前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的电路设计要求主题范文,仅供参考,欢迎阅读并收藏。
关键字:矿用电气系统;电气故障分析;电气设计要求
中图分类号:TU96+3 文献标识码:A
在煤矿生产中,电气设备的使用日益频繁,在煤矿生产中发挥了越来越重要的作用,而大量的先进的电气设备应用到煤矿生产中,提高了煤矿的生产效率,但是在运行期间也出现了有些问题,威胁到煤矿的安全。对于这些新技术新设备的使用,要在设计方面进行分析,达到更好的为煤矿的安全生产奠定基础。
1 电气系统自身引起的煤矿事故的原因分析
一是敷设在井下巷道内的电缆,由于长年处于阴暗潮湿的环境下运行,周围的潮气极易入侵到电缆内部,从而产生过电压击穿绝缘层,同时在这种潮湿的环境下,绝缘层也很容易老化,这种情况下绝缘水平就处于一个很低的水平上,达到一定低值时就会发生击穿,从而产生集中漏电。
二是开关设备长期使用,接线板潮湿可能造成漏电;其内部元件或导线,因某种原因使绝缘恶化、导线头碰壳也会造成漏电;自动馈电开关中的过流继电器,当调整螺杆拧得过低时也会因相对地放电而造成漏电。
2 目前对煤矿电气系统的设计要求
2.1 设计中选用防爆设备
选用防护能力较强的防爆类型电气设备,此外,在温度组别上,选择高于应用环境气体点燃温度的组别。另外对于易爆气体和粉尘同时存在的危险场所设备选型时,一定要选用气体和粉尘双重防爆的电气设备,其防爆等级既要满足爆炸气体的特性,还要满足可燃性粉尘特性。
2.2 电缆和电气设备在注意不能浸泡于水中,在尽量保持其所处位置是干燥的,同时对于电缆和电气设备不能进行挤压和刺,这样极易使电缆损坏。
2.3 要避免导线连接处松散,同时连接处要保持光滑,不能有毛刺存在。
2.4 不增加额外部件
2.5 设置保护装置
根据煤矿细则规定,对于保护电缆干线的装置按公式:z≥IQe+KxΣle(z为过流保护装置的电流整定值,A;IQe为容量最大的电动机额定启动电流,A;Kx为需用系数,取0.5~1;Σle为其余电动机额定电流之和,A)。而实际中往往凭经验不按公式计算,草率确定整定值,致使与实际产生误差,从而导致事故发生。
2.6 对于电网的对地电容电流进行补偿
2.7 设置漏电保护装置
在井下的带电导体、电气元件和电缆接头等都要安装漏电保护装置,使这些带电体都被封闭在坚固的外壳内。在电气设备的外壳与盖子间设置可靠的机械闭锁装置,以保证未合上外盖前不能接通电源,或者在接通后,便不能打开外盖。这一措施有效地防止了因带电检修而造成的触电事故。
井下配电变压器的中性点禁止直接接地,以减小漏电或触电电流。
2.8 避免电气设备失爆
在瓦斯和煤尘爆炸事故中,由于电火花等电气设备失爆引起的瓦斯和煤尘事故占有较大比例。为了满足煤矿井下需要,国家制定了防爆电气设备标准,各种类型防爆设备的防爆措施不同,必须依据国家标准GB3836执行,保证各类防爆措施有效。
2.9 设置环境安全监控系统
环境安全监控系统主要用来监控有关气体(CH4,CO2,O2,SH2等)浓度、风速、负压、湿度、温度等数据及风门、风窗主要设备开停状态,实现甲烷超限声光报警、断电及风-电闭锁控制等。
瓦斯、煤尘、水灾合理配置必要的检测仪器、仪表,检修、维修工具和备件,以确保设备的正常运行。建立电气设备采购制度和标准,并附以必要的检测,确保合格的产品投入使用。运用先进的科学技术方法和建立健全高效的安全管理机制加强矿山安全生产。
2.10 尽量使用低压电气
对人身接触机会较多的电气设备,采用较低的额定电压。例如手持式电钻、照明设备及信号装置的额定电压不得超过127V,而井下各种电气控制回路的额定电压则限制在12~42V以内。
3 煤矿电气控制电路常见问题及设计措施
3.1 电控系统失控
煤矿电气控制电路的安全运行与管控,是保障煤矿井下作划顺利完成的基础,也是对于井下作业人员的基本人生安全保护。如果在长期的使用过程中,不能及时对煤矿电气控制电路对性系统的检查与检测,极有可能引发煤矿电气控制电路的全线瘫痪,进而导致整个矿区的电控系统失控。煤矿电气控制电路是电控系统进行远程操作的连接载体,如果一旦发生线路故障或问题,电控系统的操作命令也就难以及时传达到电气设备,进而有可能引发全区电控系统的失控,严重危及到生产安全和煤炭开采工作的顺利开展和进行。
预防措施: 在井下低压电网中,漏电故障占电气故障70%左右,因此,漏电故障是影响供电可靠性的主要因素。选择性漏电保护可以缩小漏电故障的停电范围,缩短寻找和消除漏电故障的时间,可以提高供电的可靠性。另外,选择性漏电保护中旁路地分流技术的应用,可以在较大程度上减小因电动机反电势和电网分布电容所形成的故障点电流,提高了电气安全程度。
3.2 腐蚀电缆外表及金属管线
在运输巷道中,除了架线与轨道之外,还铺设有高压电缆和风管、水管,这些管线都是杂散电流的良好通道。在回电点附近,电流从管线中流出。电流的流出点使管线受到腐蚀。井下运输巷道非常潮湿,井下水又多为酸性,由于电解作用而腐蚀金属。电流从正电源流到正极,在电解槽中电从正极板流出,而电子流恰恰相反,从正极板流向直流电源的正端。正极板失掉电子而带正电,与电解液中的硫酸根离子结合而变成硫酸盐,因此,正电的金属脱落于电解液中,运输巷道中的电缆外皮有电流流出,如同电槽中的正极,因此被腐蚀。
预防措施:电缆的选择应根据不同的用途和使用场合,按经济电流密度来选取,并且考虑线路电压损失和短路保护的需要。
结语
煤矿的安全生产不仅关系到煤矿职工的生命安全,同时对于国家稳定也有一定的影响。在煤矿电气设备不断革新的形势下,要对电气设备的设计进行相应的改进,为了适应煤矿生产的需求。吸取国内外先进的设计理念,不断的提高专业技术知识,对电气设备的性能不断的优化,减少煤矿电气事故的发生率。
参考文献
[1]田庆军,周晓娟.当前煤矿电气设备安全管理存在的问题和对策[J].煤炭技术,2009.
[关键词]计算机;电路设计;分析;辅助;方法
中图分类号:TP391.7;TN702 文献标识码:A 文章编号:1009-914X(2014)35-0284-01
一、 计算机辅助电路设计的优点
电路设计,是指按照一定规则,使用特定方法设计出符合使用要求的电路系统。在进行计算机辅助电路设计的过程中,主要是利用计算机能够模拟的特点取缔传统采用搭接方式进行电路实验的方法。利用计算机之后,可以在电路设计阶段可以大量减少验证电路正确过程中使用的时间和工作量,让进行整个电路设计过程的进程比传统电路设计的进程速度快得多,同时还保障了电路设计的效率。
在很多相关电路设计的专业软件里面都会设置有电路设计中会涉及的许多参数数据库以及图形数据库,在进行电路设计的时候,设计人员可以通过这些数据库中选取到所需用到的电子元件模型,即使数据库中没有所需要的电子元件,也能电路设计之前在相关界面中设计出所需的电子元件模型,并设置其参数,然后再将其放入进对应数据库中,很多电子元件都可以在数据库中直接拿出来使用。另外在对电路板设计进行印刷的时候,也可以找到相关专业的印刷电路板设计的软件,这些软件可以对其电路设计中的电子元件间布线布局的自动进行,还可以起到后期处理的作用。在电路图纸进行绘制的时候,也能使用专业的软件进行制版。总之,在计算机的辅助下,让电路设计更加简便,大大缩短其设计周期,同时在一定程度上会可以节约电路设计的成本费用。
二、 计算机辅助电路设计的方法
设计一个完整的电路,并让其实现一个功能,其前提就是要设计好一个完整有效的电路原理图。通过计算机进行电路设计是非常快捷的,而且还能很容易的将设计好的电路进行再次的修改,通过计算机的相关软件自带的自动布线就能够很容易的把电路原理图生成电路板版图。
1、 电路原理图设计
首先设计人员通过调用电路设计软件,建立新文件并对其命名,然后加载所需要的原理图器件库,因为在电路设计中电子元件的种类存在千差万别的差距,所以有些时候所需要的元件在对应数据库中没有,所以设计人员就要通过元器件生成软件或者电路设计软件中自带可以设计元器件的选项,创造出需要的元器件,然后根据设计电路构思的结构进行电路原理图的设计,将有电性能元件的管教利用线连接起来,如果是总线电路就可以由一条总线连接,这样可以有效减少线路太多所造成不必要的麻烦,而总线的两端始终会分出很多条线,就有必要将其明确的标注,有节点的话在电路上应该必须标上节点,否则在后期电路查看和系统会将两条线认为不相连。
在将电路原理图设计完毕之后,就应该创建网络表。网络表是作为原理图和印制线路版图间的桥梁,只有通过网络表才能将电路原理图转换为对应的电路板版图。调用PCB图生成软件,在其加载相关的元器件库,通过在禁止布线层上画好PCB图的外形,然后更改其自动布线,让其达到前期的设计要求。通过自动布局命令将加载到PCB图中的组件摆好,然后对其进行自动布线,该过程会需要一段时间,因为有的时候自动布线并不是完全合理有效的,所以在进行自动布线之后还要对其进行手工调整。
2、 电路板版图设计
电路板厂都是按照用户设计的PCB图对电路板进行生产的,针对成型的一块电路板,想要再制一块或者多块的话,就要利用计算机辅助进行电路设计了,通过形成的PCB图再次进行电路板的生产。
利用刻度尺度量成型的电路板,将对应数据进行记录后将数据输入进计算机中,这类方法主要使用在线路简单的电路板上,在线路上寻找一个点来作为原点,将电路板上的其他点一原点为参照,对照PCB图左下角的横纵坐标,将元器件放在对应的PCB图上。而对于元器件较多且线路复杂的电路板则通常使用扫描仪将其数据输入进计算机中,因为用尺度量就会太花费时间,且制作也会相比扫描仪粗糙,在对电路板进行扫描的时候也要注意正确的放置电路板的位置,不然会影响扫描效果。
三、结束语
计算机辅助电路设计的出现,让电路设计摆脱了传统以手工为主的设计方式,而且在使用计算机进行电路设计的时候,不仅节省设计时间,还能在电路设计出现错误的时候方便及时的对其进行修改,大大提升了电路设计的效率,还可以做大程度保障设计的电路产品的性价比。
参考文献
[1]叶勇盛. 计算机辅助电路设计教学方法研究与实践[J]. 职业教育研究,2010,03:90-91.
[2]王秀娟. 行动导向法在《计算机辅助电路设计》课程中的应用[J]. 科技信息,2010,30:618.
关键词:集成电路设计;集成系统;本科专业;创新型人才;课程体系
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)35-0049-03
一、引言
集成电路产业是信息产业的基础和核心,是推动信息产业发展的源泉和动力。国务院于2000年6月25日颁发了《鼓励软件产业和集成电路产业发展的若干政策(18号)》,大力支持和鼓励我国集成电路产业的发展。在国家政策的扶持下,我国集成电路设计业发展迅猛,伴随着国内集成电路的发展,对集成电路设计相关人员的需求也日益增加。教育部于2003年开始批准设置“集成电路设计与集成系统”目录外本科专业,2012年普通高等学校本科专业目录中调整为特设专业,以适应国内对集成电路设计与应用人才的迫切需求,截止2014年,全国已有28所高校设置“集成电路设计与集成系统”本科专业。国务院于2011年1月28日颁发了《进一步鼓励软件产业和集成电路产业发展的若干政策(新18号)》,要求高校要进一步深化改革,加强集成电路设计相关专业建设,紧密结合产业发展需求及时调整课程设置、教学计划和教学方式,加强专业师资队伍、教学实验室和实习实训基地建设,努力培养国际化、复合型、实用型人才。
“集成电路设计与集成系统”专业涉及的新概念、新技术、新方法不断涌现,是一个工程性和实践性很强的本科专业。集成电路领域技术和管理人才严重不足、人才质量普遍不高已成为制约我国集成电路产业健康、快速发展的瓶颈。国家集成电路产业“十二五”发展规划提出加强人才培养,着力发展芯片设计业,2014年6月,国务院印发《国家集成电路产业发展推进纲要》进一步指出,要着力发展集成电路设计业,加大人才培养力度。因此,研究适合本专业的理论与实践并重融合的课程体系,培养创新型集成电路设计人才具有十分重要的现实意义和历史意义。
二、集成电路设计与集成系统专业人才培养的特点
集成电路是推动当前经济发展的重要技术,由于集成电路设计与集成系统领域发展迅速且新知识、新技术层出不穷,多学科交叉融合,毕业生就业具有国际性,要求教学体系和实践平台建设必须跟上最新的产业需求,才能培养出适合社会和企业需要的集成电路设计与集成系统创新型人才。在进行集成电路设计与集成系统领域创新型人才培养时我们需要紧紧抓住以下几点。
1.集成电路设计与集成系统专业是新兴专业,国内还没有形成该专业的人才培养规范,目前国内各高校该专业的教学计划是从国外或者相关专业延伸来的,系统性、完备性差,还没有形成完整的知识体系。
2.集成电路设计与集成系统专业是一个涵盖通信、计算机、集成电路等多领域的交叉学科,因此要利用综合性学科知识为该类人才的素质培养服务,从注重单一知识和能力的培养,要转变到注重综合知识和能力的培养。
3.集成电路设计与集成系统是国家特设专业,根据高校自身办学特色和市场需求设置的专业,需要针对企业对该类人才的需求,将企业需求融入课程体系,与企业联合制定培养方案,建立核心课程体系,实时调整专业课程教学内容。
4.集成电路设计与集成系统专业具有较强的工程性和实践性,不仅要具有较强理论知识基础,而且要具有较好的工程实践能力以及一定的创新能力,需要建立一种基于项目驱动的多层次的实践教学体系,保障四年工程实践训练不断线,逐步提升学生的工程实践能力和创新能力。
三、集成电路设计与集成系统专业课程体系的构建
根据集成电路设计与集成系统专业人才培养特点,按照通信、计算机和集成电路融合发展的科学规律,结合我校学科专业优势特色,确立了本专业人才培养的课程体系。
(一)人才培养目标
2006年全国科技大会上提出,到2020年,我国将建成创新型国家,使科技发展成为经济社会发展的有力支撑。具有较强的自主创新能力是创新型国家的主要特征之一,只有培养具创新精神和创新能力的人才,才能提升自主创新能力。集成电路产业是关系国民经济和社会发展全局的基础性、先导性和战略性产业,是最能体现科技进步对创新型国家贡献率的行业。
因此,本专业旨在培养德、智、体、美全面发展,适应社会主义现代化建设和信息领域发展需要,掌握宽广的人文知识、坚实的自然科学知识以及扎实的专业知识,具备工程实践能力和创新能力,具有自主学习集成电路与集成系统领域前沿理论和技术的能力,能在集成电路与集成系统领域从事研究、设计、实现、应用的高素质创新型人才,为全面实现创新型国家提供强有力的支撑。
(二)人才培养规格
集成电路设计与集成系统专业是一个涵盖通信、计算机、集成电路等多领域的交叉学科,如图1所示。其中,图1中①就是通信算法(应用)的直接IC(实现)化的ASIC、FPGA电路或者可重构电路;②就是算法(应用)的指令集合(体系结构)化的目标程序;③就是指令集合(体系结构)的IC(实现)化的处理器;④就是集成电路技术发展推动的先进处理器。
根据多学科融合发展和人才培养目标定位,确定了本专业知识、能力、素质的人才培养规格如下。
1.知识结构要求。(1)具有坚实的自然科学理论基础知识、电路与系统的学科专业知识、必要的人文社会科学知识和良好的外语基础。(2)具有通信系统、计算机系统结构、信号处理等相关学科领域的基础知识。(3)掌握集成电路与集成系统领域的基础知识和工程理论。(4)掌握集成电路与集成系统电子设计自动化(EDA)技术。
2.能力结构要求。(1)具有使用电子设计自动化(EDA)工具进行集成电路与集成系统设计的能力。(2)具有较强的科学研究、工程实践及综合运用所学知识解决实际问题的能力。(3)具有了解本专业领域的理论前沿、发展动态和独立获取知识的能力。(4)具有自主学习能力、创新能力、协同工作与组织能力。
3.素质结构要求。(1)具有良好的思想道德修养、职业素养、身心素质。(2)具有奉献精神、人际交往意识和团结协作精神。(3)具有一定的文学艺术修养、科学的工程实践方法。(4)具有一定的国际化视野、求实创新意识。
(三)课程体系
集成电路系统设计涵盖“系统设计、逻辑设计、电路设计、版图设计”四个设计层次,课程体系应覆盖四个设计层次需要的所有知识点,各知识点之间要具有连贯性、系统性和完备性。集成电路设计与集成系统专业具有很强的工程性和实践性,通过计算机应用能力、电子技术应用能力、嵌入式系统设计能力、集成电路设计能力以及工程创新能力的培养,强化学生的工程实践能力和创新能力。集成电路设计与集成系统专业是一个多学科的交叉新兴专业,课程体系中应该包含通信、计算机和集成电路的相关知识点,各知识点之间要具有交叉融合性。集成电路系统设计是一个高速发展的学科领域,知识和技术更新速度非常快,课程体系应该体现先进性,使得学生能够接近先进的技术前沿,同时课程体系中也应该包含一些面向企业的工程设计与实践的实用性课程,进一步提高学生的就业竞争力和工程创新能力。
因此,根据人才培养规格和特点以及课程体系的连贯性、系统性、完备性、融合性、先进性和实用性,结合我校自身优势特色,构建了如下页图2所示的知识、能力、素质协调统一的理论与实践并重融合的课程体系。课程体系以能力培养为导向,集中实践环节为支撑,核心课程为基础,一组集中实践环节和核心课程培养一种能力。同时,设置综合素质教育模块和课外科技创新活动模块,提升学生的工程素质和创新能力。
课程体系主要突出计算机应用能力、电子技术应用能力、嵌入式系统设计能力、集成电路设计能力以及工程创新能力的培养,进行分学年重点培养。第一学年主要培养学生的计算机应用能力,第二学年主要培养学生的电子技术应用能力,第三学年主要培养学生的嵌入式系统设计能力和集成电路设计能力,第四学年主要培养学生的工程创新能力,通过设置“数字集成电路”、“混合信号集成电路”、“嵌入式系统”三个方向课程模块,实现人才的个性化培养。
通过嵌入式系统设计能力、集成电路设计能力和工程创新能力培养过程中的集中实践环节和核心课程设置,将集成电路设计与通信/计算机相结合,体现课程体系的交叉融合性。将集成电路系统设计层次中的“系统设计”贯穿于工程创新能力、嵌入式系统设计能力培养,“逻辑设计”体现在电子技术应用能力培养中,通过“电路设计”与“版图设计”实现集成电路设计能力的培养,实现了课程体系的系统性和完备性,通过教学内容的组织实现知识的连贯性。
课程体系设置了一系列集中实践环节和独立设课实验(集成电路EDA技术实验、微处理器设计实践)以及课内实验,在教学内容的组织上将软件无线电(SDR)系统(包括算法、体系结构、集成电路)设计与实现的科研成果融入教学过程,实现四年工程实践训练不断线,体现课程体系的工程性和实践性。同时通过下一代无线通信系统的核心器件――SDR系统处理芯片设计为牵引,设置通信集成电路系统工程设计与实践相关课程,采用世界主流EDA厂家先进EDA工具完成集成电路EDA技术实验以及集成电路系统设计,实现课程体系的先进性和实用性。
(四)教学内容组织思路
以“高级语言程序汇编语言程序机器指令序列计算机组成(CPU、存储器、输入输出、数据通路与控制单元)计算机部件设计计算机部件(FPGA和专用集成电路)实现整机(FPGA或专用集成电路)实现面向通信、信号处理领域系统(嵌入式系统、数字集成电路、模拟集成电路)设计与应用”为主线组织教学内容,体现知识的连贯性,培养学生的计算机应用能力、电子技术应用能力、嵌入式系统设计能力、集成电路设计能力。通过通信集成电路系统工程设计与实践(包括数字集成电路工程设计与实践、嵌入式SoC工程设计与实践、模拟集成电路工程设计与实践等),将软件无线电(SDR)系统的设计与实现的科研项目成果融入课堂教学,贯彻我校“教研统一”办学理念,突显我校信息通信行业优势特色,培养学生的工程创新能力。
四、结论
课程体系设置是专业建设中的关键核心问题,对人才的培养质量起决定性的作用。本文充分考虑了集成电路设计与集成系统专业多学科交叉融合、工程实践性强等特点,结合我校本专业在通信专用集成电路设计、专用处理系统设计方面的优势特色,形成了通信、计算机与集成电路设计相结合、理论教学与项目实践相结合的课程体系。以能力培养为导向,以集成电路设计和嵌入式系统设计融合为主线组织教学内容,培养学生的集成电路设计与嵌入式系统设计(计算机应用、电子技术应用、微系统设计)能力,通过面向通信领域的集成电路与嵌入式系统工程设计与实践,提高学生的工程创新能力。
参考文献:
[1]国务院2011年4号文件.关于印发进一步鼓励软件产业和集成电路产业发展若干政策[J].软件产业与工程,2011,(2).
关键词:可靠性仿真技术;课改要求;任务驱动;电路设计
1基于可靠性仿真技术的电路设计需求分析
基于可靠性仿真技术的电路设计主要是以虚拟仪器设备替代现实电子元器件,从而为电子电路的实践教学提供有效支撑,从而更好了践行“理实一体化”的教学理念,促进学生实践技能的提升,促使课程回归教学的本质。1.1实践性教学开展的内在需求。基于可靠性仿真技术的电路设计,学生可以参与拟订设计方案、仿真模拟等环节,从电路的设计方案、仿真模拟等环节,能够将晦涩难懂的理论知识与实践知识相结合,帮助学生提升实践技能。1.2实现层次化和差异化教学的必然选择。关涉电路设计的技术型教学内容涉及的元器件较为繁杂,且不同元器件性能、参数、封装形式、价格、功耗等存在较大区别,在教学过程中需要反复的实验、测试,这增加了设备投资成本,而且因为学生个性化差异,学习、接受能力各不相同,加之电子元器件复杂程度的不同,应该据此分层次设定目标,以贴近生活、学生所喜爱的教学内容,以“任务驱动”的形式引导学生进入知识和技能的学习,但这势必增加电子元器件的投入,而仿真模拟电路的设计可以利用仿真软件呈现电子电路的操作面板和功能,并通过交互式操作完成相应测试任务,不仅满足了教学需求,而且控制了教学成本。
2基于可靠性仿真技术的电路设计方案
2.1电路设计的整体流程。可靠性仿真技术可以检验电路存在的故障并发现设计的薄弱环节,从而有针对性的进行改进,为了遵循由简入繁的原则,以有效调动学生学习热情和积极性,本文以典型电路电源模块设计为例,设计过程中首先应该进行可靠性仿真实验,其具体的流程如图1所示。2.2电路设计的具体步骤。2.2.1设计信息采集。为了实现电源电路的优化设计,应详细搜集其应用环境和使用方法等信息,具体包含所采用的元器件、原材料特性2.2.2数字样机建模。电路设计中数字样机建模须采用专业软件实现,但因为学生学习、接受能力存在差异,应该目标层次,将设计过程进行分解,并以“任务驱动”的形式,将不同设计知识分配到各个任务之中,让学生通过分步设计完成理论知识的实践应用,由此才能确保电路设计学习的效果,通常存在热设计信息和振动设计信息两类建模方式,具体的建模步骤为:首先根据将所获取的电路信息进行简化,完成CAD数字样机模型的构建,并依据热设计信息建立CFD数字样机模型,而后依据振动设计信息建立FEA数字样机模型。其次,为确保CFD数字样机与物理样机的一致性,须对其进行修正与验证,利用对电源模块工作状态热测量的方式,获取其关键元器件点温度测试数据,并根据所得结果修正电源模块CFD数字样机的边界条件、期间参数,由此实现对CFD数字样机的修正。再次,同理,也须采用相同的方法对FED数字样机进行修正,且测试过程中,应该在约束条件下对电源模块重点部位,关键元器件进行模态分析,并依据结果完成修正。2.2.3应力分析。温度应力分析选用MentorGraphics公司的FloTherMV90分析计算电源模块CFD数字样机模型,经过分析可知,电源模块设计中如元器件排布不合理,则会导致电路设计存在热分布过度集中的缺陷。分析中,平台环境温度70℃设定为第一参考温度条件,电源模块表层军温度72℃设为第二参考温度条件,经过分析,为电源模块所在分级提供5V工作电源的功率器区域,是热分布较集中的部位,需要修正电路设计方案。而对于振动应力分析,则选用ANSYS公司的ANSYSWorkbench12.1分析计算电源模块FEA数字样机模型,分析结果显示,电源模块中元器件数量和重量排布、安装方式设计不合理,使得电源模块产生局部共振的设计问题,应该据此进行及时修正,以优化电路设计。
3结束语
本文将可靠性仿真技术引入电路设计之中,将电路细化分类,并根据学生个体差异由简入繁、逐步引导,实现了教学目标的分层实现,也将培养学生的实践技能真正落实到实处。
作者:宋月丽 刘立军 单位:辽宁机电职业技术学院
参考文献
[1]王朝新,任斌,陈洁,董绪.基于虚拟实验平台的模拟电子技术课程设计开发与仿真[J].电子设计工程,2012,14:44-47.
【关键词】高速数字电路 设计技术 计算机
在微电子技术飞速发展中,高速电子电路器件不断被应用,在现阶段的电子设计领域中,高速数字电路设计已经被广泛应用。高速数字电子电路设计是一门处在不断发展与进步中的学科,目前有很多理论尚处于研究与发展中。在我国,现阶段的高速数字电路设计在一定程度上取得了一些成绩,但是大部分都是偏于理论方面的,对于实践操作方面还有一定的欠缺。所以,从高速电路设计的角度来看,了解和掌握高速数字电路设计方法对于实践工程的指导工作有着非常直接的作用。
1 什么是高速数字电路
高速数字电路的概念:是一种由高速变化信号在电路中所产生的具备诸如:电容、电感等模拟特性作用的电路,其主要是由集中参数系统和分布参数系统两个部分组成。其中,集中参数系统对低速数字电路设计进行了简化处理,使其始终处于一种较为理想的状态,所以集中参数系统不适用于高速数字电路技术,而是在低速数字电路设计中得到了广泛的应用;分布参数系统则比较适合用于高速数字电路设计中。分布参数系统的概念与实际运行情况比较接近,其通常认为信号时间与其所处的位置对信号的特性有着决定性作用,所以元器件间的线路长度会对信号特性产生影响,另外,线路中的信号进行传输时需要一定的延迟。
2 影响高速数字电路设计技术的问题
高速数字电路设计成功与否取决于信号的质量,也就是信号完整性的保持,若是无法保持信号完整性,那么就会出现信号失真的现象,影响正确数据、地址以及控制信号的生成,进而导致系统工作出现错误,严重的甚至会导致系统崩溃。对信号质量产生影响的因素非常多,但是,对信号完整性产生影响的因素主要有以下三点:
系统中处于信号传输线位置的阻抗不相匹配,容易形成反射噪声,这是破坏信号完整性的主要原因;信号线间的距离随着处于印刷板位置的电路密集度不断增大而变的愈加狭小,这就导致信号间的电磁耦合增大,以至于无法对其进行忽略处理,进而造成信号间的串扰情况越加严重;处于芯片内的大量电路输出同时动作的过程中,因为寄生于电源平面间电感和电阻的影响,就会出现较大的瞬态电流,进而对电源线和地线上的电压产生影响,使其发生波动和变化。
总而言之,对电路进行合理的设计,减小或是消除上述因素对信号完整性的影响,促进高速数字信号质量的提高,已经成为现阶段所有高速数字电路设计所需要解决的主要问题。
3 高速数字电路设计技术的具体研究
3.1 设计高速数字电路信号完整性
针对高速数字电路信号完整性的设计主要包括两个方面内容:第一个是研究不同信号在电路信号网中所产生的干扰,第二个是研究不同电路信号网传输信号的干扰,简单来说,也就是研究反射和干扰的问题。由于电路中不相匹配的阻抗因素等影响,反射问题在低速数字电路设计中并不存在。数字电路网在理想状态下的不同阻抗是相等并相互匹配的,位于数字电路传输线上的阻抗处于连续的状态,因此反射现象不会出现在线路的电流和电压中。进行设计数字电路时,阻抗过大或是过小都会导致电路传播的波形产生干扰现象,进而对信号完整性造成影响。高速数字电路设计难以使电路与临界阻抗的状态相符合,因此保持系统处于过阻抗状态是一个较为合适的方法。
设计高速数字电路时首先要考虑的就是感性串扰等问题。根据信号基本理论得出,电流在电路中是处于循环流动的状态,这一方面往往会被数字电路设计工作人员所忽视。信号的回路和路径构成了电流环路,电感在电路中随着电流环路的增大而变大,而环路中的电流也会随着其中的电磁场变化而发生改变。尽可能的对电流环路进行减小处理,对感性串扰起到了降低的作用,在设计高速数字电路中,主要可以通过两个方法来进行,即对线路距离进行增加和对电流环路面积进行减小的处理,以此来提高高速数字电路信号的完整性。
3.2 设计高速数字电路电源
设计高速数字电路需要应用大量的低电压元器件,其对电源的稳定性造成了一定的影响,这也是设计数字电路所要考虑的一个主要因素。电源完整性指的是电源在系统运行中的波动情况,也就是电源的波形质量。在高速数字电路设计中能够对电源稳定性造成影响有:由处于高速开关状态下线路器件所产生的过大的瞬间电流,以及数字电路中过多的电感所导致的变大的信号回路阻抗。
高速数字电路设计的理想状态是其电源系统中不存在阻抗,由于整个信号回路不存在阻抗的耗损问题,可以使电源系统中各个点的电位保持恒定。但是,在实际中并不存在这种状态,电源分配系统往往会产生严重的干扰噪声,进而对整个电路的正常运行造成影响。在进行高速数字电路设计时,要充分考虑到电源的电感和电阻因素,对其进行降低处理。现阶段在电路系统中大多都是采用大面积的铜质材料,这远远不能满足高速电路设计的标准和要求,因此在设计的过程中还要对其它影响因素进行综合的考虑,其中将去耦电容运用到电路中就是一个非常简单有效的方法。
4 结语
综上所述,电子设计正在朝着速度快、密度高的方向发展和进步,在这种状态下的电子系统,为了能够对高速数字电路设计问题进行有效合理的解决,对高速数字电路设计方法和手段进行创新和改进是势在必行的。不断促进高速数字电路设计方法可行性的提高,为其在现代化技术的发展进程中不断进步提供了可靠保障。
参考文献
[1]李琳琳.高速数字电路设计中电源完整性分析[J].火控雷达技术,2010(02).
[2]冯巨标.高速数字电路电源分配网络的近场电磁干扰研究[D].哈尔滨工业大学,2012.
[3]付亚如.浅谈高速数字电路特性与信号完整性设计[J].黑龙江科技信息,2011(04).
[4]张婧.高速数字电路信号完整性仿真设计与验证[D].西安电子科技大学,2013.
中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2016)6-0070-3
1 模块化策略
对于图1所示电路,按其功能划分,可分为虚线框Ⅰ内的测量电路和Ⅱ内的供电电路两个具有相对独立功能的子系统。其中,测量电路的设计原则是两电表的量程相匹配,即它们的指针能同时达到较大偏角;而供电电路设计则要遵循电路安全性、操作方便性和测量准确性3个基本原则。
基于两个模块的特点,电路设计的一般思维策略是将电路按其功能分为测量电路与供电电路。
2 测量电路模式的构建与识别
模式识别是问题解决的一种基本策略,是人们在对所表征事物或现象的各种信息分析和处理的基础上,对问题进行描述、辨认、分类和解释的思维过程。
在实验电路设计中,无论是对给定电表、定值电阻进行测量的电路设计,还是对给定电路原理的理解,都要涉及到电压、电流的测量模式及其组合方式的识别,为此,在实验教学之前,需要有意识地从电压、电流测量视角系统地规划有关部分例题,并将其归类总结而构建起电压、电流测量模式,以便学生能迅速从记忆储存中进行模式的检索。
2.1 电压、电流测量模式的构建
关于电压、电流的测量,有直接测量和间接测量之分,其中间接测量包括电表的功能转换和定值电阻的使用,具体模式如表1和表2,其中的适用情况对应于命题特征。
2.2 测量电路的设计流程
在构建起电压、电流的基本测量模式后,原则上只需要将它们适当组合起来即可设计测量电路。但是,在实际的电路设计中,即使只提供一个定值电阻,其电压、电流测量模式的组合数目也还是很大。显然,提升学生的电路设计能力,除了引导学生参与电压、电流测量模式的构建外,还要力求把上述的测量模式结构化,并建立电路设计的思维流程。为此,笔者建议从以下几个方面入手,提高学生电路设计能力。
(1)电表组合方式的分类
(2)电表量程匹配的基本思路
对于几种测量电路,其电表量程的匹配一般有以下3种方式:一是选择合适电表量程或对电表进行改装,这是测量电路设计中的常规思路;二是选择合适的电路;三是改变测量对象,一般是在待测电阻上并联或串联一定值电阻,以补偿电压表、电流表因量程不匹配而产生的偏差,具体电路如图2所示(以外接法为例)。
(3)测量电路的设计流程
要完成测量电路的设计,仅仅建立基本测量模式、清楚量程匹配方式还是远远不够的,还需要学生有一个清晰的思维流程,为此,建议引导学生在电路设计中参与图3所示的思维流程构建,以提高电路设计能力。
3 供电电路设计的模式识别策略
在电阻测量中,其测量准确性取决于两个方面:一是电表量程的匹配程度,它对应于测量电路的设计;二是电表指针能否达到较大偏角,它对应于供电电路的设计。另外,实验器材的安全性、实验操作的方便性也对应于供电电路的设计。
虽然供电电路的设计涉及的因素较多,但它对应电路模式却较少,我们分别就限流式和分压式供电电路进行探讨。
(1)限流式供电电路的基本模式
对于限流式供电电路,一般有图4的两种形式,其中图4a不要求电表示数从0开始调节。而对图4b而言,主要考虑定值电阻对电路的保护或操作方便。
(2)分压式供电电路的基本模式
对于分压式供电电路,一般有表3中的3种情形。
在表3的3种模式中,第3种模式中的定值电阻可能同时具备电路保护和调节方便两种功能,而第2种模式中的定值电阻只起到调节方便的功能。至于运用哪种供电电路,则可按下述程序进行选择:初步确定供电电路类型实验器材安全性检验实验测量的准确性检验实验操作的方便性检验。
4 典型例题分析
例(2010年福建省高考试题)如表4所示是一些准备用来测量待测电阻Rx阻值的实验器材,器材及其规格列表如下:
要求测量时电表的读数大于其量程的一半,而且调节滑动变阻器能使电表读数有较明显的变化。请画出测量电路图,标明所用器材的代号。
解析 对于测量电路,根据提供的器材,首先考虑用伏安法模式,经检验,两只电压表均不能与电流表的量程相匹配,故电流表不能使用。其次,考虑伏伏法模式,经检验,测量电路应如图5所示。
对于供电电路,由于待测电阻约为1000 Ω,滑动变阻器的最大阻值约为100 Ω,要使电表示数变化明显,必须使用分压式电路。由于无定值电阻,故本题的电路如图6所示。
扩展:若仅改变例题中滑动变阻器的最大阻值,并增加一定值电阻,具体数值如表5:
则实验电路如何设计?
解析 (1)在变式中,改变了滑动变阻器的阻值,增加了一个只知道大致阻值的定值电阻,这些改变不影响测量电路的设计。
(2)初步确定供电模式
由于R远小于Rx,因此,初步确定了分压式电路。
(3)基于电路安全性考虑
若采用表3中的第1、2两种供电电路,则电路总电流大于0.5 A,从而损坏滑动变阻器,故这两种方式均不可行,而第3种供电电路能保证电路安全性。
(4)基于测量准确性考虑
另外,经检验,第3种供电电路满足操作方便性要求。故实验电路为第3 种供电电路与图5所示测量电路的组合,具体电路图略。
参考文献:
作者:陆召振 周树艳 陆伟宏 王宁 单位:无锡油泵油嘴研究所
共轨系统通常正常工作电压选择28~30V,即需要满足Ur≧30V。2)最小击穿电压UbUb分为5%和10%两种。对于5%的Ub来说,Ur=0.85Ub;对于10%的Ub来说,Ur=0.81Ub。当电压高于此值后,TVS发生雪崩击穿,此后,TVS两端电压将一直保持在钳位电压Uc。3)最大钳位电压Uc当TVS管承受瞬态高能量冲击击穿后,管子中流过大电流,峰值为IP,端电压由Ur值上升到Uc值就不再上升了,从而实现了保护作用。Uc与Ub之比称为钳位因子,一般在1.2~1.4之间,计算多代入为1.3。其他诸如反向漏电流、结电容等参数也需要考虑电路静态电流以及信号频响等因素进行择优选择。最大允许瞬时功率Pp根据车用电源系统电路抗干扰标准要求须至少大于6000W。防反接保护电路设计防反接保护使用一个普通二极管就可以实现,或者采用其他MOS管防反接电路。普通二极管防反接保护电路优点是电路简单,器件少,但由于受二极管额定功耗的限制,这种防反接不能承受长时间的反接故障。图3为防反接保护二极管在电路中的设计位置,二极管选择时考虑ECU的整体功耗,选择正向导通电流大于正常工作最大电流,同时防反接保护二极管尽量选择低压降快恢复二极管,反向耐压满足电路要求。过电流保护电路ECU电源电路在过载或者负载短路等故障发生时,需要在外部线束中或电源处理电路回路中设计过流保护电路,否则电路将损毁不能正常工作。通常在开关电源设计中采用自恢复熔断丝串联在回路中,或设计电路采样闭环控制电路等。
从以上自恢复熔断丝的原理可以看出,当电路发生过流时,可能存在大量热量的产生,由于ECU通常安装在相对封闭的空间内,热量无法快速消散,因此可能会对ECU其他电路的工作产生影响,再加上自恢复熔断丝存在不好安装及精度不高的问题,因此ECU过流保护电路通常不选用这种方案。图4为一种闭环电流采样控制保护电路,T1用来检测负载电流IL,采样电阻R1产生成比例的电压。电流过载发生时,电容C1充电电压会增加到稳压二极管Z1的导通电压,此时三极管Q1导通,集电极输出信号关闭后续电路的控制级,从而切断电源电路的工作。类似过流保护电路设计时,需要注意变压器的设计选型,由于车用ECU对成本的要求越来越高,此电路设计成本较高,且占用ECU体积大,目前在ECU上采用较少。综上,我们似乎没有非常完美的过流保护电路方案,幸运的是目前世界上一些著名半导体公司都提供带有过流自动保护的电路控制芯片。比如美国国家半导体公司的汽车DC/DC控制芯片,德国英飞凌公司的汽车级LDO电源处理芯片,这些芯片都能提供过流自动保护功能。因此在ECU电源电路设计时,尽量选用类似集成芯片作为电路核心元件,这些芯片通常都经过汽车等级的测试,可以放心采用。共模抑制电路设计ECU电源系统电路通常采用共模扼流圈设计共模抑制电路。共模扼流圈,也叫共模电感(Com-monmodeChoke),是在一个闭合磁环上对称绕制方向相反、匝数相同的线圈。
在电源电路设计时,采用共模扼流圈能够有效地消除共模干扰,提高ECU电磁兼容性能。目前一些著名的无源器件生产厂家均提供ECU专用的电源系统电路共模扼流圈,比如TDK公司的ACM-V系列主要用于ECU电源线设计,TDK公司提供的这种共模扼流圈通过专用磁芯设计而成的方形闭磁路磁芯,在保持原有特性的同时实现了小型化,便于安装。同时具有高阻抗特性,可发挥优异的共模噪声抑制效果,最大电流可高达8A。滤波电路设计共轨系统ECU电源电路的输入是从汽车蓄电池直接引入的。由于汽车上所有电子设备都共用这一个电源,其他电子设备的干扰可能通过电源耦合到ECU。另外,车用蓄电池的电源高频干扰、汽车电机的启动停止以及负载的突然变化均会将干扰带入ECU。在设计电源处理电路时必须设计滤波电路来滤除这些干扰。通常采用∏形滤波电路设计串联在电源处理回路中,主要对差模干扰起到抑制作用,图6为基本的∏形滤波电路。在实际的∏形滤波电路设计时,需要根据ECU实际使用需求进行电感L及电容C1和C2的参数选择,电容C3根据负载功率的大小调整容值及耐压参数。电源系统设计方案总结共轨系统ECU电源系统电路设计时需要综合以上的各种保护电路的设计,同时选择合适的DC/DC控制芯片。控制芯片的PWM调制频率设置需要综合考虑电源处理的效率和EMC性能。常用的ECU电源系统电路设计方案如图7所示。ECU通过点火钥匙开关处理电路,将汽车蓄电池电源输入,然后通过各种保护电路将稳定的电压输入DC/DC处理电路,最后通过汽车专用低压降线性稳压电源(LDO)处理成多路电源分别给ECU各电路模块供电。
在设计电源系统处理电路时,不仅应考虑基本电压处理电路的精度和效率,还应设计不同的保护电路,应对各种可能出现的干扰和故障情况。保护电路的设计需要考虑整个电源系统电路的工作原理,合理的布局保护电路在整个电源系统电路中的位置;各种保护电路的器件选择则需要综合电路原理、成本、安装及厂家品牌等诸多因素进行合理选择。除了本文提到的几种保护电路设计外,或许还有其他应对整车复杂故障情况的电路选择,这就需要在ECU的实际使用过程中进行不断的积累和研究。
【关键词】混合动力 重型汽车 电路设计 可靠性
随着我国经济社会快速发展,我国能源形势日益紧张,为了缓解这一紧张局势。在实际工作过程中就需要利用到新能源,混合动力重型汽车的应用就是一个十分典型的例子。混合动力重型汽车是一种新的车型,该车型是把内燃机同一定容量的储能器件通过先进控制系统结合到了一起。采用这种车车型将能够有效减少污染物排放、降低油耗。这一车型在未来将会得到有效应用。混合动力重型汽车设计过程中电路设计是关键环节。加强对电路设计的研究并保证其可靠性是提升该车型性能的有效方式。
1 混合动力重型汽车结构和设计原则
1.1 汽车结构
加强汽车电路设计的研究就必须要了解混合动力重型汽车自身的结构,只有在了解了其基本结构之后才能够实现科学高效地设计。在实际工作过程中混合动力重型汽车要想发挥其工能驱动系统就需要增加驱动电机和为其供电的动力电池组。在实际工作过程中串联式、并联式以及混联式是三种比较典型的连接方式。本文以并联式驱动为例来进行说明。在SX5256DH434PHEV型混合动力重型汽车结构中,动力输出单元是有电动机和发动机组成的。在混合动力模式中动力是电动机和发动机共同提供的,因而在设计过程中就可以选择较小公路的电机和发动机就可以满足要求。
1.2 可靠性设计原则
可靠性是衡量混合动力重型汽车电路的一个重要指标,在实际工作过程中必须要满足其可靠性。为了达到这一目的就需要坚持以下原则:一是要满足安全和功能要求。安全性是第一位的,在实际工作过程中汽车电路一旦出现故障就极有可能对整个车辆的运行造成严重影响。因而在实际工作过程中首先就需要保证其安全性。在工作过程中应该把安全性作为最基本的要求。功能需求也同样重要,在满足安全前提下要实现其各种功能,显示、报警等功能必须要实现。二是实时性。在电路系统运行过程中一旦出现故障或者某一特殊事件之后必须要实时做出相应,要对突发事件做出即可相应。正是因为如此在实际工作过程中就需要对其保持高度重视,要采取专门措施来予以应对。三是周期要短,价格要便宜。混合动力技术当前发展非常迅速,为了适应实际要求就需要把汽车电路的设计周期在保证质量的前提下尽可能地缩短。此外还需要逐步降低设计成本。
2 汽车电路设计
在明确了基本结构和设计原则之后工作人员就可以有的放矢地来进行设计了。在设计过程中必须要从自身的实际情况出发,通常情况下是要对以下环节进行设计:
2.1 低压电路设计
在混合动力重型汽车电路结构中整车是由控制系统来实现控制的,电力蓄电池则是要作为动力电路的电源通过配电柜来为其供电。在实际工作过程中各种不同器件如电机控制器、车身控制器、发动机ECU、电池管理器等分别对应不同的元件来进行针对性控制从而组成一个完整的子系统。实际工作过程中整车控制器会根据驾驶员的各种操作以及各个子系统的当前状态来判断子系统的运行模式并对其进行有效分配。在整车控制器把控制信号发送给对应的子系统控制器之后,各个子系统控制器就能够实现对各个元件的控制。低压电路设计工作过程中微电子元件的工作电压通常只有3V到5V而且输出信号的精度是非常高的。正是因为如此在设计过程中就需要防干扰。要高度重视耦合干扰和传导干扰这两种形式。
2.2 高压电路设计
混合动力重型汽车结构中高压电路系统是以动力蓄电池为电源的,实际设计过程中由于所装动力电池组峰值输出功率较大,因而对高压电路的线径、线束的连接方式就提出了新的要求。高压电路在设计过程中必须要有较大的传输功率。要选择合理的线径和绝缘方式。在实际工作过程中要防止线路的发热过多从而导致绝缘层老化的速度加快。高压电路的连接器设计非常重要。在设计过程中应该采用橡胶护套,两端子也应该通过自锁的形势实现接触面结合,这样能够有效增大接触面积,压降也将会下降。这对于避免热点现象的出现无疑是非常有利的。
2.3 电气模块布置可靠性分析
在设计过程中对于电气模块的设置应该考虑到振动、防水以及散热等方面的要求。满足这几个方面的要求是保证可靠性的必然选择。
混合动力重型汽车是当前应用非常广泛地一种汽车,在实际应用过程中汽车电路起着十分关键的作用。在运行过程中为了有效提升性能就必须要对汽车电路进行专业设计。本文重点分析了汽车电路的高压电路、低压电路设计。在设计过程中应该注重模块之间的可靠性。
参考文献
[1]徐荣峰.汽车电子防盗报警器电路的可靠性设计分析[D].南宁:广西大学,2007(05).
[2]王霄峰.汽车可靠性工程基础[M].北京:清华大学出版社,2007.
关键词:混合动力;重型汽车;电路设计;可靠性
中图分类号:TB文献标识码:Adoi:10.19311/ki.16723198.2016.14.100
混合动力汽车就是有两种或两种以上储能器作为驱动能源的汽车。由于混合动力重型汽车的结构更加复杂,因此电路变得更为复杂,如何优化电路设计,提高电路相应速度是发展新能源汽车的关键技术。
1混合动力重型汽车电路设计原则
混合动力重型汽车相比传统的燃油汽车而言其增加了驱动电机和动力电池组,而且重型汽车由于行驶的震动量较大、防水性较差,因此对电路设计提出了更高的要求:首先要满足汽车行驶功能的要求;其次要具有可靠性和安全性,电路作为混合动力汽车信号和动力传输通道,一旦出现故障就会造成严重的安全事故,因此电路设计需要将安全与可靠性作为设计的核心原则;最后是具有实时性。电路系统的特点就是及时将各种事件进行相应。总之,汽车的电路系统只有在所有子回路都正常运行的情况下才能够正常运行,因此相比普通汽车电路,混合动力汽车的电路多出了高压电路。
2混合动力重型汽车电路设计
2.1高压电路可靠性设计
高压电路可靠性设计主要包括:一是高压导向的可靠性分析与设计。高压导线是高压电路的重要组成部分,基于传输功率的考虑,需要选择绝缘的材料,以某型号的混合环卫汽车为例,该车处于纯电机驱动的时候,峰值电流达到280A,电路电流达到208A,再加上其它设备的应用,其电流瞬间可以达到210A,因此为降低能源损耗,避免因为电路过大而导致出现电路短路问题,需要选择电阻小的导向。二是插座器的可靠性分析。线路连接需要插座器的作用,插座器主要是将线束分段进行连接,以此便于后期的拆装与维修等。插座器主要有端子和护套组成。混合动力重型汽车流经插座器的电路比较大,因此类似于针状的端子可能会出现“热点”现象,进而导致端子的融合出现损坏,而且可能会在汽车时候过程中因为外部因素而导致短路,因此在插座器的设计中需要做好防水性设计,具体就是将插座器侵入5%的NaCl液体中,以此提高防水性能。另外还需要进行绝缘设计、安装橡胶护套。三是继电器的可靠性设计。混合动力汽车的继电器属于电磁式,因此设计的继电器触头额定电流比较大,一般选择晶闸管。
2.2低压电路设计
一是传导干扰设计。传导干扰是电气设备之间产生的干扰信号通过公共电源线相互产生的,具体在混合动力汽车中传导干扰主要包括:电源线、共开关量抖动干扰等,由于受到线路设计的不同,其可以分为感性负荷开路瞬变干扰和触点回路的抖动干扰。二是耦合干扰可靠性设计。耦合干扰就是电子设备产生的干扰信号通过空间耦合传递给另一电子设备。其主要包括感性耦合干扰和容性耦合干扰。
2.3电路布局设计
混合动力汽车的电路数量比较多,优化线路布局是提高电器元件使用寿命,增强电气系统工作可靠性的重要举措,而各个控制器与电气设备的安装位置影响线束的走向,因此需要合理布局各个电气设备。一是电气模块布局的设计。由于汽车行驶的震动比较大,因此在安装电气模块时需要考虑以下因素:振动、散热、防水以及安全。二是线束的走向设计。线束走向是电气设备安装的前提,合理的走向不仅有助于降低线路故障的检测效率,而且还可以提高其使用寿命。在进行线束的走向布局前需要对线束进行包扎,这样做的目的就是提高线束的耐磨性和抵御高温性。结合实践我们经常使用的包扎材料有热缩管、胶带以及纹波管等。具体走向就是:将整车的线路固定在混合动力汽车的车架上,按照车架右纵梁凹槽进行布线。
2.4基于CAN总线的设计
在混合动力重型汽车中CAN总线有着广泛的应用,使用CAN总线能够有效减少各个部件之间的线路连接,降低回路的数量,进而避免出现线路短路故障。CAN总线一般使用双绞线作为传输介质,这样可以避免信号干扰。
3混合动力重型汽车电路设计可靠性实验
基于上述的电路设计,通过运用相关实验对设计的电路进行检测以此判定电路的可靠性:首先依据相关实验规定对汽车的车身控制器和IC仪表的CAN总线进行通信实验,通过实验数据,该电路具有较强的抗传导干扰和耦合干扰能力;其次对整车的可靠性实验。将实验汽车按照不同的路况进行实验,并且按照启动、行驶、制动以及车速等环节的控制记录相关的数据,通过对相关数据的统计分析:整车的电路设计可靠性符合汽车安全行驶的要求,对于出现的细微故障主要是因为电气元件受到振动而引起的,由此可见,振动是混合动力重型汽车可靠性的重要因素。
4结束语
总之,混合动力重型汽车的电路设计工作尤为重要,随着汽车技术的不断发展,尤其是新能源汽车在社会中普及,我们要科学设计电路,优化电路布局,以此提高我国新能源汽车制造业的健康发展。
参考文献