和方法,数学思维就是对事物之间的数量关系和外部的空间形式进行抽象化的概括. 专家把数学思维分为三大类:逻辑性思维、形象性思维以及直觉性思维,其中逻辑性思维是指依据某种事物的逻辑规律对数学知识进行分析、概括以及推理,最终推理结果进行论证的思维方式,形象思维则是从具体的形象中认识和感知数学;直觉思维是指学生在后天的不断学习中逐步形成的判断力.
(二)数学思维在高中数学不等式教学中的作用
随着我国素质教育改革的全面落实,数学思维在高中数学课程教学中的应用日益广泛,数学思维不仅让学生的综合能力有了明显提升,而且让学生能够真正意义上掌握不等式知识,激发学生的创新能力. 数学是学生日常生活经常接触到的信息,高中学生不仅要完成数学课程中学习任务,在日常的生活中也经常需要运用数学知识来解决问题. 因此,高中数学教师在实际的教学过程中,应该把数学理论知识与实践进行有效的结合,要让学生能够学以致用. 此外,教师在把数学知识传递给学生的过程中,应该积极展现数学思维,以提高学生发现问题、解决问题的能力.
二、高中数学不等式教学中数学思维的具体方式
(一)数形结合思维
高中数学课程教学中,“数”与“形”是必不可少的支撑,而数形结合性思维就是指让学生在解决各类数学问题时,以“数”的方式解决“形”的问题,以“形”的方式得出“数”,通过这种方式将问题逐步解决. 数形结合思维在高中数学所有的教学活动中都有应用,例如数轴、图解法、三角法以及复数法等都属于数形结合思维的运用,这些方法可复杂问题简单化,让抽象问题实现具体化,让学生可以花最少的时间解决问题,从根本上提高学习不等式的效率.
例如,学生在学习x3 + 3x - 4 ≥ 0这个不等式时,教师可以引导学生,先把不等式分别分解为(x - 1)(x + 2)2 ≥ 0,这之后再依据分解后的不等式,把x = 1与x = -2在函数图形中标注出来,这样一来整个不等式的解集区域就能明确地呈现在学生眼前,通过数形结合的思维方式,让学生直接从图形中就可以看出该不等式的解集是{x|x ≥ 1或x = -2},用最少的时间找到正确答案.
(二)函数方程思维方式
函数方程的数学思维方式就是指高中教师进行不等式课程教学时,对一些可以直接构建在相应函数或者是方程上的问题,把不等式问题转变成为函数问题或者是方程问题,以此找到问题的答案.
例如,教师在数学课程教学中,把不等式看作是2个函数值之间的不相等关系,运用f(x) = 0,求出函数y = f(x)的零点,通过这个方程学生就会发现不等式与函数单调性有着密切的关系. 但要注意的是,教师在运用函数方程思维方式开展不等式课程教学时,必须要让学生充分了解函数与方程的概念,并掌握这两个概念之间的差别,如函数概念中包含了定义域、值域以及对应关系,而且x、y于函数中是一种从属的关系,而方程中的x与y则是一种相互平等的关系,因此,只有让学生全面掌握了函数与方程两者之间的不同,在实际的不等式学习中学生才能在“函数图像方程解方程”与“方程根函数图像”中转化和应用自如,以此来加深学生对不等式知识的理解,进而提高学生的数学能力.
(三)化归性数学思维
化归性数学思维主要是指对主体已经存在的经验知识,以类比、观察或者联想的方式对问题进行转化或变换,把复杂的问题转换成简单的问题,采用能够有效解决或者已经解决问题的思想来解决现有问题,如果高中学生在学习不等式时,可以全面掌握化归意识,就能够轻松地将各类复杂的问题简单化,将未知的答案转变成已知答案,把抽象问题转变成为具体问题.
例如,假设不等式mx2 - 2x + 1 - m ≤ 0对所有满足|m| ≤ 2的值都可以成立,求出x的取值范围. 这个不等式的左半部分可以看成是“m”的函数,设f(m)= mx2 - 2x + 1 - m,如果对于|m| ≤ 2,f(m) ≤ 0能够成立,所以f(-2) ≤ 0且f(2) ≤ 0.通过这种方式,不仅可以提高学生合理迁移与转化不等式的能力,还能让学生在解题的过程中,对自己已经学过的知识进行复习与巩固,全面掌握各类数学公式独有的结构特性,学会通过类比、观察、想象等数学思维方式,从多个角度思考问题,解决问题.
一、数学语言上的差异
初中数学主要是以形象、通俗易懂的语言方式表达.高中数学一下子就触及抽象的、富有逻辑性的语言.比如,集合描述、简易逻辑语言、函数图像语言、空间立体几何、解析几何、不等式、导数等.针对这些不同,在高中数学教学中,要注意经常提醒学生把在初中数学学过的知识与高中所学知识联系起来.如,在学习直线和圆的位置关系时,要跟学生讲清楚初中学的只是直线和圆的最基础的知识,而高中要引入利用弦长公式计算某些线段的长度来判定直线和圆的位置关系;在学习一元二次不等式时,利用初中学过的一元二次方程和二次函数的有关知识加以讲解.根据一元二次方程的解以及二次函数的图像找出一元二次不等式的解集.上课时要求学生把所学的知识点结合初中所学过的知识联系起来.
二、思维方式上的差异
高中阶段与初中阶段的数学思维方法大不相同.初中阶段,教师总是为学生将各种题型进行归纳统一.如,分式方程的解法步骤,因式分解的方法等.因此,初中生在学习中习惯于这种机械型的、便于操作的思维方式.而高中数学在思维形式上发生了很大的变化.高中数学中常用的数学思维方法有:数形结合、倒顺相辅、动静结合、以简化繁等.这种思维能力要求的突变使得很多高中生感到不适应.如,初中学习的二元一次方程组的问题,在初中只是要求学生知道如何去利用代入消元法或者加减消元法解出方程组的解,没要求学生利用数形结合法来解题及验证解出来的结果是否正确.而到了高中,要求学生除了会解方程组外,还要求学生把方程组的解与两条直线的位置关系进行联系起来,得出结论:二元一次方程组的解实际上就是平面几何中两条直线的交点坐标.这样学生的思维就能得到很好的提升.又如,初中学生的逻辑思维能力只局限于平面几何题目的证明,知识逻辑关系方面的联系较少,对学生的运算要求不是很高,分析解决问题的能力得不到很好的培养.高中阶段对数学能力和数学思想的运用要求比较高,高中数学教学中就要培养学生的四大能力,即运算能力、空间想象能力、逻辑推理能力和分析问题解决问题的能力.
三、知识内容的差异
高中数学的知识内容与初中数学的知识内容相比,在“量”上急剧增加了很多;学生在同一时间内要学习掌握知识量与初中相比增加了许多;各种辅助练习、课外练习明显增多了;学生自己用来消化知识的时间相应的减少了.初中知识的独立性较大,便于学生记忆,又适合知识的积累和应用,给高中数学教学带来了很大的方便.然而高中数学是由几块相对独立的知识拼合而成(如集合、指数与对数函数、三角函数、数列、解析几何、立体几何、概率等),学生往往是一个知识点刚稍微有所理解,马上又要去学新的知识.因此,注意它们每部分的知识点和各知识点之间的联系,成了高中生学好数学必须花较多时间去整理的着力点.
高中数学知识在深度、广度方面比初中数学的要求要高得多.这就要求学生必须掌握好已学过的基础知识与基本技能.高中数学知识难度大、解题方法新颖、分析能力要求高.如,二次函数最值的求法、实根分布与参数变量的讨论、三角公式的变形与灵活运用、空间概念的形成、排列组合应用题及实际应用问题、解析几何、立体几何等.有的内容还是初中教材都没讲,如果不采取相应的补救措施,查缺补漏,学生必然跟不上高中阶段学习的要求.
一、现有初高中数学知识存在以下“脱节”
1.立方和与差的公式初中已删去不讲,而高中的运算还在用.
2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等.
3.二次根式中对分子、分母有理化初中只简单要求,而分子、分母有理化是高中函数、不等式常用的解题技巧.
4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容.配方、作简图、求值域、解二次不等式、判断单调区间、求最大与最小值、研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法.
5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授.
6.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点.方程、不等式、函数的综合考查常成为高考综合题.
7.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下与左、右平移,两个函数关于原点与轴、直线的对称问题必须掌握.
8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理、射影定理、相交弦定理等)初中生大都没有学习,而高中都要涉及.
关键词:数学思想;高中数学;建议
一、将数学思想应用于高中数学教学中的重要性
第一,运用数学思想进行高中教学有利于帮助学生建立唯物主义的世界观。数学与哲学看似风马牛不相及,但实际上,重大的数学思想一般是哲学思想在数量方面的反映。例如三角函数的思想将数学从孤立静止的研究变化为对运动关系的数、形研究,在对其进行学习的过程中,学生就能树立唯物的、辩证的世界观。
第二,运用数学思想进行高中数学教学有利于培养学生的创新精神。在数学学习的过程中,面临着许多困难,学生只有不断地思考,不断地失败,不断地挑战,才能解决难题获得最终的解答。学生的积极创新、不断探索的过程恰恰达到教育的最终目的。
第三,运用数学数学思想进行高中数学教学有利于培养学生的逻辑思维能力和审美观。数学相对于其他学科,在锻炼学生逻辑思维能力上具有独一无二的优势,例如在研究数列排列的规律时,在研究立体几何角与线、线与空间的关系时,都需要学生运用逻辑思维能力对数字和数字之间、空间与平面之间的联系进行思考。学生在学习、思考的过程中,逻辑分析水平也得到大幅度提升。与此同时,数学作为一门学科,不仅具备知识性,而且还具备艺术性。数学学科最大的美体现在其简洁、科学、理性的美学思想上,在学习数学的过程中,学生受其影响,潜移默化地使自身的审美观得以建立。
二、数学思想在高中数学教学中的可行建议
(一)将数学思想渗透到教学目标的制定中
教学目标制定方案正确与否、具体与否将影响教学质量和教学效果。因此,在进行教学目标的制定时将数学思想渗透到其中,数学思想应当与教学大纲相匹配,教师应该清晰透彻地了解课本中哪些内容可以运用数学思想,各种数学思想对学生提出怎样的要求,在运用数学思想进行教学后能达到怎样的成效。通过透彻挖掘课本的内涵,明确不同阶段学生学习的特点,将数学思想的教学应用于数学课堂的教学之中。例如:以数形结合的数学思想为例,初中的数学教学,为学生高中阶段的数学学习打下了一定基础,在高中阶段进行教学目标设定时,首先通过函数数列的学习让学生对数形结合这一思想有初步的概念,在学习解析几何时要求学生了解数与形相互转换规律,尝试着用这一思路进行解题,在后期立体几何的学习中,要求学生运用这一数学思路,拓展解题思维,达到应用发展的最终目标。
(二)将数学思想渗透到数学知识的教学中
数学知识的教学,主要包括概念如何形成、结论如何推导、问题如何发现、方法如何总结、规律怎样产生这一系列的过程。数学方法常常隐藏于数学知识的教学过程中,因此教师要把握机会对学生的思维进行训练。在对某些数学概念进行介绍时,按照书本上的定义一带而过,学生常常难以运用抽象思维,理解概念背后的深层含义。教师在进行概念教学时应该促进学生领会概念形成的原因,概念中包含的思想,才能真正提高学生的思维能力和数学水平。在数学定律的学习过程中,教师应该充分发挥引导者的作用,引导学生拓展思维进行推导。例如,类比思想是众多数学思想之一,它通过观察已知事物的相似点,去猜想其背后代表的规律。高中数学中许多的公式定律都是在类比思想的指导下推理得出的。
(三)将数学思想运用到重难点教育中
例如:已知三个方程,x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实数根,求实数a的取值范围。
分析:如果按照常规的解题模式,就需要分别判定三个判别式的具体情况,分六组每组三个进行讨论,不仅十分复杂,而且容易产生错误。面对这一难点,教师在教学时,要引导学生正确运用化归与转化的数学思想进行解题,从相反的方向来思考这一问题,x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0这三个方程之中至少有一个方程有实数根的反向思维即为;三个方程都没有实数根,那么可以轻而易举地将原有的六组判别式简化为唯一的一组,即:
16a2-4(-4a+3)
a-12-4a2
4a2+8a
由此,不难确定,当三个方程都没有实数根时,a的范围在-32
(四)将数学思想运用到总结复习中
每一堂课,每一个阶段的学习都是在为知识体系的建立打下基础,学生在每日的数学课堂上学到的知识较为零散,即使是学过的知识也很难在需要的时候正确使用,这主要还是由于知识系统建立不完善造成的,而通过在复习和小结课程时运用数学思想,就能够挖掘教材章节与章节之间,知识与知识之间的内在联系。复习和小结课是锻炼培养学生对数学思想进行概括和总结的最好时机。
例如,在对三角函数的运算公式进行总结时,教师可以将方程与函数思想、化归与转化思想融入与总结课堂中,通过归纳三角函数间的关系,
Sin(α-β)Sin(α+β)Sin2α
Cos(α-β)Cos(α+β)Cos2α
Tan(α-β)Tan(α+β)Tan2α
三、总结语:
当前的高中数学教学存在着重知识、轻思想的情况,本文针对这一情况,从帮助学生建立唯物主义的世界观、培养学生的创新精神和培养学生的逻辑思维能力和审美观这三个方面,阐述了将数学思想应用于高中数学中的重要性,并提出了可行性建议,以期达到提升高中数学教学水平,提高学生的数学能力的目的。
参考文献:
[1]林静.如何在高中数学课堂教学中渗透数学思想方法[J].时代教育,2013(02).
[2]龚继辉.新课程环境下高中数学思想的渗透研究[J].青少年日记(教育教学研究),2013(08).
函数思想 方程思想 数学问题
方程与函数思想是高中数学的重要思想,考试中常运用方程与函数的思想去处理不等式、数列、几何中的一些问题,从而使问题得到转化,使学生能够轻松解决问题.
方程与函数的思想在高中试题中的应用主要表现在两个方面:(1)借助有关初等函数的性质,解答有关求值、证明不等式、解方程以及讨论参数的取值问题;(2)在研究问题中,通过建立方程与函数的关系式或构造中间的函数,把所解答的问题转化为讨论函数的有关性质,从而达到简化问题的目的.
一、注重概念
1.方程与函数有着密切的联系,在日常教学中,笔者发现有很多方程的问题需要用函数的知识去解决,也有很多的函数问题是要方程的知识去解答,方程与函数之间的对立与辩证关系,形成了方程与函数的思想.因此,方程与函数思想就是用方程与函数的观点和方法来处理数学量之间的关系,一种思维方式,在高中数学中是一种很重要的数学思想.其实函数思想,就是用变化的观点、对应的思想去分析和研究数学问题中的一些数量关系,通过他们彼此之间的关系来建立函数关系或构造函数,并运用所熟知的函数图像或性质去研究问题、转化问题,从而获得解决问题的思想.应用函数思想解答问题时,确立变量之间的函数关系式是一个关键过程,大体可分为以下情况:根据所解决的问题建立变量之间的函数关系式,把所研究的数学问题转化为相应的函数问题;根据所解决问题的需要构造好函数,并应用学生所熟知函数的相关知识去解决问题.
例1:设函数的图象的交点为(x0,y0),则x0所在的区间是()
A.(0,1)B.(1,2)
C.(2,3)D.(3,4)
解析:由题意可知,(x0,y0)同时要满足即x0是方程x3-22-x=0的一个根,即函数g(x)=x3-22-x的零点,因此,可以通过构造函数g(x)=x3-22-x进行求解.
正解:令g(x)=x3-22-x,求得:g(0)=-4
g(2)=7>0,g(3)=2612>0,g(4)>0,由g(1)?g(2)=-7
注意:由于方程x30-22-x0=0是一个超越方程,用高中数学所学知识我们是无法求解的,由题意可知本题只求x0所在的区间,并不求x0具体的值.因此,本题在求解时可以把一个解方程的问题转化为研究函数零点的问题,最后通过构造函数进行求解.
2.方程的思想是指在解决问题时,用事先设定的未知数与问题中的数量关系,列出方程(组),求出未知数及各量的值数学过程,从而使问题得以解决.在解题过程中方程起到了桥梁的作用,事实上,方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标,即函数y=f(x)的零点;函数y=f(x)也可以看作二元方程f(x)-y=0,通过方程进行研究.方程思想是动中求静,研究运动中的数量的等量关系.用方程的思想方法解题,就是要用方程的观点,分析和研究具体问题中的数量及其关系,把对立的已知与未知通过相等关系统一在方程中,把数学问题转化为方程问题,最后能守求解方程得以解决.
例2设P(3,1)为二次函数f(x)=ax2-2ax+b(x≥1)的图象与其反函数y=f-1(x)的图象的一个交点,则()
解析:由于点P(3,1)是函数y=f(x)与其反函数y=f-1(x)的交点,因此点(3,1)和(1,3)都在函数f(x)=ax2-2ax+b(x≥1)的图象上,由此可通过列方程组的方法来求解.
正解由于P(3,1)是二次函数f(x)= ax2-2ax+b(x≥1)上的点,可得1=9a-6a+b,①
又P(3,1)是其反函数上的点,所以点(1,3)在原函数上,
故3=a-2a+b,②
联立①、②,可解得a=-12,b=52,因此答案选C.
注意:本题其实与上面的例题实质是相同的,但解法不同,一个是通过构造函数,一个是通过构造方程组最后使问题得以解决,在学习中同学们要加以体会.
二、注重学法
方程与函数的思想方法,在高中数学的各个领域都有涉及,在解题过程中有着广泛应用.因此同学们在复习中必须有意识地培养和形成这种解题思想,在复习中应切实做好如下几点:
1.要深刻理解一般函数的图像与性质,熟练掌握一、二次函数、指数函数、对数函数、三角函数的具体特征是应用方程与函数思想的基础,要学会通过题设巧妙、恰当地构造函数,只有构造出正确的函数才能方便解题.
2.在解答非函数问题时,要注意对题设中的隐含条件进行仔细分析,结合所学知识,构造出正确的函数模型,从而使问题得到解决.
3.根据题设条件构造方程,再通过对方程的研究,进而解决问题.
4.注意要学会方程与函数转化的思想.
在许多数学问题中,一般都含有常量、变量或参变量,这些参变量中必有一个处于突出的、主导的地位,我们称之为主元,于是就可构造出关于主元的方程,主元思想有利于回避多元的困扰,解方程的实质就是分离参变量.
纵观中学数学,可谓是以函数为中心,以函数为纲,就带动起了中学数学的“目”.熟练掌握基本初等函数的图像和性质,是应用函数与方程思想解题的基础.善于根据题意构造、抽象出函数关系式是用函数思想解题的关键.作为数学教师,我们在日常教学中要注重对学生数学思想的培养。只有通过对学生数学思想的培养,学生的数学能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。
参考文献:
[1]王雪燕,钟建斌.中学数学思想方法教学应遵循的原则[J].广西教育学院学报,2005,(01).
[2]胡淑荣.浅议数学教学中的数学思想[A].高教改革研究与实践,2003.
数学教学函数思想函数与方程函数与方程是两个不同的数学概念,二者紧密联系,又不可分割。在高中数学中,函数与方程涉及到多个知识面的考查与运用,每年在高考中都占有固定的分额,是高考的必考和热门项目。因此,学生在高中数学的学习中,必须熟练地掌握函数与方程和性质与特性,灵活地运用函数与方程的思想到解题当中来,才能在这块必考知识点上稳操胜券。
在数学解题中,函数与方程思想可以将复杂的问题简单化,巧妙转化变量之间的关系,以函数图形代替抽象数量关系,搭建解决抽象问题的桥梁。化繁为简,化无限为有限,是函数与方程思想的精妙所在。
一、函数的思想
函数描绘了定量与变量间的抽象关系,函数思想即通过已知的数量关系,构建相关的函数模型,并通过函数模型的建立来研究、分析问题,最终解决问题的数学思想策略。函数是一个工具,是描绘客观世界变化规律的基本数学模型,在高中数学中,函数思想是高中数学教学的核心主线之一。函数的单调性、周期性、奇偶性、函数的最值和图像变换等性质在解题应用中无处不在。利用函数思想,总是可以将纷杂的问题条理化,化繁为简,化无形为有形,巧妙地将问题化解。
例如,2011年陕西省高考数学试卷中有这样一道题目:
可见,熟练地了解一次函数、二次函数、指数函数、对数函数,以及三角函数等各函数的特性,是利用函数思想解决问题的基本条件。在了解函数特性的基础上,挖掘各变量的隐含条件,构建出相关的函数模型,是解题的关键。
二、方程的思想
方程是建立等量的关系,并由这些已知的等价关系进行推断,得出未知的解的过程。方程可以看作是函数值为零的特例,方程组的解可以看作是函数图形的交点。方程的思想是利用方程的性质来分析数学问题中的变量关系,构建相关的方程或方程组,并利用其去研究、分析、解决问题的思想策略。作为一个数学思想,方程思想在数学发展史上有着重要的作用。与函数思想相比,方程思想是一种动中求静的思想,在动态变量中研究等量关系,从而未知转化为已知,解决相关难题。
利用方程思想,便是要在表面的关系中挖掘隐藏条件,寻找变量中的代数关系,建立方程组,解决方程中的未知变量。方程思想在代数、解析几何中都有着广泛的应用。数学教师在授课中要培养学生建立方程的思想意识,将方程思想运用到现实的数学问题当中去。
三、函数与方程思想的运用
函数与方程知识涉及的知识面广、范围大,在方程的求解、函数的值域、不等式和数列问题等知识点中都具有广泛的应用:
1.方程的求解。有一些方程的求解,也即是函数图象有相交点,方程求解的问题可顷刻间转化为函数图象的交点问题了,这就是方程问题的函数化,其本质也是数形结合思想,所以数学几个基本思想在本质上是相通的。
2.函数的定义域求解。函数本是描述变量与参量的一个数学模型,探索变量之间的取值范围和最值是常见的运用函数方程思想的案例。在求解的过程中,充分利用函数特性,灵活转换方程与函数的关系,才能准确求解。
3.几何图形的图象关系。方程思想在解析几何中处于主导地位,在求曲线方程,判断直线与曲线,曲线与曲线的位置关系上,方程是重要的解题思想。有些直线与圆、曲线的位置关系,需要通过解二次元的方程得到求解,而有些求直线与曲线的最值问题时,往往也需要构建函数,利用其性质来求解。
4.不等式求解问题。在处理不等式的恒成立、求解问题时,通常采用建立相关函数,通过函数性质确定变量的取值范围与最值,从而解决问题。
5.数列问题。从映射、函数的观点来看,数列可以看作是一个定义域为正整数集的函数,而数列的通项公式也即函数和解析式,所以说,数列问题的本质仍然是函数问题,数列的问题也即函数的问题,运用函数来解决数列问题是首当其冲的不二选择。
四、函数与方程的相互转换
函数与方程二者相互联系,辩证统一,完美地栖身于高中数学的框架之中。函数问题可以转化为方程问题,方程问题亦可以转化成函数问题,二者互为工具,互相转化,而数形结合是实现这种转换的桥梁。把数量关系和几何图象结合起来,实现二者的灵活转换,可以将抽象的数学难题轻松解决。学生在遇到相关难题时,要熟练掌握函数与方程思想的精髓,灵活运用二者的转换关系,只有这样,才能在考试中起到事半功倍的作用。
参考文献:
[1]杜海滨.解读函数与方程的思想方法.2009.
[2]何晓勤.函数与方程思想在解题中的应用.2014.
[3]郭淑娟,王福利,周桦.多元函数条件极值案例分析.2011.
关键词:交汇;高中数学;试题;分析;研究
伴随着新课程改革的发展与进步,衍生而出了一个全新的名词――“交汇”,它是在高中数学试题编制过程中的一种类型,它的提出有其存在的必然性和合理性,在追求数学学科的高度和思维价值的探索中,“交汇”体现出了对高中数学知识的全面而突出重点的考查,具有其特殊的优越性。
一、研究的提出
在新课程改革背景下,试题的“交汇”形式成为研究的潮流和趋势,通过探究其提出背景,我们不难看到,在高中数学的“交汇”式试题分析研究中,重点是着眼于高中数学试题的交汇类型和交汇特点,教师也普遍认同“交汇”试题的分析和研究可以更为系统地把握数学知识,而且可以实现数学思想方法的渗透,促进数学专业全面发展。然而,我们还应当从交汇的背后探寻“交汇”特殊的编制分析与研究,它是对交汇类型的特殊到一般的归纳与思考,注重其交汇思想的指导性,并有益于高中数学思维的强化与巩固。
二、“交汇”高中数学试题的分类分析与研究
高中数学试题的“交汇”研究,可以从隐性和显性两个层面来看,它们各有侧重,但是都是基于高中数学知识的“交汇”分析与研究,关于高中数学高考试题“交汇”分类研究,我们可以从以下几个分类来探寻:
1.高中数学基础知识的“交汇”。高中数学基础知识是学习的重点内容,在各模块基础知识的学习中,其交汇试题数不胜数,如:函数与导数的交汇试题中,函数贯穿高中数学,而导数是新课程中重要的衔接内容,是研究函数性态的工具,对交汇试题的函数与导数综合考查中,可以将导数内容与不等式和函数的单调性、方程根的分布、几何中的切线等知识点进行融合,创新高考试题内容。
例题:已知双曲线C:y=m/x(m
试题交汇性分析:这个例题要求熟悉掌握导数的几何意义,并利用导数求函数的极值、单调区间等数学方法进行求解,用交汇的理念连接了函数与数列、曲线的桥梁。
2.立体几何知识的“交汇”研究。高中数学的立体几何重点研究物体在三维状态下的特征,包括:形状、大小、位置等,立体几何的符号与图形成为表达其特征的途径,在高考高中数学试题中也展现出交汇的类型。
例在四棱锥P―ABCD中,底面为矩形,PA垂直于底面,E为PD的中点。求证1:PB平行于AEC;求证2:设二面角D―AE―C为60°,AP=1,AD=1.33,求三棱锥E―ACD的体积。
试题交汇分析:这一例题考查立体几何的知识与概念,要将立体几何与平面几何进行有机的联系,进行交汇的思考与问题的探析,实现由平面几何向立体几何的过渡与交汇。
3.解析几何知识的交汇分析与研究。解析几何是高中数学的重要知识点,它以平面几何为基石,以代数的思维进行几何问题的解析,这是综合性较强的高中数学考试题目,体现出代数与几何知识的交汇。
例题:如果不同的两个点P、Q,它们的坐标分别是(a,b),(3-b,3-a),那么线段PQ的垂直平分线l的斜率为多少?圆(x-2)2+(y-3)2=1关于直线L对称的圆的方程是什么?
交汇解析:解析几何是高考数学常见的试题,它是融合多个知识点的试题内容,涉及不同的相关知识,体现了数学知识的系统特性。
三、高中数学交汇试题的编制分析与研究
对高中数学交汇试题的分析离不开对交汇试题的编制研究,高中数学的交汇形式试题编制的原则,主要是依据以下几个原则:
1.依据性原则。高中数学的考试试题编制要根据其考查的目标不同而加以区分,如:高考试题目标下的试题要具有层次化的差异特点,而期末考试目标下的试题要根据不同学期的数学教学内容加以确定。
2.课程性原则。高中数学是一门思维性和逻辑性较强的学科课程,我们要充分体会高中数学抽象性的特点,用高度概括的语言,对数学知识加以描述和学习,并在广泛的社会应用中加以充分的利用。在高中数学试题编制中,要充分考虑数学课程的学科特点,展示出数学学科课程中对于事物的抽象性知识和概括性理解,用文字语言、符号语言、图形语言表达其课程的学科价值与应用。
3.精准性原则。高中数学是一门严谨的课程知识,它借用不同的符号语言和图形语言,表达其数学的内涵与精要,我们必须在数学试题编制的过程中,准确把握数学符号语言和图形语言,寻找出符号、图形、字母之间的关联,从而准确地把握试题的主旨。
4.综合性原则。高中数学的交汇试题编制要寻找数学知识的交汇点,这就体现出数学试题的综合程度,随着其交汇的重复应用,数学知识的综合性与交叉性则越为明显,显现出更高层次的交汇思维。
5.适宜性原则。在高中数学交汇试题编制的过程中,要注重试题的“精要”把握,避免出现交汇过多或选择“偏题”“怪题”的现象。
四、结束语
总而言之,高中数学的交汇试题要注重自然、系统和综合的特点,要把握高中数学知识的内在关联,避免混乱无章的状态,要在数学知识的交汇过程中,体现出高中数学知识体系的完整性与科学性,通过对交汇试题的知识内化与迁移,可以增强学生灵活运用数学知识的能力,促进学生的数学发散思维和想象,用较高的层次把握高中数学试题的形式与内涵,不仅在交汇试题中展现出较强的解题技巧,而且培养解题的数学思维,真正达到数学知识与思想方法的统一。