公务员期刊网 精选范文 简述移动通信的演变范文

简述移动通信的演变精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的简述移动通信的演变主题范文,仅供参考,欢迎阅读并收藏。

简述移动通信的演变

第1篇:简述移动通信的演变范文

关键词:3G;CDMA2000;WCDMA;TD-SCDMA;CDMA2000 1X;GPRS

3G是英文3rd Generation的缩写,指第三代移动通信技术。相对第一代模拟制式手机(1G)和第二代GSM、TDMA等数字手机(2G),第三代手机一般的讲,是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统。它能够处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。为了提供这种服务,无线网络必须能够支持不同的数据传输速度,也就是说在室内、室外和行车的环境中能够分别支持至少2MBps(兆字节/秒)、384KBps(千字节/秒)以及144KBps的传输速度。

1、3G发展现状 国际电信联盟(ITU)在2000年5月确定WCDMA、CDMA2000、TD-SCDMA三大主流无线接口标准,写入3G技术指导性文件《2000年国际移动通讯计划》(简称IMT―2000);2007年,WiMAX亦被接受为3G标准之一。 CDMA是Code Division Multiple Access (码分多址)的缩写,是第三代移动通信系统的技术基础。第一代移动通信系统采用频分多址(FDMA)的模拟调制方式,这种系统的主要缺点是频谱利用率低,信令干扰话音业务。第二代移动通信系统主要采用时分多址(TDMA)的数字调制方式,提高了系统容量,并采用独立信道传送信令,使系统性能大大改善,但TDMA的系统容量仍然有限,越区切换性能仍不完善。CDMA系统以其频率规划简单、系统容量大、频率复用系数高、抗多径能力强、通信质量好、软容量、软切换等特点显示出巨大的发展潜力。

ITU主要致力于3G技术体制标准的制定工作,3G标准分为核心网标准和无线接口标准两大部分。ITU主要致力于3G技术体制标准的制定工作,3G标准分为核心网标准和无线接口标准两大部分。目前,核心网标准尚不明朗,但总趋势是向支持ip的分组平台发展,2G两大核心网MAP及ANSI-41可能长期并存。无线接口标准已基本完成,ITU经过10个候选方案的频谱效率、网络接口、QoS、技术复杂性、覆盖率、灵活性和设备体积等诸多方面的全面评估,最终正式确认了5种无线标准,分别是MS-CDMA、DS-CDMA、TD-CDMA、SC-TDMA、MC-TDMA,这是一个以CDMA技术为主体,兼顾TDMA技术,包含FDD和TDD两种双工方式的多元化体系标准,它基本涵盖了目前2G的两大技术体制,是一个多方利益妥协的结果,并没有真正实现标准的统一。从移动通信技术发展趋势和可实现业务功能分析,基于CDMA制式的3种标准被普遍看好,分别对应CDMA2000、W-CDMA、TD-SCDMA三种技术,这三种技术将成为未来3G的三大主流应用技术。

目前,三大主流技术标准已得到业界认可,在技术和市场的双重作用下,3G从概念向产业化的进程在加快,全球主要设备厂商都在积极跟踪研发基于三大主流技术的3G网络产品,2001年下半年已推出CDMA2000和W-CDMA可商用系统及TD-SCDMA产品样机。此外,3G商用进程也已开始,日本移动通讯巨人NTT DoCoMo已于10月1日开通全球第一个3G服务,该服务基于WCDMA标准。目前,亚洲成为3G发展最快的地区,欧洲紧随其次,美国由于不太热心而在技术准备上远远落后。除了动作最快的日本和韩国,泰国、香港也已经发出3G牌照。综观全球3G发展现状,3G技术正处于发展和完善阶段,三大主流技术标准将经历逐步融合演变的过程,最终实现全球的统一,现有2G网络将向3G过渡已是大势所趋。

2、3G技术基本特点

从目前已确立的3G标准分析,其网络特征主要体现在无线接口技术上。蜂窝移动通信系统的无线技术包括小区复用、多址/双工方式、应用频段、调制技术、射频信道参数、信道编码及纠错技术、帧结构、物理信道结构和复用模式等诸多方面。纵观3G无线技术演变,一方面它并非完全抛弃了2G,而是充分借鉴了2G网络运营经验,在技术上兼顾了2G的成熟应用技术,如小区复用、多址/双工方式、多相QPSK调制、卷积及交织技术、功率控制等;另一方面,根据IMT-2000确立的目标,未来3G系统所采用无线技术应具有高频谱利用率、高业务质量、适应多业务环境,并具有较好的网络灵活性和全覆盖能力,因此,3G与2G相比在无线技术上的创新主要表现在以下几方面。

(1)采用高频段频谱资源

为实现全球漫游目标,按ITU规划IMT-2000将统一采用2G频段,可用带宽高达230MHz,分配给陆地网络170MHz,卫星网络60MHz,这网络为3G容量发展,实现全球多业务环境提供了广阔的频谱空间,同时可更好地满足宽带业务。

(2)采用宽带射频信道,支持高速率业务

充分考虑承载多媒体业务的需要,3G网络射频载波信道根据业务要求,可选用5/10/20M等信道带宽,同时进一步提高了码片速率,系统抗多径衰落能力也大大提高。

(3)实现多业务、多速率传送

在宽带信道中,可以灵活应用时间复用、码复用技术,单独控制每种业务的功率和质量,通过选取不同的扩频因子,将具有不同QoS要求的各种速率业务映射到宽带信道上,实现多业务、多速率传送。

(4)快速功率控制

3G主流技术均在下行信道中采用了快速闭环功率控制技术,用以改善下行传输信道性能,这一方面提高了系统抗多径衰落能力,但另一方面由于多径信道影响导致扩频码分多址用户间的正交性不理想,增加了系统自干扰的偏差,但总体上快速功率控制的应用对改善系统性能是有好处的。

(5)采用自适应天线及软件无线电技术

3G基站采用带有可编程电子相位关系的自适应天线阵列,可以进行发信波束赋形,自适应地调整功率,减小系统自干扰,提高接收灵敏度,增大系统容量,另外软件无线电技术在基站及终端产品中的应用,对提高系统灵活性、降低成本至关重要。

3、3G主流应用

就3G技术发展趋势看,未来3G主流应用技术是CDMA2000、W-CDMA、TD-SCDMA,这三种三种技术体制最具潜力。其共同特点是都应用码分多址技术实现信道共享,并采用扩频通信技术提高系统质量,但在具体系统参数选取上各不相同,因此各具特点。

CDMA2000源于美国IS-95体系,是北美3G体制标准的代表,属CDMA/FDD体制,主要沿用IS-95技术,属同步宽带CDMA技术。CDMA2000主要特点是:在下行信道传输中,定义直扩和多载波传输两种方式,码片速率分别为3.6864Mcps和1.22Mcps,多载波方式能很好地兼容IS-95网络;在同步方式上CDMA2000与IS-95相同,基站间同步采用GPS方式;在扩频码选择采用相同M序列,通过不同的相位偏置区分不同的小区和用户;此外在下行信道中采用公共连续导频方式进行相干检测,提高系统容量。CDMA2000设计了两类码复用业务信道,基本信道用于传送语音、信令和低速数据,是一个可变速率信道,补充信道用以传送高速率数据,在分组数据传送上应用了ALOHA技术,改善传输性能;另外CDMA2000射频带宽从1.25MHz到20MHz可调。

W-CDMA是欧洲和日本提出的3G候选方案最终融合的标准,同属CDMA/FDD体制,它是建立在窄带CDMA技术基础上的一种异步宽带CDMA技术。W-CDMA只采用直扩方式,并选用4.096Mcps高速率码片,扩频码采用GOLD长码扩频序列,依靠不同长码序列区分大小区和用户,基站间采用准同步方式,GPS同步方式为可选项目。W-CDMA在下行信道采用时分复用专用导频方式进行相干解调;业务信道分为单码传送和多码传送两种结构,可将多种速率的不同业务分配给同一个5MHz载波上的多个用户。

TD-SCDMA是由中国提出的3G体制标准,它与前两个标准最大不同之处是采用了TDD双工方式,并将TDMA与CDMA技术结合应用,优势在于节省频谱资源,不需要成对的频率,能很好地实现非对称数据传输,由于上下行传播特性相同,可以使智能天线技术得到最佳应用,同时它还应用了软件无线电、联合检测等新技术。

三种技术标准都是采用码分多址(CDMA)技术,其差异主要集中在无线接口RTT.

WCDMA是目前全球最流行的第二代技术GSM网络过渡,需要将原有网络过渡到2、5G的GPRS网络,初步建立分组数据交换网,再全面改造无线子系统,将其演进为3G网络WCDMA..该技术最大的优势是GSM网络覆盖大,WCDMA用户的国际漫游不成问题。

CDMA2000基于第二代移动通信的另一中技术IS-95.CDMA2000系统演变的过程先从IS-95过渡到CDMA 1X,以提供低速率的数据业务,最后过渡到1X EV-DV。该系统是个循序渐进的发展网络,适应不同阶段的业务需求,它的另一优势是商用化程度最高。

TD-CDMA是我国大唐电信和德国西门子公司共同提出的ITU-T批准的3G技术标准,它的特点是采用了时分复用(TDD),上下行采用同一频率,频谱效率最高,容量最大,我国拥有该标准的自主产权。

4、 3G演进方式

受诸多因素影响,3G发展进程除技术及市场需求外,目前庞大的2G网络如何低成本平滑的向3G网络演进,是影响3G技术选择及商用化程度的重要因素。

(1)向CDMA2000的演进方式

演进路线是IS-95-CDMA2001 1x-CDMA2000。世界上绝大多数窄带CDMA运营商将按此路线向3G运营过渡,是北美3G体制过渡的主要方式。目前CDMA运营处于IS-95基础上,经完善形成的3G过渡方案,被称为2.5G技术,在容量上它是IS-95的两倍,支持153kbit/s高速数据业务,CDMA2000 1x是2G向3G过渡的重要阶段,目前是业界最为关注的技术,众多3G厂商都已推出自己的产品,CDMA2000 1x实验网也已在国内主要城市开通。CDMA2000的整个演进路线,思路清晰,能很好地兼容现有2G网络,过渡成本较低,目前发展势头强劲,前景较为乐观。

(2)向WCDMA的演进方式

演进路线是GSM-HSCSD-GPRS-EDGE-WCDMA。此路线是欧洲及日本3G体制过渡的主要方式,是目前GSM运营商向3G运营的首先方案。GSM是2GTDMA移动通信的主要标准,优势在于标准的成熟性和完整性上,HSCD被称为高速电路交换数据业务,它主要是通过时隙捆绑技术提高数据传输速率,可支持最高57.6kbit/s的数据业务;GPRS通用分组无线业务是GSM的3G过渡方案,也称为2.5G技术,它主要是一个通过设置网关GGSN和业务支持节点SGSN,叠加在现有GSM网之上的无线分组网,可提供114kbit/s数据业务;EDGE是一种增强型GSM数据业务,它是在采用捆绑技术基础上,通过应用高效调制技术,进一步提高数据传输速率,可实现384kbps的高速数据传输。GPRS的商业运营是GSM向3G过渡的关键,与目前CDMA2000 1x发展态势相比,全球GPRS发展相对滞后,国内GPRS也迟迟也没启动,另外WCDMA的过渡成本相对较高,发展中也遇到了一些技术难题,这些将可能对WCDMA的商业运营产生影响。

(3)向TD-SCDMA的演进方式

TD-SCDMA的演进路线尚不明朗,开发厂商宣称TD-SCDMA主要基于GSM MAP网实现平滑过渡,同时也兼容ANSI-41向3G过渡,能最大程度地降低过渡成本,但这都有待于实际运营检验。对于移动运营商,TD-SCDMA又多了一种技术选择,特别是新兴移动运营商选择的可能性较大,TD-CDMA将凭借TDD无线通信固有特点,在未来3G网络中占据一席之地。

第2篇:简述移动通信的演变范文

关键词:光纤通信发展 光交换 PON 光孤子 WDN

中图分类号:TN92 文献标识码:A 文章编号:1672-3791(2012)08(a)-0015-02

光纤通信就是利用光波作为载波来传送信息,而以光纤作为传输介质实现信息传输,达到通信目的的一种最新通信技术。通信的发展过程是以不断提高载波频率来扩大通信容量的过程,光频作为载频已达通信载波的上限,因为光是一种频率极高的电磁波,因此用光作为载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,光通信是人们早就追求的目标,也是通信发展的必然方向。

1 光纤通信发展状况

对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。

2 光孤子通信

光纤损耗和色散是限制常规线性光纤通信传输容量和距离的主要原因。随着光纤制作技术的不断发展和完善,其已经接近理论极限,光纤色散就成为了光纤通信发展的瓶颈。人们花了上百年时间探讨,发现由光纤非线性效应所产生的光孤子可以抵消光纤色散的作用,利用光孤子进行通信,可以很好解决这个问题,从而形成了新一代光纤通信系统,也是21世纪最有发展前途的通信方式。光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。

光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。

3 全光网络

传统的光网络实现了节点间的全光化,但在网络结点处仍用电器件,限制了通信网干线总容量的提高,因此真正的全光网络成为非常重要的课题。全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机按用户信息的波长来决定路由。全光网络具有良好的透明性、开放性、兼容性、可靠性、可扩展性,并能提供巨大的带宽、超大容量、极高的处理速度、较低的误码率,网络结构简单,组网非常灵活,可以随时增加新节点而不必安装信号的交换和处理设备。当然全光网络的发展并不可能独立于众多通信技术,它必须要与因特网、ATM网、移动通信网等相融合。目前全光网络的发展仍处于初期阶段,但已显示出良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。未来的高速通信网将是全光网。目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

4 光交换

光交换是指光纤传送的光信号直接进行交换。长期以来,实现高速全光网一直受交换问题的困扰。因为传统的交换技术需要将数据转换成电信号才能进行交换,然后再转换成光信号进行传输,这些光电转换设备体积过于庞大,并且价格昂贵。而光交换完全克服了这些问题。因此,光交换技术必然是未来通信网交换技术的发展方向。它能够保证网络的可靠性,并能提供灵活的信号路由平台,还可以克服纯电子交换形成的容量瓶颈,省去光电转换的笨重庞大的设备,进而大大节省建网和网络升级的成本。若采用全光网技术,将使网络的运行费用节省70%,设备费用节省90%。所以说光交换技术代表着人们对光通信技术发展的一种希望。现在全世界各国都正在积极研究开发全光网络产品,其中关键产品便是光变换技术的产品。目前市场上的光交换机大多数是光电和光机械的,随着光交换技术的发展和成熟,基于热学、液晶、声学、微机电技术的光交换机将会研究和开发出来。

5 光波分复用技术(WDM)

光波分复用(Wavelength Division Multiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。在整个WDM系统中,光波分复用器和解复用器是WDM技术中的关键部件,其性能的优劣对系统的传输质量具有决定性作用。将不同光源波长的信号结合在一起经一根传输光纤输出的器件称为复用器;反之,将同一传输光纤送来的多波长信号分解为个别波长分别输出的器件称为解复用器。从原理上说,该器件是互易(双向可逆)的,即只要将解复用器的输出端和输入端反过来使用,就是复用器。光波分复用器性能指标主要有接入损耗和串扰,要求损耗及频偏要小,接入损耗要小于1.0~2.5db,信道间的串扰小,隔离度大,不同波长信号间影响小。

6 光纤接入技术

光纤接入网技术是信息传输技术的一个崭新的尝试,它实现了普遍意义上的高速化信息传输,满足了广大民众对信息传输速度的要求,主要由宽带的主干传输网络和用户接入两部分组成。其中后者起着更为关键的作用,即FTTH(意思是光纤到户),作为光纤宽带接入的最后环节,负责完成全光接入的重要任务,基于光纤宽带的相关特性,为通信接收端的用户提供了所需的不受限制的带宽资源。随着通信业务量的增加,业务种类更加丰富。人们不仅需要语音业务,而且高速数据、高保真音乐、互动视频等多媒体业务也已得到用户青睐。这些业务不仅要有宽带的主干传输网络,用户接人部分更是关键。传统的接入方式已经满足不了需求,只有带宽能力强的光纤接人才能将瓶颈打开,核心网和城域网的容量潜力才能真正发挥出来。

7 结语

光通信技术作为信息技术的重要支撑平台。它的演变和发展结果将在很大程度上决定电信网和信息业的未来大格局,也将对下一世纪的社会经济发展产生巨大影响。在未来信息社会中将起到重要作用,虽然经历了全球光通信的“冬天”,但今后光通信市场仍然将呈现上升趋势。依照我国现行的通信技术领域的发展模式,光纤通信技术的应用必会代替一切其他的信息传送方式,而成为未来通信领域发展的主流技术,带领人类进入全光时代!

参考文献

[1]何淑贞.国内外光通信的发展趋势[J].卫星电视与宽带多媒体,2007(2).

[2]张煦.光纤通信技术的发展趋势[J].中兴通讯技术,2000,S1.