公务员期刊网 精选范文 电路设计的基本方法范文

电路设计的基本方法精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的电路设计的基本方法主题范文,仅供参考,欢迎阅读并收藏。

电路设计的基本方法

第1篇:电路设计的基本方法范文

【关键词】集成电路;EDA;项目化

0 前言

21世纪是信息时代,信息社会的快速发展对集成电路设计人才的需求激增。我国高校开设集成电路设计课程的相关专业,每年毕业的人数远远满足不了市场的需求,因此加大相关专业人才的培养力度是各大高校的当务之急。针对这种市场需求,我校电子信息工程专业电子方向致力于培养基础知识扎实,工程实践动手能力强的集成电路设计人才[1]。

针对集成电路设计课程体系,进行课程教学改革。教学改革的核心是教学课程体系的改革,包括理论教学内容改革和实践教学环节改革,旨在改进教学方法,提高教学质量,现已做了大量的实际工作,取得了一定的教学成效。改革以集成电路设计流程为主线,通过对主流集成电路开发工具Tanner Pro EDA设计工具的学习和使用,让学生掌握现代设计思想和方法,理论与实践并重,熟悉从系统建模到芯片版图设计的全过程,培养学生具备从简单的电路设计到复杂电子系统设计的能力,具备进行集成电路设计的基本专业知识和技能。

1 理论教学内容的改革

集成电路设计课程的主要内容包括半导体材料、半导体制造工艺、半导体器件原理、模拟电路设计、数字电路设计、版图设计及Tanner EDA工具等内容,涉及到集成电路从选材到制造的不同阶段。传统的理论课程教学方式,以教师讲解为主,板书教学,但由于课程所具有的独特性,在介绍半导体材料和半导体工艺时,主要靠教师的描述,不直观形象,因此引进计算机辅助教学。计算机辅助教学是对传统教学的补充和完善,以多媒体教学为主,结合板书教学,以图片形式展现各种形态的半导体材料,以动画的形式播放集成电路的制造工艺流程,每一种基本电路结构都给出其典型的版图照片,使学生对集成电路建立直观的感性认识,充分激发教师和学生在教学活动中的主动性和互动性,提高教学效率和教学质量。

2 实践教学内容的改革

实践教学的目的是依托主流的集成电路设计实验平台,让学生初步掌握集成电路设计流程和基本的集成电路设计能力,为今后走上工作岗位打下坚实的基础。传统的教学方式是老师提前编好实验指导书,学生按照实验指导书的要求,一步步来完成实验。传统的实验方式不能很好调动学生的积极性,再加上考核方式比较单一,学生对集成电路设计的概念和流程比较模糊,为了打破这种局面,实践环节采用与企业密切相关的工程项目来完成。项目化实践环节可以充分发挥学生的主动性,使学生能够积极参与到教学当中,从而更好的完成教学目标,同时也能够增强学生的工程意识和合作意识。

实践环节选取CMOS带隙基准电压源作为本次实践教学的项目。该项目来源于企业,是数模转换器和模数转换器的一个重要的组成模块。本项目从电路设计、电路仿真、版图设计、版图验证等流程对学生做全面的训练,使学生对集成电路设计流程有深刻的认识。学生要理解CMOS带隙基准电压源的原理,参与到整个设计过程中,对整个电路进行仿真测试,验证其功能的正确性,然后进行各个元件的设计及布局布线,最后对版图进行了规则检查和一致性检查,完成整个电路的版图设计和版图原理图比对,生成GDS II文件用于后续流片[2]。

CMOS带隙基准电压源设计项目可分为四个部分启动电路、提供偏置电路、运算放大器和带隙基准的核心电路部分。电路设计可由以下步骤来完成:

1)子功能块电路设计及仿真;

2)整体电路参数调整及优化;

3)基本元器件NMOS/PMOS的版图;

4)基本单元与电路的版图;

5)子功能块版图设计和整体版图设计;

6)电路设计与版图设计比对。

在整个项目化教学过程,参照企业项目合作模式将学生分为4个项目小组,每个小组完成一部分电路设计及版图设计,每个小组推选一名专业能力较强且具有一定组织能力的同学担任组长对小组进行管理。这样做可以在培养学生设计能力的同时,加强学生的团队合作意识。在整个项目设计过程中,以学生探索和讨论为主,教师起引导作用,给学生合理的建议,引导学生找出解决问题的方法。项目完成后,根据项目实施情况对学生进行考核,实现应用型人才培养的目标。

3 教学改革效果与创新

理论教学改革采用计算机辅助教学,以多媒体教学为主,结合板书教学,对集成电路材料和工艺有直观感性的认识,学生的课堂效率明显提高,课堂气氛活跃,师生互动融洽。实践环节改革通过项目化教学方式,学生对该课程的学习兴趣明显提高,设计目标明确,在设计过程中学会了查找文献资料,学会与人交流,沟通的能力也得到提高。同时项目化教学方式使学生对集成电路的设计特点及设计流程有了整体的认识和把握,对元件的版图设计流程有了一定的认识。学生已经初步掌握了集成电路的设计方法,但要达到较高的设计水平,设计出性能良好的器件,还需要在以后的工作中不断总结经验[3]。

4 存在问题及今后改进方向

集成电路设计课程改革虽然取得了一定的成果,但仍存在一些问题:由于微电子技术发展速度很快,最新的行业技术在课堂教学中体现较少;学生实践能力不高,动手能力不强。

针对上述问题,我们提出如下解决方法:

1)在课堂教学中及时引进行业最新发展趋势和(下转第220页)(上接第235页)技术,使学生能够及时接触到行业前沿知识,增加与企业的合作;

2)加大实验室开放力度,建立一个开放的实验室供学生在课余时间自由使用,为学生提供实践机会,并且鼓励能力较强的学生参与到教师研项目当中。

【参考文献】

[1]段吉海.“半导体集成电路”课程建设与教学实践[J].电气电子教学学报,2007,05(29).

第2篇:电路设计的基本方法范文

【关键词】电子;电路设计;常用;调试方法;步骤探讨

伴随时代的不断发展和科学技术的不断进步,人们越来越关注社会生产力的提升。采取科学的方式进行电子电路的设计与工作流程的部署和管理,能够满足当下社会生产力发展的基本需求,也能够促进行业的生产进步。当下我国电子行业发展的过程当中都越来越重视相关的技术升级,采取高效率的生产和设计模式才能够实现对理论的进一步应用,也能够满足实际的生产工作需求。模拟的设计构想在实践工作的验证体系下常常显示出各种问题,需要以更加科学、安全、有效的方式实现对相关工作体系的完善,并在具体的工作当中以实践经验论证设计理念,保证电子行业发展的前景要求。

1电子电路设计的原理

电子电路的设计工作具有相关的工作原理和原则,需要遵循一定的制度和规律进行相关工作的设计,以此实现对工作体系的完善性需求。首先,电子电路的设计工作原理要求,设计的相关内容需要符合整体性要求,在实际的设计工作当中要针对电路工作的各个节点进行监督与功能实践。其次,设计的工作要保证具体功能的落实,针对每个电路的工作职能进行细致的划分。再者,应当进行电路设计的最优化选择,保证电路设计的稳定性和完善性,在实际的工作应用中具备可靠的特征。最后,应当实际的考量到市场经济的价值和效益需求,进行性价比的研究分析并最终完成设计。

2电子电路设计的流程

电子电路的设计工作流程比较复杂,具体的工作内容也具有较高的严谨性和准确性。在实际工作进行的过程当中,应当重视对设计目标的确认,在具体工作中明确电子功能的设计。针对电子产品的核心功能应用进行整体的考量,设计的电路能够符合单一操作的要求,进行优化的职能选择。在设计形成初期进行整体研究,包含对电子电路的测试实践。重视对电子电路的调试和功能定位,保证未来工作进行的顺利要求。重视电子电路功能的设计才是保证产品能够高效率工作和服务的基础,也是确认核心功能和辅助功效的重要工作内容。实现设计初期的检查和测试,能够保证设备未来使用的优越性。

3调试仪器概述

具体的电子电路设计功能测试与调节工作要求的比较准确和细致,在实际的工作过程当汇总需要进行相关仪器的使用和完善,避免当中一些环节出现问题。在调试仪器使用的过程中涉及到众多的零部件,包含万能用的工具表,显示波动幅度的器械,以及信号发出的设备等。针对具体的调试工作进行观察,玩能用的工具表主要是为了测量设备使用期间的电流量和电压力,以及存在的电阻等元素。显示波动幅度的器械主要是为了更准确的测量信号,关注波动变化。信号的发出设备是为了在监测过程中收集信息,确定监测工作准确性和保证基本交流。

4电子电路调试具体流程

电子电路的调试工作可以划分为诸多细致的流程,在具体工作开展的过程中还需要进行整体工作的完善和优化。调试的工作需要进行电路的线路监测,在实际的工作验收中观察通电的效果。调试的工作还需要确保对电子设备的功能监测,保证实际的工作过程能够正常的运作,充分实现对信息传播的要求。在实际工作开展的过程当中要进行电源的调试,减少工作阻碍,进行指标的规范和数据的验收。除此之外,调试工作还可以划分为两种方式,分别是整体和分区域的调试工作。细致的划分主要是为了给保证验收工作的严谨性要求。最后需要针对环境进行监测,考量实际工作需求进行优化处理。

5调试工作需要重视问题

在调试工作进行过程当中还需要重视对工作细节的优化处理,保证人员施工的科学性安排,在实际的操作过程当中需要进行设备功能的优化,确保功能的准确性要求。重视对细节工作的监督和管理,在调试的信息记录中掌握数据中存在的差异,为维护系统工作提供良好的基础,也有助于及时的解决系统工作出现的问题。除此之外,还需要认识到系统调试工作反复执行的重要性,针对测量工作进行反复的操作才能够保证电子电路的设计符合实际生产需求。

6结论

综上所述,本次研究针对电子电路设计的相关工作展开分析和研究,希望在实际的工作过程当中掌握实践的工作经验,在未来的电子电路设计工作当中采取先进的科学手段,实现对相关工作内容的整合,满足时展的进步要求。在传统电子电力设计的相关工作基础上实施切实有效的完善策略,保证基本工作的流畅性原则,在实施科学有效的方式和方法进行相关设计工作的管理,满足实际工作的需要,进行不同线路的测试和验收,保证电子电线设计工作的优越功能。重视对电子电路工作的设计工作,在实际工作开展的过程中进行调试工作的监督与管理,进一步促进我国现代化生产效率的提升。

参考文献

[1]许小飞,方桦.电子电路设计的原则、方法以及步骤探讨[J].电子制作,2016(10):45.

[2]丘嵘,涂用军.基于工作过程的学习情境设计的关键要素及途径与方法——以“电子电路调试与应用”课程为例[J].职教通讯,2013(12):5-8.

第3篇:电路设计的基本方法范文

1、课程目标

使学生具备本专业的高素质技术应用型人才所必需的电子电路逻辑设计基本知识和灵活应用常用数字集成电路实现逻辑功能的基本技能;为学生全面掌握电子设计技术和技能,提高综合素质,增强职业变化的适应能力和继续学习能力打下一定基础;通过项目的引导与实现,培养学生团结协作、敬业爱岗和吃苦耐劳的品德和良好职业道德观。本课程目标具体包括知识目标、能力目标和素质目标。

(1)知识目标:熟悉数字电子技术的基本概念、术语,熟悉逻辑代数基本定律和逻辑函数化简;掌握门电路及触发器的逻辑功能和外特性;掌握常用组合逻辑电路和时序电路的功能及分析方法,学会一般组合逻辑电路的设计方法(用SSI和MSI器件),学会同步计数器的设计方法;熟悉脉冲波形产生与变换电路的工作原理及其应用;了解A/D,D/A电路及半导体存储器、PLA器件的原理及其应用。

(2)能力目标:具有正确使用脉冲信号发生器、示波器等实验仪器的能力;具有查阅手册合理选用大、中、小规模数字集成电路组件的能力;具有用逻辑思维方法分析常用数字电路逻辑功能的能力;具有数字电路设计初步的能力。

(3)素质目标:培养学生学习数字电路的兴趣;培养学生团结合作的意识,培养学生自己查找资料能力。

2、课程定位

《逻辑设计》是计算机应用技术专业和电子信息类专业的一门重要硬件基础课,其理论性和实践性很强,尤其强调工程应用。是现代电子技术、计算机硬件电路、通信电路、信息与自动化技术的和集成电路设计的基础。在高速发展的电子产业中数字电路具有较简单又容易集成。通过本课程学习,熟悉小中大规模数字集成电路分析与应用,突出数字电子技术应用性,获得数字电子技术必要的基本理论基本知识和基本技能;了解数字电子技术的应用和发展概况,为后继课程及从事相关工程技术工作和科研与设计工作打下一定基础。《逻辑设计》在电子信息专业课程的地位,表现在其先导课程为《电工电子技术》,要求学生掌握由分立元器件组成的电子电路的识别与检测、与基本分析方法,掌握有关晶体管以及晶体管电路的分析方法等;其后续课程有《微机原理与接口技术》、《单片机技术应用》、《EDA技术应用》等。学习集成电路芯片在计算机及相关电子设备中的应用与作用。

二、逻辑设计课程教学内容

1、教学内容选取依据

(1)以培养高素质技能型人才为目标,教学内容选择与组织突出“以能力为本位,以职业实践为主线,以项目主体--任务贯穿”为总体设计要求,在内容的选取上,首先立足于打好基础。在确保基本概念、基本原理和基本教学方法的前提下,简化集成电路内部结构和工作原理的讲述,减少小规模集成电路的内容,尽可能多地介绍中大规模集成电路及其应用。以能力培养为主线,以应用为目的,突出思路与方法阐述,力求反映当今数字电子技术的新发展。

(2)在教材内容编排上精心组合,深入浅出,做到概念清晰,逻辑设计思想严谨。教学实施中注重重点突出,层次分明,相互衔接,逻辑性强,以利于教学做一体化的整合。在讲义上力求简洁流畅,通俗易懂,便于学生自学。

(3)以实训项目为载体,采取任务驱动教学做一体化的实施,体现理论指导实践,实践深化理论的素质养成目的。

(4)依据各学习项目的内容总量以及在该门课程中的地位分配各学习项目的课时数。

(5)知识学习程度用语主要使用“了解”、“理解”、“能”或“会”等用来表述。“了解”用于表述事实性知识的学习程度,“理解”用于表述原理性知识的学习程度,“能”或“会”用于表述技能的学习程度。

2、教学具体内容安排

表决器电路设计与制作,抢答器电路设计与制作,同步计数器电路设计与制作,方波发生器电路设计与制作,数字钟电路设计与制作。

三、逻辑设计课程教学模式与手段

1、教材编写

教材编写体现项目课程的特色与设计思想,教材内容体现先进性、实用性,典型产品的选取科学,体现地区产业特点,具有可操作性。呈现方式图文并茂,文字表述规范、正确、科学。

2、教学模式

采取项目教学,以工作任务为出发点来激发学生的学习兴趣,教学过程中要注重创设教育情境,采取“教学做”一体化的教学模式,将知识、能力、素质的培养紧密结合,进一步加强职业教育教学改革研究,优化完善我校应用型人才培养体系。

3、教学方法

从教学手段、教案设计、教学思路、语言表述、教学资源等方面着手,对如何在课堂教学中提高学生的学习主动性和兴趣开展教研。教学过程有进行项目引导,任务贯穿,“提出问题”、“引导思考”、“假设结论”、“探索求证”,把握课程的进度,活跃课堂气氛,使大多数学生能够获得尽可能大的收获。采用“发现法”教学方式,使学生建立科学的思维方法与创新意识。学习内容的掌握依赖于学习者的实践,课程组加强了对教师教学及学生学习过程的管理;为使学生理解和有效掌握课程内容,在坚持课外习题练习、辅导答疑等教学环节的基础上,增加随堂练习、单元测验等即时性练习环节,督促学生复习和掌握已学知识点。

4、教学手段

充分利用挂图、投影、多媒体等现代化手段,发挥网络突破空间距离限制的优势,让学生能够最大限度的利用学习资源,自主地学习和提高,弥补课堂上未能及时消化吸收的部分内容。教学过程中相应教学班成立课程提高学习小组,任课教师课外指导该小组进行拓展学习及课外科技活动指导,达到因材施教的目的;一方面教师指导有兴趣能力强的学生进行课外学习,特别是对数字系统设计知识的答疑指导,为能力强的学生提供发展空间,解决因课时数限制而无法在课堂上深入讲授特定工程应用专题的矛盾。也加强了教师与学生的互动,教师可以第一手了解学生对教学过程的反馈,改进教学方法,利用学习好的学生带动整个班级的学习,促进良好班风学风的形成。探讨当前教学环境下,培养学生课外学习能力的新模式。

第4篇:电路设计的基本方法范文

关键词:数字电路;教学体系;重构;设计

中图分类号:G642.0?摇 文献标志码:A 文章编号:1674-9324(2014)06-0165-02

一、概述

数字技术是近几十年发展最快的技术,其发展对人类社会产生着深远的影响。作为数字技术硬件基础的数字电路遵循摩尔定律,在几十年中经历了从分立电路到集成电路的设计历程,到现在已进入片上网络(Network on Chip,NoC)的阶段。从数字电路的晶体管电路时代,历经中小规模集成电路设计时代,到现在广泛采用EDA工具进行ASIC设计以及基于FPGA进行设计的时代,电路设计的每一步发展过程都产生过很多重要的设计思想及设计方法。这些设计思想及方法的累积构成了现在的数字电路教学体系。然而,由于新旧体系高速更迭,使得目前的数字电路教学体系呈现一种拼接的模式,整体内容缺少因果链接,电路的逻辑设计、功能设计和性能设计三方面脱节。这种现状与当前数字技术领域对人才的要求极不适应。要对现状有所改革,首先需要对数字电路各部分内容有所了解,从中提取适应发展的部分,重新构成一个自洽的课程内容体系。本文希望通过对现有课程中不同部分内容进行分析,在此方面进行一些尝试。

二、基于晶体管的设计

目前,数字集成电路采用的主要工艺是CMOS工艺,在这种工艺条件下,电路逻辑结构由MOS晶体管担任开关作用来实现。MOS晶体管分为PMOS和NMOS两种形式,分别用于传导高电平(1)和低电平(0),如图1所示。逻辑输入控制晶体管的栅极,连通的晶体管支路由电源或地为逻辑输出提供标准输出电平,如图2所示。在晶体管的相互连接中,NMOS的串联可以实现AND运算,并联实现OR运算,由此可以形成各种基本的逻辑单元,如图3所示,这些逻辑单元的进一步连接可以形成各种功能电路。

在目前国内外教材的分析中,对此类电子电路的评价主要集中于晶体管数量。如何在设计中减少晶体管的使用量成为设计的主要目标。基于这一考虑,在基本单元层次,发展了AOI电路结构,将“与-或”二级结构形成一个整体,晶体管数量只与初级与门输入的数量相关。在功能设计的层次,引入卡诺图对逻辑方程进行最小化,其目标也是通过减少初级门输入端的数量来实现晶体管数量的减少。上述设计方法能够非常准确地表达数字电路的逻辑体系实现,并能建立组合逻辑的卡诺图分析设计方法和时序逻辑的转移输出表的分析设计方法,为数字电路的规范化设计体系奠定了很好的基础,也构成了目前数字电路设计的理论基础。但在目前的教学体系中,这种设计方法只是将晶体管作为标准开关器件使用。由于缺少有效的评价体系,目前逻辑分析仅停留在简单电路的分析设计,在中规模功能电路的分析设计中,几乎没有采用这一体系。在VLSI的设计时代,对电路性能的评价主要表现为集成度(占用芯片面积、成本)、速度(最长延迟时间、最高时钟频率)和功耗(最大功耗、平均功耗)等指标上。要实现同样的功能,利用逻辑定理可以设计出很多不同结构的电路,最优化成为设计中的中心环节。而要实现这一目标,在基本逻辑结构形成的阶段就需要补充对于相关性能的描述模型。

三、基于中小规模集成块的设计

在上世纪70~80年代,为了应对数字技术的广泛采用,发展了以74系列为代表的各种中小规模集成块。不同领域的用户可以选用尽可能少的通用集成块连接形成电路,满足自己的特殊系统需求。为了使用上的方便,中小规模集成块在外型和I/O端口性能方面都进行了统一标准设计,其输入/输出特性由Data sheet详细规定,用户在使用时可以不忽略其内部电路工艺及逻辑形成方式,只根据设计要求选取对应功能块,根据端口特性设计外部负载连接电路。考虑到通用模块可能需要对模拟器件进行驱动,此类电路通常都配备了强大的对外驱动电路,导致集成芯片中主要部分为I/O部件,逻辑功能部分只占据了集成芯片的次要部分。为了增加模块的通用性,通常会在基本功能的基础上添加许多额外的控制/状态端口(与集成块的总体成本相比,这些添加几乎不增加成本,但能够带来市场上的好处)。由于电路的成本、速度、功耗主要由I/O部件及外壳决定,简单逻辑与复杂功能的模块在价格和速度上相差不大,用户倾向于选用复杂功能模块来构成电路(使用模块的部分功能),而不是选用基本逻辑部件构成电路,电路设计的主要目标成为选择最少逻辑块及最少连线进行设计,与逻辑设计基本脱离关系。在目前的教学体系中,关于逻辑单元静态与动态特性的讨论基本采用这种方式讲解;各种组合功能电路的设计和时序功能电路的设计(二进制计数器、移位寄存器等)都采用此类方式。由于目前的实验条件,以及学生创新活动中自己设计小系统的需要,中小规模集成块仍然具有重要的使用价值,相关内容也就构成了数字电路课程教学中功能设计的主体部分。然而,中小规模集成块作为一种集成度低下的分立设计,其高成本和低速度是其不可避免的缺陷。如何将相应内容与低层逻辑设计合理地结合,将电路性能的评价带入到对不同结构设计的选择上,是解决这一问题的关键。在ASIC设计中,不会无谓地设计不需要用到的所谓多功能扩展,对功能模块的教学改革应该首先着眼于基本功能的最佳实现方式,然后考虑在不同应用中的最佳扩展设计方式。目前基于多功能器件进行设计,利用其部分电路的设计方式对中小规模集成块是优化的方式,但对于片上设计就是一种浪费的设计了。

四、基于HDL的设计

随着计算机技术的广泛采用,数字集成电路的设计也进入EDA时代。HDL使电路的设计描述和仿真验证可以利用计算机工具进行,方便于层次化设计中信息的交流、保存、修改,有效提高了设计效率,降低了设计成本。同时,基于FPDA的设计也成为中间设计的主流方式。为了适应这种发展,现行数字电路课程中开始引入HDL语言的内容,并对各种功能电路的描述编程进行了足够详细的介绍。同时也对FPGA的基本结构进行了介绍。利用这些内容,学生能够方便地使用计算机系统开展各类数字设计,扩大了数字电路的应用教学,通过对设计的仿真也能够更好地理解电路性能与设计的关系,使学生对数字电路设计有更实际的理解,也便于开展课程设计和各种实验活动。HDL是一种硬件电路的描述工具,主要帮助仿真过程的自动进行。而目前关于HDL的教学中,很少将电路逻辑与性能的关系反映到语言描述中,使语言的描述沦为对电路功能的描述,失去了EDA工具的使用本意。对电路性能描述中比较容易的是对延迟时间(或时钟频率限制)的描述。若要进行这方面的描述,HDL必须基于最基本的逻辑单元,设计者应对各种基本部件的时间延迟以及连线负载带来的时间延迟有足够的了解。而电路的功能设计描述则必须基于这种带时间延迟的部件互连设计(结构设计的描述)。此点在目前的HDL的教学中应特别强调。同时需要注意到,这种仿真一定要在与综合无关的工具上进行。对设计集成度的衡量取决于电路设计的综合方式。目前,在EDA设计领域尚未建立一种统一的综合方式,不同的综合工具采用不同的算法结构,综合效率各有不同。虽然综合算法本质上是基于基本逻辑优化理论建立的,但其中涉及的各种数学理论很多,不是数字电路这门课程能够解决的。因此,本课程无法涉足综合领域,也难以将课程内容与综合工具得到的结果形成对应关系。如何将基本理论与综合算法联系起来,形成一个统一的系统,应该是数字电路课程未来一段时间的改革目标。目前,很多的免费EDA工具采用FPGA作为综合的基础,这种综合工具的优点是能够方便地得到所设计电路的评价(占用单元数量、延迟时间、时钟频率)。然而,由于FPGA设计的基础是4输入查找表(等价于4输入卡诺图的最小项和设计),在基本逻辑层次上可以认为未进行任何化简,集成度低、延迟时间长。同时综合工具会根据4输入查找表建立优化算法进行综合,由此将用户进行的结构设计思想抹杀,不利于课程内容的相互衔接。如果要理解其综合结构,就必须首先建立FPGA基本单元和布线方式的电路参数模型,然后在此基础上建立独特的综合算法。目前,本课程难以完成这一任务。

五、统一体系的思考

基于上述分析,可以看到目前数字电路面临的困境,也展现了建立一个统一体系的需求。统一体系应该以电路性能参数(集成度、速度等)作为评价模型,着重考虑ASIC和VLSI设计中的需求。评价模型应该由底层基本器件(晶体管)开始分析建立,继承现有体系中关于逻辑设计的思想,将性能评价延伸到逻辑模块和功能模块层次;逻辑层次的设计中,主要展现功能的不同结构实现方式,为电路设计提供灵活性;而在功能层次的设计中,则通过对不同结构的性能进行比较,确定电路的最佳形成方式。HDL的设计应该将速度的评价融入到电路结构的描述中,并通过仿真工具的应用使这一评价能够推广到大系统中,对同步时序设计提供支持。

参考文献:

[1]姜书艳,罗刚,吕小龙,邓罡,周启忠.片上网络互连串扰故障模型的研究及改进[J].电子测量技术,2012,35(4):123-127.

[2]姜书艳,罗刚,吕小龙,金卫,谢暄.90nm和65nm工艺下片上网络互连串扰故障模型分析[J].电子测量与仪器学报,2012,26(3):267-272.

[3]艾明晶.基于自动设计方法的数字逻辑课程改革研究与实践[J].实验技术与管理,2012,29(9):151-155.

[4]张苹珍,王俊峰,仲涛.VHDL在数字逻辑电路设计中的应用方法[J].信息通信,2012,(5):96-97.

[5]张丽杰,吕少中.QuartusⅡ软件在数字逻辑电路教学中的应用[J].软件导刊,2012,11(4):199-200.

[6]曹维,徐东风,孙凌洁.基于CDIO理念的数字逻辑实践教学探索[J].计算机教育,2012,(12):75-77.

[7]Frank Vahid. Digital Design with RTL Design,VHDL,and Verilog,A John Wiley & Sons,Inc.,Publication.2011:41-48.

第5篇:电路设计的基本方法范文

【关键词】高速数字电路 设计技术 计算机

在微电子技术飞速发展中,高速电子电路器件不断被应用,在现阶段的电子设计领域中,高速数字电路设计已经被广泛应用。高速数字电子电路设计是一门处在不断发展与进步中的学科,目前有很多理论尚处于研究与发展中。在我国,现阶段的高速数字电路设计在一定程度上取得了一些成绩,但是大部分都是偏于理论方面的,对于实践操作方面还有一定的欠缺。所以,从高速电路设计的角度来看,了解和掌握高速数字电路设计方法对于实践工程的指导工作有着非常直接的作用。

1 什么是高速数字电路

高速数字电路的概念:是一种由高速变化信号在电路中所产生的具备诸如:电容、电感等模拟特性作用的电路,其主要是由集中参数系统和分布参数系统两个部分组成。其中,集中参数系统对低速数字电路设计进行了简化处理,使其始终处于一种较为理想的状态,所以集中参数系统不适用于高速数字电路技术,而是在低速数字电路设计中得到了广泛的应用;分布参数系统则比较适合用于高速数字电路设计中。分布参数系统的概念与实际运行情况比较接近,其通常认为信号时间与其所处的位置对信号的特性有着决定性作用,所以元器件间的线路长度会对信号特性产生影响,另外,线路中的信号进行传输时需要一定的延迟。

2 影响高速数字电路设计技术的问题

高速数字电路设计成功与否取决于信号的质量,也就是信号完整性的保持,若是无法保持信号完整性,那么就会出现信号失真的现象,影响正确数据、地址以及控制信号的生成,进而导致系统工作出现错误,严重的甚至会导致系统崩溃。对信号质量产生影响的因素非常多,但是,对信号完整性产生影响的因素主要有以下三点:

系统中处于信号传输线位置的阻抗不相匹配,容易形成反射噪声,这是破坏信号完整性的主要原因;信号线间的距离随着处于印刷板位置的电路密集度不断增大而变的愈加狭小,这就导致信号间的电磁耦合增大,以至于无法对其进行忽略处理,进而造成信号间的串扰情况越加严重;处于芯片内的大量电路输出同时动作的过程中,因为寄生于电源平面间电感和电阻的影响,就会出现较大的瞬态电流,进而对电源线和地线上的电压产生影响,使其发生波动和变化。

总而言之,对电路进行合理的设计,减小或是消除上述因素对信号完整性的影响,促进高速数字信号质量的提高,已经成为现阶段所有高速数字电路设计所需要解决的主要问题。

3 高速数字电路设计技术的具体研究

3.1 设计高速数字电路信号完整性

针对高速数字电路信号完整性的设计主要包括两个方面内容:第一个是研究不同信号在电路信号网中所产生的干扰,第二个是研究不同电路信号网传输信号的干扰,简单来说,也就是研究反射和干扰的问题。由于电路中不相匹配的阻抗因素等影响,反射问题在低速数字电路设计中并不存在。数字电路网在理想状态下的不同阻抗是相等并相互匹配的,位于数字电路传输线上的阻抗处于连续的状态,因此反射现象不会出现在线路的电流和电压中。进行设计数字电路时,阻抗过大或是过小都会导致电路传播的波形产生干扰现象,进而对信号完整性造成影响。高速数字电路设计难以使电路与临界阻抗的状态相符合,因此保持系统处于过阻抗状态是一个较为合适的方法。

设计高速数字电路时首先要考虑的就是感性串扰等问题。根据信号基本理论得出,电流在电路中是处于循环流动的状态,这一方面往往会被数字电路设计工作人员所忽视。信号的回路和路径构成了电流环路,电感在电路中随着电流环路的增大而变大,而环路中的电流也会随着其中的电磁场变化而发生改变。尽可能的对电流环路进行减小处理,对感性串扰起到了降低的作用,在设计高速数字电路中,主要可以通过两个方法来进行,即对线路距离进行增加和对电流环路面积进行减小的处理,以此来提高高速数字电路信号的完整性。

3.2 设计高速数字电路电源

设计高速数字电路需要应用大量的低电压元器件,其对电源的稳定性造成了一定的影响,这也是设计数字电路所要考虑的一个主要因素。电源完整性指的是电源在系统运行中的波动情况,也就是电源的波形质量。在高速数字电路设计中能够对电源稳定性造成影响有:由处于高速开关状态下线路器件所产生的过大的瞬间电流,以及数字电路中过多的电感所导致的变大的信号回路阻抗。

高速数字电路设计的理想状态是其电源系统中不存在阻抗,由于整个信号回路不存在阻抗的耗损问题,可以使电源系统中各个点的电位保持恒定。但是,在实际中并不存在这种状态,电源分配系统往往会产生严重的干扰噪声,进而对整个电路的正常运行造成影响。在进行高速数字电路设计时,要充分考虑到电源的电感和电阻因素,对其进行降低处理。现阶段在电路系统中大多都是采用大面积的铜质材料,这远远不能满足高速电路设计的标准和要求,因此在设计的过程中还要对其它影响因素进行综合的考虑,其中将去耦电容运用到电路中就是一个非常简单有效的方法。

4 结语

综上所述,电子设计正在朝着速度快、密度高的方向发展和进步,在这种状态下的电子系统,为了能够对高速数字电路设计问题进行有效合理的解决,对高速数字电路设计方法和手段进行创新和改进是势在必行的。不断促进高速数字电路设计方法可行性的提高,为其在现代化技术的发展进程中不断进步提供了可靠保障。

参考文献

[1]李琳琳.高速数字电路设计中电源完整性分析[J].火控雷达技术,2010(02).

[2]冯巨标.高速数字电路电源分配网络的近场电磁干扰研究[D].哈尔滨工业大学,2012.

[3]付亚如.浅谈高速数字电路特性与信号完整性设计[J].黑龙江科技信息,2011(04).

[4]张婧.高速数字电路信号完整性仿真设计与验证[D].西安电子科技大学,2013.

第6篇:电路设计的基本方法范文

1.元件的选择.电学实验中,元件的选择十分重要,它关乎着电路是否能设计成功.首先应该选择合适的电源,在选择时一定要考虑符合电路设计的电流值,其次还要对电表进行选择,尽量选择更贴近自己需要的量程,保证设计的精确性.还要选择适合电路的元件的型号等,将这些问题都进行全面考虑才能保证实验的进行.2.了解元件的使用方法.电路设计中存在许多电路元件,要想电学实验能顺利的进行,就必须了解各种电路元件的使用方法和使用规则.例如电表,电表上显示两个数值,如果不提前进行了解很容易将数值弄混.造成实验结果的错误.因此电学实验中电路设计时一定要先弄清电路元件的使用方法,才能保障实验的进行.3.熟悉电路构成,加强对特殊电路的记忆与理解电学实验中有许多特殊的电路,如果内心没有一个完整的电路构成图,在遇到这些特殊电路时,就没有办法将实验顺利开展下去.因此在实验前一定要加强对电路构成的设计.

二、电路设计的原则

1、整体性原则.在电路设计时不能将每一部分分开设计,电路的各个部分的关联性都很强,必须以整体性的原则进行设计,电流、电压的选择等都是根据电路的整体方案进行选择的.2、优化原则.电路设计不是一个简单的电学实验,它有庞大的系统性,在这个系统里又有许多小系统,这样才能形成一个完整的电路,电路设计时或多或少都会有一定的问题存在,出现这些问题不能视而不见,要将问题进行整合,拿出一套合理的改进方案,将电路设计达到最佳的设计效果.3、功能性原则.电学实验电路设计不是让学生完成一个简单的实验,目的是为了让学生通过电路设计来掌握一定的学习技能,这才是进行电路设计最终要完成的目标,所以在电路设计上一定要考虑它的功能性.

三、电路设计的方法

1.明确实验目的.所有的实验设计都有一个设计目的,为了达到这个目的才来进行实验操作,电路设计前也应该如此,首先要设定一个实验的目标,然后再进行实验,实验结束后来看看自己的实验结果是否达到了设计目的,才能从中分析思路找到设计的缺陷,从而进行改进.2.选择实验器材.实验设计除了理论的知识还需要实验器材的支撑,我们明确了实验的目的后就要进行实验器材的选择,选择时一定要配合自己的设计目标,尽可能的保证实验器材对实验带来的误差影响,选择最适宜的器材将误差降到最低.选择器材时还要考虑器材的操作性是否适用于自己的实验设计中,避免在进行实验时造成实验失败.在器材选择上最应该注意的就是器材的安全性,由于电路设计的复杂性往往会由于器材的选择不当造成电路烧毁,因此在器材的选择上这些问题都应该被注意.3.选择设计方案.电路设计是一种灵活的设计,不同的方案可以有不同的设计效果,实验目的、实验器材确定后根据这些内容来进行分析选择一些适宜的电路设计方案,将它们整理出来,绘制成设计图,结合学过的理论知识加以比较选择最适宜的设计方案.包括电流表应设计内接还是外接,滑动变阻器应采取分压式接法还是限流式接法,电路结构原理选择伏安法还是半偏法等等.保证电路的设计方案能顺利的运用在电学实验中.4.简化电路方程.电路设计中有许多的电路方程,它们是非常复杂的,但是在电路设计时还必须要用到,如果不将其进行简化在设计的过程中就会遇到许多麻烦,不仅会对电路的结构产生较大的影响,还有可能造成电路系统紊乱,所以在进行电路设计前要在合理的范围内将复杂的电路方程简化,保证电学实验的有效进行.5.电路设计案例分析.在描绘标有“2.5V0.3A”字样小灯泡的伏安特性曲线实验中,使用3V干电池和滑动变阻器进行供电.该实验本就要求小灯泡两端的电压从零起调,所以也只能是选用分压接法进行供电.只是在滑动变阻器的阻值选择上,考虑到灯泡正常发光时的电阻为12.5Ω,因此最好是选用实验室配备的5Ω或10Ω的滑动变阻器.电路实验设计题其设计思路、方法一般都来源于教材,要求用学过的物理知识、原理、实验思路、方法设计出合理的方案.因此在教学中或者复习过程中要特别注意对所学过电学实验问题的多种方法、远离的优劣、电路联接式的选择方法以及有关的实验注意事项进行归纳总结.从中体会多种方法的优劣,养成发散性思维的好习惯,才能比较顺利完成实验设计问题.高中物理电学实验电路设计学习起来虽然复杂,但是如果方法得当,进行实验前考虑的全面,在进行电路设计时就会相对简单些.高中生进行实验是对学生的理论知识及动手能力的考察,教师在学生的操作过程中也要加以指导帮助学生实验的误差变小,安全性提高,学生才能更好的将电学知识运用到考试中和实际生活中.

作者:汤从 单位:安徽省滁州市明光明光中学

参考文献:

[1]王慧.中学生电学实验能力现状及影响因素研究[D].苏州大学,2010.

[2]曹会.高中物理电学实验资源开发与能力培养的初步研究[D].苏州大学,2010.

[3]胡可玲.初中生电学学习中常见错误诊断性分析及策略[D].苏州大学,2013.

第7篇:电路设计的基本方法范文

关键词:IP技术 模拟集成电路 流程

中图分类号:TP3 文献标识码:A 文章编号:1674-098X(2013)03(b)-00-02

1 模拟集成电路设计的意义

当前以信息技术为代表的高新技术突飞猛进。以信息产业发展水平为主要特征的综合国力竞争日趋激烈,集成电路(IC,Integrated circuit)作为当今信息时代的核心技术产品,其在国民经济建设、国防建设以及人类日常生活的重要性已经不言

而喻。

集成电路技术的发展经历了若干发展阶段。20世纪50年代末发展起来的属小规模集成电路(SSI),集成度仅100个元件;60年展的是中规模集成电路(MSI),集成度为1000个元件;70年代又发展了大规模集成电路,集成度大于1000个元件;70年代末进一步发展了超大规模集成电路(LSI),集成度在105个元件;80年代更进一步发展了特大规模集成电路,集成度比VLSI又提高了一个数量级,达到106个元件以上。这些飞跃主要集中在数字领域。

(1)自然界信号的处理:自然界的产生的信号,至少在宏观上是模拟量。高品质麦克风接收乐队声音时输出电压幅值从几微伏变化到几百微伏。视频照相机中的光电池的电流低达每毫秒几个电子。地震仪传感器产生的输出电压的范围从地球微小振动时的几微伏到强烈地震时的几百毫伏。由于所有这些信号都必须在数字领域进行多方面的处理,所以我们看到,每个这样的系统都要包含一个模一数转换器(AD,C)。

(2)数字通信:由于不同系统产生的二进制数据往往要传输很长的距离。一个高速的二进制数据流在通过一个很长的电缆后,信号会衰减和失真,为了改善通信质量,系统可以输入多电平信号,而不是二进制信号。现代通信系统中广泛采用多电平信号,这样,在发射器中需要数一模转换器(DAC)把组合的二进制数据转换为多电平信号,而在接收器中需要使用模一数转换器(ADC)以确定所传输的电平。

(3)磁盘驱动电子学计算机硬盘中的数据采用磁性原理以二进制形式存储。然而,当数据被磁头读取并转换为电信号时,为了进一步的处理,信号需要被放大、滤波和数字化。

(4)无线接收器:射频接收器的天线接收到的信号,其幅度只有几微伏,而中心频率达到几GHz。此外,信号伴随很大的干扰,因此接收器在放大低电平信号时必须具有极小噪声、工作在高频并能抑制大的有害分量。这些都对模拟设计有很大的挑战性。

(5)传感器:机械的、电的和光学的传感器在我们的生活中起着重要的作用。例如,视频照相机装有一个光敏二极管阵列,以将像点转换为电流;超声系统使用声音传感器产生一个与超声波形幅度成一定比例的电压。放大、滤波和A/D转换在这些应用中都是基本的功能。

(6)微处理器和存储器:大量模拟电路设计专家参与了现代的微处理器和存储器的设计。许多涉及到大规模芯片内部或不同芯片之间的数据和时钟的分布和时序的问题要求将高速信号作为模拟波形处理。而且芯片上信号间和电源间互连中的非理想性以及封装寄生参数要求对模拟电路设计有一个完整的理解。半导体存储器广泛使用的高速/读出放大器0也不可避免地要涉及到许多模拟技术。因此人们经常说高速数字电路设计实际上是模拟电路的

设计。

2 模拟集成电路设计流程概念

在集成电路工艺发展和市场需求的推动下,系统芯片SOC和IP技术越来越成为IC业界广泛关注的焦点。随着集成技术的不断发展和集成度的迅速提高,集成电路芯片的设计工作越来越复杂,因而急需在设计方法和设计工具这两方面有一个大的变革,这就是人们经常谈论的设计革命。各种计算机辅助工具及设计方法学的诞生正是为了适应这样的要求。

一方面,面市时间的压力和新的工艺技术的发展允许更高的集成度,使得设计向更高的抽象层次发展,只有这样才能解决设计复杂度越来越高的问题。数字集成电路的发展证明了这一点:它很快的从基于单元的设计发展到基于模块、IP和IP复用的

设计。

另一方面,工艺尺寸的缩短使得设计向相反的方向发展:由于物理效应对电路的影响越来越大,这就要求在设计中考虑更低层次的细节问题。器件数目的增多、信号完整性、电子迁移和功耗分析等问题的出现使得设计日益复杂。

3 模拟集成电路设计流程

3.1 模拟集成电路设计系统环境

集成电路的设计由于必须通过计算机辅助完成整个过程,所以对软件和硬件配置都有较高的要求。

(1)模拟集成电路设计EDA工具种类及其举例

设计资料库―Cadence Design Framework11

电路编辑软件―Text editor/Schematic editor

电路模拟软件―Spectre,HSPICE,Nanosim

版图编辑软件―Cadence virtuoso,Laker

物理验证软件―Diva,Dracula,Calibre,Hercules

(2)系统环境

工作站环境;Unix-Based作业系统;由于EDA软件的运行和数据的保存需要稳定的计算机环境,所以集成电路的设计通常采用Unix-Based的作业系统,如图1所示的工作站系统。现在的集成电路设计都是团队协作完成的,甚至工程师们在不同的地点进行远程协作设计。EDA软件、工作站系统的资源合理配置和数据库的有效管理将是集成电路设计得以完成的重要保障。

3.2 模拟集成电路设计流程概述

根据处理信号类型的不同,集成电路一般可以分为数字电路、模拟电路和数模混合集成电路,它们的设计方法和设计流程是不同的,在这部分和以后的章节中我们将着重讲述模拟集成电路的设计方法和流程。模拟集成电路设计是一种创造性的过程,它通过电路来实现设计目标,与电路分析刚好相反。电路的分析是一个由电路作为起点去发现其特性的过程。电路的综合或者设计则是从一套期望的性能参数开始去寻找一个令人满意的电路,对于一个设计问题,解决方案可能不是唯一的,这样就给予了设计者去创造的机会。

模拟集成电路设计包括若干个阶段,设计模拟集成电路一般的过程。

(l)系统规格定义;(2)电路设计;(3)电路模拟;(4)版图实现;(5)物理验证;(6)参数提取后仿真;(7)可靠性分析;(8)芯片制造;(9)测试。

除了制造阶段外,设计师应对其余各阶段负责。设计流程从一个设计构思开始,明确设计要求和进行综合设计。为了确认设计的正确性,设计师要应用模拟方法评估电路的性能。

这时可能要根据模拟结果对电路作进一步改进,反复进行综合和模拟。一旦电路性能的模拟结果能满足设计要求就进行另一个主要设计工作―电路的几何描述(版图设计)。版图完成并经过物理验证后需要将布局、布线形成的寄生效应考虑进去再次进行计算机模拟。如果模拟结果也满足设计要求就可以进行制造了。

3.3 模拟集成电路设计流程分述

(1)系统规格定义

这个阶段系统工程师把整个系统和其子系统看成是一个个只有输入输出关系的/黑盒子,不仅要对其中每一个进行功能定义,而且还要提出时序、功耗、面积、信噪比等性能参数的范围要求。

(2)电路设计

根据设计要求,首先要选择合适的工艺制程;然后合理的构架系统,例如并行的还是串行的,差分的还是单端的;依照架构来决定元件的组合,例如,电流镜类型还是补偿类型;根据交、直流参数决定晶体管工作偏置点和晶体管大小;依环境估计负载形态和负载值。由于模拟集成电路的复杂性和变化的多样性,目前还没有EDA厂商能够提供完全解决模拟集成电路设计自动化的工具,此环节基本上通过手工计算来完成的。

(3)电路模拟

设计工程师必须确认设计是正确的,为此要基于晶体管模型,借助EDA工具进行电路性能的评估,分析。在这个阶段要依据电路仿真结果来修改晶体管参数;依制程参数的变异来确定电路工作的区间和限制;验证环境因素的变化对电路性能的影响;最后还要通过仿真结果指导下一步的版图实现,例如,版图对称性要求,电源线的宽度。

(4)版图实现

电路的设计及模拟决定电路的组成及相关参数,但并不能直接送往晶圆代工厂进行制作。设计工程师需提供集成电路的物理几何描述称为版图。这个环节就是要把设计的电路转换为图形描述格式。模拟集成电路通常是以全定制方法进行手工的版图设计。在设计过程中需要考虑设计规则、匹配性、噪声、串扰、寄生效应、防门锁等对电路性能和可制造性的影响。虽然现在出现了许多高级的全定制辅助设计方法,仍然无法保证手工设计对版图布局和各种效应的考虑全面性。

(5)物理验证

版图的设计是否满足晶圆代工厂的制造可靠性需求?从电路转换到版图是否引入了新的错误?物理验证阶段将通过设计规则检查(DRC,Design Rule Cheek)和版图网表与电路原理图的比对(VLS,Layout Versus schematic)解决上述的两类验证问题。几何规则检查用于保证版图在工艺上的可实现性。它以给定的设计规则为标准,对最小线宽、最小图形间距、孔尺寸、栅和源漏区的最小交叠面积等工艺限制进行检查。版图网表与电路原理图的比对用来保证版图的设计与其电路设计的匹配。VLS工具从版图中提取包含电气连接属性和尺寸大小的电路网表,然后与原理图得到的网表进行比较,检查两者是否一致。

参考文献

第8篇:电路设计的基本方法范文

关键词:电子设计自动化;课程特点;教学方法

作者简介:董素鸽(1983-),女,河南叶县人,郑州大学西亚斯国际学院电子信息工程学院,助教;李华(1972-),男,河南郑州人,郑州大学西亚斯国际学院电子信息工程学院,助教。(河南郑州451150)

中图分类号:G642.41     文献标识码:A     文章编号:1007-0079(2012)11-0046-02

电子设计自动化(EDA:Electronic Design automation)是将计算机技术应用于电子设计过程中而形成的一门新技术,[1]它已经被广泛应用于电子电路的设计和仿真、集成电路的版图设计、印刷电路板(PCB)的设计和可编程器件的编程等各项工作中。

随着半导体技术及电子信息工业的不断发展,电子设计自动化技术在信息行业中的应用范围越来越广泛,应用领域也涉及产业链中的几乎任何一个环节。一方面是社会上对电子设计自动化人才的急需,另一方面是我国高校中电子设计自动化人才培养的落后,两者之间的矛盾也促使众多的高校开始在电子信息、微电子技术等专业中开设“电子设计自动化”课程。如今,该课程已成为众多信息类学科的专业必修课,这为我国电子设计自动化人才的培养和充实做出了巨大的贡献。

“电子设计自动化”课程教学效果直接影响着人才培养的质量,因此,优秀的教学方法和教学质量是教学过程中必须重视的。笔者根据近几年的教学经历,总结经验,开拓创新,形成了一套特有的教学方法,旨在培养出基础牢、思路清、知识广、能力强的电子设计自动化人才。

一、“电子设计自动化”课程教学的特点

电子设计自动化是一个较为宽泛的概念,它涵盖了电路设计、电路测试与验证、版图设计、PCB板开发等各个不同的应用范围。而当前“电子设计自动化”课程设置多数侧重电路设计部分,即采用硬件描述语言设计数字电路。因此,该课程的教学具非常突出的特点。

1.既要有广度,又要有深度

有广度即在教学过程中需要把电子设计自动化所包含的各个不同的应用环节都要让学生了解,从而使学生从整个产业链的角度出发,把握电子设计自动化的真正含义,以便于他们建立起一个全局概念。有深度即在教学过程中紧抓电路设计这个重点,着重讲解如何使用硬件描述语言设计硬件电路,使学生具备电路设计的具体技能,并能够应用于实践和工作当中。

2.突出硬件电路设计的概念

在众多高校开设的“电子设计自动化”课程中,多数是以硬件描述语言VHDL作为学习重点的。而VHDL语言是一门比较特殊的语言,与C语言、汇编语言等存在很大的不同。因此,在教学过程中首先要让学生明白这门语言与前期所学的其他语言的区别,并通过实例,如CPU的设计及制造过程,让学生明白VHDL等硬件描述语言的真正用途,并将硬件电路设计的概念贯穿整个教学过程。

3.理论与实践并重

“电子设计自动化”是一门理论性与实践性都很强的课程,必须两者并重,才能收到良好的教学效果。在理论学习中要突显语法要点和电路设计思想,[2]并通过实践将这些语法与设计思想得以加强和巩固,同时在实践中锻炼学生的创新能力。

二、“电子设计自动化”课程教学方法总结

良好的教学方法能起到事半功倍的效果。因此,针对“电子设计自动化”课程的教学特点,笔者根据近几年的教学经验总结了一些行之有效的教学方法。

1.以生动的形式带领学生进入电子设计自动化的世界

电子设计自动化对学生来说是一个全新的概念。如何让他们能够快速地进入到这个世界中,并了解这个世界的大概,从而对这个领域产生兴趣,是每个老师在这门课授课之前必须要做的一件事情。教师可以采用一些现代化的多媒体授课技术,让学生更直观地了解电子设计自动化。由于电子设计自动化是一个很抽象的概念,因此,可以通过播放视频、图片等一些比较直观的内容来让学生了解这个领域。从学生最熟悉的电脑CPU引入,通过一段“CPU从设计到制造过程”的视频,让学生了解集成电路设计与制造的流程与方法,并引出集成电路这个概念。

通过早期的集成电路与现在的集成电路的图片对比,引出EDA的概念,并详细讲解EDA对于集成电路行业的发展所作的巨大贡献。在教学过程中,通过向学生介绍一些使用EDA技术实现的当前比较主流的产品及其应用,提高学生对EDA的具体认识。这些方法不仅使学生对EDA相关的产业有了相应的了解,更激发了学生的学习兴趣,使学生能够踊跃地投入到“电子设计自动化”的学习中。

2.以实例展开理论教学

“电子设计自动化”的学习内容包含三大部分:[3]硬件描述语言(以VHDL语言为学习对象)、开发软件(以QUARTUS II为学习对象)和实验用开发板(以FPGA开发板为学习对象)。

硬件描述语言的学习属于理论学习部分,是重中之重。对于一门编程语言的学习来说,语法和编程思想是学习要点。在传统的编程语言学习的过程中,通常都是将语法作为主线,结合语法实例逐渐形成编程思想。这种学习方法会使学生陷入到学编程语言就是学习语法的误区中,不仅不能学到精髓,还会因为枯燥乏味而产生厌倦感。

如何能使学生既能掌握电路设计的方法,又轻松掌握语法规则是一个教学难题。笔者改变传统观念,将编程思想的学习作为教学主线,在理论学习过程中,以具体电路实例为基础,引导学生从分析电路的功能入手,熟悉将电路功能转换为相应的程序语句的过程,并掌握如何将这些语句按照规则组织成一个完整无误的程序。在此过程中,不断引入新的语法规则。由于整个过程中学生的思考重点都放在电路功能的实现上,而语法的学习就显得不那么突兀,也不会产生厌倦感。由于语法时刻都需要用到且容易忘记,因此在后期的实例讲解过程中需要不断地巩固之前所学过的语法现象,以避免学生遗忘,以此让学生明白,学习编程语言的真正目的是为了应用于电路设计。通过一些实践,学生体会到语言学习的成就感,进一步提高了学习兴趣,此方法收到了良好的教学效果。

3.将硬件电路设计的概念贯穿始终

硬件描述语言与软件语言有本质区别。很多学生由于不了解硬件描述语言的特点,在学习过程中很容易将之前所学的C语言等软件编程语言的思维惯性的应用于VHDL语言的学习过程中,这对于掌握硬件电路设计的实质有非常大的阻碍。因此,在教学过程中,从最初引入到最后设计电路,都要始终将硬件电路设计的概念和思维方式贯穿其中。

在讲述应用实例时,需要向学生分析该例中的语句和硬件电路的关系,并强调这些语句与软件语言的区别。以if语句为例,在VHDL语言中,if语句的不同应用可以产生不同的电路结构。完整的if语句产生纯组合电路,不完整的if语句将产生时序电路,如果应用不当,会在电路中引入不必要的存储单元,增加电路模块,耗费资源。[4]而对于软件语言,并没有完整if语句与不完整if语句之分。为了让学生更深刻地理解不同的if语句对应的硬件电路结构特性,可以通过一个小实例综合之后的电路结构图来说明。

如以下两个程序:

(1)entity muxab is

port(a,b:in bit;

y:out bit);

end;

architecture behave of muxab is

begin

process(a,b)

begin

if a>b then y

elsif a

end if;

end process;

end;

(2)entity muxab is

port(a,b:in bit;

y:out bit);

end;

architecture behave of muxab is

begin

process(a,b)

begin

if a>b then y

else y

end if;

end process;

end;

(1)(2)两个程序唯一的不同点在于:程序(1)中使用的是elsif语句,是一个不完整的if语句描述,而程序(2)使用的是else语句,是一个完整的if语句描述。这一条语句的区别却决定了两个程序的电路结构有很大的不同。(1)综合的结果是一个时序电路,电路结构复杂,如图1所示。而(2)综合的结果是一个纯组合电路,电路结构非常简单,如图2所示。通过综合后的电路图比较,学生更深刻理解这两类语句的区别。

强化硬件电路设计的思想,可以促使学生逐渐形成一种规范、高效、资源节约的设计风格,培养一个优秀的硬件电路设计工程师。

4.通过实践拓展强化学生动手能力

“电子设计自动化”是一门实用性很强的课程,学生在学完该课程后必须具备一定的硬件电路设计和调试的能力,因此在教学中需要不断地用实践训练来强化学生在课堂所学习的理论知识,并使他们达到能够独立设计较复杂硬件电路的能力。

笔者在教学过程中鼓励学生将课程实践和毕业设计内容相结合的方法,让学生强化实践能力,收到了良好的效果。学习“电子设计自动化”课程的学生基本上都是即将进入大四,此时他们的毕业设计已经开始进入选题,开始了初步设计的过程。笔者先在实验课堂向学生布置一些常用硬件电路设计的题目,比如交通灯、自动售货机、电梯控制器等,让学生体会电子设计自动化课程的实用性,激发他们的思考和学习兴趣。在此基础上分组组建实践小团队,让每组学生共同完成一个较复杂的电路系统,比如遥控小车、温度测控系统等,鼓励他们将所做的内容与毕业设计对接。其中大部分同学通过这些训练都可以掌握硬件电路设计的基本方法和流程,有一部分同学还能设计出比较出色的作品。此过程不仅让学生体会到了学习知识的快乐,也培养了他们的团队协作精神,为他们以后的继续深造和工作做了铺垫。

三、结束语

掌握“电子设计自动化”课程的特点,有针对性地改善教学方法,充分调动学生的学习积极性,强化理论和实践教学相结合,一方面使学生把握课程的全局性,了解和熟悉电子设计自动化行业的状况和最新动态;另一方面培养学生具有扎实的理论基础和良好的动手能力,培养出厚基础、重实践、有创新的高素质人才,具有重要的社会意义。

参考文献:

[1]潘松,黄继业.EDA技术与VHDL(第二版)[M].北京:清华大学出版社,2007.

[2]Roth,C.H.数字系统设计与VHDL[M].金明录,刘倩,译.北京:电子工业出版社,2008.

第9篇:电路设计的基本方法范文

计算机系统所要求解决的问题日趋复杂,与此同时,计算机系统本身的结构也越来越复杂。而复杂性的提高就意味着可靠性的降低,实践经验表明,要想使如此复杂的实时系统实现零出错率几乎是不可能的,因此人们寄希望于系统的容错性能:即系统在出现错误的情况下的适应能力。对于如何同时实现系统的复杂性和可靠性,大自然给了我们近乎完美的蓝本。人体是迄今为止我们所知道的最复杂的生物系统,通过千万年基因进化,使得人体可以在某些细胞发生病变的情况下,不断地进行自我诊断,并最终自愈。因此借用这一机理,科学家们研究出可进化硬件(EHW,EvolvableHardWare),理想的可进化硬件不但同样具有自我诊断能力,能够通过自我重构消除错误,而且可以在设计要求或系统工作环境发生变化的情况下,通过自我重构来使电路适应这种变化而继续正常工作。严格地说,EHW具有两个方面的目的,一方面是把进化算法应用于电子电路的设计中;另一方面是硬件具有通过动态地、自主地重构自己实现在线适应变化的能力。前者强调的是进化算法在电子设计中可替代传统基于规范的设计方法;后者强调的是硬件的可适应机理。当然二者的区别也是很模糊的。本文主要讨论的是EHW在第一个方面的问题。

对EHW的研究主要采用了进化理论中的进化计算(EvolutionaryComputing)算法,特别是遗传算法(GA)为设计算法,在数字电路中以现场可编程门阵列(FPGA)为媒介,在模拟电路设计中以现场可编程模拟阵列(FPAA)为媒介来进行的。此外还有建立在晶体管级的现场可编程晶体管阵列(FPTA),它为同时设计数字电路和和模拟电路提供了一个可靠的平台。下面主要介绍一下遗传算法和现场可编程门阵列的相关知识,并以数字电路为例介绍可进化硬件设计方法。

1.1遗传算法

遗传算法是模拟生物在自然环境中的遗传和进化过程的一种自适应全局优化算法,它借鉴了物种进化的思想,将欲求解问题编码,把可行解表示成字符串形式,称为染色体或个体。先通过初始化随机产生一群个体,称为种群,它们都是假设解。然后把这些假设解置于问题的“环境”中,根据适应值或某种竞争机制选择个体(适应值就是解的满意程度),使用各种遗传操作算子(包括选择,变异,交叉等等)产生下一代(下一代可以完全替代原种群,即非重叠种群;也可以部分替代原种群中一些较差的个体,即重叠种群),如此进化下去,直到满足期望的终止条件,得到问题的最优解为止。

1.2现场可编程逻辑阵列(FPGA)

现场可编程逻辑阵列是一种基于查找表(LUT,LookupTable)结构的可在线编程的逻辑电路。它由存放在片内RAM中的程序来设置其工作状态,工作时需要对片内的RAM进行编程。当用户通过原理图或硬件描述语言(HDL)描述了一个逻辑电路以后,FPGA开发软件会把设计方案通过编译形成数据流,并将数据流下载至RAM中。这些RAM中的数据流决定电路的逻辑关系。掉电后,FPGA恢复成白片,内部逻辑关系消失,因此,FPGA能够反复使用,灌入不同的数据流就会获得不同的硬件系统,这就是可编程特性。这一特性是实现EHW的重要特性。目前在可进化电子电路的设计中,用得最多得是Xilinx公司的Virtex系列FPGA芯片。

2进化电子电路设计架构

本节以设计高容错性的数字电路设计为例来阐述EHW的设计架构及主要设计步骤。对于通过进化理论的遗传算法来产生容错性,所设计的电路系统可以看作一个具有持续性地、实时地适应变化的硬件系统。对于电子电路来说,所谓的变化的来源很多,如硬件故障导致的错误,设计要求和规则的改变,环境的改变(各种干扰的出现)等。

从进化论的角度来看,当这些变化发生时,个体的适应度会作相应的改变。当进化进行时,个体会适应这些变化重新获得高的适应度。基于进化论的电子电路设计就是利用这种原理,通过对设计结果进行多次地进化来提高其适应变化的能力。

电子电路进化设计架构如图1所示。图中给出了电子电路的设计的两种进化,分别是内部进化和外部进化。其中内部进化是指硬件内部结构的进化,而外部进化是指软件模拟的电路的进化。这两种进化是相互独立的,当然通过外部进化得到的最终设计结果还是要由硬件结构的变化来实际体现。从图中可以看出,进化过程是一个循环往复的过程,其中是根据进化算法(遗传算法)的计算结果来进行的。整个进化设计包括以下步骤:

(1)根据设计的目的,产生初步的方案,并把初步方案用一组染色体(一组“0”和“1”表示的数据串)来表示,其中每个个体表示的是设计的一部分。染色体转化成控制数据流下载到FPGA上,用来定义FPGA的开关状态,从而确定可重构硬件内部各单元的联结,形成了初步的硬件系统。用来设计进化硬件的FPGA器件可以接受任意组合的数据流下载,而不会导致器件的损害。

(2)将设计结果与目标要求进行比较,并用某种误差表示作为描述系统适应度的衡量准则。这需要一定的检测手段和评估软件的支持。对不同的个体,根据适应度进行排序,下一代的个体将由最优的个体来产生。

(3)根据适应度再对新的个体组进行统计,并根据统计结果挑选一些个体。一

部分被选个体保持原样,另一部分个体根据遗传算法进行修改,如进行交叉和变异,而这种交叉和变异的目的是为了产生更具适应性的下一代。把新一代染色体转化成控制数据流下载到FPGA中对硬件进行进化。

(4)重复上述步骤,产生新的数代个体,直到新的个体表示的设计方案表现出接近要求的适应能力为止。

一般来说通过遗传算法最后会得到一个或数个设计结果,最后设计方案具有对设计要求和系统工作环境的最佳适应性。这一过程又叫内部进化或硬件进化。

图中的右边展示了另一种设计可进化电路的方法,即用模拟软件来代替可重构器件,染色体每一位确定的是软件模拟电路的连接方式,而不是可重构器件各单元的连接方式。这一方法叫外部进化或软件进化。这种方法中进化过程完全模拟进行,只有最后的结果才在器件上实施。

进化电子电路设计中,最关键的是遗传算法的应用。在遗传算法的应用过程中,变异因子的确定是需要慎重考虑的,它的大小既关系到个体变异的程度,也关系到个体对环境变化做出反应的能力,而这两个因素相互抵触。变异因子越大,个体更容易适应环境变化,对系统出现的错误做出快速反应,但个体更容易发生突变。而变异因子较小时,系统的反应力变差,但系统一旦获得高适应度的设计方案时可以保持稳定。

对于可进化数字电路的设计,可以在两个层面上进行。一个是在基本的“与”、“或”、“非”门的基础上进行进化设计,一个是在功能块如触发器、加法器和多路选择器的基础上进行。前一种方法更为灵活,而后一种更适于工业应用。有人提出了一种基于进化细胞机(CellularAutomaton)的神经网络模块设计架构。采用这一结构设计时,只需要定义整个模块的适应度,而对于每一模块如何实现它复杂的功能可以不予理睬,对于超大规模线路的设计可以采用这一方法来将电路进行整体优化设计。

3可进化电路设计环境

上面描述的软硬件进化电子电路设计可在图2所示的设计系统环境下进行。这一设计系统环境对于测试可重构硬件的构架及展示在FPGA可重构硬件上的进化设计很有用处。该设计系统环境包括遗传算法软件包、FPGA开发系统板、数据采集软硬件、适应度评估软件、用户接口程序及电路模拟仿真软件。

遗传算法由计算机上运行的一个程序包实现。由它来实现进化计算并产生染色体组。表示硬件描述的染色体通过通信电缆由计算机下载到有FPGA器件的实验板上。然后通过接口将布线结果传回计算机。适应度评估建立在仪器数据采集硬件及软件上,一个接口码将GA与硬件连接起来,可能的设计方案在此得到评估。同时还有一个图形用户接口以便于设计结果的可视化和将问题形式化。通过执行遗传算法在每一代染色体组都会产生新的染色体群组,并被转化为数据流传入实验板上。至于通过软件进化的电子电路设计,可采用Spice软件作为线路模拟仿真软件,把染色体变成模拟电路并通过仿真软件来仿真电路的运行情况,通过相应软件来评估设计结果。

4结论与展望

进化过程广义上可以看作是一个复杂的动态系统的状态变化。在这个意义上,可以将“可进化”这一特性运用到无数的人工系统中,只要这些系统的性能会受到环境的影响。不仅是遗传算法,神经网络、人工智能工程以及胚胎学都可以应用到可进化系统中。虽然目前设计出的可进化硬件还存在着许多需要解决的问题,如系统的鲁棒性等。但在未来的发展中,电子电路可进化的设计方法将不可避免的取代传统的自顶向下设计方法,系统的复杂性将不再成为系统设计的障碍。另一方面,硬件本身的自我重构能力对于那些在复杂多变的环境,特别是人不能直接参与的环境工作的系统来说将带来极大的影响。因此可进化硬件的研究将会进一步深入并会得到广泛的应用而造福人类。