公务员期刊网 精选范文 电路设计规则范文

电路设计规则精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的电路设计规则主题范文,仅供参考,欢迎阅读并收藏。

电路设计规则

第1篇:电路设计规则范文

关键词:IP技术 模拟集成电路 流程

中图分类号:TP3 文献标识码:A 文章编号:1674-098X(2013)03(b)-00-02

1 模拟集成电路设计的意义

当前以信息技术为代表的高新技术突飞猛进。以信息产业发展水平为主要特征的综合国力竞争日趋激烈,集成电路(IC,Integrated circuit)作为当今信息时代的核心技术产品,其在国民经济建设、国防建设以及人类日常生活的重要性已经不言

而喻。

集成电路技术的发展经历了若干发展阶段。20世纪50年代末发展起来的属小规模集成电路(SSI),集成度仅100个元件;60年展的是中规模集成电路(MSI),集成度为1000个元件;70年代又发展了大规模集成电路,集成度大于1000个元件;70年代末进一步发展了超大规模集成电路(LSI),集成度在105个元件;80年代更进一步发展了特大规模集成电路,集成度比VLSI又提高了一个数量级,达到106个元件以上。这些飞跃主要集中在数字领域。

(1)自然界信号的处理:自然界的产生的信号,至少在宏观上是模拟量。高品质麦克风接收乐队声音时输出电压幅值从几微伏变化到几百微伏。视频照相机中的光电池的电流低达每毫秒几个电子。地震仪传感器产生的输出电压的范围从地球微小振动时的几微伏到强烈地震时的几百毫伏。由于所有这些信号都必须在数字领域进行多方面的处理,所以我们看到,每个这样的系统都要包含一个模一数转换器(AD,C)。

(2)数字通信:由于不同系统产生的二进制数据往往要传输很长的距离。一个高速的二进制数据流在通过一个很长的电缆后,信号会衰减和失真,为了改善通信质量,系统可以输入多电平信号,而不是二进制信号。现代通信系统中广泛采用多电平信号,这样,在发射器中需要数一模转换器(DAC)把组合的二进制数据转换为多电平信号,而在接收器中需要使用模一数转换器(ADC)以确定所传输的电平。

(3)磁盘驱动电子学计算机硬盘中的数据采用磁性原理以二进制形式存储。然而,当数据被磁头读取并转换为电信号时,为了进一步的处理,信号需要被放大、滤波和数字化。

(4)无线接收器:射频接收器的天线接收到的信号,其幅度只有几微伏,而中心频率达到几GHz。此外,信号伴随很大的干扰,因此接收器在放大低电平信号时必须具有极小噪声、工作在高频并能抑制大的有害分量。这些都对模拟设计有很大的挑战性。

(5)传感器:机械的、电的和光学的传感器在我们的生活中起着重要的作用。例如,视频照相机装有一个光敏二极管阵列,以将像点转换为电流;超声系统使用声音传感器产生一个与超声波形幅度成一定比例的电压。放大、滤波和A/D转换在这些应用中都是基本的功能。

(6)微处理器和存储器:大量模拟电路设计专家参与了现代的微处理器和存储器的设计。许多涉及到大规模芯片内部或不同芯片之间的数据和时钟的分布和时序的问题要求将高速信号作为模拟波形处理。而且芯片上信号间和电源间互连中的非理想性以及封装寄生参数要求对模拟电路设计有一个完整的理解。半导体存储器广泛使用的高速/读出放大器0也不可避免地要涉及到许多模拟技术。因此人们经常说高速数字电路设计实际上是模拟电路的

设计。

2 模拟集成电路设计流程概念

在集成电路工艺发展和市场需求的推动下,系统芯片SOC和IP技术越来越成为IC业界广泛关注的焦点。随着集成技术的不断发展和集成度的迅速提高,集成电路芯片的设计工作越来越复杂,因而急需在设计方法和设计工具这两方面有一个大的变革,这就是人们经常谈论的设计革命。各种计算机辅助工具及设计方法学的诞生正是为了适应这样的要求。

一方面,面市时间的压力和新的工艺技术的发展允许更高的集成度,使得设计向更高的抽象层次发展,只有这样才能解决设计复杂度越来越高的问题。数字集成电路的发展证明了这一点:它很快的从基于单元的设计发展到基于模块、IP和IP复用的

设计。

另一方面,工艺尺寸的缩短使得设计向相反的方向发展:由于物理效应对电路的影响越来越大,这就要求在设计中考虑更低层次的细节问题。器件数目的增多、信号完整性、电子迁移和功耗分析等问题的出现使得设计日益复杂。

3 模拟集成电路设计流程

3.1 模拟集成电路设计系统环境

集成电路的设计由于必须通过计算机辅助完成整个过程,所以对软件和硬件配置都有较高的要求。

(1)模拟集成电路设计EDA工具种类及其举例

设计资料库―Cadence Design Framework11

电路编辑软件―Text editor/Schematic editor

电路模拟软件―Spectre,HSPICE,Nanosim

版图编辑软件―Cadence virtuoso,Laker

物理验证软件―Diva,Dracula,Calibre,Hercules

(2)系统环境

工作站环境;Unix-Based作业系统;由于EDA软件的运行和数据的保存需要稳定的计算机环境,所以集成电路的设计通常采用Unix-Based的作业系统,如图1所示的工作站系统。现在的集成电路设计都是团队协作完成的,甚至工程师们在不同的地点进行远程协作设计。EDA软件、工作站系统的资源合理配置和数据库的有效管理将是集成电路设计得以完成的重要保障。

3.2 模拟集成电路设计流程概述

根据处理信号类型的不同,集成电路一般可以分为数字电路、模拟电路和数模混合集成电路,它们的设计方法和设计流程是不同的,在这部分和以后的章节中我们将着重讲述模拟集成电路的设计方法和流程。模拟集成电路设计是一种创造性的过程,它通过电路来实现设计目标,与电路分析刚好相反。电路的分析是一个由电路作为起点去发现其特性的过程。电路的综合或者设计则是从一套期望的性能参数开始去寻找一个令人满意的电路,对于一个设计问题,解决方案可能不是唯一的,这样就给予了设计者去创造的机会。

模拟集成电路设计包括若干个阶段,设计模拟集成电路一般的过程。

(l)系统规格定义;(2)电路设计;(3)电路模拟;(4)版图实现;(5)物理验证;(6)参数提取后仿真;(7)可靠性分析;(8)芯片制造;(9)测试。

除了制造阶段外,设计师应对其余各阶段负责。设计流程从一个设计构思开始,明确设计要求和进行综合设计。为了确认设计的正确性,设计师要应用模拟方法评估电路的性能。

这时可能要根据模拟结果对电路作进一步改进,反复进行综合和模拟。一旦电路性能的模拟结果能满足设计要求就进行另一个主要设计工作―电路的几何描述(版图设计)。版图完成并经过物理验证后需要将布局、布线形成的寄生效应考虑进去再次进行计算机模拟。如果模拟结果也满足设计要求就可以进行制造了。

3.3 模拟集成电路设计流程分述

(1)系统规格定义

这个阶段系统工程师把整个系统和其子系统看成是一个个只有输入输出关系的/黑盒子,不仅要对其中每一个进行功能定义,而且还要提出时序、功耗、面积、信噪比等性能参数的范围要求。

(2)电路设计

根据设计要求,首先要选择合适的工艺制程;然后合理的构架系统,例如并行的还是串行的,差分的还是单端的;依照架构来决定元件的组合,例如,电流镜类型还是补偿类型;根据交、直流参数决定晶体管工作偏置点和晶体管大小;依环境估计负载形态和负载值。由于模拟集成电路的复杂性和变化的多样性,目前还没有EDA厂商能够提供完全解决模拟集成电路设计自动化的工具,此环节基本上通过手工计算来完成的。

(3)电路模拟

设计工程师必须确认设计是正确的,为此要基于晶体管模型,借助EDA工具进行电路性能的评估,分析。在这个阶段要依据电路仿真结果来修改晶体管参数;依制程参数的变异来确定电路工作的区间和限制;验证环境因素的变化对电路性能的影响;最后还要通过仿真结果指导下一步的版图实现,例如,版图对称性要求,电源线的宽度。

(4)版图实现

电路的设计及模拟决定电路的组成及相关参数,但并不能直接送往晶圆代工厂进行制作。设计工程师需提供集成电路的物理几何描述称为版图。这个环节就是要把设计的电路转换为图形描述格式。模拟集成电路通常是以全定制方法进行手工的版图设计。在设计过程中需要考虑设计规则、匹配性、噪声、串扰、寄生效应、防门锁等对电路性能和可制造性的影响。虽然现在出现了许多高级的全定制辅助设计方法,仍然无法保证手工设计对版图布局和各种效应的考虑全面性。

(5)物理验证

版图的设计是否满足晶圆代工厂的制造可靠性需求?从电路转换到版图是否引入了新的错误?物理验证阶段将通过设计规则检查(DRC,Design Rule Cheek)和版图网表与电路原理图的比对(VLS,Layout Versus schematic)解决上述的两类验证问题。几何规则检查用于保证版图在工艺上的可实现性。它以给定的设计规则为标准,对最小线宽、最小图形间距、孔尺寸、栅和源漏区的最小交叠面积等工艺限制进行检查。版图网表与电路原理图的比对用来保证版图的设计与其电路设计的匹配。VLS工具从版图中提取包含电气连接属性和尺寸大小的电路网表,然后与原理图得到的网表进行比较,检查两者是否一致。

参考文献

第2篇:电路设计规则范文

一、“电子设计自动化”课程教学的特点

电子设计自动化是一个较为宽泛的概念,它涵盖了电路设计、电路测试与验证、版图设计、PCB板开发等各个不同的应用范围。而当前“电子设计自动化”课程设置多数侧重电路设计部分,即采用硬件描述语言设计数字电路。因此,该课程的教学具非常突出的特点。

1.既要有广度,又要有深度

有广度即在教学过程中需要把电子设计自动化所包含的各个不同的应用环节都要让学生了解,从而使学生从整个产业链的角度出发,把握电子设计自动化的真正含义,以便于他们建立起一个全局概念。有深度即在教学过程中紧抓电路设计这个重点,着重讲解如何使用硬件描述语言设计硬件电路,使学生具备电路设计的具体技能,并能够应用于实践和工作当中。

2.突出硬件电路设计的概念

在众多高校开设的“电子设计自动化”课程中,多数是以硬件描述语言VHDL作为学习重点的。而VHDL语言是一门比较特殊的语言,与C语言、汇编语言等存在很大的不同。因此,在教学过程中首先要让学生明白这门语言与前期所学的其他语言的区别,并通过实例,如CPU的设计及制造过程,让学生明白VHDL等硬件描述语言的真正用途,并将硬件电路设计的概念贯穿整个教学过程。

3.理论与实践并重

“电子设计自动化”是一门理论性与实践性都很强的课程,必须两者并重,才能收到良好的教学效果。在理论学习中要突显语法要点和电路设计思想,[2]并通过实践将这些语法与设计思想得以加强和巩固,同时在实践中锻炼学生的创新能力。

二、“电子设计自动化”课程教学方法总结

良好的教学方法能起到事半功倍的效果。因此,针对“电子设计自动化”课程的教学特点,笔者根据近几年的教学经验总结了一些行之有效的教学方法。

1.以生动的形式带领学生进入电子设计自动化的世界

电子设计自动化对学生来说是一个全新的概念。如何让他们能够快速地进入到这个世界中,并了解这个世界的大概,从而对这个领域产生兴趣,是每个老师在这门课授课之前必须要做的一件事情。教师可以采用一些现代化的多媒体授课技术,让学生更直观地了解电子设计自动化。由于电子设计自动化是一个很抽象的概念,因此,可以通过播放视频、图片等一些比较直观的内容来让学生了解这个领域。从学生最熟悉的电脑CPU引入,通过一段“CPU从设计到制造过程”的视频,让学生了解集成电路设计与制造的流程与方法,并引出集成电路这个概念。通过早期的集成电路与现在的集成电路的图片对比,引出EDA的概念,并详细讲解EDA对于集成电路行业的发展所作的巨大贡献。在教学过程中,通过向学生介绍一些使用EDA技术实现的当前比较主流的产品及其应用,提高学生对EDA的具体认识。这些方法不仅使学生对EDA相关的产业有了相应的了解,更激发了学生的学习兴趣,使学生能够踊跃地投入到“电子设计自动化”的学习中。

2.以实例展开理论教学

“电子设计自动化”的学习内容包含三大部分:[3]硬件描述语言(以VHDL语言为学习对象)、开发软件(以QUARTUSII为学习对象)和实验用开发板(以FPGA开发板为学习对象)。硬件描述语言的学习属于理论学习部分,是重中之重。对于一门编程语言的学习来说,语法和编程思想是学习要点。在传统的编程语言学习的过程中,通常都是将语法作为主线,结合语法实例逐渐形成编程思想。这种学习方法会使学生陷入到学编程语言就是学习语法的误区中,不仅不能学到精髓,还会因为枯燥乏味而产生厌倦感。如何能使学生既能掌握电路设计的方法,又轻松掌握语法规则是一个教学难题。笔者改变传统观念,将编程思想的学习作为教学主线,在理论学习过程中,以具体电路实例为基础,引导学生从分析电路的功能入手,熟悉将电路功能转换为相应的程序语句的过程,并掌握如何将这些语句按照规则组织成一个完整无误的程序。在此过程中,不断引入新的语法规则。由于整个过程中学生的思考重点都放在电路功能的实现上,而语法的学习就显得不那么突兀,也不会产生厌倦感。由于语法时刻都需要用到且容易忘记,因此在后期的实例讲解过程中需要不断地巩固之前所学过的语法现象,以避免学生遗忘,以此让学生明白,学习编程语言的真正目的是为了应用于电路设计。通过一些实践,学生体会到语言学习的成就感,进一步提高了学习兴趣,此方法收到了良好的教学效果。

3.将硬件电路设计的概念贯穿始终

硬件描述语言与软件语言有本质区别。很多学生由于不了解硬件描述语言的特点,在学习过程中很容易将之前所学的C语言等软件编程语言的思维惯性的应用于VHDL语言的学习过程中,这对于掌握硬件电路设计的实质有非常大的阻碍。因此,在教学过程中,从最初引入到最后设计电路,都要始终将硬件电路设计的概念和思维方式贯穿其中。在讲述应用实例时,需要向学生分析该例中的语句和硬件电路的关系,并强调这些语句与软件语言的区别。以if语句为例,在VHDL语言中,if语句的不同应用可以产生不同的电路结构。完整的if语句产生纯组合电路,不完整的if语句将产生时序电路,如果应用不当,会在电路中引入不必要的存储单元,增加电路模块,耗费资源。[4]而对于软件语言,并没有完整if语句与不完整if语句之分。为了让学生更深刻地理解不同的if语句对应的硬件电路结构特性,可以通过一个小实例综合之后的电路结构图来说明。如以下两个程序:

(1)entitymuxabisport(a,b:inbit;y:outbit);end;architecturebehaveofmuxabisbeginprocess(a,b)beginifa>btheny<='1';elsifa<btheny<='0';endif;endprocess;end;

(2)entitymuxabisport(a,b:inbit;y:outbit);end;architecturebehaveofmuxabisbeginprocess(a,b)beginifa>btheny<='1';elsey<='0';endif;endprocess;end;

(1)(2)两个程序唯一的不同点在于:程序(1)中使用的是elsif语句,是一个不完整的if语句描述,而程序(2)使用的是else语句,是一个完整的if语句描述。这一条语句的区别却决定了两个程序的电路结构有很大的不同。(1)综合的结果是一个时序电路,电路结构复杂,如图1所示。而(2)综合的结果是一个纯组合电路,电路结构非常简单,如图2所示。通过综合后的电路图比较,学生更深刻理解这两类语句的区别。强化硬件电路设计的思想,可以促使学生逐渐形成一种规范、高效、资源节约的设计风格,培养一个优秀的硬件电路设计工程师。

4.通过实践拓展强化学生动手能力

“电子设计自动化”是一门实用性很强的课程,学生在学完该课程后必须具备一定的硬件电路设计和调试的能力,因此在教学中需要不断地用实践训练来强化学生在课堂所学习的理论知识,并使他们达到能够独立设计较复杂硬件电路的能力。笔者在教学过程中鼓励学生将课程实践和毕业设计内容相结合的方法,让学生强化实践能力,收到了良好的效果。学习“电子设计自动化”课程的学生基本上都是即将进入大四,此时他们的毕业设计已经开始进入选题,开始了初步设计的过程。笔者先在实验课堂向学生布置一些常用硬件电路设计的题目,比如交通灯、自动售货机、电梯控制器等,让学生体会电子设计自动化课程的实用性,激发他们的思考和学习兴趣。在此基础上分组组建实践小团队,让每组学生共同完成一个较复杂的电路系统,比如遥控小车、温度测控系统等,鼓励他们将所做的内容与毕业设计对接。其中大部分同学通过这些训练都可以掌握硬件电路设计的基本方法和流程,有一部分同学还能设计出比较出色的作品。此过程不仅让学生体会到了学习知识的快乐,也培养了他们的团队协作精神,为他们以后的继续深造和工作做了铺垫。

第3篇:电路设计规则范文

【关键词】物理电学;电路设计;静电作用

将生活和物理知识链接在一起,能提高我们的解题水平,近几年,高考中这样的题目逐渐增多,也需要我们给予更多的重视,真正从根本上提高自身的物理素养,更好地学好高中物理。

1物理电学中电路设计要求和方法

1.1物理电学中电路设计的要求

首先,要选择适宜的元件,在电学实验题目中,只有保证元件的选取符合标准,才能有效提高电路设计的实效性,确保电源合适的同时,进一步考量相关电路设计结构,从而完善电流值的具体参数。并且,要有效选择电流表和电压表等,尤其是对其量程进行分析,保证设计精确性的同时,要适宜自身设计的电路。其次,要了解相关元件的设计意图和使用方法,只有保证元件使用规则贴合设计要求,才能完善电路实验结果。最后,结合具体参数绘制电路,尤其是对特殊电路,确保设计结构符合常规,相关元件都能在电路中发挥作用,从而保证设计的有效性以及电路运行的通畅性。

1.2物理电学中电路设计的方法

在具体的设计方法建立过程中,我们要秉持完整的设计思路开始试验操作,无论是在设计过程中选择了何种理论知识以及实验器材,都要满足具体的设计理念,确保设计目标的合理性和有效性。需要注意的是,由于机械存在误差,因此,要对其进行全面调节,并且选取最适宜电路的机械,减少误差对其产生不良的影响,一定程度上提高试验的实际价值。除此之外,设计元件的选择也要对其可操作性予以判断和分析,着重考量安全性。针对一些设计思路较为复杂的电路,安全性最为关键,若是元件选取不当就会造成电路短路或者是断路问题。在具体的设计中,设计方案也要符合实际设计要求,不同的设计方案会产生差异化设计效果,因此,要针对实验目的、实验器材、实验要求等进行细化处理,整合相关数据后绘制有效的电路图。值得一提的是,在电路设计方案中,要对具体要求进行细化。(1)电流表内接还是外接,会直接影响电路设计结构,对具体求值也会产生影响。(2)滑动变阻器是分压式还是限流式,会对整个电路的电阻情况产生影响。(3)电路整个结构是伏安法测量还是半偏法测量。只有对相关参数进行系统化分析,选取有效的方法,才能提高电路设计的实际水平,确保电路能正常运行。另外,为了提高实验的有效性,在电路设计方面尽量简化,保证相关实验能有序开展。

2物理电学中静电应用

在高中物理学习中,电学知识十分关键,也是高考中的常见考点,其中,电路设计试验贯穿了整个高中物理,无论是解题还是应用其构建答题框架,都成为了困扰我们很多人的难题,由于其本身较为抽象,需要我们结合题目中的相关因素进行深度分析。静电作用是高中物理选修课程,涉及的内容主要包括静电平衡等问题,要想将静电作用和电路设计结合在一起,就要对两者的关系有明确的认知。在达到静电平衡的情况下,导体内部不存在电荷,内部电场为零,相应的电荷会集中分布在导体表面。针对这个性质,在电路设计方面,就要保证相关参数和实际情况符合标准,且能借助有效的电荷处理和抵消方式,从根本上提高电路设计的安全性和有效性。电路设计过程要保证相关元件的静电平衡,从而一定程度上提高设计效果,为后续操作和求解相关参数提供保障。

3例题

题目中已知条件为小灯泡的伏安特性曲线,小灯泡的规格是2.5伏特/0.3安培,借助3伏特的干电池以及滑动变阻器对其进行供电,实验要求小灯泡的两端电压要从零坐标开始调节。结合题目中的相关要求,电路设计只能是按照分压接法,需要注意的是滑动变阻器阻值的选取,要有效考虑题目中的相关问题,从而保证电路设计结构能按照有效操作标准有序进行。结合题目,若是要想灯泡正常发光,电阻数值要控制在12.5欧姆左右,因此,要在实验室中选择5欧姆或者是10欧姆的滑动变阻器。在总结相关参数后,要按照标准化流程有效设计电路结构,完善设计思路和实际方法,从教材中对相关参数予以分析后,利用我们已经掌握的物理知识和实验原理提出更加有效的设计方案,确保设计结构的有效性。另外,无论是电路连接方式还是相关测试的注意事项,都要在实验过程中有效总结,从而保证实验的完整性和实效性。总而言之,在高中物理电学学习过程中,电路设计和静电作用的结合就是理论和实践的结合,我们不能将物理知识和实际生活割裂开,只有养成良好的物理分析思路,才能更好地应对高考物理中的实际问题,提升答题效率和质量。

参考文献

[1]齐庆会.高考物理实验题中电路设计与连接问题的解析[J].山东教育学院学报,2014,16(04):92-94,96.

[2]张跃军,汪鹏君,李刚等.基于信号传输理论的Glitch物理不可克隆函数电路设计[J].电子与信息学报,2016,38(09):2391-2396.

第4篇:电路设计规则范文

关键词:电磁场仿真分析;电磁兼容性(EMC);Zeland ie3d软件

中图分类号:TM154 文献标识码:A

在设计电子产品时,除了满足特定功能要求外,还必须考虑产品的电磁兼容性,这对产品的质量和性能技术指标起着非常关键的作用。电磁兼容性是电子设备或系统的主要性能之一,电磁兼容设计是实现设备或系统规定的功能、使系统效能得以充分发挥的重要保证。因此,在印制电路板的电路设计阶段就进行电磁兼容性设计是非常重要的。

1方案论证

研究PCB电路板的电磁场分布情况,对改进产品的EMC性能具有十分重要的意义。在算法分析,方案论证阶段,经过多方调研,发现对于PCB板级的电磁场仿真的方法有多种,例如:矩量法,有限时域差分算法等。还搜集了一系列相关软件如:Zeland ie3d、 Microwave office、 Ansoft designer等,下面详细对各个软件的方法、原理和优缺点进行介绍:

(1)Zeland ie3d:Zeland软件公司开发的软件中,IE3D是一个基于矩量法的电磁场仿真工具,其仿真结果包括S、Y、Z参数,电流分布,近场分布和辐射方向图,远场分布等,应用范围主要是在微波射频电路、多层印刷电路板、平面微带天线设计的分析与设计。

(2)Apsim FDTD:Apsim FDTD 是一个采用"有限时域差分" 算法的三维全波电磁场仿真器。它将二次、三次场等都准确仿真出来,比静态的二维、三维TEM方法大大地提高了精度。

(3)Microwave Office:Microwave Office是一针对微波混合、模块以及MMIC (单片式微波/毫米波集成电路)设计的线性与非线性之完整解决方案,注重于参数的仿真。

(4)Ansoft designer:Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真,但其远场的分布效果不是很理想,没有具体的仿真分贝标志。

通过具体使用和详细分析后,IE3D可以解决多层介质环境下的三维金属结构的电流分布问题。它利用积分的方式求解Maxwell方程组,从而解决电磁波的效应、不连续性效应、耦合效应和辐射效应问题。IE3D电磁仿真的一个优点是用户可获得被仿真结构的场和电流分布,对电路和天线设计者来说,结构的电流和场分布很有价值,可选择为电流分布建立数据文件。仿真结果还包括s-、y-、z-参数和辐射方向图,仿真分贝标志等。所以仿真后的结果更加直观,并且易于理解。

因此,本论文采用"平面和三维电磁场仿真与优化软件包——IE3D"来对EMC规则进行分析、验证。

2 PCB的EMC规则分析

本文就针对双面印制板面上信号线的走线布局、长度、电源线的布置等与电磁兼容性相关问题进行具体地仿真分析,并相应地给出具体措施。

2.1 控制EMC应采用的具体方法

(1)防止信号线在不同层间形成自环。在多层板设计中容易发生此类问题,自环将引起辐射干扰。对其进行电磁场仿真,结果如下:

结论:图1(b)的布线方式是符合EMC问题的,信号线不可形成自环。

(2)走线长度控制规则即短线规则,在设计时应该尽量让布线长度尽量短,以减少走线长度带来的干扰问题,特别是一些重要信号线,如时钟线,务必将其振荡器放在离器件很近的地方。

对其进行电磁场仿真,结果如下:

(a)图磁场分布不均匀 (b)图磁场分布均匀

图2 短线原则的电磁场分布图

结论:设计时应该尽量让布线长度尽量短。

2.2 电源线设计

要注意以下几点:

(1)根据印制线路板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力,如图3(a)所示。

(2)值得一提的是,尽量选用电源引脚与地引脚靠得较近的集成块,如图3(b)、(c)。尽量不使用芯片座,选用贴片集成块,可以进一步减小去耦电容的供电回路面积,有利于实现电磁兼容。

结语

在此,希望本设计能给予正在从事产品EMC设计可靠性的工程师、对EMC 问题感兴趣的朋友们提供解决此类问题的新思路与新方法。

参考文献

[1] 钱振宇.电磁兼容性的标准体系.电子产品世界,1999,02.

[2] Zeland Software,Inc.IE3D用户手册.号9.2,2002.

第5篇:电路设计规则范文

集成电路设计公司在招聘版图设计员工时,除了对员工的个人素质和英语的应用能力等要求之外,大部分是考查专业应用的能力。一般都会对新员工做以下要求:熟悉半导体器件物理、CMOS或BiCMOS、BCD集成电路制造工艺;熟悉集成电路(数字、模拟)设计,了解电路原理,设计关键点;熟悉Foundry厂提供的工艺参数、设计规则;掌握主流版图设计和版图验证相关EDA工具;完成手工版图设计和工艺验证[1,2]。另外,公司希望合格的版图设计人员除了懂得IC设计、版图设计方面的专业知识,还要熟悉Foundry厂的工作流程、制程原理等相关知识[3]。正因为其需要掌握的知识面广,而国内学校开设这方面专业比较晚,IC版图设计工程师的人才缺口更为巨大,所以拥有一定工作经验的设计工程师,就成为各设计公司和猎头公司争相角逐的人才[4,5]。

二、针对企业要求的版图设计教学规划

1.数字版图设计。数字集成电路版图设计是由自动布局布线工具结合版图验证工具实现的。自动布局布线工具加载准备好的由verilog程序经过DC综合后的网表文件与Foundry提供的数字逻辑标准单元版图库文件和I/O的库文件,它包括物理库、时序库、时序约束文件。在数字版图设计时,一是熟练使用自动布局布线工具如Encounter、Astro等,鉴于很少有学校开设这门课程,可以推荐学生自学或是参加专业培训。二是数字逻辑标准单元版图库的设计,可以由Foundry厂提供,也可由公司自定制标准单元版图库,因此对于初学者而言设计好标准单元版图使其符合行业规范至关重要。2.模拟版图设计。在模拟集成电路设计中,无论是CMOS还是双极型电路,主要目标并不是芯片的尺寸,而是优化电路的性能,匹配精度、速度和各种功能方面的问题。作为版图设计者,更关心的是电路的性能,了解电压和电流以及它们之间的相互关系,应当知道为什么差分对需要匹配,应当知道有关信号流、降低寄生参数、电流密度、器件方位、布线等需要考虑的问题。模拟版图是在注重电路性能的基础上去优化尺寸的,面积在某种程度上说仍然是一个问题,但不再是压倒一切的问题。在模拟电路版图设计中,性能比尺寸更重要。另外,模拟集成电路版图设计师作为前端电路设计师的助手,经常需要与前端工程师交流,看是否需要版图匹配、布线是否合理、导线是否有大电流流过等,这就要求版图设计师不仅懂工艺而且能看懂模拟电路。3.逆向版图设计。集成电路逆向设计其实就是芯片反向设计。它是通过对芯片内部电路的提取与分析、整理,实现对芯片技术原理、设计思路、工艺制造、结构机制等方面的深入洞悉。因此,对工艺了解的要求更高。反向设计流程包括电路提取、电路整理、分析仿真验证、电路调整、版图提取整理、版图绘制验证及后仿真等。设计公司对反向版图设计的要求较高,版图设计工作还涵盖了电路提取与整理,这就要求版图设计师不仅要深入了解工艺流程;而且还要熟悉模拟电路和数字标准单元电路工作原理。

三、教学实现

第6篇:电路设计规则范文

关键词:版图设计;集成电路;教学与实践

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)06-0153-02

目前,集成电路设计公司在招聘新版图设计员工时,都希望找到已经具备一定工作经验的,并且熟悉本行业规范的设计师。但是,IC设计这个行业圈并不大,招聘人才难觅,不得不从其他同行业挖人才或通过猎头公司。企业不得不付出很高的薪资,设计师才会考虑跳槽,于是一些企业将招聘新员工目标转向了应届毕业生或在校生,以提供较低薪酬聘用员工或实习方式来培养适合本公司的版图师。一些具备版图设计知识的即将毕业学生就进入了IC设计行业。但是,企业通常在招聘时或是毕业生进入企业一段时间后发现,即使是懂点版图知识的新员工,电路和工艺的知识差强人意,再就是行业术语与设计软件使用不够熟练、甚至不懂。这就要求我们在版图教学时渗入电路与工艺等知识,使学生明确其中紧密关联关系,树立电路、工艺以及设计软件为版图设计服务的理念。

一、企业对IC版图设计的要求分析

集成电路设计公司在招聘版图设计员工时,除了对员工的个人素质和英语的应用能力等要求之外,大部分是考查专业应用的能力。一般都会对新员工做以下要求:熟悉半导体器件物理、CMOS或BiCMOS、BCD集成电路制造工艺;熟悉集成电路(数字、模拟)设计,了解电路原理,设计关键点;熟悉Foundry厂提供的工艺参数、设计规则;掌握主流版图设计和版图验证相关EDA工具;完成手工版图设计和工艺验证[1,2]。另外,公司希望合格的版图设计人员除了懂得IC设计、版图设计方面的专业知识,还要熟悉Foundry厂的工作流程、制程原理等相关知识[3]。正因为其需要掌握的知识面广,而国内学校开设这方面专业比较晚,IC版图设计工程师的人才缺口更为巨大,所以拥有一定工作经验的设计工程师,就成为各设计公司和猎头公司争相角逐的人才[4,5]。

二、针对企业要求的版图设计教学规划

1.数字版图设计。数字集成电路版图设计是由自动布局布线工具结合版图验证工具实现的。自动布局布线工具加载准备好的由verilog程序经过DC综合后的网表文件与Foundry提供的数字逻辑标准单元版图库文件和I/O的库文件,它包括物理库、时序库、时序约束文件。在数字版图设计时,一是熟练使用自动布局布线工具如Encounter、Astro等,鉴于很少有学校开设这门课程,可以推荐学生自学或是参加专业培训。二是数字逻辑标准单元版图库的设计,可以由Foundry厂提供,也可由公司自定制标准单元版图库,因此对于初学者而言设计好标准单元版图使其符合行业规范至关重要。

2.模拟版图设计。在模拟集成电路设计中,无论是CMOS还是双极型电路,主要目标并不是芯片的尺寸,而是优化电路的性能,匹配精度、速度和各种功能方面的问题。作为版图设计者,更关心的是电路的性能,了解电压和电流以及它们之间的相互关系,应当知道为什么差分对需要匹配,应当知道有关信号流、降低寄生参数、电流密度、器件方位、布线等需要考虑的问题。模拟版图是在注重电路性能的基础上去优化尺寸的,面积在某种程度上说仍然是一个问题,但不再是压倒一切的问题。在模拟电路版图设计中,性能比尺寸更重要。另外,模拟集成电路版图设计师作为前端电路设计师的助手,经常需要与前端工程师交流,看是否需要版图匹配、布线是否合理、导线是否有大电流流过等,这就要求版图设计师不仅懂工艺而且能看懂模拟电路。

3.逆向版图设计。集成电路逆向设计其实就是芯片反向设计。它是通过对芯片内部电路的提取与分析、整理,实现对芯片技术原理、设计思路、工艺制造、结构机制等方面的深入洞悉。因此,对工艺了解的要求更高。反向设计流程包括电路提取、电路整理、分析仿真验证、电路调整、版图提取整理、版图绘制验证及后仿真等。设计公司对反向版图设计的要求较高,版图设计工作还涵盖了电路提取与整理,这就要求版图设计师不仅要深入了解工艺流程;而且还要熟悉模拟电路和数字标准单元电路工作原理。

三、教学实现

1.数字版图。数字集成电路版图在教学时,一是掌握自动布局布线工具的使用,还需要对UNIX或LINUX系统熟悉,尤其是一些常用的基本指令;二是数字逻辑单元版图的设计,目前数字集成电路设计大都采用CMOS工艺,因此,必须深入学习CMOS工艺流程。在教学时,可以做个形象的PPT,空间立体感要强,使学生更容易理解CMOS工艺的层次、空间感。逻辑单元版图具体教学方法应当采用上机操作并配备投影仪,教师一边讲解电路和绘制版图,一边讲解软件的操作、设计规则、画版图步骤、注意事项,学生跟着一步一步紧随教师演示学习如何画版图,同时教师可适当调整教学速度,适时停下来检查学生的学习情况,若有错加以纠正。这样,教师一个单元版图讲解完毕,学生亦完成一个单元版图。亦步亦趋、步步跟随,学生的注意力更容易集中,掌握速度更快。课堂讲解完成后,安排学生实验以巩固所学。逻辑单元版图教学内容安排应当采用目前常用的单元,并具有代表性、扩展性,使学生可以举一反三,扩展到整个单元库。具体单元内容安排如反相器、与非门/或非门、选择器、异或门/同或门、D触发器与SRAM等。在教授时一定要注意符合行业规范,比如单元的高度、宽度的确定要符合自动布局布线的要求;单元版图一定要最小化,如异或门与触发器等常使用传输门实现,绘制版图时注意晶体管源漏区的合并;大尺寸晶体管的串并联安排合理等。

2.模拟版图。模拟集成电路版图设计更注重电路的性能实现,经常需要与前端电路设计工程师交流。因此,版图教学时教师须要求学生掌握模拟集成电路的基本原理,学生能识CMOS模拟电路,与前端电路工程师交流无障碍。同时也要求学生掌握工艺对模拟版图的影响,熟练运用模拟版图的晶体管匹配、保护环、Dummy晶体管等关键技术。在教学方法上,依然采用数字集成电路版图的教学过程,实现教与学的同步。在内容安排上,一是以运算放大器为例,深入讲解差分对管、电流镜、电容的匹配机理,版图匹配时结构采用一维还是二维,具体是如何布局的,以及保护环与dummy管版图绘制技术。二是以带隙基准电压源为例,深入讲解N阱CMOS工艺下双极晶体管PNP与电阻匹配的版图绘制技术。在教学时需注意晶体管与电阻并联拆分的合理性、电阻与电容的类型与计算方法以及布线的规范性。

3.逆向版图设计。逆向集成电路版图设计需要学生掌握数字标准单元的命名规范、所有标准单元电路结构、常用模拟电路的结构以及芯片的工艺,要求学生熟悉模拟和数字集成单元电路。这样才可以在逆向提取电路与版图时,做到准确无误。教学方法同样还是采用数字集成电路版图教学流程,达到学以致用。教学内容当以一个既含数字电路又含模拟电路的芯片为例。为了提取数字单元电路,需讲解foundry提供的标准单元库里的单元电路与命名规范。在提取单元电路教学时,说明数字电路需要归并同类图形,例如与非门、或非门、触发器等,同样的图形不要分析多次。强调学生注意电路的共性、版图布局与布线的规律性,做到熟能生巧。模拟电路的提取与版图绘制教学要求学生掌握模拟集成电路常用电路结构与工作原理,因为逆向设计软件提出的元器件符号应该按照易于理解的电路整理,使其他人员也能看出你提取电路的功能,做到准确通用规范性。

集成电路版图设计教学应面向企业,按照企业对设计工程师的要求来安排教学,做到教学与实践的紧密结合。从教学开始就向学生灌输IC行业知识,定位准确,学生明确自己应该掌握哪些相关知识。本文从集成电路数字版图、模拟版图和逆向设计版图这三个方面就如何开展教学可以满足企业对版图工程师的要求展开探讨,安排教学有针对性。在教学方法与内容上做了分析探讨,力求让学生在毕业后可以顺利进入IC行业做出努力。

参考文献:

[1]王静霞,余菲,赵杰.面向职业岗位构建高职微电子技术专业人才培养模式[J].职业技术教育,2010,31(14):5-8.

[2]刘俐,赵杰.针对职业岗位需求?摇探索集成电路设计技术课程教学新模式[J].中国职业技术教育,2012,(2):5-8.

[3]鞠家欣,鲍嘉明,杨兵.探索微电子专业实践教学新方法-以“集成电路版图设计”课程为例[J].实验技术与管理,2012,29(3):280-282.

[4]李淑萍,史小波,金曦.微电子技术专业服务地方经济培养高技能人才的探索[J].职业技术教育,2010,13(11):13-16.

第7篇:电路设计规则范文

电子电路设计是电类专业为绘制电子电路图所必需掌握的一门计算机综合性设计课程。然而,随着课程改革在各高校逐渐开展,一些课程的课时量也相应递减,比如笔者所在学校电气自动化专业的《电子电路设计》课程已由原36学时减至24学时。如何在减少的课时的课程中让学生掌握同样程度的技能水平以适应社会的需求,考验着每一位专业教师。以往传统的电路设计教学的方式大多是由教师先讲授知识点,然后将知识点所涉及到的图例向学生绘制演示,最后让学生依样画葫芦。在整个教学过程中,教师为主导,而学生仅限于单纯的模仿与记忆,并没有主动学习,导致学习效率低下。因此在教学中应该有意识到加入兴趣式教学,调动他们的求知欲,激发学生更积极主动的思考,学习甚至创新,打造优质课堂,全面提高教学质量与学习效率。

2任务驱动法

2.1任务驱动法原理

任务驱动法是近年来被广为应用的一种教学手法,它一改传统的灌输式教学,尝试采用任务驱动式的教学方法。需要教师将课程学习内容划分为多个特定任务,每个任务包含一定知识点,只要学生完成了课程中设定的任务,就可以掌握课程学习的内容。任务驱动法的核心内容就是由教师在教学过程中创设任务情境,教学任务必须融合学生所需要掌握的技能点和相关的知识点,同时又具有一定的生活性、探究性和创造性,让学生带着解决问题完成任务,激发他们的学习兴趣,让学生自主或协作性学习,使他们真正了解知识点在实际工程中的应用,学以致用。

2.2任务驱动法在电路设计实训中的应用

电路设计实训课程的教学目的为电子电路图形绘制,电路图形仅为简单的二维制版,因此在绘制电路原理图时较为简单易学。但无论多简单的图形,在绘制的过程中都要利用到基本绘图工具、图形编辑和图层管理各知识点综合才能完成。因而课程教授过程中不能简单的按书本章节顺序来讲,而是应该由教师将所有知识融会贯通后重新组织,将它们融入到一个个工程任务中再向学生展示,如向学生展示电动小车电路设计图纸,将其作为一个工程任务,让学生尝试用学过的知识来绘制,或让学生在绘制过程中遇到难题再提出并讲解。这样就更能增添学生的学习兴趣和在完成任务后的成就感,形成良性循环。因此电路设计实训课程非常适合采用任务驱动式教学法。

3微任务驱动法

3.1微任务驱动法原理

采用任务驱动法教学所提供的任务由于综合性较强所以工程量较大且难度较高,学生在一节课中难以完成,即使有些基础好,动手能力强的学生完成了任务,也会因为知识点过多过杂而难以消化。因此需要由教师把握学生素质和能力,将大任务进行科学性的分解,将之细化为中任务,小任务甚至微任务。让具有不同层次知识能力的学生都能被激发兴趣,在任务量合适的微任务环境中尝试和实践。以上所述即为微任务驱动教学法,它就是以任务驱动法为基础,将总任务依靠知识的内在逻辑或采取分类的方式进行具体化,以微任务的形呈现。较之任务驱动法,其目标更为明确,导向性更强,教师使用这种方法教学也更容易控制课堂教学的节奏,保证能在规定时间内完成教学进度。

3.2微任务教学设计

微任务驱动法的实施过程是:教师先依据教学目标设计一个总任务,引起学生的学习兴趣。再引导学生分析总任务的解决方法并将总任务拆分为一个个的微任务,各微任务之间可以是从属或并列关系。拆分出来的微任务不能太难或任务量太大,应设计为学生较易完成的程度,以便于将学生的理解逐步引向深入。通过一个个的微任务引导和推动学生一步步上升,一层层提高,不断接近并最终达到复杂的学习任务的顶点。微任务法的核心是如何科学合理的设计微任务。首先,任务必须要有明确的目的性,教师提出的每一个微任务,原则上都是为了完成总任务而设计的,尽量不设置多余任务,不能本末倒置。其次,教师选择微任务时应考虑到大多数学生的水平,注意难易适度。并且在教学过程中,根据学生的反应与掌握程度以及课程进度随时调整微任务,不能任务教条化僵化。第三,微任务还应遵循完整性原则。教师所设计的微任务必须连贯,不能有断续感,让学生知道自己要做什么,可以解决什么问题,使他们获取的知识完整且有条理。最后,微任务的设计要适当增添趣味性,可以在教学过程中加上图片插画,视频音频等数字教学资源,让学生在完成任务的同时体会到学习的乐趣。

3.3微任务驱动法在电路设计实训课程中的应用

AltiumDesigner软件的工具栏较多,常用工具栏中的各命令参数也较杂,若逐个讲解,则显得各知识点杂乱无章,学生记的多忘得快,但在实际绘图时还是束手无策,不知该用哪个工具来绘制。例如,在介绍AD软件常用绘图工具栏中的直线、多边形、椭圆弧线、文字和文本框等,若单纯讲述这些知识点,难免枯燥乏味,且容易与布线工具栏的功能弄混。围绕这些教学内容,可设计对应电路制图微任务,围绕一个小目标,教师可以设计多个由简单到复杂的小任务,布置学生循序渐进地完成任务,在练习中熟悉各种命令的操作。例如,基本绘图训练可将学生已在模拟电路和数字电路课程中学过的常用电子元件符号如:变压器、运算放大器(如图1(a)、(b)所示)融入其中,将它们设计为一个个需要完成的微任务。每个任务都考虑到学习课程的前后连贯和趣味性,让学生绘制自己所熟悉的事物。随着学习的深入,可以布置学生完成如图1(c)所示的七段数码管等稍复杂的绘制任务。完成任务后的喜悦感和成就感会更加强烈,也为以后的学习增添了动力。微任务驱动法在教学过程中将知识点分解到一些小任务中进行,学生头脑中的知识是零散的,有时会降低知识的系统性和完整性。因此,这样的设计任务和完成过程是十分必要的,教师可以通过一个较为完整的任务引导学生将已完成的微任务中的知识点进行归纳总结,加深对所学知识和技能的记忆和理解,完成真正意义上的知识建构。例如,上完第三次课后,教师即可布置学生完成如图2所示“八路彩灯控制电路图”大任务。从创建元器件、调用常用元件开始,直至综合运用各种绘图指令及编辑工具完成绘图。让学生在本次课中复习巩固了前面微任务中所学的小知识并将其融合,初步完成了一张简单的电子电路设计原理图样,并总体上掌握了一张较完整电子电路工程图的绘制过程,具有综合应用性。

3.4电路设计课程与其余课程的前后融合

电路设计课程在介绍一般电路绘图技巧与制版规则时,还会涉及到数字电路、模拟电路、单片机技术应用等课程的接续关系。将本课程绘制图中所涉及到的器件类原理基础前移到数字电路和模拟电路等课程中解决,诸如实际译码电路、三态电路与缓冲器芯片等知识点不再占用本课程学时。本课程把握好衔接关系,主讲等电路板制版规范、电路设计的仿真方法等要点主题,把以往重复性内容节省的学时用于应用层面。在重点讲述电子电路图绘制方式的时候,还应适当向学生加强常用接口电路的连接方法知识点,并向学生扩展对嵌入式处理器及新技术的了解,为后续单片机原理课以及传感与检测技术中各种传感器与微处理器的连接使用,智能传感器、数字式一体传感器等内容的讲授打下基础。

4总结

第8篇:电路设计规则范文

关键词: Protel99SE;电路原理图;PCB;布局布线;构建网络

中图分类号:TN41 文献标识码:A 文章编号:1671-7597(2011)1210060-01

1 从原理图到PCB

可以分为三大步骤,第一是绘制电路原理图,第二是根据电路原理图产生网络表,第三是印制电路板设计。详细操作过程如下:

1)创建一个设计数据库文件。建立一个空的设计数据库并为该数据库文件命名和选择存储位置。

2)新建电路原理图。新建电路原理图文件,并直接修改电路原理图文件名,进入Sch99SE后,设置图纸参数。

3)加载元器件库、放置元器件并布局原理图布线。将放置好的元器件各管脚用电气导线、网络标号、I/O端口标号等连接起来。使各电路模块之间建立满足设计要求的电气连接关系。Protel99SE提供直接连线、网络连线和I/O端口标号连线3种方式。简单的电路模块宜采用直接连线方式,连线一次画完。而对于复杂的电路模块多采用网络连线和I/O端口标号连线方式(两种连线方式其实都是用英文字母标识电气上连接在一起的各导线),其网络标号最好放在管脚端点引出的端线上。

4)ERC和生成网络表。使用Protel提供的智能化电气规则检查(ERC)功能对该电路系统进行电气规则检查,主要包括两方面的内容:① 检查原理图的电气规则冲突,如一个元器件的输出引脚与另一个元器件的输出引脚连在一起;② 检查未连接或重复使用的网络标号。网络表(netlist)是电路原理图文件和PCB设计之间的纽带。

5)新建一个PCB文件,规划印制电路板。规划电路板主要是确定电路板的物理边界、电气边界、板层结构和布局要求任务。

首先,定义电路板的形状和尺寸(物理边界),用户在4个机械层中的一个确定电路板物理边界,而在其它的机械层上放置尺寸、角标、参考孔位置。然后,定义电路板的电气边界。电气边界是用来限定布线和元件放置的范围,通常用户应将电气边界的范围与物理边界的范围规划成相同大小。所有信号层的目标对象(如焊盘、过孔和走线)都限定在电气边界内。

6)设置参数制。参数设置包括工作层的参数、PCB编辑器的工作参数、自动布局和布线数的设置等。在进行印制电路板设计时,确定其工作层,包括信号层(Signallayers)电源/接地层(IntemalPlanes)、(Mechanicallayers)等。印制电路单层板、双层板和多层板。在实际应用中,双层板因其布线相对比较简单、价格适中而成为现在最常使用的一种印制电路板。双层板包括顶层(TopLaye底层(BottomLayer)两层,双面敷铜,中间为绝缘层。双层板两面都可以布线,一般需要由过孔(Via)或焊盘(Pad)连通。

7)加载网络表。网络表是自动布线的关键,是连接电路原理图和PCB图的桥梁。只有正确加载网络表,才能对电路板进行自动布局和自动布线操作。

8)元器件的放置与布局。元器件的放置要符合元器件布局的一般规则。布局是指将元件的封装整齐、合理地放置在电路板所限定的范围内。布局有两种方式:手工布局和自动布局。手工布局是指以手工的方式将元件的封装及焊盘、过孔、字符串等重新排列。对于较为复杂的电路,绝大多数采用自动布局,然后再进行手工调整进行布局。

9)布线(Routing)规则。元器件的封装在印制电路板上布局完成后,就可以布线了。布线同布局一样,可分为手工布线和自动布线,复杂的电路一般都是采用自动布线,然后手工进行调整,以达到最佳效果。在进行自动布线之前,首要工作就是设置“自动线规则”。

10)自动布线和手工调整。一般来说,PCB自动布线后会存在一些不合理的地方,例如布线拐弯过多、布线重复连接以及布线直接穿过元件引脚等。另外,某些情况下设计者需要放置一些焊盘、过孔、尺寸标注和字符串等,以满足实际设计的需要。对于以上情况。需要设计者采用手工布线的方法来完成。

11)生成各种PCB报表及输出PCB报表是为方便用户查询和管理电路板而建,印制电路板详细信息可以记录在各种不同报表中。PCB可生成“已选管脚报表”(Selected Pins)“电路板信报表”(Board Information)、

“(Bill Of Materials)、“设计文档报表”“网络状态报表”(Netlist Status)、“钻孔文档”等等文档。电路板布线完毕后,就可以输出电路板图,并将输出结果送到厂家进行制作。

12)文件的保存和输出完成PCB设计后,应将文件保存,然后利用各种图形输出设备,输出PCB图。

2 手工设计PCB

和从原理图到PCB的一些步骤是相同的,在此就不再详细描述了。

1)新建PCB文件。在设计数据库文件中,新建一个PCB文件。选择File/New菜单,在弹出的对话框中选择PCB Document选项在创建的数据库中新建一个PCB文件。

2)规划电路板。在绘制PCB图前,用户对电路板应有一个初步的规划,主要包括3个方面的设置,分别是工作层面的设置、环境参数的设置和电路板的规划设置。其中最重要的是电路板的规划设置,包括采用几层电路板、电路板的结构、尺寸、各元件的封装形式及其安装位置、接口形式、元件的布置参数、板层参数和布线参数等。

3)放置封装,修改封装属性,放置电源连接件的封装。

4)布局,构建网络。按照网络关系表,建立所有的网络。这是最为关键的一步,创建所有器件的连接关系。

5)设置布线规则,布线。Protel提供两种布线方式:自动布线和手工布线。Protel99SE用先进的无网格和基于形状的对角线自动布线技术,使用Auto Boute/All菜单,进行布线参数和布线规则设置后。Protel99SE开始为用户的电路板自动布线。手工布线是指设计者按照PCB中预拉线的引导手工在PCB上进行布线操作。对于设计者来说,一般的布线原则是先自动布线,然后再进行手工布线。一般来说,PCB自动布线后会存在一些不合理的地方,例如布线拐弯过多、布线重复连接以及布线直接穿过元件引脚等。另外,某些情况下设计者需要放置一些焊盘、过孔、尺寸标注和字符串等,以满足实际设计的需要。对于以上情况。需要设计者采用手工布线的方法来完成。

6)规则检查,保存设计。

3 结束语

对于硬件电路设计者来说.Protel99SE是必须掌握的一项基本技能。要想设计一款高质量的电路板必须对电路的原理、元器件的选择、空间电磁波的干扰等诸多问题都要考虑,所以设计绘制印制电路板的工作是项复杂的系统工程,需要有很多PCB设计的经验和技巧。

参考文献:

[1]曾峰、巩海洪、曾波,印刷电路板(PCB)设计与制作(第2版)[M].北京:电子工业出版社,2005.

[2]余宏生、吴建设,电子CAD技能实训[M].北京:人民邮电出版社,2006.

[2]江雪松、陈绮、许灵军等,印刷电路板设计[M].北京:机械出版社,2006.

第9篇:电路设计规则范文

1 电子元器件的失效原因分析

1.1 缺乏科学的设计

通过对以往电子元器件产品的系统分析可以看出,电子元器件的失效,除了其本身的质量问题,有很大一部分原因是由于电子元器件的设计不合理所导致的。比如某雷达产品,其在使用的过程中存在着晶振振荡不稳定的现象,通常会认为是由于集成电路所引起的,在更换集成电路之后现象仍然存在,通过进一步的分析发现,是电路设计不合理所引起的,因此对电力设计进行了更改,故障便彻底消除。

1.2 人为因素的干扰

根据相关的数据统计,在导致电子元器件失效的各种原因中,人为因素占据着很大的比例,在产品的生产和使用的过程中,库存、搬运、安装调试、试验等环节都可能会由于人的因素而导致电子元器件的失效。比如在电子元器件的装配过程中,将单元板进行组成之后,对整个系统进行运行调整,这时整机功能正常,但是将电子元器件与电路印制板进行焊接并且装机之后,设备却无法正常运转,通过专家分析,是由于焊接过程中,没有使电烙铁达到理想的接地状态,不满足电路焊接标准要求,而导致设备整机无法运行。

1.3 因他电应力

近年来,由于其他电应力而引起的电子元器件失效比例逐年的提升,其中较为典型的因素有接地不良、反冲电动势、二次击穿、静电等等。如很多单位的供电系统都是接“0”保护,即“零”线与“地”线接在一起,这是符合供电系统的使用标准的。然而,对于微电子器件、CMOS器件,在其电路设计、调试和生产过程中,则必须采用接“地”保护,即“零”线与“地”线必须要严格分开。由于这些问题没有受到充分的重视,而导致了电子元器件的失效。

2 提高电子元器件使用可靠性的措施分析

1)电子元器件的正确选择与使用。由于不同的生产厂家在电子元器件的命名方法上存在着一定的差异,通常在元器件上所使用的字母标记也有着不同的含义,其反映着不同的型号和规格,同时也反映了元器件使用的环境和质量等级等信息。因此,在进行元器件的选择时,必须要对其字母含义进行详细的了解以及确定,因为有的供应商利用采购人员不清楚元器件上字母的含义,而以次充好,或者是以民用品充当军用品以较高的价格出售。同时,应当对电子元器件的质量等级和命名标准等内容有正确的认识,选择具有品质认定的标志,具有成熟生产经验的厂家所生产的产品。另外,对于元器件的使用环境和使用条件等参数要求也要作为其选择的依据,这样才能够选择合理的型号与规格。

2)对于元器件的工作负荷要进行科学的控制。实践证明,经常处于满负荷工作状态的元器件,其使用寿命也大大的降低,因此为了保证电子元器件的使用功能正常发挥,对于元器件的施工要适当的进行降额和降温。同时,通过冗余设计、裕度设计等方法来改善元器件的使用可靠性,降低其失效率,以此来提高整机的运行可靠性。

3)在电路的选择上,应当在保证不影响电路功能的基础上,将传统的分立器件用集成电路来代替。对于特殊的电路,或者是电子元器件成本较高的电路,应当根据使用的需要而做好相应的防护措施,功率较大的元器件,则要添加就有散热器功能的部件,保证其正常使用。

4)在安装工艺方法的选择方面,应当确保其科学和有效,比如印制板的机械配合孔、结构尺寸的合理性等等,这些都是影响元器件使用可靠性的因素,避免由于结构设计不合理和安装工艺不科学而造成元器件内应力的存在,这会大大降低元器件的使用效率。

5)元器件的检测与筛选。检测与筛选是元器件使用过程中必不可少的关键环节,影响元器件使用可靠性的因素有很多,即使是设计合理、安装工艺科学等因素都保证的基础上,仍然会由于元器件自身材料的缺陷、辅助材料的质量以及设备故障等因素而导致元器件的使用存在缺陷,而这些缺陷通过检测与筛选是能够有效的清除。在电路的测试功能中,包括直流参数测试和交流参数测试以及功能测试等,丧失基本逻辑功能的元器件可以通过功能测试来完成,而工艺生产中存在的缺陷则可以通过直流参数测试来检测,交流参数测试一般可以用来对期间的频率特性和开关特性进行检测。

6)加强对电子元器件使用可靠性的研究工作,不断的完善元器件使用规则和制度,并且持续提升设计人员的设计水平。比如可根据单位实际情况来编写《CMOS电路使用规则》、《集成电路运放电路使用规则》等文件,从而使设计、使用人员有章可循,将大大减少人为因素造成的元器件失效。

7)加强对元器件产品质量的监督与管理,杜绝使用不合格的元器件产品。相关的工作部门要对元器件的质量做好监督与管理,并且及时的反馈,定期将元器件的使用情况形成报告

并且上交给质量管理部门。在对整机设备进行维护时,对其故障分析应当深入到元器件的等级,而不仅仅是电路板,这样才能够根据不同批次的元器件产品的故障和失效率有一个详细的记录和分析,以此来判断该批量元器件的可靠性,为生产和使用提供更具有针对性的修改建议。

3 结束语

电子元器件是设备系统中具有基础性作用的组成部分,其使用可靠性对于电子设备整体的运行效率有着重要的影响,因此,在进行电子元器件的选择时,应当确保其本身具有较强的可靠性,同时能够满足设备系统电性能指标的相关规定和要求,才能够确保设备的稳定运行。

参考文献:

[1]温培和,常用电子元器件的性能分析[J].价值工程,2010(36).

[2]黄苏萍,电子元器件可靠性与检测筛选[J].中国新技术新产品,2010(04).

[3]于迎,提高电子元器件使用可靠性的方法[J].环境技术,2008(04).

[4]吕俊霞、宣峰,电子元器件的可靠性分析[J].洁净与空调技术,2011(01).

[5]杨丹、恩云飞、黄云,电子元器件的贮存可靠性及评价技术[J].电子元件与材料,2005(07).