前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能教学课程主题范文,仅供参考,欢迎阅读并收藏。
人工智能作为一门课程[1],开设时间距今只有40多年,但发展极为迅猛。人工智能课程的内容涉及计算机科学、数学、系统科学、控制科学、信息科学、心理学、电子学、生物学、语言学等等,几乎所有科学工作者都可以在人工智能中找到自己感兴趣的问题。目前,国内外已有众多高校指定人工智能为计算机科学与技术及其相关专业的主修专业基础课程,它在拓展计算机和自动控制的研究和应用领域方面有着极其诱人的学科发展前景。自2003年起,国内诸多高等院校陆续开设“智能科学与技术”本科专业,同时也有更多高校在传统信息类专业中加大了人工智能课程的课时比重,因此如何提高人工智能课程的教学质量显得尤为重要。?
本文结合人工智能课程的特点以及自己教学与研究的实践,对本课程的教学进行一些探讨,以期改进人工智能课程教学方法,达到提高本课程教学质量的目的。??
一、兼顾课程内容的统一性和差异性??
人工智能课程的核心内容主要集中在对基本概念、基本原理、基本方法和重要算法及其应用的认识和理解上,尽管各种基本概念、原理、方法和算法在一定程度上自成体系,但是它们之间又存在着许多内在联系和规律。从这一点来看,人工智能课程与其他很多计算机课程是不同的,这就要求人工智能课程的授课要具有自己的特色。?
知识表示、知识推理、知识应用是人工智能课程的三大内容,解决任何一个人工智能问题都离不开两个步骤,即知识表示和问题求解。由此,人工智能课程从总体结构上就有了一个比较清晰的脉络,即首先必然要学习各种知识表示方法,然后是利用这些知识进行推理,进而实现知识应用,最终达到问题求解的目的。问题求解又分为基本的问题求解方法和高级问题求解方法。图搜索策略、启发式搜索、消解原理以及规则演绎系统等都属于基本的问题求解方法。计算智能、专家系统、机器学习、自动规划等属于高级问题求解方法。?
同时,人工智能课程某些章节或者某些方法算法在一定程度上又自成体系。例如,各种不同的知识表示方法不管是数据结构还是表示形式都完全不相同。又例如,人工智能有许多不同的学派[2],本课程往往同时会介绍不同学派的算法,这些学派在人工智能的基础理论和方法、技术路线等方面是完全不同的,甚至是对立的。?
这些都要求我们在教学过程中不仅要强调人工智能课程理论的统一性和完整性,又要兼顾各学派的特点,尊重甚至调动学生们对不同人工智能学派及其方法的兴趣。在编写和选用教材时也要注重这一点,我们选用的是蔡自兴教授编写的《人工智能及其应用》系列教材[1,2],该教材以逻辑主义学派为主线,兼顾引进其他学派的精华内容,具有较强的科学性。
??二、实施分层次教学??
各高校一般同时为计算机相关专业的本科生和研究生开设了人工智能课程,甚至有的非计算机类专业也开设有人工智能课程。不同层次的学生对人工智能课程要求掌握的程度不同,我们首先明确本科生和研究生以及非计算机类专业学生的教学目的和教学内容,做到分层次设计人工智能课程教学?过程。?
本科阶段的人工智能课程课时量较少,本科层次只需要做到对大部分人工智能概念和算法了解、认识,少部分达到理解层次。本科生一般都是在高年级(三年级下期或者四年级上期)开设人工智能课程,这时已有不少学生准备继续读研或者已经被保研,因此在兼顾全体学生教学层次的同时,要注意给这部分学生足够的相关参考书目,让他们能够利用课余时间广泛深入了解人工智能相关算法,老师在课后还应和他们进行充分讨论,培养他们对人工智能的特别兴趣。?
非计算机类专业的学生往往需要学习如何利用人工智能知识解决该专业领域内的问题,因此在教学中要尽量有专业针对性地进行教学。例如针对农科类专业,在教学专家系统过程中,我们要求学生参考北京农业信息技术研究中心开发的农业专家系统开发平台(paid5?0)理解并开发与本专业领域相关的简易农业专家系统。?
给研究生开设人工智能课程要求做到概念理解,基本算法精通,即要求全面、系统地掌握人工智能的基本概念、基本原理、典型方法和若干应用实例,并且能灵活运用所学知识阐述解决实际问题的方法和途径。课程教学中要致力于培养学生分析问题与解决问题的能力,要求研究生将人工智能方法与自己的研究方向相结合,用人工智能方法解决所研究课题中的实际问题,并撰写相关的课程论文,以小型研讨会的形式进行报告交流。实践证明,我们的研究生的人工智能教学效果明显提升,成效突出。
??三、案例驱动,寓教于乐??
采用案例教学是为了充分调动学生的学习兴趣,增强学生学习的自觉性[3]。通过案例教学能把枯燥的人工智能理论知识具体化、形象化,可以使学生更加感性地理解课堂教学内容。这些案例都是以教师所从事的科研项目中的实际应用环境为背景进行阐述的,让学生能在实际环境中理解概念和知识,学会利用人工智能知识去分析和解决实际问题。在教学过程中要选择学生容易接受的案例,体现理论联系实际的特色,激发学生的兴趣。?
例如,在讲授“计算智能”内容时,我们结合黄河三门峡和小浪底水库水沙联合智能调度系统[4]进行讲解。综合三门峡水库和小浪底水库防洪运用的基本原则、历年调度方案、专家的经验、历年数据和现有的调水调沙数学模型,分别利用模糊决策、神经网络、遗传算法及综合集成方法来实现三门峡、小浪底水库水沙联合调度。?
又例如为了让学生走近机器人,我们进行了一场机器人展示课,将研究所现有的MOROCS?1(中南一号智能移动机器人)、ASR(广茂达)、AmigoBot(自主移动机器人)、CanDroid(罐头机器人)、MD?375 Rover(人控漫游车)、Fokker D7(人控飞机,1:72)、Rockit OWI?769K(声按、压控火牛机器人)、Hexapod Monster(六足爬行机器人)、Hubo(多机能歌舞机器人)等各类机器人全部拿出来给学生做了功能演示[5]。亲眼看到这么多机器人,同学们都非常兴奋,对人工智能课程的兴趣高涨。?
在进行案例教学时,引导学生带着问题和求知欲望深入理论的学习,让学生在案例中寻找问题的答案并获取知识。在讲授利用神经网络进行水库调度时,引导学生分析如何确定神经网络的输入端数据,什么是泛化能力以及如何提高神经网络的泛化能力。?
为了巩固所学内容,可以让学生组成讨论小组对教师提出的论题进行讨论,分小组阐述自己的观点,这样有助于提高学生学习的主动性,还有助于培养学生思考问题的能力和提高理论教学的效果。案例教学的关键在于引导学生利用所学到的理论知识去解释、分析和解决现实案例中的问题,以达到训练学生理论运用和深入理解理论知识的目的。?
此外,我们挑选了机器人足球、拖拉机扑克牌、中国象棋、五子棋等普遍受人喜爱的智能游戏,让学生亲手设计小型智能游戏软件,在设计的过程中掌握高深的人工智能理论知识,让学生学得会、用得上、记得牢。
??四、结语??
以上谈到的一些教学方法是我们在教学过程中总结体会比较深刻的方面,以供探讨。事实上,要进一步提高人工智能课程的教学质量,还有很多方面需要改革和加强。如不断强调人工智能教师的专业素质,要求他们在讲授好人工智能课程的同时,努力提升出自身的专业素质,给学生一个良好的专业素质导向。其次,在人工智能课程教学过程中还需要有培养实用型人才的教学理念,特别是注重培养有创新意识的实用型人才。注重培养学生的质疑能力,只有通过质疑和提出问题,学生的创新意识才能够得到不断强化,创新思维能力才能够得以不断提高。?
人工智能学科是一门非常年轻、又非常前沿的学科,有其自身的突出特点,人工智能课程教学必然与其他计算机专业课程教学不同,需要更多的从事人工智能教学的教师在自身的教学实践中不断积累经验,进行广泛的教学交流。
参考文献?
[1]
蔡自兴, 徐光祐. 人工智能及其应用(第三版)(研究生用书)[M]. 北京: 清华大学出版社, 2004(8): 1-4.?
[2]蔡自兴, 徐光祐. 人工智能及其应用(第三版)(本科生用书)[M]. 北京: 清华大学出版社, 2003(8):288-290.?
[3]雷焕贵, 段云青. 中美案例教学的比较[J]. 教育探索, 2010(6): 150-151.?
关键词:中西合璧;人工智能;双语教学
双语教学是我国高等教育适应国际化趋势、培养富有创新精神和国际视野的复合型高素质人才的需要。作为一种全新的教学方式,它承接了中外文化的碰撞和融合[1]。各校在教学过程中都遇到了各种困难,也探索了不少经验。自2005年秋季,我校在人工智能课程中采用双语授课,在教学实践中摸索出一套中西合璧的双语教学模式,将中西方的优势有效结合起来,比较适用于工科专业课程的双语教学。
1中西合璧的双语教材
教材是体现教学内容的知识载体,是教师和学生进行教学活动的基本工具。我们重点调查了MIT、Stanford和CMU等国外高校,他们均选用了Stuart J. Russell和Peter Norvig合著的《Artificial Intelligence: A Modern Approach》,该教材几乎涵盖了CC2001关于人工智能课程的全部内容。该书网站(aima.cs. berkeley.edu/)的统计数据显示,目前已有100多个国家的1 100多所大学选用该书作为教材。我们对选用该教材的部分高校授课情况作了追踪调查,结果表明绝大部分人工智能课程的实际授课内容都与该教材内容基本一致。在国内,中南大学的人工智能课程是国家级精品课程,教材是课程负责人蔡自兴教授与徐光佑教授主编、清华大学出版社出版的《人工智能及其应用》(第三版)(该教材分本科生用书和研究生用书两种版本),与其课程内容设置完全配套。
我校选用了《Artificial Intelligence: A Modern Approach(2nd)》一书,清华大学出版社出版了影印版(人民邮电出版社出版了中译文版本),同时将Nils J. Nilsson著的《Artificial Intelligence: A New Synthesis》作为辅助教材,机械工业出版社出版了英文影印版及中译文版本。
人工智能这一学科诞生于西方,目前该领域的诸多成果和文献均以英文为语言载体。选用英文原版教材、推行双语教学,为学生的后续学习和研究深造奠定了良好基础。另外,与国内教材相比,国外教材更注重知识产生的过程、解决问题的思维方法,对提高学生的学习兴趣、培养学生的创新能力极其有益。另一方面,选用原版教材的问题也显而易见。一是原版教材内容过多,需要精心筛选、分清主次后才能使用;二是原版教材昂贵,增加了学生的经济负担,再购买配套中译文版,负担更重;三是学生英语水平参差不齐,双语授课的课程还不成体系,前后课程缺乏衔接性和延续性,学生直接使用原版教材有一定的语言障碍,即使有配套的中译文版,同时翻看两本书也不方便。
我们正在逐步消化吸收英文原版教材,在无损原版教材思想精髓的前提下,自主编写适用于双语教学的中西合璧讲义。双语教材以英文语言为主,以中文注释为辅,有效降低学生阅读的难度,更趋实用。
2中西合璧的授课语言
语言是信息传递的载体,是教学过程中必不可少的工具。双语教学涉及到这种信息传递载体的改变。
在双语教学中,外语的使用比例要求不低于50%,这是不够科学的。双语教学不是语言课,教学质量依然是核心,语言仅仅是载体,引入外语教学的目的无非是为了保证知识的“原汁原味”,同时训练学生的专业外语听说能力,但这一切都应以学生听懂课为前提。双语授课进度慢已是不争的事实,更有些双语教师,为了兼顾上述目的,先用外语讲一遍,再用汉语解释一遍,这种做法极不可取,也是紧张的课时限制所不允许的。双语课味同嚼蜡,引不起学生兴趣,也是普遍存在的现象。
我校人工智能课程的授课对象是计算机专业的四年级本科生,学生的英语水平很不均衡,如果不考虑实际情况,大比例地采用英语讲授,是难以保证教学效果的。我们把握的原则是:1)英语主要用于讲解专业性内容,如专业术语、技术原理、算法等,这样学生在学术交流中就不会对专业技术内容存在语言障碍;2)只用学生能听懂的语言讲授专业性内容,对过于生涩的专业技术内容,还要使用汉语讲解,这样学生就不会把专业技术内容学“夹生”了,在作研究时才不会有技术上的障碍;3)用母语调节课堂气氛,适当穿插的人工智能领域人物、故事及笑话以汉语为主,把学生发散的注意力快速集中起来,把学生的学习兴趣激发出来;4)中英文衔接,不重复表述,这样就不会额外占用课时。
例如,在讲解Agent技术时,对于Agent的定义、结构等核心内容,我们采用英语讲解;而对于Agent涉及到的心理学、逻辑学等方面的生涩理论,则用汉语给出扼要的说明;对于为阐释Agent的rationality概念而举的吸尘机器人、黑足泥蜂搬运食物的例子,则主要用汉语讲解,激发学生的兴趣,抓住学生的注意力。
3中西合璧的教学课件
作为一种新型的教学手段,多媒体以其鲜明的图像、生动的画面、灵活多变的动画及声音效果克服了传统教学模式的诸多不足,受到师生的认可与好评[2]。本文探讨的重点不是如何设计媒体的表现形式,而是如何利用课件更好地发挥双语教学的效果。很多双语教学任课教师只注重追求授课过程中外语的使用比例,课件全文用外语制作,在讲解过程中还要费尽周折地解释,收效甚微。我们在制作课件时,不单纯追求英语比例,而是想方设法让课件能更好地辅助学生理解,在关键处均用双语同步给出内容,或者以英文为主,给出扼要的中文注释。这样,学生能够通过视觉信息更好地理解授课内容,而教师也不必再用中英文重复叙述。
此外,在课件素材的选取上,也应注意国内外结合。比如,在讲解启发式搜索技术时,国外课件(包括教材)常用的素材是八皇后、八数码等问题,其中八皇后问题相对大多数同学来讲比较陌生,而国内的重排九宫(与八数码问题是一个问题)、华容道等问题对学生来讲则更熟悉。用国内的素材入门、用国外的素材拓宽视野,也是多媒体课件的中西合璧之道。
4中西合璧的文化熏陶
文化是生活在一定地域内的人们的思想、信念及生活与行为方式的总称。从人才培养的角度,我们一般将培养目标分为知识、能力和素质三个层面,文化属素质培养范畴。文化的熏陶和感染在育人中具有重要作用,这一点往往容易被工科专业课教师忽略。
从历史文化的角度看,中西方文化从萌芽、发展到现在的格局,无疑是各具特色的。双语教学提供了开放的空间,让学生在学习的同时广泛吸纳西方文化,但这也给中国传统文化造成了一定的冲击,如不注意调和,势必造成文化失衡,对培养学生的世界观、人生观、价值观都不利。尤其计算机类课程中的技术内容大部分诞生于西方,如果不在教学过程中进行一种文化平衡,往往会使学生产生一种我不如人的自卑心理或崇洋心理。
中西方文化对人与自然的基本观点是不同的。中国文化关注的对象是人,人与人的关系自先秦时期便成为中国文化的核心与基础问题。而西方文化较多关注的是自然,人与自然的关系是古希腊注重的中心问题,由此衍生出理智和科技。中国的哲学是一种人生哲学,在处理人与自然的关系上,中国文化讲究天人合一、顺天应物、道法自然。把自然人格化,追求人与自然和谐发展。从古希腊泰勒斯的自然哲学开始,探索自然奥秘,开发和利用自然资源为人类服务就成为了欧洲思想的主流。西方科学起源于对自然的探索和研究,很早就出现了毕达哥拉斯、阿基米得这样名垂千古的科学家。在人与自然的关系上,西方文化认为人与自然处于对立的斗争状态。西方人也讲人与人之间的关系,但首先关注的不是伦理而是竞争,因而出现了“优胜劣汰”的规律[3]。
在工科专业课堂上,涉及到文化要素的主要是两方面内容,一是与课程技术内容有关的哲学观点,二是本学科发展历程中的人物、事件和形成的学派等等。在教学过程中,教师要注意穿插上述内容,对学生进行文化熏陶,要注意中西合璧。比如,介绍人工智能发展过程中的重要人物时,必然提及Turing、McCarthy、Minsky、Shannoon、Simon、Newell、Feigenbaum、Hopfield、Brooks等西方学者,但同样也不能忽略国内的吴文俊、王守觉、蔡文等学者,他们近年分别在机器定理证明、仿生模式识别、可拓学等领域取得了开创性成果,而这些还没有来得及写进人工智能教科书。
5中西合璧的思维方式
对学生思维方式的培养也是教学任务之一。中西方文化的差异也将导致思维方式的不同。在技术思维方面,中国强调系统和整体,更具辩证性;而西方强调细节和局部,更注重逻辑性。西方人的思维方法更偏于二元对立,而中国文化环境则造就了中国人思维方式的连续统合特征[4]。外文教材的编写体例与中文教材有着明显的不同,这就是中西方思维方式不同的原因。教师首先要注意到这种思维方式的差异,并在教学活动中让学生也逐步意识到这种差异,并进一步接纳和学会西方的思维方式,将中西方的思维方式融于一身。举例来说,在讲解逻辑推理技术时,可以通过介绍逻辑学的三大起源(古希腊的形式逻辑、古印度的因明学、我国先秦时期的名辩学)向学生呈现这种思维方式的差异,在讲解演绎推理、模糊推理、云推理时,也要注意体现中西方思维方式中各自的特长,以利于学生吸纳。
6结语
自2005年开展双语教学以来,我们每年授课后都进行一次教学效果的问卷调查,“接受双语教学”的学生比例从2005年的37%逐年上升到2009年的89%,说明这套双语教学模式已经得到了绝大多数学生的认可。
中西合璧的双语教学模式是我们在人工智能教学过程中探索出来的,但是也可以推广到其他工科专业课中。双语教学中各种要素的中西合璧不是简单相加,而是要结合专业内容进行深度融合,这需要任课教师广泛涉猎、精心加工、用心引导。双语教学不能停留在语言形式和技术内容层面上,还要上升到文化和思维层面。
注:本论文受到哈尔滨工程大学教学改革工程项目支持。
参考文献:
[1] 施锦芳. 高校双语教学模式及方法的研究与实践[J]. 沈阳教育学院学报,2010,12(2):33-35.
[2] 周荃,胡奕. 多媒体教学:传统教学手段的历史性转型[J]. 广州市经济管理干部学院学报,2006,8(2):69-71.
[3] 邓绍建. 中西方文化差异研究[J]. 价值工程,2010(5):220-221.
[4] 马丽,滕修攀. 中西方思维方式的文化差异研究:二元对立与连续统合的视角[J]. 社会心理科学,2010,25(2):13-17.
Sino-west Style Bilingual Teaching Mode for Artificial Intelligence
LIU Hai-bo, SHEN Jing, ZHANG Guo-yin, LIU Jie
(College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China)
关键词:新工科;人工智能导论;实践教学;校企合作;案例库
随着物联网、大数据、5G及人工智能等信息技术的发展,为了应对中国产业变革及新一轮的科技革命,适应“中国制造2025”国家战略需要及产业经济创新发展,同时将国际工程教育思想本土化,“新工科”应运而生[1]。信息技术发展催生出了人工智能相关的专业,国内高校纷纷设立了智能科学与技术专业。近年来,人工智能技术的发展引领着人类社会正逐渐走进智能社会,人工智能将深刻影响人类社会。随着人工智能的进一步发展,高等教育的价值也将进一步提高[2]。因此,各高校应尽快建立与新工科相一致的智能科学与技术专业,并深入研究我国人工智能的人才培养体系、课程设置、实验平台及成果转化等方法,改革传统人工智能的教育教学方法,形成有新工科特色的智能科学与技术专业工程教育方法。由于传统的专业是按学科划分的,因此,目前的智能科学与技术专业课程体系以理论为主,强调学科知识的系统性和完备性[3]。人工智能导论作为智能科学与技术专业的核心课程,同时也是人工智能“入门性”和“引导性”的课程。但是,目前人工智能导论的课程设置上主要存在课程内容陈旧、实践课程不足、教材理论过强、教学模式老旧及实践教学与企业需求不适应等问题。尤其是人工智能导论课程,缺乏实践教学将会降低学生学习人工智能的兴趣和积极性。因此,为了解决这些问题,并使高校跟上人工智能时代的脚步,抓住高等教育发展的新机遇,进行面向新工科的人工智能导论实践教学模式探索具有重要的现实意义。
1人工智能对新工科人才的新要求
1.1具备多学科交叉知识。人工智能导论是一个多个学科交叉而成的一门课程。人工智能导论主要包括知识系统、智能搜索技术、脑科学、机器学习、神经网络、支持向量机、专家系统、智能计算及分布式智能等内容[4]。因此,一个合格人工智能专业人才需要具备多学科知识。1.2具备多领域应用能力。人工智能导论的应用领域广泛,基本包含工业、农业及社会生活的各个行业(如工业生产、通信、医疗、金融、社会治安、交通领域及服务业等)[5]。人工智能导论课程要求学生在学好理论前提下也应该掌握各行业的相关知识,只有这样才能提高人工智能技术在各领域的应用。1.3具备人工智能创新创业精神。目前,创新驱动发展成为了我国现阶段发展的重要力量,人工智能成为经济发展的新引擎[5]。在大众创业、万众创新的号角下,人工智能技术作为创新创业过程中的一个大趋势。因此,当今新形势下培养具有创新创业精神的人工智能专业人才对我国经济发展及大学毕业生创新创业具有重要意义。1.4具备人工智能人文素养。人的内在品质就是人文素养,人文科学的知识水平和研究能力是人文素养的重要组成部分,人文素养是人文科学体现出来的以人为研究对象和中心的精神[6]。人工智能对人类社会带来的是便利还是带来灾难,关键是使用者的思想道德和人文素养。因此,培养具有人文精神的人工智能专业人才具有重要的意义。
2人工智能导论课程教学现状
目前,许多高校已经认识到传统的人工智能导论课程已经不能适应社会和学生发展的需要。尤其是地方普通高校在师资、科研及学科力量薄弱情况下进行人工智能导论的实践教学。目前人工智能导论的课程设置上主要存在的问题如下:⑴本科生课程内容陈旧。近年来,随着云计算、大数据、5G等信息技术的快速发展,也带动人工智能技术发展日新月异。对于高校来说,要紧跟人工智能技术前沿,传授学生的知识也要紧跟人工智能的发展。目前,虽然也出现了不少新的人工智能导论教材,但在课堂上能够教学的新内容仍然不多,教材内容仍然集中在传统的人工智能技术(如问题求解、知识表示、归结原理及经典推理等技术)上。⑵研究生课程内容重叠。研究生的人工智能导论课程应作为本科生课程的一个延续,但部分高校对研究生人工智能导论课程的教学重视不够。很多本科生已经学过的内容在研究生阶段又进行了重复。因此,在新工科背景下培养高层次的人工智能人才,就必须要在研究生阶段加强新工科人才实践能力的培养,选择合理的人工智能导论课程,改革研究生阶段人工智能导论的教学理念和教学模式。⑶实践课程不足。实践教学是提高人工智能新工科人才能力的重要路径。目前,大多数院校的人工智能导论课程理论与实践联系不够紧密,对学生实践能力的培养不够,只知道理论,而不进行实际的实践应用就不能成为合格的人工智能新工科人才。另外,大多数地方高校的人工智能实验室建设投入不足,实验条件差,验证性的实验较多,实验课时不足,学生对人工智能新技术的接触不够。⑷人工智能导论教材理论性过强。目前,现有的人工智能导论教材以理论为主,缺乏人工智能实践内容。在课程教学过程中学生经常会感觉索然无味,当实践课程开设不足时,这种情况会非常明显。学生会渐渐的对人工智能导论课程失去兴趣和热情,最终会导致课程的教学质量和效果下降,不能达到新工科人工智能专业人才培养的预期。⑸教学模式老旧。人工智能导论是多学科交叉的课程,课程内容理论性强、抽象、多知识点是新工科的特点。然而,大多数地方高校仍然采用过去的课堂教学模式(即“教师讲、学生听”的教学模式),这种单向灌输的教学方式以教师为主,学生的主动性不够,只是在被动接收知识。学校这种重视理论不重视实践的教学模式,在一定程度上影响了新工科人才的实践能力,从而导致教学内容与企业社会需求脱节。
3人工智能导论实践教学初探
3.1人工智能导论课程实践平台建设。为了提高学生对实践教学的兴趣,南阳师范学院计算机科学与技术学院在人工智能导论授课过程中广泛应用多种计算机实验教学平台,如采用开源的PaddlePaddle百度飞桨深度学习平台,希冀一体化人工智能实践教学平台及大数据综合实验平台。教师可以在实践教学过程中方便的使用这些平台进行授课,学生也可以在课堂中跟随老师完成相关实验,并能够在课下进行相关实验练习及提交作业。3.2人工智能导论课程实验内容优化。在人工智能导论实践教学过程中,以学生兴趣为导向,开展相关应用课程实验,南阳师范学院计算机科学与技术学院对人工智能导论实验课程内容进行优化。优化后的主要实验课程包括搜索优化算法实现、智能计算实现、贝叶斯分类实验、最近邻算法实验、机器学习实验及神经网络实验。最后,通过期末课程设计进一步提高学生解决实际问题及创新创业的能力。3.3人工智能导论实践教学模式改革。⑴校企合作为使人工智能导论实践教学不与企业脱节,校企合作是关键。应积极派遣教师进企业进修,了解企业需求,并提高教师的工程能力。从2018年以来,南阳师范学院计算机科学与技术学院每年暑假期间累积派遣教师58人/次前往百度、中兴、科大讯飞、神舟数码及江苏传智播客公司等进修培训。同时已经在固定时间邀请相关企业讲师到学校进行人工智能方面的项目教学。建立起了具有地方区域特色的师资队伍及校企协调的实践教学模式,从而避免人工智能导论课程实践与企业实际脱节。⑵“双导师”负责制人工智能导论实践课程实行“双导师”制,邀请企业中实践经验丰富的人才任教或任职,校企合作建立实践教师指导团队,改革教学策略及教学方法,以项目为牵引,将人工智能导论实践课程作为第二课堂学分。还要积极制定人工智能相关的科技作品竞赛的奖励机制,积极引导学生参加各种人工智能相关的比赛,从而进一步提高学生在创新实践方面的能力。⑶采用案例教学法以案例导入进行教学,提高学生兴趣。首先,从人工智能竞赛的部分赛事中、(如百度的人工智能大赛,“2020年全国人工智能大赛”,“2020中国高校计算机大赛人工智能创意赛”等)中选取贴近实际问题的案例作为人工智能导论实践课程的案例来源。然后,采用目前主流的人工智能开发软件进行算法代码的编写,引导学生采用Python语言调用第三方接口库进行算法的实现。最后,让学生使用主流的编程语言(如C++、Java等)开发完善算法或进行系统设计与实现。
4结束语
在新工科背景下,人工智能导论作为智能科学与技术专业的基础核心课程,人工智能人才培养应注重提高学生解决问题的能力。在这种背景下,笔者结合近年来了解到的企业需求和上课的实际,对人工智能导论实践教学模式进行初探,具体如下:①校企合作,构建人工智能实践平台;②建立案例库,优化实践的内容;③校企“双导师”制,采用案例教学,从而进一步提高学生在创新实践方面的能力。
参考文献:
[1]杨晴,王晓墨,成晓北等.新工科背景下的新能源科学与工程专业——哈佛大学工科教育在学科交叉方面的启示[J].高等工程教育研究,2019.S1:23-24,33
[2]李明媚,成希,罗娟.人工智能时代的高等教育之变与不变[J].黑龙江高教研究,2020.2:41-44
[3]陈义明,刘桂波,张林峰等.智能科学与技术专业课程体系建设的理论思考[J].计算机教育,2020.309(9):103-107
[4]刘永,胡钦晓.论人工智能教育的未来发展:基于学科建设的视角[J].中国电化教育,2020.2:37-42
[5]姚琳,石志国.人工智能课程体系与教学方法研究[J].中国大学教学,2019.10:19-22
一、顶层设计,构建全方位、多层次、可操作的指导体系。
为了保障人工智能教育在我校真正落实和长期发展,学校将人工智能教育工作纳入到学校整体三年发展规划中,并作出明确要求。
为了让师生更加重视人工智能教育,促进学生全面发展,特修订了我校“五美”能行课程体系,将人工智能课程进行了重新定位和设计。
为了建设符合我校校情、学情的人工智能课程体系,学校成立了人工智能课程建设与实施的探索与研究项目管理团队,制定了项目计划书,从项目名称、项目团队、项目背景、项目创新点及解决问题、项目推进措施、项目完成期限等方面进行了具体规划。
二、支撑保障
完善软硬件设施和文化建设,为人工智能教育开展做好支撑和保障。除了四楼独立的人工智能实验室,我校还自主改造了五楼的创客教室和阅览室,扩宽了人工智能教育场所,尽全力满足学生人工智能上课需求。
学校高度重视人工智能教育,不断加大投入。在资金紧张的情况下依然给学生购买了小学生C++趣味编程书和人工智能超变战场的场地。
三、具体做法
1.基于校情和学情的人工智能课程设计
课程设置:开学之前,课程部整体规划,实行信息技术课两节联排。
人工智能课程开设内容安排:基于校情学情,本学期3-6年级全面铺开人工智能课程,3年级以信息技术基础知识、编程猫、乐高搭建基础入门为主;4年级AI神奇动物,5-6年AI变形工坊,是集搭建和编程于一体的人工智能课程体系。本学期信息技术类人工智能特色社团的开设:人工智能机器人社团、信息学奥C++社团、创意编程社团。
2.三位一体,三组联动推进人工智能课程的开发与实践。三组是:项目组、教研组和集备组。具体做法是:
项目组的做法:根据人工智能项目管理计划书的内容和要求,3月初进行项目工作总结和4月份计划汇报,5月份进行了中期汇报。进一步梳理人工智能校本课程的内容,促进人工智能课程实施与落地,进行了生本AI人工智能校本课程的开发与研究,重点对课程目标和课程内容进行了设计和探索。
教研组的做法:1.参加区首次信息技术教研活动,明确方向和工作重点。组织信息技术教师按时参加区里首次信息技术教研活动,并将区里的要求传达给每一位信息技术老师,为接下来的工作做好铺垫指明方向。2. 教研组内进行磨课,四年级潘倩老师执教了四年级AI神奇动物—敏捷的蛇;徐娜老执教了五年级AI神奇变形工坊—设计“地雷”,课后及时听评课,提出优点与不足,并进一步改进完善。
集备组活动:各年级备课组利用双周周二上午时间进行集备,研究本周的上课内容、梳理课堂具体流程及教学设计。
3.加强教师培养力度,积极组织教师参加人工智能培训和学习。学校鼓励教师进行小课题的研究,提升教学专业素养。2019年区级小课题《小学人工智能课程体系、教学策略和教学评价的研究》顺利结题。2020年区级小课题《奎文区人工智能教育专项课题--小学人工智能教育教学策略及评价方法的研究》立项。
4.为了拓宽视野,为人工智能教育的发展进一步指明方向。落实请进来:邀请区教研室专家进校为学校人工智能开展情况进行诊断;邀请优必选指导老师入校指导人工智能课程,并进行赛事辅导和培训。
5.为了给学生的学习搭建更广阔的平台,丰富学生的课余文化生活,促进学生信息素养的提升。以赛促学,积极组织学生参加各级各类比赛。
四、取得成效
1.学校层面:以人工智能教育为契机近年来,我校的信息化、数字化、智能化水平不断提升,互联网+教育、智慧校园工作取得了巨大的进步,学校获得省市区多项荣誉。
【关键词】人工智能;诊断学教学;智能教学系统;智能组卷系统;智能阅卷系统;智能仿真教学系统
人工智能(artificialintelligence,AI)的概念最早是在1956年的Dartmouth学会上提出的,随着计算机核心算法的突破、计算能力的迅速提高以及海量互联网数据的支撑,目前已被广泛地应用于各个领域[1-2]。近年来,人工智能也给教育教学领域带来了机遇,人工智能+教育正如火如荼地开展和推进,改变着传统的教育形式及生态[3-4]。2018年教育部《高等学校人工智能创新行动计划》,各大高校在人工智能及其教育发展上有了纲领性的指导[5]。医学教育作为教育教学诸多领域的一隅,乘着人工智能发展的东风,各大高校在推进医学教学改革方面进行了大量积极的探索与尝试[6-8]。诊断学是由基础医学过度到临床医学的桥梁课,其教学质量的良莠直接影响到医学生的培养质量,传统的教学方法难以满足现代医学教学的要求,如何发挥人工智能的应用优势,让其更好地应用于诊断学的教学工作,也是诊断学课程教改的重要研究方向。
1传统的诊断学教学方法存在的问题
诊断学是学习临床基本技能最重要的一门课程,其内容包括症状学、体检检查、实验室检查及辅助检查等四大块,分为理论课和见习课,目前大多数医学院理论课采用的是以大班的形式在多媒体教室讲授,而见习课则采取分小组的模式进行,多年的教学实践发现该教学模式取得的教学效果不尽人意,尤其是近年来随着全国各大医学院校的扩招,出现了师资及教学资源配套的相对不足,上述教学模式的问题逐渐凸显。理论知识以老师讲授为主,采取的是“满堂灌”的教学模式,然而该部分教学内容知识点繁多,知识串联度不高,课堂灵活度、生动度较为薄弱,学生听完课以后对课程内容印象不深,知识掌握度差,同时由于学生的学习主观能动性差异大,不能进行课前充分预习的学生在课堂上更加难以跟上老师讲授的节奏。见习课是对理论知识进行实践,培养学生的实践操作能力,前期理论知识掌握度差又会影响见习的教学质量,导致教学过程形成恶性循环[9]。见习课主要采取老师讲授要领及演示操作流程,之后学生们互相练习的教学方法,该部分内容需反复加强练习,同样的动作要领反复锤炼才能熟练掌握,因课堂见习时间有限,而老师讲授及演示需占用大部分时间,学生动手实践机会不多,老师对学生的操作手法、操作内容、操作顺序等重要内容进行指导和勘误的时间少,学生操作的规范性难以保证,在以后的临床实践中,往往存在实践操作能力的缺陷。上述教学模式教师与学生们之间除了课堂时间,其余时间是脱节的,不能很好地沟通,学生们有疑问的知识点难以得到老师的及时解答,教学活动中没有充分反馈,各个教学环节难以进行教学反思,形成教学相长的良性循环。课后复习及阶段性总结复习是课堂知识内化及升华的重要方面,传统的教学模式通常是给学生布置课后作业,学生完成后上交由老师批改留档,这个环节学生与老师缺乏有效的沟通,且由于学生们学习主观能动性差异,课后没有老师的监督及针对性地辅导,课后作业的质量良莠不齐,教学质量欠佳是显而易见的。随着现代医学的发展及研究的开展,涌现了一大批新的诊断方法与手段,譬如关于肿瘤诊断的分子marker,评估预测疾病活动度及预后相关的指标,在临床上已经常规应用,但由于教材更新需要周期,很难跟新进展同步介绍,另外由于课时有限,难以全面地就学科前沿及新进展进行讲授[10]。
2人工智能应用于诊断学教学的重要意义
2.1教师方面
将人工智能应用于诊断学教学实践,削弱了教师的知识权威而强化了教师的价值引导,对教师的个人能力提出了更高的要求,促使教师踏实践行终身学习并持续更新自身知识结构。互联网高速发展的时代,知识呈几何指数更新并出现大爆炸,基于各种互联网即时通讯平台及手机APP,诊断学体格检查、理论知识讲授相关的小视频及研究进展不胜枚举,这就要求教师及时获取、更新知识并进行相应的知识储备。人工智能的应用促使教师从单人施教发展为团队施教,为开发更具个性化的课程教学注入团队的力量。基于大数据的人工智能可以减少诊断学教学过程中的机械性、重复性工作,如平时作业的批改、考勤统计等,减轻了教师的工作负担,教师可以将更多的精力投入到医德医风、医患沟通能力以及体格检查手法的规范化培养上,更多的心思放在丰富课程内容及教学形式上。同时大数据可以及时反应学生的学习动态,教师可以根据学生的反馈及课程评价有针对性地对学生进行相应的辅导。
2.2学生方面
将人工智能应用于诊断学教学实践,可以实时动态记录学生的学习情况及暴露的问题,如是否按时完成课程任务、测试中哪些知识点容易出错等,人工智能系统能够对这些数据进行关联分析和深度挖掘,并且可视化呈现相应的数据,有利于教师及时掌握学生的学习进度、参与度以及学习效果,并根据具体的学情分析数据来调整辅导和教学方案。基于人工智能强大的算法和分析,可以为学生定制个性化的教学内容及进度,提供更有针对性的课堂内容和随堂测试,并对测试及平时作业进行智能批改,真正做到查漏补缺。诊断学课程内容相对枯燥,学生们的学习兴趣有限,基于人工智能的教学方式可以寓教于乐,在课程中将一些比较零散的知识点可以设置成互动小游戏,营造出良好的课堂氛围,提高学生们的学习兴趣及学习效率。
2.3教学过程
针对教学过程,人工智能亦发挥着至关重要的作用。第一,诊断学作为桥梁课程,是一门必修课,包括临床医学五年制、八年制、法医学、基础医学等相应专业的学生均需要学习,人工智能拥有超强的计算能力和强大的“记忆力”,面对众多不同专业的学生,可以根据大数据进行分析,制定出适合不同专业学生的完备教学目标。教学活动开展过程中,人工智能还可以根据学生的课堂及课后测试表现,依据分层教学的要求自动设置梯次教学目标,帮助学生们逐步提升学习能力和知识掌握度。第二,人工智能可以凭借自身信息化的特点,对各种教学资源进行分析,为教师和学生选择更优质更合适的资源提供依据,促进个性化的教与学。第三,传统的教学方式、教学内容相对有限,人工智能基于大数据能够启发新的教学思路,创新教学方法,为诊断学教学提供更多的可能性。
3人工智能在诊断学教学中的应用
3.1智能教学系统
智能教学系统是教育技术学中重要的研究领域,其根本宗旨是使得学生的学习环境更加优良和谐,智能教学系统能够及时有效地调用最新最全的网络资源并充分优化后供学生学习,使得学生能够更加全方位、多角度地学习专业知识,提高学习效果[11]。智能教学系统大致由领域知识部分、教师部分及学生部分3个部分构成[12],其中领域知识部分又称为专家部分,这一部分既包含了需要讲授的内容及掌握的技能,又可以添加专家的学术成果,既能够保证学生对于基本概念、基本理论及基本技能的掌握,又能够拓宽知识面,增加知识的广度。智能教学系统的教师及学生部分主要是为设计和制定教学方案及策略服务,基于大数据基础上,根据课程的特点、历年教学情况、学生身心发展特点及学习实际情况,制定更加个性化、高效的教学方案,促成教师因材施教,取得更加理想的教学效果。
3.2智能网络组卷阅卷系统
诊断学教学内容包括理论和见习两大块,教学过程中教师的大量时间用于出题、阅卷、批改平时作业等与考核相关的工作,并且在出题过程中需要围绕相对固定的重难点内容不断创新题型,消耗教师大量的精力。智能网络组卷阅卷系统能够充分发挥其优势,将教师从繁冗的考核相关工作中解脱出来,使得教师的教学更高效,教师能够把更多的时间。智能网络组卷系统能够有效收集和分析知名高校教学团队编写的在线题库,实现教学资源的共享,通过随机抽题组卷、答案随机排序、题型随机排序以及设置避免与历年考卷重复等,显著提升试卷的质量,亦能改善考试作弊的顽疾,客观地考核学生对知识的掌握度。智能网络阅卷系统有简明的阅卷流程,能够更有效地识别试卷及答案,能够明显降低传统人工阅卷方式因疲劳带来的出错率,使得工作效率更高、考核结果更公正。
3.3智能仿真教学系统
诊断学教学的见习部分是学生提高技能的重要环节,常常采用分小组在病房完成的方式进行,在课程的开展过程也凸显出了各种各样的问题,譬如因学生分组进行询问病史、体格检查,重复次数多,患者难以多次配合;在教学时间段内病房缺相应的病种,无法对所学的症状进行直观的学习;传染病流行期间出于对学生健康安全的保护,无法进入病房见习等等,此时智能仿真教学系统能够发挥重要的补充作用[13]。人工智能可以根据提供的海量真实临床病例,由医学专家整合其临床特征,联合计算机专家,根据相应的教学要求,形成虚拟病人学习系统,学生在仿真诊疗环境中,进行问诊、体格检查、诊断以及给出治疗方案,同时系统能够自动发现学生在问诊及诊断过程中的错误,通过实践、纠错再实践,提高学生采集病史、体格检查的能力,同时能够加强学生的临床思维的训练,夯实临床基本功[14-16]。
4总结及展望
当前高职教育中为计算机专业学生所开设的人工智能课程很大程度上沿用了普通高等教育环境下的教学方式和内容,这显然与高职教育本身培养人才的目标和方式不一致。高职教育的最终目标是要培养适应生产需要的技能型、应用型人才,而高职教育在教学方式上应更为注重实践教学,包括各种实验、实训、实习和设计。因此,人工智能课程中单纯的理论讲授并不能有效地适应高职教育的实际教学环境要求,有必要对人工智能课程在教学内容和方式上加以改革。三个改革途径(一)引导学生阅读应用研究文献
高职教育强调培养学生的知识应用技能,其中重要的一点是要培养学生把理论知识应用到实际生产中的能力。然而在教学实践过程中,学生普遍反映由于人工智能课程理论性强,难于从课本理论联系到实际的专业应用上,这样对激发学生的学习兴趣,提高技能应用水平是不利的。
实际上,人工智能涉及的应用领域极为广泛,其中在专家系统、模式识别、智能控制、数据挖掘、自然语言理解等方面尤为突出,每一种应用都能够很好地体现出人工智能学科的基本理论方法特点。因此,在课程学习的开始阶段,应让学生按照个人兴趣自行选定某个应用领域,在一定的提示和引导下通过检索有关文献,访问相关的科研院校网站等方式获取资料,了解当前该领域的发展现状和具体产品的开发和使用情况,最后在课程的结束阶段以学习报告的形式在课堂上加以演示和共同讨论,这样可以大大激发学生学习人工智能课程的主观能动性,开阔学生的知识视野。资料的收集阅读与思考是知识应用的首要环节,对于培养应用型人才的知识应用技能很有帮助。(二)安排学生对经典算法程序进行实验
与普通高等教育相比,高职教育更加强调实践教学的重要性。从实践中学习和理解理论知识,并且把所学知识运用到实践中,这是高职教育的重要特点。人工智能课程内容抽象而概念性强,单纯的理论讲解学生难以从中得到启发,也难以体现出高职教育突出实践教学的特点,为此需要安排学生动手实验,从实践中理解人工智能科学的理论原理和应用途径。
在人工智能科学的发展过程中,先后提出了一些经典的优秀算法程序,如A*算法、遗传算法、神经网络的BP学习算法等,在科研和工程实际中得到了广泛的应用,在实践教学中同样有着重要价值。根据教学要求和实际情况,学生并不需要自行设计关于这些算法的具体程序,在提倡开放和共享源代码的今天,通过网络能够获得大量相关的程序代码资源。同时,一些软件平台也集成了一些工具箱,如遗传算法工具箱、神经网络工具箱等,只需设定相关输入参数和数据,便可通过调用工具箱函数实现算法,极为简便而易于理解。
学生应通过对这些程序作验证性实验来理解所学内容。为安排学生有效地进行实验,教师应结合当前阶段所讲授的内容准备相应的算法程序,当该部分内容结束后在课堂上讲解和演示算法程序的运行方法。学生获得该算法程序以及具体的实验任务后在课后完成实验并提交实验报告。
例如,在讲授启发式搜索时,可向学生提供A*算法求解八数码难题的算法程序,并对某个学生给定某个初始棋盘状态,要求学生动手运行程序并记录由算法扩展所得的每个棋盘状态的估价函数计算结果,以及相应的OPEN表和CLOSED表的变化情况,从中理解A*算法的原理特点。又如,在讲授BP学习算法时,可根据学生的实际情况对内容进行调整,强调BP神经网络的实际工程应用价值,而对BP算法的基本原理只作简单介绍。向学生提供利用BP神经网络学习特定目标函数的MATLAB程序代码后,要求学生动手运行该程序,并且记录和对比神经网络在训练前后对目标函数的逼近效果。
(三)启发学生引入人工智能理论方法对毕业设计加以创新
毕业设计是高职教育的重要环节,学生通过毕业设计对以往所学知识作系统性总结,通过毕业设计能进一步加强学生的技能训练,提高学生的技能应用水平。从实践教学的角度来讲,毕业设计不仅仅要求学生对已学知识和技能的简单重复运用,更重要的是强调学生能够主动独立地分析实际问题,对问题的解决方法提出新的观点并付诸实践。然而从教学的实际来看,在毕业设计中学生创新的主动性不足,往往停留在继承和模仿阶段,毕业设计作品少有突破和创新。究其原因,并非学生所学知识和技能不足,而是学生未懂得如何分析已有问题,在其基础上引入新的解决方法或提出新的应用内容。
关键词:人工智能;大数据;软件
1人工智能及大数据的概念
1.1人工智能
人工智能是一门利用计算机程序模拟人类智能的科学,其应用领域十分广泛,例如机器人、模式识别及专家系统等。人工智能的高科技产品,不仅实现了对人类思维的模拟,在某些方面还超过了人类。
1.2大数据
大数据是指海量信息的集合,一般用常规软件工具无法对其进行有效的采集、存储和处理,需要借助具有超强洞察力的大数据技术对其进行有效的采集、存储、处理、分析和共享。大数据技术能够有效地进行超大规模的并行处理,能够有效地处理结构化及半结构化的数据,具有较强的数据挖掘能力及分析决策能力。
2人工智能及大数据对软件技术专业人才的需求特点
2.1知识更新能力
人工智能及大数据技术日新月异,需要软件专业技术专业人才具有较强的知识更新能力,较强的自主学习能力,以及较高的技术应用能力。但目前相当一部分软件技术专业的大学生的自主学习能力不高,知识更新能力不强,亟需针对人工智能及大数据对软件技术专业人才的需求特点改进培养方案,增加相关课程,培养学生对新知识的理解和掌握尤为重要。
2.2创新思维能力
人工智能及大数据时代下,需要软件技术专业人才具备较强的适应创新能力,较强的开拓思维能力,以及较强的团队协作能力。但目前相当一部分软件技术专业的大学生的创新思维能力较差,新知识更新缺乏主动性,迫切行,学习意识不强。亟需针对人工智能及大数据对软件技术专业人才的需求特点创新改革培养方案,确定切实可行培养策略是学科发展的需要和任务。
2.3大数据分析能力
人工智能及大数据对人才的大数据分析能力要求较高,主要包括数据采集、数据整理、数据描述、数据统计分析和深度学习等诸多方面的能力。但目前相当一部分软件技术专业的大学生的大数据分析能力不够,不能很好地进行数据采集、存储、整理、描述、统计分析和归纳总结,亟需针对人工智能及大数据对软件技术专业人才的需求特点创新培养体系。
2.4软件开发及测试能力
人工智能及大数据对人才的软件开发及测试能力要求较高,主要包括软件分析、软件设计、软件实现和软件测试等方面的能力。但目前相当一部分软件技术专业的大学生的软件开发及测试能力较差,不能够有效地开展软件的规划、分析、设计、实现与测试等环节,亟需针对人工智能及大数据对软件技术专业人才的需求特点提升学生的软件开发与测试的实践能力。
3建设策略
3.1转变教学理念,顺应人工智能及大数据时展要求
传统的教学理念已经不能适应人工智能及大数据时代的要求,亟需转变教学理念,从而适应人工智能及大数据时代的要求,进而提升软件技术专业人才的培养质量。在人工智能及大数据背景下,学校应深入分析人工智能及大数据对软件技术专业人才的需求特点,从而有针对性的制定培养目标、培养任务和培养方案。在制定培养目标时,应着重考虑软件技术专业人才在人工智能及大数据时代应具备的能力素质。在制定培养任务时,应着重参考人工智能及大数据相关岗位的岗位要求。在制定培养方案时,应坚持以学生为主体,以学生为本,突出知识更新能力、自主学习能力、开拓创新能力、团队协作能力、大数据分析能力和软件开发及测试能力的培养。
3.2引导学生利用现代化、智能化的网络平台进行自主学习
为了更好地适应人工智能及大数据对软件技术专业人才的需求,应引导学生利用现代化、网络化和智能化的Web平台进行自主学习,从而提升学生的知识更新能力、开拓创新能力、解决问题的能力和团队协作能力。首先,在人工智能及大数据背景下,网络上涌现了大量的人工智能及大数据相关的学习资源,但这些网络资源存在良莠不齐的现象,因此教师应该引导学生如何搜索、鉴别和使用这些网络学习资源。然后,教师可以引导学生自由分组开展人工智能及大数据相关的学习,通过兴趣小组的方式激发学生对人工智能及大数据的学习热情,提升学生的自主学习能力,提升在线学习的效率。最后,教师可以自建教学网站,对网络资源进行筛选和优化,使学生能够更好地进行网络学习。
3.3构建大数据分析课程体系,提升学生的大数据分析能力
人工智能及大数据对软件技术专业人才的数据分析能力要求较高,众多人工智能及大数据相关企业亟需大量的具有较高大数据分析能力的软件技术专业人才。因此,大数据分析能力是目前软件技术专业人才培养的重要内容,应适时构建大数据分析课程体系,进一步提升软件技术专业学生的大数据分析能力。首先,教师是教学的组织者,因此应注重教师的培养,只有提升了教师的大数据分析能力,才能更好地提升学生的大数据分析能力。然后,重点突出数据挖掘能力的培养,包括数据预处理能力和聚类分析能力等。
关键词:人工智能;教育变革;智慧教育
近年来大数据、云计算等信息技术飞速发展,人工智能在一些特殊领域(如图像识别、语音识别、自然语言等)不断取得突破性进展。人工智能作为新的技术驱动力正引发第四次工业革命,为医疗、教育、能源、环境等关键领域带来新的发展机遇。人工智能专家预测,人工智能在通用技术领域可能尚不能替代人类,但在一些特殊领域,人工智能将会淘汰现有的劳动力。在国外,许多国家纷纷把人工智能作为国家发展的重要竞争战略,我国学者也密切关注着人工智能的最新理论进展和实践应用,国务院于2017年7月颁布《新一代人工智能发展规划》,明确人工智能发展的重点策略。“人工智能变革教育”的潮流,引发了教育研究领域的“人工智能热”。当前全球范围内,人工智能在教育领域的大量研究和应用催发形成了教育人工智能概念。目前梳理学术上关于研究人工智能与教育的文献主要集中于:
(一)教育理念的革新。“人机一体”将成为未来新的教育方式[1],由新技术和新手段的出现所应运而生的智慧教育[2],将对原有教育进行改进和完善。智能技术在改变教育的手段和环境的同时,还有利于构建出系统解决教育问题的教育新体系,从而真正触及教育的根本[3]。
(二)关注技术的革新。机器深度学习、智能学习的算法、视觉识别以及智能语言识别这些基础技术的突破,为人工智能的教育应用奠定了坚实的基础[4]。
(三)探究教育的应用。人工智能在学校教育中的学业测评、交叉学科、角色变化等应用领域具有巨大潜力,教师角色内涵也将在与人工智能的协同共存中发生改变。AI监课系统能够数据化、可视化评估教师的授课情况,将人工智能技术的运用渗透到整个教学过程中,教师可以根据评分实时调整授课内容,以促进个性化学习,从而提升教学效果。教育深受技术发展的影响,新技术融入教育并促进教育方式的转变已成为必然趋势。一方面技术为教育提供了新的、更加广阔的可能性;另一方面技术具有变革人类的教育方式与学习方式的能力。然而,技术是一把“双刃剑”,如何获取或实现以人工智能为代表的新兴信息技术所拥有的特征、优势与功能,使其在教育中最大限度地发挥其应有的价值呢?人工智能技术如何继续被安全使用到教育领域?如何通过教育变革来促进新兴信息技术在教育教学中的广泛与深入应用,实现教育深层次革命等问题,是目前需要关注和探讨的主要问题。
1人工智能时代下教育变革的背景
1.1人工智能的内涵及具备的强大能力
人工智能最早由美国达特茅斯学院于1956年提出,其研究主要包括机器人、图像识别、自然语言处理、语音识别等,实质是一种自动感知、学习思考并做出判断的程序。人工智能具有自主学习、推断与革新的能力,推动了图像识别、自然语言处理等方面的技术突破。人工智能同时具有理性判断力、超强的工作力,只要电力供应不断,几乎可以无限制地工作下去,而且适应不需要情感投入的工作。它的超强能力,源于三个重要的技术:深度学习、大数据和强算力。
1.2人工智能时代的机遇和挑战
人工智能在精力、记忆力、计算力、感知力以及进化力等方面与人类相比,具有突出优势。在医药领域,人工智能的出现使普通民众可以享受更为高效、稀缺的医疗资源,解决医疗诊断领域诊断质量不均衡、医生资源不足等问题。在教育领域,人工智能促进教学质量进一步提升、教师角色多样化、学生学习能力的提升;为教育研究提供新技术和数据支撑;极大拓展了教育研究新视域;使教育在立德树人方面、教育方法创新方面、教育手段和环境方面以及教育服务供给方式方面均发生改变。然而,看到人工智能以其强大的处理能力带来机遇的同时,也需要正视人工智能带来的新挑战。在人工智能浪潮冲击下,如何借助人工智能发展的机遇推进教育的变革与创新?人工智能技术如何继续被安全使用?首先,人工智能专家大都认为,人工智能将会淘汰大量现有的依靠非脑力劳动为生的劳动力,需要培养人工智能时代的新型劳动力。而且,人工智能技术本身的不太成熟使很多人工智能技术只是应用在儿童教育领域,再者,人工智能潜在的道德伦理问题缺乏法律制度规范。除此之外,人工智能时代将对社会结构以及人的地位构成挑战。综上所述,人工智能时代所带来的机遇是大于挑战的。教育需适应人工智能技术所带来的突破和飞跃,不断调整和更新教育的方向和目标,实现育人成人的发展目标。
2人工智能与教育变革
2.1人工智能与教育目的的变革
人工智能带来的巨变不仅影响人类未来如何发展,而且极大释放了人类的生产力,这些在一定程度上使得人类需要重新思考教育是何目的。人工智能影响教育目的的变革主要表现在:第一,人工智能可能会使人类陷入精神危机。这源于两方面的结果:一方面,人工智能将取代大部分人的工作岗位,工作的丧失将会导致人的价值和尊严丧失。另一方面,人工智能技术的发展将可能导致所有基于自由主义的想法破产,转而人类所拥有的价值和尊严可能转化为一种“算法”,人工智能带来的职业替代风险在教育领域同样存在,主要是对教师角色的挑战。第二,人工智能有利于培养人的学习能力。从某种角度上讲,人工智能剥夺人的就业机会,但同时,人工智能助教机器人将协助教师实现个性化指导,从而有利于将学习的过程视为寻求自我价值和意义的过程。除此之外,人工智能有利于使教育注重培养人的精神能力,这种精神能力大致包括实践动手能力、价值追求能力以及创造能力,从而有利于学生知识以便于更好地完善自我、丰富自我,使教育跳脱“知识为本”的陷阱,发挥“立德树人”的正向作用。
2.2人工智能与学习方式的变革
第一,深度学习。深度学习也称为深度结构学习或者深度机器学习,是一类算法的集合。深度学习概念的提出,一方面尊重了教学规律,另一方面也是应对人工智能时代下的挑战。深度学习在机器学习、专家系统、信息处理等领域取得了显著成就,提倡学教并重、认知重构、反思教学过程,进而达到解决问题的目的。第二,个性化学习。个性化学习区别以往传统班级课堂授课,尊重学生的个性发展,因材施教。人工智能技术与大数据的应用有利于学生享受个性化的学习服务,可提供个性化的学习内容,可视化分析学生的学习数据,快速提高学生的学习效率。第三,自适应学习。自适应学习是指人工智能基于对个体学习进行快速反馈的基础上,根据学习者特征,为其推荐个性化的学习资源和学习路径,从而最大程度上适应学生的学习状态,是实现个性化学习的重要手段。人工智能技术有利于快捷、科学地判断学生的学习状态,进行学习反馈;持续收集学生的学习数据,其中包括学习目标、学习内容;高效地为学生提供海量的学习资源。
2.3人工智能与学习环境的变革
首先,有利于搭建灵活创新的学校环境。不仅可以使空间规划更具弹性,而且可以调节性增强物理环境。其次,人工智能时代的教育区别于以往传统教育强调的统一秩序,更注重个体的用户体验。创客空间、创新实验室等学习环境的不断增加以及人工智能技术的不断发展,个性化的空间环境与学习支持将改变目前学习的学习空间环境。除此之外,随着对话交互技术的逐渐成熟与不断普及,有利于实现虚实结合的立体化实时交互。VR、AR等技术的同步协作也有利于搭建新的学习环境,满足学习者的一系列要求。脑机互动技术的突破有利于实现将人工智能植入人脑,从而改变人类自然语言的交流方式。最后,人工智能通过即时、准确、高效的大数据分析有利于进行精准且个性的学习评价与反馈。人工智能将综合收集所有同学的学习记录,互相比对、优化,从而进行综合提升。更为重要的是,人工智能的人脸识别以及语音识别技术可以运用到教师的教学过程中,进行学生的学习情绪感知,学习状况的了解,从而促进学生学习的科学化;智慧校园、智慧图书馆等的出现,为教学环境的建设提供重要参考。
3人工智能在教育领域的应用
人工智能被认为是最有潜力和影响力的教育信息化技术,将通过人工智能数据挖掘分析、3D打印、模拟仿真等技术的应用,实现人工智能与教育的深度融合,对计算机辅助教学、个性化教育服务、教育人工智能生态环境等产生根本影响。2018年《地平线报告》(高等教育版本)指出了教育领域的信息化发展,未来一段时间内将通过人工智能与信息技术的结合,进而影响教育阶段的不同过程。具体见表1所示。
关键词:人工智能;案例教学;应用
1引言
作为计算机科学技术的全新领域即人工智能,其正在迅速成长与成熟、新方法、新理念、新技术并且不断壮大,同样也包含着计算机网络、数学、信息论各类学科的交叉和边缘学科。人工智能包含的主要内容有知识表示和推理机制、问题求解和搜索算法,自然语言理解、专家系统和机器学习等;也作为计算机科学各专业重要的基础课程,国内外各高校都非常重视,都将人工智能作为计算机专业的必修课程。人工智能包含的学科多,知识点杂、理论性强、内容抽象,算法难度高复杂,在此情况下各高校采用传统的“教师讲、学生听”单一教学模式,学生处于被动学习地位;课堂教学与实际操作、理论与现实应用相脱节;加上理论知识强,案例缺乏,容易使学生感觉空洞;学生易产生厌学情绪,也达不到锻炼其分析问题、解决问题的思维能力和实践动手能力。如何让学生高效的学习一直是教师研究的课题,在大数据和网络信息时代的大背景下,“互联网+”已经广泛应用和存在于生活、工作各个方面,其在教育教学中表现出的创新性、互动性尤为突出,并极具优势。
2基于案例的教学研究
此方法开始于上世纪20年代左右,最早是由美国哈佛商学院所提倡的,基于当时特殊的商业管理真是背景和特殊事件,能够有效的发展和培养学生主动性、积极性和应用能力,开展案例教学后,学生实际解决问题能力有了很大的提高。但此教学研究方法知道到上世纪80年代后期,才引起教师的重视。1986年由美国研究小组提出《准备就绪的国家:二十一世纪的教师》书中,强烈推荐此方法在实际教学的重要性,并说明今后在教学过程中将其作为一种重要的教学方法应用于各类课程中去。
3基于人工智能的案例教学研究及应用
3.1案例精选
此方法第一步是案例选取,案例的好坏是决定案例教学效果关键因素。案例的选取需要满足以下要求:(1)符合现在的教学目标,明确学生需要掌握的知识点、重难点等,能够运用所学的理论知识应用到实际中,以此提高学生分析、解决问题的能力;(2)案例要有代表性、趣味性,由于人工智能课程内容多、抽象,需要将枯燥乏味的知识点转化为趣味生动的案例,有利于吸引学生注意力,激发学习兴趣和主动性;例如,讲到“知识表示”这部分内容中引入“机器人搬积木”、“野人修道士渡河”案例;(3)采用互动的形式,此为人工智能的案例教学研究重要特征,同时也是教学目标得以充分展现的必要条件。能够调动大家的积极性,学生和学生之间、学生与教师之间的互动,调动学生的主观能动性。
3.2案例的执行
(1)讲授法。基于教学内容具体知识点设计案例;通过教师讲解,帮助学生理解抽象的理论知识。案例的呈现有两种基本形式:一是“案例—理论”,即先给出教学案例,后讲解理论知识;二是“理论—案例”,即教师先讲解知识,再给出教学案例;案例的呈现方式不同,会直接影响案例的功能,也会影响到学生的学习情绪、学习效果。为了使案例能更好地为教学服务,教师讲解案例之前应从创设案例情境开始,通过情境体验与案例剖析激发学生认知的兴趣,引导学生对将要学习的内容产生注意,有利于教师导入新课。(2)互相讨论法。大学生课余时间充沛,鉴于此,将班级学生分为若干小组,教师将事先准备好的案例分配给各组,学生采用组内互动讨论的形式,设计出此案例的各种解决方法。课堂上,将本小组的解决方法用课件展现给其他小组。讲解完成后,学生开始互相讨论,对比各自的方法,然后由老师进行分析、对比和总结。以此来增强学生对学科知识点、应用能力的掌握。(3)相互辩证法。课后,采用相互辩证的方法,组织大家相互辩论。选择一些综合应用比较强的案例。与简单的案例相比,综合应用案例能更加高效地启发学生全方位地思考和探索问题的解决方法。相互辩证法是一种探索新型的教学形式,学生的自主性强,能够在辩论中充分表达自己的观点,充分运用所学的理论知识来维护自己的观点,还可以促使学生查阅大量资料,拓展知识面。
4结语
通过以上论述,人工智能技术开始应用于教学,与教学现代化有着密切的联系。其发展必将对现代教育起巨大推动作用。在教学,可以基于人工智能技术建立人类推理模型学习工具等诸多的运用,展示出越来越好的实用性。
参考文献:
[1]邹蕾,张先锋.人工智能及其发展应用[J].信息网络安全,2012(02).
[2]陈柯蒙,张宁.人工智能的发展探析[J].新西部(理论版),2012(05).
[3]陈浩磊,邹湘军,陈燕,等.虚拟现实技术的最新发展与展望[J].中国科技论文在线,2011(01).