前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的电子电路教学设计主题范文,仅供参考,欢迎阅读并收藏。
关键词:任务驱动法;微任务;电子电路;实训教学
中图分类号:G4
文献标识码:A
文章编号:16723198(2015)22018502
1电子电路设计实训课程教学现状
电子电路设计是电类专业为绘制电子电路图所必需掌握的一门计算机综合性设计课程。然而,随着课程改革在各高校逐渐开展,一些课程的课时量也相应递减,比如笔者所在学校电气自动化专业的《电子电路设计》课程已由原36学时减至24学时。如何在减少的课时的课程中让学生掌握同样程度的技能水平以适应社会的需求,考验着每一位专业教师。
以往传统的电路设计教学的方式大多是由教师先讲授知识点,然后将知识点所涉及到的图例向学生绘制演示,最后让学生依样画葫芦。在整个教学过程中,教师为主导,而学生仅限于单纯的模仿与记忆,并没有主动学习,导致学习效率低下。因此在教学中应该有意识到加入兴趣式教学,调动他们的求知欲,激发学生更积极主动的思考,学习甚至创新,打造优质课堂,全面提高教学质量与学习效率。
2任务驱动法
2.1任务驱动法原理
任务驱动法是近年来被广为应用的一种教学手法,它一改传统的灌输式教学,尝试采用任务驱动式的教学方法。需要教师将课程学习内容划分为多个特定任务,每个任务包含一定知识点,只要学生完成了课程中设定的任务,就可以掌握课程学习的内容。
任务驱动法的核心内容就是由教师在教学过程中创设任务情境,教学任务必须融合学生所需要掌握的技能点和相关的知识点,同时又具有一定的生活性、探究性和创造性,让学生带着解决问题完成任务,激发他们的学习兴趣,让学生自主或协作性学习,使他们真正了解知识点在实际工程中的应用,学以致用。
2.2任务驱动法在电路设计实训中的应用
电路设计实训课程的教学目的为电子电路图形绘制,电路图形仅为简单的二维制版,因此在绘制电路原理图时较为简单易学。但无论多简单的图形,在绘制的过程中都要利用到基本绘图工具、图形编辑和图层管理各知识点综合才能完成。因而课程教授过程中不能简单的按书本章节顺序来讲,而是应该由教师将所有知识融会贯通后重新组织,将它们融入到一个个工程任务中再向学生展示,如向学生展示电动小车电路设计图纸,将其作为一个工程任务,让学生尝试用学过的知识来绘制,或让学生在绘制过程中遇到难题再提出并讲解。这样就更能增添学生的学习兴趣和在完成任务后的成就感,形成良性循环。因此电路设计实训课程非常适合采用任务驱动式教学法。
3微任务驱动法
3.1微任务驱动法原理
采用任务驱动法教学所提供的任务由于综合性较强所以工程量较大且难度较高,学生在一节课中难以完成,即使有些基础好,动手能力强的学生完成了任务,也会因为知识点过多过杂而难以消化。因此需要由教师把握学生素质和能力,将大任务进行科学性的分解,将之细化为中任务,小任务甚至微任务。让具有不同层次知识能力的学生都能被激发兴趣,在任务量合适的微任务环境中尝试和实践。
以上所述即为微任务驱动教学法,它就是以任务驱动法为基础,将总任务依靠知识的内在逻辑或采取分类的方式进行具体化,以微任务的形呈现。较之任务驱动法,其目标更为明确,导向性更强,教师使用这种方法教学也更容易控制课堂教学的节奏,保证能在规定时间内完成教学进度。
3.2微任务教学设计
微任务驱动法的实施过程是:教师先依据教学目标设计一个总任务,引起学生的学习兴趣。再引导学生分析总任务的解决方法并将总任务拆分为一个个的微任务,各微任务之间可以是从属或并列关系。拆分出来的微任务不能太难或任务量太大,应设计为学生较易完成的程度,以便于将学生的理解逐步引向深入。通过一个个的微任务引导和推动学生一步步上升,一层层提高,不断接近并最终达到复杂的学习任务的顶点。
微任务法的核心是如何科学合理的设计微任务。首先,任务必须要有明确的目的性,教师提出的每一个微任务,原则上都是为了完成总任务而设计的,尽量不设置多余任务,不能本末倒置。其次,教师选择微任务时应考虑到大多数学生的水平,注意难易适度。并且在教学过程中,根据学生的反应与掌握程度以及课程进度随时调整微任务,不能任务教条化僵化。第三,微任务还应遵循完整性原则。教师所设计的微任务必须连贯,不能有断续感,让学生知道自己要做什么,可以解决什么问题,使他们获取的知识完整且有条理。最后,微任务的设计要适当增添趣味性,可以在教学过程中加上图片插画,视频音频等数字教学资源,让学生在完成任务的同时体会到学习的乐趣。
3.3微任务驱动法在电路设计实训课程中的应用
Altium Designer软件的工具栏较多,常用工具栏中的各命令参数也较杂,若逐个讲解,则显得各知识点杂乱无章,学生记的多忘得快,但在实际绘图时还是束手无策,不知该用哪个工具来绘制。
例如,在介绍AD软件常用绘图工具栏中的直线、多边形、椭圆弧线、文字和文本框等,若单纯讲述这些知识点,难免枯燥乏味,且容易与布线工具栏的功能弄混。围绕这些教学内容,可设计对应电路制图微任务,围绕一个小目标,教师可以设计多个由简单到复杂的小任务,布置学生循序渐进地完成任务,在练习中熟悉各种命令的操作。例如,基本绘图训练可将学生已在模拟电路和数字电路课程中学过的常用电子元件符号如:变压器、运算放大器(如图1(a)、(b)所示)融入其中,将它们设计为一个个需要完成的微任务。每个任务都考虑到学习课程的前后连贯和趣味性,让学生绘制自己所熟悉的事物。随着学习的深入,可以布置学生完成如图1(c)所示的七段数码管等稍复杂的绘制任务。完成任务后的喜悦感和成就感会更加强烈,也为以后的学习增添了动力。
微任务驱动法在教学过程中将知识点分解到一些小任务中进行,学生头脑中的知识是零散的,有时会降低知识的系统性和完整性。因此,这样的设计任务和完成过程是十分必要的,教师可以通过一个较为完整的任务引导学生将已完成的微任务中的知识点进行归纳总结,加深对所学知识和技能的记忆和理解,完成真正意义上的知识建构。
例如,上完第三次课后,教师即可布置学生完成如图2所示“八路彩灯控制电路图”大任务。从创建元器件、调用常用元件开始,直至综合运用各种绘图指令及编辑工具完成绘图。让学生在本次课中复习巩固了前面微任务中所学的小知识并将其融合,初步完成了一张简单的电子电路设计原理图样,并总体上掌握了一张较完整电子电路工程图的绘制过程,具有综合应用性。
3.4电路设计课程与其余课程的前后融合
电路设计课程在介绍一般电路绘图技巧与制版规则时,还会涉及到数字电路、模拟电路、单片机技术应用等课程的接续关系。将本课程绘制图中所涉及到的器件类原理基础前移到数字电路和模拟电路等课程中解决,诸如实际译码电路、三态电路与缓冲器芯片等知识点不再占用本课程学时。本课程把握好衔接关系,主讲等电路板制版规范、电路设计的仿真方法等要点主题,把以往重复性内容节省的学时用于应用层面。
在重点讲述电子电路图绘制方式的时候,还应适当向学生加强常用接口电路的连接方法知识点,并向学生扩展对嵌入式处理器及新技术的了解,为后续单片机原理课以及传感与检测技术中各种传感器与微处理器的连接使用,智能传感器、数字式一体传感器等内容的讲授打下基础。
4总结
本文提出在电路设计实训课程中提出微任务驱动教学的思路,该方式以“微任务为主线,教师为主导,学生为主题”崭新教学模式,改变了往常的以教定学到被动教学模式,让学生学会在解决任务中学习知识点与解决问题的方法,通过这种方法,既能激发学生勤于思考的热情,有加深了对知识点理解,提高了创新思维的能力。在教学中始终贯穿“应用入手,学中建,建中学;分解项目,逐步深入与完善”的理念,对人才培育重点落在实际操作能力的培养上,提升整体教学水平。
参考文献
[1]苏秋慧.微任务驱动法在中职CAD教学中的实验研究[J].长春:东北师范大学,2013.
[2]周红丽.《电子线路》任务型课堂教学过程和实施步骤的探讨[J].新课程学习,2009,(2):105108.
[3]杨瑞萍.基于工作过程的项目化课程教学改革实践――以“计算机辅助电子线路设计”课程改革为例[J].吉林省教育学院学报,2015,31(7).
关键词:电子CAD;PCB;教学方法
作者简介:袁红星(1980-),男,安徽安庆人,宁波工程学院电子与信息工程学院,高级工程师;吴少群(1981-),女,安徽安庆人,宁波工程学院电子与信息工程学院,讲师。(浙江 宁波 315016)
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)08-0029-02
“电子CAD”课程的教学目标是要求学生掌握PCB设计软件的基本功能和应用,包括原理图设计、绘制、PCB板设计、绘制、集成元件库制作等内容。国内大多数高校都开设了这门课程,并普遍采用Protel这一软件工具。劳文薇等人将项目驱动教学法引入“电子CAD”课程,探讨了项目选择、情景设计和教学过程中项目的实施等问题。[1]王鹏探讨了Protel软件在EDA课程中的整合作用。[2]李珍等人从建立设计理念、规范设计操作、抓好上机实践环节三个方面探讨如何提高Protel软件的教学效果。[3]这些教学方法的探索和实践有效改善了“电子CAD”的教学效果。但现有研究主要针对这门课程本身,对于“电子CAD”和其他课程间互动和关联的探讨较少。“电子CAD”是一门集理论知识与实际技能于一体的实践课程,让学生建立正确的设计理念,熟练掌握PCB设计软件的基本功能,离不开电路设计理论。因而讲授这门课程时和电路设计剥离开来只就软件使用本身讲这门课将会导致很多学生不知道学完这门课可以干什么或应该掌握到什么程度。其结果是大部分同学学完这门课之后仍不能独立进行PCB设计。这门课程是学生后续进行课程设计、毕业设计和电子竞赛的基础,对于学生就业也有很大帮助。如何在短短的一学期内让学生熟练掌握PCB设计软件的使用方法,培养学生的设计理念和工程素养是“电子CAD”课程需要探讨的课题。为了改革目前“电子CAD”课程的教学方法,下面探索将电路设计引入PCB设计软件进行讲解和实践的教学方法。
一、内容选择
电路设计内容广泛,需要精心选择适合电子CAD课程的部分。考虑到这门课程主要面向低年级学生,教师选择了以STC单片机为核心的应用系统。这是因为STC单片机是以51内核为主的单片机,指令代码完全兼容传统8051,具有ISP在线程序下载功能,便于调试,而相关的元器件大多数学校实验室已配备,不需另行购买。另外,51单片机的设计资料网络上非常丰富,学习容易入门,学生可获取海量学习资源,可在较短时间内熟悉和掌握其基本开发方法。
二、内容设计
原理图的设计、绘制、PCB的设计、绘制以及集成元件库的制作都紧紧围绕STC单片机应用系统展开。
对于简单原理图设计,下面对STC单片机最小应用系统进行介绍。该系统只包含了电源、复位、串口和LED灯驱动等基本模块,整个系统便于理解和设计。课程导论时以该系统为蓝本,讲述如何根据设计任务进行电路设计,再到Protel软件的原理图绘制、PCB绘制和厂家制板,直到最后电路板焊接,并要求学生用面包板搭建出该系统,增强学生对实物的认识。在此基础上要求学生用Protel软件绘制出该系统的原理图,并生成PCB板,使学生了解Protel软件设计电路板的整个流程和基本操作方法。进一步为增强学生将设计文件转换成实际产品的工程素养,从学生作品中挑选出最好的作为代表,并用教师个人科研经费将该作品送到制板厂进行实物制作。电路板返回后,利用周末时间将学生召集到一起进行焊接培训,将元器件焊接到电路板上,形成一个实际可用的STC最小应用系统。对51单片机软件Keil C51使用方法进行简单介绍,让学生了解如何在Keil C51中进行程序编写、编译、调试,并下载到单片机中。最后,用一个简单的流水灯实验在制作的电路板上进行演示。这一完整流程极大激发了学生学习的热情,并使他们真正懂得自己的设计如何影响到实际产品,如何从工程角度深入学习Protel软件的原理图绘制和PCB设计。
后面的课程则逐个向该系统添加功能模块,如数码管、键盘、EEPROM、继电器等,逐步开展复杂原理图绘制、层次原理图绘制、复杂PCB设计和元件原理图库及PCB封装库绘制的课程讲授。由于结合实物进行软件讲解激发了学生学习这门软件的热情,也使得他们认识到这门软件可以用来干什么,自己需要掌握到什么程度。
三、结合电路板实物进行PCB设计规则和布局、布线的讲解
对PCB设计规则的理解以及PCB布局、布线的掌握是学习PCB设计软件的核心和关键。如果脱离实际电路板进行这些内容的传授,则学生会觉得抽象而难以理解和掌握。为此,下面围绕前面制作的电路板逐个进行讲解。
1.PCB布局
首先,以STC单片机为核心进行布局,使学生掌握“先难后易、先大后小”的布局原则。对于最重要的单元电路和核心元器件要优先进行放置。
其次,对照电路板说明为什么要参照原理图的信号流向进行主要元器件的布局,使学生理解布局对电路调试、测试的影响。
再次,结合电路板制作成本和可靠性说明布局时要尽量满足以下原则: 关键信号线最短,总的连线尽可能短,模拟信号与数字信号分开。并从单片机工作时序着手,说明在控制器和处理器等数字器件上加上去耦电容的必要性。
最后,从生产和检验的角度说明布局需注意的事项。为便于串口调试和程序加载,应该将串口电路放置在靠近电路板边缘的位置;而为了便于电源端子的插拔,也需要将电源电路放置在电路板边缘位置。
2.PCB布线
布线是PCB设计中最重要的部分,直接决定了电路板性能的好坏。为此,结合实际电路板,从三个层次上逐步加强学生的设计能力,即:布通、满足电气性能和美观。布通是最基本的要求,这里主要通过Protel软件的自动布线功能对学生进行实训。为了使自动布线能够达到基本要求,结合实际电路板说明为什么在布线前要设置布线宽度规则,对地线和电源线加宽。另外,给学生讲解如何根据DRC检查对布线结果进行检查,看是否达到预定要求。掌握布通技巧后结合电路板电气性能、可靠性说明如何对布线进行优化。这部分内容对应教科书的PCB后期设计章节。为保证电气性能,要求学生在布线时尽量加宽电源线和地线的宽度,满足的要求是:地线>电源线>信号线;相邻电路层布线要相互垂直,避免平行的情况发生;时钟线要尽量短,对关键信号点预留测试点,以便系统不能工作时判断是否因为时钟信号未能满足要求;对未布线区域进行敷铜。在掌握满足电气性能的基础上进一步要求学生布线尽可能美观。
四、通过大学生科创项目争取经费支持
由于制作实物涉及到费用问题,虽然51应用系统成本很低,但对于学生而言也是一个负担,完全由授课教师承担制作费用也不现实。考虑到这些情况,要积极组织学生申报省级和校级大学生科创项目,争取经费的支持。并鼓励学生组建项目组,进行资源共享,并分摊成本。
五、教学效果
通过这些尝试后明显激发了学生的学习积极性,提高了学生使用PCB设计软件的熟练程度。在所授电子科学与技术两个新生班级76个学生中产生较大影响,一个项目组申报的省级大学生科创项目成功立项,获4000元经费资助;一个项目组申报的校级大学生科创项目获2000元经费资助;两个班有40%的学生主动报名参加学校电子协会,学习焊接工艺。虽然这两个班是刚入学的新生班,但在这门课的带动下,他们充分利用课余时间开始自学单片机、C语言编程、数字电路和模拟电路。对于他们后续学习无疑是极大的推动。
六、结束语
“电子CAD”课程是电子类专业重要的基础课程,其中讲授的PCB软件使用技巧是学生进行后续课程设计、毕业设计和参与电子竞赛所必须掌握的基本技能。围绕该软件在电路设计中的实际应用逐步进行简单原理图、复杂原理图、层次原理图、简单PCB、复杂PCB以及元件集成库绘制方法的授课。经过近一学期的教学实践表明,通过这种教学方法学生能很快掌握使用PCB软件进行电路板设计的技能。同时,这一讲授方法对于培养学生的工程素养也有较大帮助。由于授课中挑选出部分优秀作品进行了实物制作,使他们深刻体会到设计对产品的影响以及如何根据产品的要求进行电路设计的规划和实施。今后,教师们将积极向学校和上级部门申请教改项目,为这一教学方法的实施争取经费支持。
参考文献:
[1]劳文薇,刘俊.项目驱动教学法在“电子CAD”课程教学中的应用[J].机械职业教育,2011,(3).
针对硬件课程实践环节在提高学生解决实际问题能力上效果不理想、课程之间衔接不好等问题,基于CDIO工程教育理念,结合“try”教学方法,基于数字电路设计课程的实践环节,提出一种新的教学模式。
关键词:
CDIO;教学模式;实践环节;课程衔接
由麻省理工学院等4所大学创立的CDIO工程教育理念,是继承和发展欧美工程教育改革的一种新的教育理念。该理念包括12条标准,涵盖了具有可操作性的能力培养、全面实施以及检验测评。它以产品研发到运行的生命周期为载体,让学生以主动的、实践的、课程之间有机联系的方式来学习工程的理论、技术与经验[1-2]。数字电路设计是计算机组成原理、接口与通信以及嵌入式类课程的先修课程。如果在数字电路设计的教学中没有考虑好与后续课程在理论教学与实践教学内容上的衔接,则容易导致学生在后继课程的学习中遇到困难[3]。
1数字电路设计课程实践环节的教学条件和教学现状
(1)社会对软件人才的需求量远大于对硬件人才的需求量,学生出于就业考虑,容易形成重软件轻硬件的观念。(2)硬件课程入门较难,实践环节大都是验证性的,缺乏探索性,不利于培养学生解决实际问题的能力,从而打击了学生学习硬件课程的积极性,导致学生形成“好软怕硬”的思想。(3)传统教学模式是教师课堂讲授,适当结合验证性实验,不能激发学生的学习积极性。学生学完理论、做完实验后,仍然缺乏解决实际问题的综合能力、工程实践能力及创新能力[4]。传统教学模式的弊端导致在与计算机组成原理等后继课程的衔接中,学生不能从系统的高度认识数字逻辑[3-5]。(4)计算机学院开设的数字电路设计和计算机组成原理等课程,采用同一套实验设备,在一定程度上能让学生的学习具有连续性。(5)自创的“try”教学方法可适用于数字电路设计课程及实践环节的教学[6-8],但由于算机组成原理和数字电路设计两门课程的内容和要求不同,“try”教学方法在应用于后者时,应有所调整。
2数字电路设计课程实践环节改革方案
2.1实践环节的层次设计为了获得更好的教学效果,教师探索了各种方法,其中有案例法、项目驱动法、任务驱动法等[9-12]。从实验室建设、实验手法、课程整合等不同角度来提高实践环节质量[13-14]也能够有效提高教学效果。比较上述方法后,考虑与后续课程的衔接等因素,根据CDIO标准3、5、7的要求,结合自创的“try”教学方法,我们将数字电路设计课程的实践环节分成两个层次,从最简单的门级电路编程开始,难度由低到高、循序渐进,最终让学生完成源于实际案例的综合实验,初步具备实际工程能力。表1从实验项目设计、教学方法等7方面对基本实验和综合实验进行了对比。在教学中,学生学习的主要障碍不是掌握理论方法,而是缺乏理论知识和实践问题认知的沟通[11]。因此,我们在理论教材中选择15个知识点,设计成相关的任务和实验内容,如全加器、表决器等,采用“try”教学方法并结合任务驱动法,鼓励学生多动手多尝试,通过任务、查资料、仿真、实物验证、教师验收、撰写实验报告和总结这7个步骤完成对15个理论知识点的学习。为了进一步提高学生的实际工程能力,基于科研项目,贴近实际生活,我们编写了自动售货机、出租车计费器、电梯控制器等6个综合实验。实验采用分组方式,每组学生自行选择一个题目,在规定时间内完成该综合实验。综合实验的教学过程一般包括:教师项目及要求、学生分组并认领项目、组内分工、查资料、设计方案、论证可行性、学生在宿舍仿真、学生在实验室的硬件开发板上实物验证、教师验收、提交实验报告、实验答辩、成绩评定等13个环节。教师在项目要求的时候,只给出最基本的要求,学生在设计的过程中可以自行扩充,也就是说,同一个综合实验题目,其设计可繁可简,不同学生设计的电路可能会不一样。
2.2实践环节评价体系的构建根据CDIO标准11,构建了实践环节的评价体系。
2.2.1基本实验评价方法基本实验评价指标是:①时限;②工作量;③完成质量;④验收程序;⑤实验报告。其中①、②、④、⑤考核了学生的个人能力和表达能力,指标③、④、⑤考核了学生的专业知识、建造产品和系统的能力。对这5项指标加权平均得到该基本实验项目分数,如式1所示,其中Sj表示某个基本实验的得分,Ki表示某个考查指标的系数,Mi表示在某个考查指标上的得分。由15个基本实验的得分累加后除以15,得到基本实验项目的总得分,如式2所示,其中BS表示基本实验的总得分,Sj表示某一个基本实验的得分。
2.2.2综合实验评价方法综合实验评价指标是:①时限;②查资料的能力;③实验方案;④创新性;⑤设计说明书;⑥完成质量;⑦团队合作能力;⑧工作量;⑨验收;⑩实验报告;实验答辩。其中①、②、⑤、⑦、⑧、⑨、⑩、项考核了学生的个人自身能力、探究能力、团队合作能力和表达能力,指标③、④、⑤、⑥、⑨、⑩、考核了学生的专业知识、建造产品和系统的能力。修改式1可对这11项指标的得分加权平均,从而得到综合实验的分数。
2.2.3实践环节最终成绩评定办法及选优措施实践环节总评成绩由基本实验成绩和综合实验成绩两部分加权平均得到,从工作量及投入时间方面考虑,一般建议两者各占50%。综合实验结束后,根据学生在实践环节的学习情况和成绩,特别是综合实验中的表现,向各相关学科实验室推荐优秀本科生,使他们有机会加入科研项目组,参与教师的科研工作。
3实施效果及分析
为检验课改成果,我们设计了一套课程评价系统,包括一套具有反向题的学生调查问卷、学评教的数据、学生的理论课成绩单、实践环节成绩单、一套后继课程教师评价学生掌握先修课程知识的调查问卷、一套学生所在学科实验室评价该生的调查问卷等。评价系统还包括对这些数据的统计和分析。统计数据显示,在CDIO模式基本实验和综合实验实验项目设计上,学生满意度达到81.6%,在教学内容、教学方法、实验环节考核方法等方面,学生满意度达到97.4%,比传统模式提高了20几个百分点。这些数据表明,新教学模式比传统模式更能激发学生的实验兴趣,促进他们较大幅度地提高项目设计能力、动手编程能力、团队合作能力。我们将2013级计算机科学与技术专业的学生分成两组,采用相同的教学资源和不同的教学方式分别授课,一组采用新模式教学,另一组采用传统模式教学。经过一个学期的学习,2015年1月数字电路设计课程理论考试中,在试卷相同的情况下,新模式组成绩优良率达到52.9%,比传统模式组高24个百分点;新模式组不及格率为15.7%,比传统模式组低15个百分点;新模式组平均卷面成绩为78分,比传统模式组高6.1分。由此可知,基于新标准并结合“try”方法的新教学模式能够提高实践环节的教学质量,切实促进学生深入理解理论课的相关知识点,有助于学生更好地完成课程衔接,为学生后继课程的学习打下坚实的基础。追踪这些学生后继课程的学习情况,统计2015年6月计算机组成原理课程设计期末考试成绩后发现:原新模式组优良率达到80.3%,比传统模式组高25个百分点;原新模式组不及格率为0,比传统模式组低21个百分点。计算机组成原理课程理论考试中,原新模式组平均卷面成绩为68分,比传统模式组高5分;原新模式组不及格率为17.4%,比传统模式组低5个百分点。此数据表明,数字电路设计课程实践环节采用新教学模式教学有助于学生对后继课程的学习,特别是实践环节成绩有了大幅提升,不及格率也明显下降。
4结语
新教学模式基于CDIO理论,结合“try”教学理念,将数字电路设计课程实践环节分为基础实验和综合实验两个层次,并包含了配套的成绩评定方法和课程评价系统。实践证明,新教学模式能够更好地促进课程衔接,有利于培养学生自主学习、主动探索的精神和能力,培养学生的工程实践能力、沟通交流能力及团队协作能力。改革的下一步,是根据每一门课的特点,把基于CDIO理念的教学模式推广到课程群其他课程的教学中去,以期从课程层次化、课程间网络化等多角度、多层面地把学生培养成为优秀的工程技术人才。
参考文献:
[1]百度文库.CDIO工程教育模式探析[EB/OL].(2012-09-15).
[2]查建中.工程教育改革战略“CDIO”与产学合作和国际化[J].中国大学教学,2008(5):16-19.
[3]白中英.数字逻辑、计算机组成原理两门课的衔接性[J].计算机教育,2011(19):36-36.
[4]陈进,吴柯.从一个工程实例对“数字电路”教学的反思[J].电气电子教学学报,2012,34(2):112-114.
[5]曹维,徐东风,孙凌洁.基于CDIO理念的数字逻辑实践教学探索[J].计算机教育,2012(12):75-77.[6]包健.计算机组成原理课程及实验的改革与建设[C]//全国大学计算机课程报告论坛论文集.北京:高等教育出版社,2007:75-77.
[7]FengJ,DaiG,BaoJ.PedagogicalpracticeofE-learninginthecourse“theprinciplesofcomputerorganization”[C]//IEEEInternationalConferenceonScalableComputingandCommunications&TheEighthIEEEInternationalConferenceonEmbeddedComputin.NewYork:IEEE,2009:529-532.
[8]章复嘉,包健,吴迎来.网络化计算机组成原理课程辅助教学方法探索[J].计算机教育,2012(2):67-70.
[9]贾熹滨.案例教学法在数字逻辑教学中的应用[J].计算机教育,2011(13):67-70.
[10]程书伟,张丹,程晓旭.基于“项目驱动法”的数字电路课程教学的探索与实践[J].电脑学习,2010(3):138-139.
[11]曲凌.任务驱动的小组教学法在实践教学中应用[J].实验室研究与探索,2014,33(6):200-203.
[12]李文.IACI-CDIO理念下项目驱动的数字逻辑实验教学改革与实践[J].实验室研究与探索,2014,33(6):161-164.
[13]刘小艳,金平.“电子电路与系统基础实验”教学改革与实践[J].实验室研究与探索,2014,33(6):197-199.
【关键词】项目化教学;数字;逻辑电路
我国传统的职业教育是以“知识为本位”,强调学科知识的科学性与系统性,教学上注重新、旧知识之间的联系,强调识记,但忽视了对学生操作技能和创新能力的培养;强调以课堂、教师、教材为中心、即所谓的“三中心”,教师教什么学生就学什么,忽视了学生积极性、主动性的发挥;在教学方法上采用“满堂灌”,教学进度上齐步走。这于当今社会强调实用性和创新性不能同步,因而难以适应社会的发展需求。
随着我校国家中等职业教育改革发展示范学校的审批,我们在人才培养模式、教学模式、学生评价模式等方面做了一系列的改革尝试。项目化教学法的引入就是我们在教学模式改革中的大胆尝试。
项目化教学是一种以学生自主探索为基础,采用科学研究及实践操作为主,促进学生主动接受知识的教学方法。教师应将需要解决的问题以项目的形式布置给学生,通过小组协助方式,在教师指导下由学生自己制定计划,团体协作完成整个项目,使学生理解和把握专业知识和相关技能,培养学生分析、解决问题的能力,加强他们的团对协作精神。
在数字逻辑电路的设计中,我采用如下实施过程进行教学:
一、确定项目任务
项目化教学的课前准备是教学中的一个重要环节,可以充分发挥学生的聪明才智,当然教师也必须深入学生,提出一个或几个设计方案,和学生一起讨论,然后分组,引导各小组根据项目任务利用业余时间查找相关资料,确定项目的目标,使各小组同学独立进行设计任务。这样学生成了教学的主角,而教师则转换为引导者,教学的服务者。比如确定如下任务:某项体育比赛A、B、C三个副裁判和一个D主裁判,主裁判的裁定计二票,其它裁判的裁定计一票,试设计一个表决电路,要求在多数票同意得分时电路发出得分信号,也就是设计一个表决器,全部工作由学生参与完成。由于这样的电路在实际生活中随处可见,同学们的兴趣非常高涨,提问声此起彼伏。
二、制定计划
学生根据实际问题设计出的逻辑电路图是五花八门的,但哪个是正确的不要急于告诉他们,而是让他们自己介绍自己设计的逻辑电路图,有的同学设计出的逻辑电路图虽然很合理,但在介绍时存在很多漏洞;有的同学虽然设计得不合理,但介绍自己设计的电路图时语言简练、幽默,不时博得同学们的阵阵掌声;有的同学虽然设计出了电路,但不敢上台介绍,我就引导他,让他慢慢的进入角色,并且不断的鼓励他,使他能够完整的介绍自己的电路。学生都急着想知道自己的设计是否合理,都想让我做出公正的评价,我就在这样轻松愉快的气氛下,把逻辑电路图的设计方法的思路介绍了一下,然后同学们开始互相讨论,互相帮助来修改自己的“杰作”,学生们在设计电路过程中,手脑并用,互帮互学,不但学到了知识,而且对他的语言表达能力和社交能力也得到了很好的提高。最后,通过不断激烈的讨论、修改,学生们形成了各种各样的逻辑电路图:有与门、或门、与非门……他们的逻辑图思路清晰、简洁,充分体现了他们的聪明才智。
三、实施计划
按照逻辑电路图所需要的门电路,我又要求他们在我提供的材料中选择自己所需的元器件,按照自己的设计连接电路,验证自己的设计是否正确。因为我提供元器件时,有意识的把好多元器件混在一起,让他们自己选择,这样可以让他们认识各种元件,有的同学一下子就找到所需的元件;有的同学不认识集成块;有的同学不认识三极管;有的同学不知道电容器;有的同学什么都不知道……他们就相互帮助,相互介绍,拿到各自需要的元件,在这时我恰如其分地插入话题,告诉他们各种元器件的分类、特点和应用,及该如何选择所需元件,他们恍然大悟,很快和平时课堂上的内容联系起来。然后他们开始接线,有的同学很快就把线接好了;有的同学却不知道该怎么接线;有的同学不知道电源在哪里;有的同学甚至把元件用导线短接起来,问题接二连三的出来,在我的鼓励下,他们互相帮助,互相讨论,接线时不停出现的问题,有的原因他们自己找到了,有的原因找不到,我就带着他们找,并提醒学生在接线过程中应注意的一些事项,在学生的努力和我的指导下,他们独立完成了电路的连接,当学生向我展示他们的作品时,他们脸上的笑容是那么的灿烂 ,那么的满足,那么的充满自信。
四、检查评估
接线完毕,同学们开始进行自我评估 ,并讲解有关的实际应用。有的学生在展示作品的过程中可以非常直观地演示该体育比赛的全部表决过程;有的学生在项目工作中却出现这样或那样的问题;还有的学生只能做出电路但不能和实际联系起来;我就和学生一起检查他们的电路,然后一起分析问题解决问题。我首先充分肯定了他们的成绩,然后概括了组合逻辑电路的设计思路,及正确的设计方法和他们在连接电路时应注意的事项。
在项目化教学中,学习过程成为一个人人参与的创造实践活动,注重的不是最终的结果,而是完成项目的过程。学生在项目实践过程中,理解和把握课程要求的知识和技能,体验创新的艰辛与乐趣,培养分析问题和解决问题的能力。通过实际操作,不但可以训练他们在工作中与其他同学协调、合作的能力,还可以充分发掘学生的创造潜能。
五、归档或结果应用
作为项目的实践教学产品,应尽可能具有实际应用价值。因此,项目工作的结果应该归档或应用到企业和学校的生产教学实践中。
项目化教学以小组为单位完成任务,学生学习气氛浓烈,通过讨论交流促进知识的积累,提高了学生的参与意识,培养了他们的团队合作精神。这种自主的学习方式,使学生的个性化得到充分发展,加强了自我学习能力和自我调控能力的进步,促进学生创新能力的培养。
项目化教学虽然强调学生的主体性,但教师的任务就未必减轻。它要求教师不仅能组织和管理好教学,具有扎实的学科基础知识及信息加工能力,还应具备项目规划、管理和评价等方面的能力。对本专业融会贯通,随时回答学生的提问,为学生创设学习情景,培养协作学习的气氛。项目化教学在实施过程中,教师必须加强监督管理。由于采取分组协作学习的方式,其分组的原则、组员搭配、内容分工等方面直接影响到实施的效果。因此必须分工明确,推行“一帮一”的措施,促进学生团结协作,提高教学质量。
综上所述,项目教学法是在建构主义学习理论的影响下,通过选取“工程项目”来创设“情景”,通过“协作学习”的方式开展学习,通过完成“工程项目”来达到“意义建构”,是一种比较有效的教学方法。它突破了传统的教学模式,通过解决学生身边的一些现实问题来实现学生对知识的掌握,大大提高了学生学习的积极性和主动性。
参考文献
[1]朱荣欣.教师岗位培训教程[M].中国劳动社会保障出版社.
[2]高耀攀.技能训练教学设计与实施[M].中国劳动社会保障出版社.
关键词:课程设计;实验教学;工程应用能力
作者简介:莫琳(1969-),女,广西玉林人,广西大学计算机与电子信息学院,实验师。
基金项目:本文系广西大学实验室建设与实验教学改革项目(项目编号:2100702)的研究成果。
中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)14-0122-02
EDA(Electronic Design Automation,简称“EDA”)是电子设计的主潮流和方向,它的发展推动了电子行业电子技术的快速发展,也促使了高校电子技术课程必须进行相关教改。EDA的引入对数字电路课程设计的教学改革、系统设计、技术应用、方法、思路具有重要意义;把理论综合地运用到一些实际的较复杂的电子电路系统工程中去,锻炼了学生的实践基本技能,培养了学生的工程应用能力及创新能力。本文结合广西大学数字电路课程设计实验教学的现状、存在的问题,重新研制了实验教学平台,探讨了数字电路课程设计教学改革的措施及取得的成效。
一、数字电子技术实验室现状及存在的问题
目前,数字电子技术实验所使用的设备主要是以装有74系列芯片为主的实验设备,[1]其实验结果显示于实验箱上的发光二级管及数码管,主要能满足单纯的验证性实验,但也存在实验内容受限、扩展性不足等诸多问题。
在教学过程中,首先向学生布置题目,学生对题目进行系统设计,然后使用Multisim进行仿真测试,最后用硬件实现电路。[2]通过仿真检测学生的设计方案是否可行,只是模拟实现,没有真正实现设计结果,要看到结果只有通过实验箱连线,用万能板搭建,或用PCB制板等方式。这些方法存在着诸多弊端:对于学生设计出来的复杂的电路,需要多块芯片、多条导线才能接出;电路接好后容易出现接错线、电路接触不良、损坏芯片、排查电路困难,以及PCB制板过程繁琐等问题,这些问题花费了学生大量的时间和精力。
二、实验平台的设计与功能特点
随着数字电子技术的发展,现场可编程器件(FPGA)的出现,给数字电路的设计带来了很大的便利,设计更为灵活。考虑到数字技术的发展、实验教学的需求和任务,决定采用以FPGA芯片为核心的实验平台,这样不仅能够满足现今的教学需求,同时能够向学生展示最新技术的发展,激发学生学习数字技术的兴趣。[3,4]
实验平台采用核心板+功能扩展板的方式,系统方框图见图1。
1.主要功能
(1)输入模块。输入模块包括USB供电模块、下载模块、独立按键和八位矩阵按键。其中供电模块采用常见的Mini USB接口,可从电脑或者USB充电设备中获得+5V的电源。下载模块提供JTAG和AS两种下载模式,JTAG模式通常用于程序代码的测试和验证部分,AS模式则适用于程序代码的应用环节。输入按键是控制设备必不可少的部分,在核心板上提供了四位独立按键,在功能扩展板上提供了八位矩阵按键,为满足教学和创新实践应用提供了有力保证。
(2)输出模块。输出模块主要集中在功能扩展板上,集合目前教学任务的该功能扩展板包含了七段数码管、路口红绿灯模块、蜂鸣器和LED指示灯等。根据不同的教学任务将原理图或代码和实验平台相结合,系统就可以根据不同的实验操作指令向相应设备传送信号,并显示不同的实验结果。同时可以根据不同要求更换和升级功能扩展板,达到充分利用资源的效果。
(3)核心模块FPGA芯片。选用Altera EP1C6T144C8作为核心单元,实验平台的集成开发环境为QuartusⅡ,其中设计输入主要有原理图输入和HDL输入两种方式。学生已经学习了数字电子技术的相关课程,对各种基本的数字电路单元有了比较深入的了解和认识,在进行实验的过程中主要是通过原理图输入,经过仿真和综合后配置到FPGA芯片中,然后在实验平台上直接观察实验结果。教学流程如图2所示。
使用原理图输入的方式适合刚学完数字电子技术的学生,该方式非常直观、形象。同时鼓励学生学习Verilog HDL或VHDL,基于可移植性和规范化方面的考虑,绝大部分FPGA设计和ASIC设计最终都将统一到HDL(硬件描述语言)平台上,为以后进入FPGA的开发领域打好基础。
2.实验平台的特点
设计开发板体积小,便于携带。学生可借出在宿舍或在开放实验室完成设计,设计灵活方便,学生可随意安排自己的时间。QuartusⅡ软件中,提供的元件基本满足设计的需求,减少了购买元件的成本。真实性强,学生在仿真设计过程中,可直接看到设计与实际是否相符,对出现的错误可随时修改。将设计—仿真—实现连成一体,提高了学生的学习热情。
三、数字电路课程设计实验平台在课程设计中的实施
1.优化设计内容
新的数字电路课程设计实验平台设计好后,对课程设计的实验内容做了调整。
首先在选题时扩大了范围,其次适当增加了难度。对于较复杂的设计电路,都可通过软硬件结合的实验平台实现。允许两人一组,鼓励一人一组。让学生在做课题时重在设计。学生根据自己的知识水平采取不同的设计方法实现,选出最佳方案。把设计好的电路下载到试验平台上就可直接看出设计成功与否。
2.注重实验过程
(1)理论指导,布置设计。在理论教学阶段,让学生掌握数字电路系统的一般设计方法。对于复杂的数字电路系统,由整体到局部进行组合,再由局部到整体进行设计,要求学生学会模块化的设计方法;然后布置设计任务及题目要实现的具体功能。
(2)学生查阅资料。学生根据题目要求,到图书管、网络、资料室了解相关技术应用,参考相关方案,根据自己的能力选定题目、制定设计方案。在这个阶段,教师只是起引导作用,要求学生对设计的课题要充分理解并掌握其原理,这样才能为后续的仿真设计、电路板调试打下良好的理论基础。
(3)系统仿真设计及软硬件系统调试。在数字电路课程设计中引入EDA仿真软件教学,把EDA技术应用于数字电路课程设计,让多数学生能在短时间内掌握其使用方法,并运用自如。
学生们在校期间如能熟练掌握EDA技术,对提高自己的工程应用能力,适应社会需求,找到合适自己发展的工作非常有利。
(4)撰写实验报告。撰写课程设计报告。课程设计报告是一份严谨的科研报告,要求学生提交设计方案、设计过程、元器件的选择、逻辑算法、调试方案、调试中处理问题与解决问题的方式,以及实验结果、数据分析、报告总结等。[5]严格的要求对培养学生实事求是的工作作风有积极的促进作用,为今后撰写毕业设计打下了坚实的基础。
3.完善的考核制度
合理给出成绩是培养学生工程应用能力的动力。[6]它不仅反映了学生的真实水平,还能激发学生的学习热情和创造欲望。
考核方式采用小组答辩的形式,同样题型的学生组成同一小组,在小组会上学生介绍自己的设计方案、实现方式,并当场演示实验结果。教师和其他学生对其设计进行提问和讨论,并在同一题型中选出最佳方案,每组最佳方案在全班总结会上展示,让学生了解自己的不足,取长补短。
实践教学表明,学生们通过数字电路课程设计这门和实践紧密联系的课程的训练,工程应用能力得到了大大提高。
四、结束语
目前电子行业人才竞争激烈,不但要求学生理论基础扎实,而且要有较强的自学能力及实践动手能力。通过使用新的实验平台,学生们了解、接触了电子行业最新的技术方法及制作过程,开阔了设计思路,扩展了学生实验设计的范围。数字电路课程设计的训练为后续课程中更为复杂的电路设计、电子制作打下了良好基础,每年都有不少大三、大四的学生,在全国、全区的大学生电子设计竞赛中获奖,这些成就都得益于数字电路课程设计的训练。
参考文献:
[1]周建国,王小兰.虚拟实验系统在“数字逻辑”实验教学中的应用[J].实验室研究与探索,2011,(10):78-80.
[2]高辉.多功能综合性实验方法研究[J].计算机教育,2010,(2):154-140.
[3]刘英,李佳,徐兆君,等.工程素质与创新精神的培养与实践[J].化工高等教育,2011,(2):25-27.
[4]温显斌,王法玉.构筑实践教学体系,强化应用能力培养[J].计算机教育,2010,(10):126-128.
一、在《电子线路板设计与制作》课程教学中引入项目教学的必要性
《电子线路板设计与制作》是应用电子技术专业的一门核心课程,是专业技能培养与职业素质拓展的重要环节。本课程主要以企业真实电子产品的设计与制作任务为载体,面向应用电子技术专业的电子线路板生产、电子生产工艺管理、产品研发助理等岗位设置的课程。本课程重视学生在校学习与实际工作的一致性,根据学生特点、课程目标和校内外教学条件,在教学实施过程中为了更好地提高本课程的教学效果,有针对性地采取集中教学、分组实施、工学交替、任务驱动以及项目教学的组织形式。通过不断加强学生实践技能训练,实现高职教育高端技能型专门人才的培养目的。
项目教学法起源于美国,盛行于德国,适合于高职教育。所谓项目教学法是指将传统的学科体系中的知识内容转化为若干个教学项目,围绕着项目组织和展开教学,使学生直接参与项目全过程的一种教学方法[1]。学生在完成指定学习项目的同时,应用相关知识,在实践的第一线培养解决问题的综合能力。在项目教学中,学习过程成为人人参与的实践活动,注重的不仅是最终结果,而是整个项目的学习和完成过程。学生在项目实践过程中,理解和把握课程所要求的专业知识和技能,体验创新的艰辛与乐趣,培养分析问题、解决问题的能力及协作能力和团队精神等。针对高职学生的职业要求,《电子线路板设计与制作》课程的项目教学,主要以培养学生的创新能力和创新精神、良好的职业发展能力为主旨,以行业科技和社会发展的先进水平为标准,充分体现项目教学的规范性、先进性和实效性。
二、基于项目教学的《电子线路板设计与制作》课程设计的理念
(一)开发校企合作的项目化课程
高职院校的社会功能是服务社会地方经济的发展,其主要方式是进行校企合作培养行业以及社会经济发展所需要的高端技能型专门人才。因此,在学生的专业核心能力的培养方面一定要能够坚持基于行业企业的典型工作任务来实施教学。本课程通过对行业企业的典型工作岗位的调研,整合了电子行业对于人才专业技能以及综合职业能力的各项要求,通过学校教师、企业专家等进行深入研究与探讨,共同开发了适合学生学习,满足企业职业技能需求的六个学习情境,形成了完整的项目化课程。
(二)构建工作过程行动导向教学模式
在《电子线路板设计与制作》课程的教学模式中,采用了基于工作过程行动导向的教学模式。课程设计的学习情境内容都是来源于企业的实际产品的开发与制作过程。在教学过程中,首先应用项目设计任务书的形式对学生进行项目任务的布置以及任务分解。按照资讯、计划、实施、检查、评价的步骤进行电子产品的设计。然后通过对产品的功能需求分析,对设计的任务进行直观的理解,根据设计产品的特征进行产品设计的计划,并根据计划进行任务实施,在规定时间内设计完成的产品通过自查、互查以及教师查阅的方式进行产品功能的检查与分析,最后进行项目实施结果的评价分析,总结本次项目设计的得失以及完成情况等。实践证明,其构建了完整的工作过程行动导向教学模式,教学效果显著提升。
(三)推进学生为主、教师为辅的教学过程
在《电子线路板设计与制作》课程教学过程中,坚持教师主导、学生主体的教学理念。在电子产品的设计与制作过程中,教师主要是引导学生进行项目任务的分析,进行设计流程以及设计工艺的指导。对学生设计过程中的重点难点进行剖析,对设计中的相关注意事项进行总结归纳等。
(四)工学结合提高学生的综合职业素养
在《电子线路板设计与制作》课程实施项目教学过程中,引入了企业的实际产品,如通过脉冲点火器的设计与开发,培养学生进行单面板绘制的专业能力,通过欧式电烤箱的线路板设计,培养学生进行双面线路板设计所需要具备的工艺理念,而相对比较复杂电子产品单片机最小系统的电路设计,培养学生解决实际工业产品设计的综合职业能力。
三、基于项目教学的《电子线路板设计与制作》课程设计的内容
为了保证学生今后就业时能够很快胜任应用电子专业技术岗位的需求,在教学实施过程中以教学效果最优化为目的,以产品的设计与制作过程为导向,紧密结合应用电子专业人才培养方案,在与校企合作的技术专家经过反复研讨后,选择了贴近合作企业实际的6个典型项目作为教学内容,项目教学规划如表1所示。设计6个学习项目的最终目的是为了实现学生。
四、基于项目教学的《电子线路板设计与制作》课程设计的效果
通过项目教学法在《电子线路板设计与制作》课程中的实施,教学效果显著提高,一方面由于教学情境内容都是采用企业的实际产品,充分调动了学生学习的积极性和激情,学生电子产品的设计与制作能力得到明显增强。另一方面由于采用企业典型的工作任务,学生在学习过程中能够掌握实际的电子产品的开发流程、生产工艺以及设计技巧等,对于学生综合职业能力的培养具有一定的现实意义。
关键词:数字电路,Matlab/Simulink仿真,同步RS触发器
中图分类号:TN702 文献标识码:B
1. 引言
数字电路与逻辑设计课程[1]是工科电子信息类与电气工程类专业的专业基础课,对学习后续相关专业课起着不可替代的作用。该门课程的教学一般包含理论教学、实验教学和课程设计等教学环节。通常情况下,完成一定内容的理论教学后,再安排相关实验课程,在实验板上搭建具体的硬件电路或专用的数字电路实验仪器进行测试、修改和完善。但是,这些方法往往面临连线多、易于出现错误或需要反复调试,难以排查错误等问题,这种教学方式会导致学生对所学内容的感性认知较差,从而较低对课堂理论教学的积极性。因此,引入虚拟仿真软件势在必行。
Matlab[2]集算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括Matlab和Simulink[3]两大部分,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等诸多领域。
针对目前课堂教学的问题,采用Matlab/ Simulink仿真工具进行数字电路的调试、仿真与验证,可以有效避免传统方法的容易出现的各种缺点,同时还能在省时、省力的条件下使课堂的讲解更加生动,更易被学生理解。因此,本文通过同步RS触发器为例介绍Matlab软件实现数字电路仿真的方法。
2. 电路设计与仿真
数字电路按照功能划分,可以分为组合逻辑电路和时序逻辑电路。二者之间最重要的区别是时序电路中通常还需要对数据进行存储,这一功能通常是由触发器来实现的。触发器是时序逻辑电路的基本逻辑部件,它有两个稳定的逻辑状态,即状态0和状态1。根据输入端信号的不同,触发器可具有置0、置1、状态保持等功能。当输入信号消失后,触发器的状态能够保持不变。因此,触发器具有实现1位二值信号的记忆的功能。
触发器可以按照逻辑功能的不同,分为同步RS触发器、JK触发器、D触发器和T触发器等。其中同步RS触发器是学习其它触发器的基础,因此,下面将介绍如何用Matlab/Simulink仿真工具实现同步RS触发器的相关功能。
2.1 基本原理
由与非门组成的同步RS触发器的电路图如图1所示,其真值表如表1所示。
其中, 是约束条件,表示 和 不能同时为0。
2.2 仿真实现
由于同步RS触发器的功能和组合逻辑电路的学习相比差异较大,不易于学生的理解,因此,在课堂学习的过程中通过Simulink软件模拟同步RS触发器,从而强化学生对同步RS触发器功能的理解。同步RS触发器的仿真步骤如下:
首先,添加模块。在Matlab软件中运行Simulink模块,再打开模块浏览器,再采用Simulink模块库中的标准模块来构建同步RS触发器模型。鉴于激活模块需要放到Subsystem中的设计区域中,因此先将Connections模块库中的Subsystem功能模块复制到设计区域内,再进入Subsystem的设计区域进行设计。
具体而言,通过4个与非逻辑(NAND模块)组成。同时,还需要在反馈的位置加上两个加法器产生初始值。从而避免产生代数环的错误。另外,还在同步RS触发器的前端添加一个功能激活(enable)模块,使其成为具有时能端的同步RS触发器。
选用Simulink中的logical operator模块和pulse generator模块,并设置各个模块的参数,再将不同的模块通过信号线连接起来,建立同步RS触发器的Simulink仿真模型,其内部结构如图2所示。
输入端R和S接Constant模块,enable接pulse generator,输出数据被导入到Matlab的workspace空间,然后方便调用Matlab的函数显示相应的结果,时序仿真结果如图3所示。
在图3中,其中‘R input’和‘S input’分别表示R和S端的信号输入。‘enable’表示时钟脉冲,‘Q output’和‘Q-inverse output’分别表示输出信号 和 。
3. 结束语
综上所述,随着电子技术的高速发展,数字电路的形式日趋复杂化,仅依靠传统的课堂教学模式已经逐渐不能满足新技术人才的发展要求。故应利用多种新技术和传统的课堂教学方式相结合,本文采用Matlab/Simulink软件进行仿真:一方面可以弥补课堂教学的不足,加深学生对课堂所讲的概念与工作原理等理论知识的理解;另一方面,也可以克服通过电路元件搭建实验电路带来的不便,如实验室元器件品种、规模、数量的不足,仪器的陈旧老化,实验板电路的单调等问题,电路出现故障后难以调试等问题,不利于学生的创新设计。因此,利用Matlab/Simulink软件进行仿真在日常数字电路与逻辑设计课堂教学中发挥着越来越重要的作用。
参考文献
[1] 王毓银,沈明山. 数字电路逻辑设计[M]. 高等教育出版社, 2006.
[2] 张德丰,丁伟雄,雷晓平. MATLAB 程序设计与综合应用[M]. 清华大学出版社, 2012.
关键词:Multisim 2001 仿真 比例运算放大电路
电子技术课程是高职院系通信类专业基础课。由于高职院校的学生基础较薄弱,抽象思维较欠缺,所以学生普遍感觉该课程太抽象、难以理解。鉴于此,笔者尝试将“电路仿真软件――Multisim 2001”引入课堂教学,结果学生反映非常好,加深了学生对所学知识的理解。Multisim 2001软件是一种电子电路计算机仿真设计软件,适用于电路分析基础、模拟电路、数字电路的设计及仿真。本文以电子技术课程中“基本运算电路――比例运算电路”的讲解为例来说明如何通过模拟仿真辅助教学,使教学内容形象、直观。比例运算电路分为反相比例运算电路和同相比例运算电路,我们一一介绍两种电路的教学设计。
一、反相比例运算电路教学设计
首先讲解反相比例运算电路,如图1所示,推导出输出电压与输入电压的关系式:u■=-■u■,强调uO与uI成比例关系,比例系数为-Rf/R,负号表示uO与uI反相。很多学生不能很好地理解负号的含义,对于输出电压与输入电压反相也感觉很抽象,因此引入仿真电路,让大家直观地观察仿真现象,从而可以加深理解。
■
图1 反相比例运算电路
打开Multisim 2001软件,搭建如图2所示的反相比例运算放大电路,调节函数信号发生器,使输入信号uI频率为1kHz,幅值为100mV的正弦波,如图2(a)所示。由式子u■=-■u■,可以计算出输出电压的幅值为-1000mV,即放大倍数为10。将输入信号、输出信号分别连接到示波器,观察输入、输出信号的关系。
单击仿真开关,进行仿真分析,示波器面板上VA1、VB1显示的值为-99.9mV和999.0mV,这两个值分别对应的是输入电压幅值和输出电压幅值(手动移动数轴操作,稍微有些误差存在),如图2(b)所示,可得放大倍数为10,与理论计算值相同。同时可以很清晰地看到输出电压与输入电压波形的相位相差180°,与理论结果相同。
■
(a)仿真电路
■
(b)输入与输出波形
图2 反相比例运算电路仿真
二、同相比例运算电路教学设计
同相比例运算电路如图3所示,首先推导出输出电压与输入电压的关系式:u■=(1+■)u■,引导学生说出输出电压与输入电压的关系,与反相比例运算电路加以比较。然后进行模拟演示,运行仿真软件,按图4搭建同相比例运算放大电路,输入信号ui为频率1kHz,幅值100mV的正弦波,可以计算出输出电压幅值uom=1.1V。单击仿真开关,进行仿真分析。从图中可以很清晰地观察到:输入电压峰值uim=100mV、输出电压峰值uom=1.1V,输出电压与输入电压波形之间相位相同,与理论结果相同。
■
图3 同相比例运算电路
■
(a)同相比例运算放大器
■
(b)输入与输出波形
图4 同相比例运算电路仿真
教学实践证明,Multisim软件模拟电路非常方便,形象直观,结果精确,对电子技术传统教学是一种很好的辅助手段,弥补了传统教学模式的不足。通过Multisim仿真,可以消除学生对课程的抽象感,更好地帮助学生理解、掌握基本知识,对提高教学质量、培养学生的创新能力和综合素质具有重要意义。
参考文献:
[1]严正国,苏娟,吴银川.Multisim软件在电子技术课程中的辅助和指导作用[J].中国现代教育装备,2008(5).
[2]钟化兰. Multisim在模拟电子技术设计性实验中应用的研究[J].华东交通大学学报,2005 (22).
[3]鱼群,舒华,陈新兵.Multisim进行电子电路设计的教学研究[J].实验科学与技术,2007(5).
电子电路设计是电类专业为绘制电子电路图所必需掌握的一门计算机综合性设计课程。然而,随着课程改革在各高校逐渐开展,一些课程的课时量也相应递减,比如笔者所在学校电气自动化专业的《电子电路设计》课程已由原36学时减至24学时。如何在减少的课时的课程中让学生掌握同样程度的技能水平以适应社会的需求,考验着每一位专业教师。以往传统的电路设计教学的方式大多是由教师先讲授知识点,然后将知识点所涉及到的图例向学生绘制演示,最后让学生依样画葫芦。在整个教学过程中,教师为主导,而学生仅限于单纯的模仿与记忆,并没有主动学习,导致学习效率低下。因此在教学中应该有意识到加入兴趣式教学,调动他们的求知欲,激发学生更积极主动的思考,学习甚至创新,打造优质课堂,全面提高教学质量与学习效率。
2任务驱动法
2.1任务驱动法原理
任务驱动法是近年来被广为应用的一种教学手法,它一改传统的灌输式教学,尝试采用任务驱动式的教学方法。需要教师将课程学习内容划分为多个特定任务,每个任务包含一定知识点,只要学生完成了课程中设定的任务,就可以掌握课程学习的内容。任务驱动法的核心内容就是由教师在教学过程中创设任务情境,教学任务必须融合学生所需要掌握的技能点和相关的知识点,同时又具有一定的生活性、探究性和创造性,让学生带着解决问题完成任务,激发他们的学习兴趣,让学生自主或协作性学习,使他们真正了解知识点在实际工程中的应用,学以致用。
2.2任务驱动法在电路设计实训中的应用
电路设计实训课程的教学目的为电子电路图形绘制,电路图形仅为简单的二维制版,因此在绘制电路原理图时较为简单易学。但无论多简单的图形,在绘制的过程中都要利用到基本绘图工具、图形编辑和图层管理各知识点综合才能完成。因而课程教授过程中不能简单的按书本章节顺序来讲,而是应该由教师将所有知识融会贯通后重新组织,将它们融入到一个个工程任务中再向学生展示,如向学生展示电动小车电路设计图纸,将其作为一个工程任务,让学生尝试用学过的知识来绘制,或让学生在绘制过程中遇到难题再提出并讲解。这样就更能增添学生的学习兴趣和在完成任务后的成就感,形成良性循环。因此电路设计实训课程非常适合采用任务驱动式教学法。
3微任务驱动法
3.1微任务驱动法原理
采用任务驱动法教学所提供的任务由于综合性较强所以工程量较大且难度较高,学生在一节课中难以完成,即使有些基础好,动手能力强的学生完成了任务,也会因为知识点过多过杂而难以消化。因此需要由教师把握学生素质和能力,将大任务进行科学性的分解,将之细化为中任务,小任务甚至微任务。让具有不同层次知识能力的学生都能被激发兴趣,在任务量合适的微任务环境中尝试和实践。以上所述即为微任务驱动教学法,它就是以任务驱动法为基础,将总任务依靠知识的内在逻辑或采取分类的方式进行具体化,以微任务的形呈现。较之任务驱动法,其目标更为明确,导向性更强,教师使用这种方法教学也更容易控制课堂教学的节奏,保证能在规定时间内完成教学进度。
3.2微任务教学设计
微任务驱动法的实施过程是:教师先依据教学目标设计一个总任务,引起学生的学习兴趣。再引导学生分析总任务的解决方法并将总任务拆分为一个个的微任务,各微任务之间可以是从属或并列关系。拆分出来的微任务不能太难或任务量太大,应设计为学生较易完成的程度,以便于将学生的理解逐步引向深入。通过一个个的微任务引导和推动学生一步步上升,一层层提高,不断接近并最终达到复杂的学习任务的顶点。微任务法的核心是如何科学合理的设计微任务。首先,任务必须要有明确的目的性,教师提出的每一个微任务,原则上都是为了完成总任务而设计的,尽量不设置多余任务,不能本末倒置。其次,教师选择微任务时应考虑到大多数学生的水平,注意难易适度。并且在教学过程中,根据学生的反应与掌握程度以及课程进度随时调整微任务,不能任务教条化僵化。第三,微任务还应遵循完整性原则。教师所设计的微任务必须连贯,不能有断续感,让学生知道自己要做什么,可以解决什么问题,使他们获取的知识完整且有条理。最后,微任务的设计要适当增添趣味性,可以在教学过程中加上图片插画,视频音频等数字教学资源,让学生在完成任务的同时体会到学习的乐趣。
3.3微任务驱动法在电路设计实训课程中的应用
AltiumDesigner软件的工具栏较多,常用工具栏中的各命令参数也较杂,若逐个讲解,则显得各知识点杂乱无章,学生记的多忘得快,但在实际绘图时还是束手无策,不知该用哪个工具来绘制。例如,在介绍AD软件常用绘图工具栏中的直线、多边形、椭圆弧线、文字和文本框等,若单纯讲述这些知识点,难免枯燥乏味,且容易与布线工具栏的功能弄混。围绕这些教学内容,可设计对应电路制图微任务,围绕一个小目标,教师可以设计多个由简单到复杂的小任务,布置学生循序渐进地完成任务,在练习中熟悉各种命令的操作。例如,基本绘图训练可将学生已在模拟电路和数字电路课程中学过的常用电子元件符号如:变压器、运算放大器(如图1(a)、(b)所示)融入其中,将它们设计为一个个需要完成的微任务。每个任务都考虑到学习课程的前后连贯和趣味性,让学生绘制自己所熟悉的事物。随着学习的深入,可以布置学生完成如图1(c)所示的七段数码管等稍复杂的绘制任务。完成任务后的喜悦感和成就感会更加强烈,也为以后的学习增添了动力。微任务驱动法在教学过程中将知识点分解到一些小任务中进行,学生头脑中的知识是零散的,有时会降低知识的系统性和完整性。因此,这样的设计任务和完成过程是十分必要的,教师可以通过一个较为完整的任务引导学生将已完成的微任务中的知识点进行归纳总结,加深对所学知识和技能的记忆和理解,完成真正意义上的知识建构。例如,上完第三次课后,教师即可布置学生完成如图2所示“八路彩灯控制电路图”大任务。从创建元器件、调用常用元件开始,直至综合运用各种绘图指令及编辑工具完成绘图。让学生在本次课中复习巩固了前面微任务中所学的小知识并将其融合,初步完成了一张简单的电子电路设计原理图样,并总体上掌握了一张较完整电子电路工程图的绘制过程,具有综合应用性。
3.4电路设计课程与其余课程的前后融合
电路设计课程在介绍一般电路绘图技巧与制版规则时,还会涉及到数字电路、模拟电路、单片机技术应用等课程的接续关系。将本课程绘制图中所涉及到的器件类原理基础前移到数字电路和模拟电路等课程中解决,诸如实际译码电路、三态电路与缓冲器芯片等知识点不再占用本课程学时。本课程把握好衔接关系,主讲等电路板制版规范、电路设计的仿真方法等要点主题,把以往重复性内容节省的学时用于应用层面。在重点讲述电子电路图绘制方式的时候,还应适当向学生加强常用接口电路的连接方法知识点,并向学生扩展对嵌入式处理器及新技术的了解,为后续单片机原理课以及传感与检测技术中各种传感器与微处理器的连接使用,智能传感器、数字式一体传感器等内容的讲授打下基础。
4总结