公务员期刊网 精选范文 化学工程与化学工艺的区别范文

化学工程与化学工艺的区别精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的化学工程与化学工艺的区别主题范文,仅供参考,欢迎阅读并收藏。

化学工程与化学工艺的区别

第1篇:化学工程与化学工艺的区别范文

关键词:节能降耗;绿色环保;精细化工

引言:生态环境的不断恶化,不可再生能源面临枯竭,现阶段,节约能源,提高能源使用效率,发展先进能源使用技术,是我国实现经济可持续发展必由之路。

一、使用节能降耗措施的必要性

化工工艺生产对能源的需求一直都是不可忽视的,尤其是化工企业中以传统能源为主导的产业,若想持续稳定健康的发展,就必须将化工产业能源损耗的经济成本制约在必要的范围内。因此通过节约经济成本,提高企业竞争力,进一步抢占市场份额,扩大市场占有率,有益于进一步提高企业的经济效益,增强企业竞争率。对于能源损耗过高,应对生态环境破坏污染程度过深的企业项目严加把控。加强对落后能源产业的筛选力度,推广使用清洁高效的能源,建设新型绿色环保企业新模式,生产无污染或低污染的绿色产品。这些举措对于有效控制污染气体、液体、固体的排放有着至关重要的作用。同时加强监督,放弃高耗能高污染的粗放式能源利用模式,逐步改善传统落后的不健康经济结构,是发展健康绿色经济不可缺少的重要环节。

当前,节能技术在化工企业中的使用还存在很多问题,要是使用高科技技术对化学工艺进行改进并通过先进技术的引进,可以进一步的让目前企业内的节能降耗技术的实用性大大的提高。在对化工工艺进行改进的时候,首先要提高的就是反应的催化剂和添加剂的性能,以便于让化工装置的灵活性提高,从而让化学工业能源的消耗降低。其次,淘汰传统的化学工艺,这有利于发展先进的技能降耗技术,在适当的淘汰旧设备的同时,也要引进具有节能降耗性能的机械设备,这对于化学工艺的发展非常有利,让化学工艺的节能降耗技术进一步发展。

二、采用先进的生产工艺

1、在化工工艺中运用新工艺、新材料、新设备和技术

在对化工工艺生产的管理过程中新元素的应用不可或缺。受传统工艺的影响以及现有材料的制约,让化工工艺的改革步履艰难,因此更加适应现有技术水平的轻便合理性材料,应该被广泛的试用于更多化工领域,与此同时高效能的环保器械也能为节约能源提供更好的保障。通过整合各方面资源达到连续型节能减排的新型模式,从而为更多化工技术创新提供可能性。区别于通过传统落后的能源损耗模式(如通过焚烧麦秆,煤炭等不可再生能源)提供人们必不可少的生活能源,新型的化工生产工艺和技术将目光集中在新型能源(如太阳能,风能,水能,潮汐能等)的使用效率和开发力度上。

优选节能连续型的化工生产工艺,通过生产工艺的技术升级改造,提高化学产品生产的综合效益。生产工艺应尽量优选连续型、操作便捷、能量转换效率较高的工艺,这样可以有效避免间歇性生产工艺过程切换中的能源浪费。优选高效分馏塔、反应器、换热器、空冷器、电机拖动系统、加热炉等先进传质、换热、旋转等节能型电气设备,降低机械设备在运行过程中的综合能耗特别对于耗热量大的设备,采用导热性能更好的材料进行设备关键部位设计制造,广泛将余峄厥丈璞浮⒂τ帽淦灯鹘诘缟璞赣糜诖笞诨工生产装置中来。

2、改善化工反应的工艺条件,降低化工生产工艺综合能耗

首先,降低化工生产反应外部压力。合理计算确定化工生产反应的压力,一方面可以确保化学反应高效稳定的进行;另一方面还可以降低输送反应物的电机拖动系统的综合能耗,尤其可以降低气态反应物的压缩功耗,达到降耗的目的。其次,在确保化学物质正常反应环境条件的基础上,合理优化降低吸热反应温度,降低系统反应所需的整体供热量,提高系统热能利用率。再次,加快化学反应转化效率,有效抑制反应过程中的副反应作用,进而减少反应过程能耗和产品分离能耗。

三、关键性物质对节能的重要性

反应器,交换器等许多化学工艺生产过程中必不可少的器械仪器,在生产产品的过程中因为各种原因不可避免会有所损耗,会在机体部分结垢,或更进一步产生锈迹,这种情况的发生会大大降低机器的热交换功能,从而影响其传热效率。机械的传热系数下降使其换热功能减退,能源利用率降低,化工生产机器的外部压力过大,缩短了化工设备的运行周期,减少其使用寿命。而阻垢剂的使用可合理提高机器设备的能源转换利用率,降低机器完成能源转换的整体供热量,确保化工生产过程的安全,这对于化学工艺节约耗能的发展十分有利。

在化学工艺的生产过程中,添加一些关键性物质会起到意想不到催化效果。如新的类型的催化剂。催化剂可以优化化学工业生产过程中的环境,提高生产过程中能源的使用效率,同时提高这种催化剂在化学有反应中的综合反应活性,对于能源的合理配置,及节约成本方面有着十分重要的作用。

四、降低生产全过程的动力能耗

首先,采取变频节能调速降低电机拖动系统的电能消耗。采用变频节能动态调速方案对常规的阀门静态调节方案进行技术升级改造,可以确保电机拖动系统输出与输入之间长期处于动态平衡状态,尤其对化工企业装置负荷率普遍较低的问题,可以避免电机拖动系统长时间处于工频运行工况,降低无谓电能资源浪费。其次,供热系统的优化改进。供热系统在优化升级改造过程中,要打破常规单套装置界限,实现组合装置的整体优化匹配。如:在进行供热系统优化改进过程中,要根据不同温位热源的功能特点,合理地进行供热装置的匹配组合,实行装置间的联合运行,进而实现在较大范围内进行冷、热能源流的优化转换,从设备源的基础上避免“高热低用”等不利情况发生,实现热能资源的最优化利用。再次,推广污水回用技术。在实际生产施加过程中,化工企业必须高度重视水资源管理和综合利用,杜绝出现跑、冒、滴、漏和常流水等不利现象,并积极结合化工生产实际特点推广污水回用技术,降低水资源的综合消耗。做好电、热、水等资源的余能回收利用,可以大幅提高化工企业的综合节能降耗效果。利用生产工艺中的余压、余热等资源进行综合利用,通过制冷、发电等转换技术,有效节省化工生产过程中的常规能源浪费,进而实现能源资源的高效、安全可靠、经济节能、低碳环保的综合转换利用。

五、结语

化工工艺的节能降耗技术在整个化工产业的科学研究中占据主导地位,落后的产业技术模式会消耗大量的资源,也会对环境造成不可逆转的伤害。对资源进行综合的利用,以及高效的使用能源已经成为快速推动国家经济发展的重大课题。阻垢剂,催化剂等等新物质的使用也逐渐成为节能降耗工艺发展不可或缺的助力。越来越多的人将目光放在了如何提高能源利用率这一问题上。合理调配资源,发展绿色经济,提高能源利用率,将成为我国未来经济发展的重中之重。

参考文献:

第2篇:化学工程与化学工艺的区别范文

关键词:催化裂化 ARGG工艺 应用

近年来,我国在催化裂解技术的研究上取得了突出成就,尤其MIO、MGG等技术的成功开发,极大的提高了我国炼油技术水平。在MGG工艺基础上发展而来的ARGG工艺,更是深受炼油企业的青睐。

一、催化裂化与ARGG理论

在讲解ARGG相关理论之前,先介绍催化裂化相关知识。所谓催化裂化指以渣油、重质馏分油为原料,并在450℃~510℃,以及较低压力条件下,运用相关催化剂,经过一系列的化学反应,生成柴油、汽油以及焦炭的过程。催化裂化所用的原料具有广泛的来源,总体分为渣油与馏分油两种类型,其中渣油包括减压渣油、常压渣油,而馏分油包括减粘裂化馏出油、焦化蜡油、直流减压蜡油等。催化裂化产品一般具有以下特点:具有较高轻质油收率,通常可达70%~80%;获得的汽油具有较高的辛烷值,而且具有较好的安定性;催化裂化气体中C4与C3具有较高比例,约为80%,其中C3丙烯占70%,C4中的烯烃占的55%左右,是生产高辛烷值组分以及优良石油化工原料。

ARGG是从MGG工艺基础上发展而来的一项炼油与化工相融合的新型工艺。该工艺炼油原料为常压渣油,经提炼不仅可获得安定性好、辛烷值高的汽油,而且还得到较多内含烯烃的液化石油气,为进行精细化工提供大量原料。

ARGG工艺运用的催化剂为RAG系列,反应过程在提升管催化裂化装置中进行,能够产生大量液化石油气,并伴随高辛烷值汽油的产生。ARGG工艺具有以下特点:

该工艺使用的催化剂具有较强的抗重金属污染性能,以及良好的热稳定性、选择性与重油裂化活性;以常压渣油为原料,产生的裂化产品包含较高的汽油、液化气、丙烯等,且产生的干气较少。该工艺裂化温度在525℃左右,反应所需压力比较低。回炼相对较低,在0~0.5范围内;同时,为减小油气分压,采用的雾化蒸汽比较大,通常情况下,质量分数在6%~10%范围;采用ARGG工艺提炼出的汽油经检测安定性符合相关标准要求,且具有显著的抗爆性能。

二、具体案例及改进措施

1.具体案例

某石油液化气厂之前采用RGCC生产装置,年处理量在5万吨左右,主要用于柴油、汽油的生产,液化气产率约为10%。采用RFCC装置已很难满足生产要求,为此,准备采用RFGG工艺进行升级。采用ARGG工艺以RAG系列催化剂,每年处理量提升到了7万吨,不仅获得了大量辛烷值高的汽油,以及液化气,而且显著提高了企业的经济效益。

2.设备及工艺参数的改进

在设备方面:采用再生器在下,沉降器在上的同轴式结构。这样布置允许再生与反应操作压力存在区别,而且这样布置采用的结构比较简单,大大提高控制灵便度,具备较强的事故抗干扰能力,以及广泛的应用范围。另外,使用气控式外换热器,以及改进的主风分配管。最重要的是对管反应系统进行了完善:对操作条件进行优化,促进大剂油、高温强化反应的进行;使用高效雾化喷嘴,使雾化效果得到显著提升,促进轻质油收率的提高,以及降低焦炭产率;对预提升阶段进行专门设置,运用水蒸气、自产干气当做提升介质,改善了原料及催化剂的流动情况,使原料与催化剂进行充分的接触,避免不必要热裂化反应的发生;减小沉降器单级旋分器入口与短粗旋油气出口间的距离,避免沉降器中油气出现过度二次裂化及热裂化现象;运用高效气提技术,即,使用两段气提和改进的挡板的高效气体技术。

在工艺参数方面:采用ARGG工艺进行生产,反应温度控制在530℃,反应绝对压力为0.21MPa,回炼比为0.3,反应停留时间为3.54s,提升管入口与出口线速分别为6.83m/s、14.3m/s。催化剂的循环量每小时在102吨左右,剂油比为9.0,原料油预热温度在200~250℃范围。

利用ARGG工艺获得产品的分布情况为:干气所占的比例为5%,液化石油气所占比例为30%,而汽油占有的比例为42%,轻柴油、焦炭、损失所占的比例分别为13.5%、9%、0.5%。

三、经济效益与社会效益分析

该石油液化气厂运用ARGG工艺生产后,大大提升了生产效益。由统计结果表明,当加工一吨常压渣油使用ARGG工艺与之前RFCC工艺相比增加的利税将近80元,按照每年处理7万吨的量进行计算,每年可增加五百多万元。

随着人们对环境保护工作的重视,新配方汽油以及无铅汽油的应用引起了人们的高度重视。本文中应用ARGG工艺生产的汽油,刚好符合90#无铅汽油相关标准要求,无论在节约能源还是防止环境污染方面均具有重要意义。同时,液化气产量大大提高,有助于城乡居民燃料结构的改善。另外,液化气中含有大量的丙烯,能给精细化工提供大量原料。总之,ARGG工艺在催化裂化中的应用不仅能够获得较大经济效益,而且还发挥着重要的社会效益,因此,在实际化工生产中应注重推广与应用。

四、总结

该石油液化气厂应用ARGG工艺从事生产活动,经长时间验证发现,所采用的技术具有较高安全度,成功的实现了获得大量高辛烷值的汽油,以及液化石油气的的目标,获得了较高社会与经济效益,并且该种生产工艺具有广阔的发展前景,因此,石油液化气厂生产工艺升级时,应注重ARGG工艺的应用,以更好的实现社会与经济效益最大化目标。

参考文献:

第3篇:化学工程与化学工艺的区别范文

Abstract: In order to solve the bottleneck of resources in the practical training, a simulation software based on LabVIEW is developed by Automation Department of college of Information and Control Engineering in our university. In this software, typical equipments are selected as controlled objectives and other blocks are designed, including sensors, PID controllers and actuators together to form complete automatic control systems. Teaching practices show that the software is a powerful tool in both class and laboratory.

关键词: 仿真软件;测量仪表及自动化;自动控制系统;教学资源

Key words: simulation software;instrumentation and automation;automatic control system;teaching resources

中图分类号:TP39 文献标识码:A 文章编号:1006-4311(2013)07-0182-03

0 引言

《测量仪表与自动化》课程是一门有着广泛社会需求和技术基础的综合性技术学科,其水平是一个国家技术先进程度、生产力发达程度与生产关系相适应的标志[1]。现代化生产过程的科技人员,除了必须深入了解和熟悉生产工艺之外,还必须学习和掌握自动化仪表方面的知识,才能在生产、管理、调度岗位及科研部门充分发挥作用。我校信息与控制工程学院自动化教研室目前开设的这门课程适用专业除化学工程与工艺以外,还面向诸如环境工程、油气储运、建筑环境与设备工程、热工等专业。该课程包括过程测量仪表、过程控制仪表和过程控制系统三大方面的内容,涉及电子、机械、大学物理、自动控制原理等多门学科,是一门知识点多、涉及面广、实践性强、信息更新快的综合性学科。

对于工艺类专业学生来说,缺少相应的专业背景知识、学时短(根据不同专业,目前学时设置为48或32学时);加之相应控制系统部分概念抽象、知识联系紧密、难于理解,学生学习难度较大。为此,我教研室专门利用LabVIEW研发了自动控制系统仿真软件作为仿真教学资源使用。下面就该软件的开发背景、功能和使用做逐一介绍。

1 自动控制系统仿真软件的开发背景

1.1 《测量仪表与自动化》教学中的重点和难点 目前我校《测量仪表与自动化》课程大纲明确要求学生掌握自动化仪表的基本原理、结构和特点,为自控设计根据工艺条件选择合适的仪表;除此之外,更强调掌握自动控制系统的基本概念,能对工艺过程提出合理的检测和控制方案。

笔者在教学当中发现,工艺类专业的学生在学习过程测量仪表部分,各种压力、物位仪表虽然种类繁多,但相应学时较长,占到总学时一半左右;加之内容直观,通过图片、实物、动画等方式,学生们可以理解掌握。但随着课程内容进展到过程控制仪表部分,接触到控制器、执行器以后,一些抽象概念诸如控制点、控制规律、控制器正/反作用、调节阀气开/气关、PID算法等内容逐渐让学生感到吃力,且内容相对较少,讲解速度较快。而最后一部分过程控制系统中被控对象的动态特性、自动控制系统的过渡过程、被控变量、操纵变量及控制器参数整定等概念也让学生感觉枯燥单调,学习积极性不高,难以形成有关系统的概念。

这一点可从《测量仪表与自动化》期末考试及课程设计环节中发现,部分学生由于不理解自动控制系统的基本概念,设计出来的控制方案东拼西凑,导致整个设计文件完全错误。

1.2 工程实践中的重要性和实用性 关于过程控制系统基本概念的重要性,笔者还有过亲身的体会。一次在某大型炼厂的催化裂化车间调研过程中,该车间的工艺技术骨干就急迫提出希望我们能够给他仔细讲解一下PID参数整定的内容。这是因为他意识到自动控制系统对于装置设备的平稳、高效和安全的重要性,而对PID参数的认识不够使他不能大胆自信的在DCS工程师站整定PID参数。经过两个小时的讲解,该工程师详细做了笔记,并就相关概念提出了大量问题。

另一次参与某石化公司新项目装置开工建设过程中,负责工艺的工程师需要给新上岗的操作工人培训装置的控制方案。但拿到设计图纸后,面对图纸当中的复杂控制系统,诸如分程控制、比值控制及选择控制等尚不能充分理解,更何谈培训上课。发愁之余,找到笔者帮忙。除了讲解了上述复杂控制方案后,对方还索要《测量仪表及自动化》一书作为参考书使用。本课程内容在工程实践中重要性和实用性可见一斑。

1.3 其他院校的多媒体教学手段 近年来各高等院校不断就《测量仪表及自动化》的教学内容、教学方法、教学模式等进行着的讨论、改革与探索[2-5]。上述文章当中无一例外提到,这是一门专业理论知识与工程实践结合非常紧密的课程,教学中应摒弃单一的板书和PPT授课方式,而充分利用多媒体和计算机技术进行仪表设备及自动控制系统的演示。孙自强提出利用通用的工控组态软件的演示版,可形象的模拟控制现场和控制室的操作[3]。曾珞亚等利用Matlab与VB混编来显示过渡过程曲线和进行控制器参数整定[4];邬勇奇等制作了Flash仪表动画[5]进行演示,如电接点信号压力表等10个仪表动画。

2 自动控制系统仿真软件的基本功能

该仿真软件选取液罐代表了生产过程中的物位对象。与直接使用实际装置仿真软件相比,可使学生避免花费大量时间熟悉整套生产流程和繁复的组态软件操作,而将注意力全部放在控制仪表与控制系统上。下面介绍软件的基本功能。

2.1 手/自动控制系统的对比 该软件专门设计了手动控制和自动控制的切换界面。手动控制界面如图1所示,仅有液罐(被控对象)、进水手阀和出水手阀。界面上还显示柱状显示水位设定值、实时液位实际值及设定值曲线显示。操作者课根据实际水位(测量值)和理想水位(设定值)相比较的结果,决定开大或关小手阀阀位,从而调整液罐水位,模拟实际工况中的人工控制。手阀阀位的修改可以直接修改阀位文本框,或通过转动手轮实现。

自动控制界面如图2所示。与手动控制界面相对比,自动控制界面增加了液位传感器、PID控制器、调节阀(由原手阀修改),与原液罐构成一个完整的单回路控制系统。界面色彩鲜艳,各环节设备形象生动,基本能够达到真实现场的使用感受。

2.2 测量传感器的设计 该水箱液位传感器模拟恒浮力液位计。浮球始终漂浮在液面上,随着液面高低变化而变化。液罐下方增设了液位计的仪表表头。此外,测量值采用红色细信号箭头线(区别与蓝色的粗管道线)送给控制器,表明了仪表之间的逻辑关系。

2.3 控制器的基本功能 控制器面板如图2自动控制界面左侧所示。该控制器模拟实际单台数字调节器(如DRC-97智能记录调节仪),实现了控制器的基本功能。

2.3.1 显示功能及控制运算 控制器面板上显示偏差(比较器)、输出(运算器)、给定值(水位给定)及PID参数等。PID参数可以根据用户需要实时交互式修改。

在自动状态下,根据水位给定和水位测量值得到偏差e,控制器将按照PID算法给出输出操纵值(MV,Manipulated Value)信号。值得注意的是,控制器的设定值与测量值通过采用红色细信号箭头线送给比较器,而比较器得出的偏差e送给运算器进行运算。同时该操纵值信号同样用红色细信号箭头线传送到调节阀上,表明了信号之间的基本关系。

2.3.2 控制器的正、反作用选择 控制器下方的两个选择按钮分别是正作用和反作用。选择正作用时,控制器的测量信号增大(或给定信号减小)时,其输出信号随之增大;反作用则当调节器的测量信号增大(或给定信号减小)时,其输出信号随之减小。这是控制器构成闭环负反馈控制系统的必备功能之一。

2.3.3 手动/自动切换 控制器具备手动/自动切换功能。选择自动时,红灯亮且功能面板显示“自动”字样。此时,控制器输出根据控制规律随偏差变化而变化;选择手动时,绿灯亮且功能面板显示“手动”字样。此时控制器输出与偏差无关,控制规律无效直接由手操纵控制器输出,类似于直接手调阀门开度。

控制器还具备实现手/自动双向无扰动无平衡切换功能。在手动状态下,此时设定值(水位给定)不能由操作者输入运算器文本框改变,而是跟随测量值的变化而变化,始终保持偏差为零,即控制器PID算法输出增量为零。所以切换至自动瞬间,控制器输出无跳变;在自动状态下,控制器的设定值可以通过改变水位给定文本框或柱状显示来改变,此时输出不能通过文本框改变。切换至手动的瞬间,控制器输出无跳变。该控制器具备实现自动/手动无扰动无平衡切换功能。

2.3.4 调节阀的设计及气开/气关选择 执行器模拟最常见的薄膜式气动调节阀。气动调节阀有气开式与气关式两种形式。软件中所设计的调节阀,若选为气阀,运算器输出为0%,阀门全关闭,运算器输出为100%,阀门全打开。

2.5 系统过渡过程的显示与保存 为了说明控制系统的工作机理,实时曲线显示是必不可少的。界面右侧的绘图窗口可实时显示水位测量值、设定值及操纵值。可根据需要任意改变曲线的颜色和宽度。需保存某曲线画面时,右键导出简化图形即可。图3衰减震荡过程的简化图形。

3 仿真软件应用举例

下面以2学时实验为例,介绍该仿真软件的使用。提前下发电子版实验讲义及软件说明书,供学生预习及在实验上机过程中参看。

3.1 熟悉软件的基本操作(10分钟)。首先,引导学生观察手动控制界面与自动控制界面的区别。总结一个完整的自动控制系统包含哪几部分?该水箱液位控制系统当中的被控变量和操纵变量分别是什么?并要求学生在实验报告中画出该控制系统的方框图。

3.2 对象特性测试(10分钟)。利用测试法建立被控对象模型,并将测试曲线图进行保存。根据测试曲线确定对象的放大系数、时间常数及纯滞后时间。

3.3 调节阀气开/气关及控制器正/反作用的选择(10分钟)。给出工艺安全生产的条件,液罐水位系统中要求液位不能溢出。请学生选择调节阀气开/气关形式及控制器正/反作用。观察若选择不当会出现什么结果。

3.4 自动控制系统投运(10分钟)。复习自动控制系统投运的基本步骤,将手动状态调到稳定状态下进行投运。观察投运过程中控制器的无扰动无平衡切换现象。

3.5 控制器参数的工程整定(40分钟)。

3.5.1 纯比例(P)控制作用下的过渡过程测试 保持出水阀50%不变。将控制系统投运,设置PID参数(Ti>5000s,Td=0s),Kc分别等于1,5,20时,设定值从50%变化到60%时,得到的过渡过程曲线。将曲线画面保存并进行对比,说明Kc的变化对过渡过程的影响。

改变出水阀的阀位(相当于改变对象特性)至80%,重复上述步骤,观察曲线的变化。

3.5.2 比例积分(PI)作用下的过渡过程测试 保持出水阀50%不变。将控制系统投运,设置PID参数(Kc=3,Td=0s),Ti依次设置为4,10,20。说明Ti的变化对过渡过程的影响。改变对象特性(同3.5.1)后重复本步骤。

3.5.3 比例积分微分(PID)作用下的过渡过程测试

保持出水阀50%不变。将控制系统投运,设置PID参数(Kc=3,Ti=10s),Td依次设置为0,2,10,20。说明Td的变化对过渡过程的影响。改变对象特性(同3.5.1)后重复本步骤。

3.6 整理实验数据、图表,回答思考题(20分钟)。

4 结语

本文介绍了由我教研室自主开发的自动控制系统仿真软件的基本功能和使用。通过该仿真软件的应用,解决了《测量仪表及自动化》课程中实验设备短缺、教学手段单一的问题。该教学资源对于提高学生学习的兴趣,研究和掌握课程的重点及难点,培养工程实践概念都具有重要意义。

参考文献:

[1]杜鹃编,《测量仪表与自动化》[M].东营:石油大学出版社出版.

[2]潘浩,杜鹃.《测量仪表与自动化课程教学改革探索与实

践》[J].自动化与仪器仪表,2010,6:142-144.

[3]孙自强.《化工自动化及仪表课程教学改革与实践》[J].化工高等教育,2012,2:51-54.

[4]曾珞亚等.《MATLAB与VB辅助化工仪表及自动化教学