公务员期刊网 精选范文 有机合成的前景范文

有机合成的前景精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的有机合成的前景主题范文,仅供参考,欢迎阅读并收藏。

有机合成的前景

第1篇:有机合成的前景范文

【关键词】全过程欠平衡钻井 井下封井装置 套管阀 冻胶阀 建议

1 引言

欠平衡钻井(UBD)被认为是解决传统过平衡钻井中出现的问题的一种有效方法,中石油从2007年将欠平衡钻井技术作为大力发展的一项技术,目前欠平衡钻井技术在四川,胜利,新疆等油田已经取得了较大的发展,同样在辽河油田欠平衡钻井也正在逐步走向成熟[1]。

2 全过程欠平衡技术分析

欠平衡钻井技术作为一项新技术已经成为国内外油田降低钻井成本和提高油气层产能的一项关键技术。然而大多数欠平衡钻井都只是针对钻进阶段,而在起下钻、测井以及完井过程中都是采用先压井后作业的方式。实践证明这种做法对产层仍有污染作用,随着勘探开发的需要,目前更多关心的是全过程欠平衡钻井,即实现真正的欠平衡钻井[1-2]。

全过程欠平衡钻井技术是指在不压井的条件下实现欠平衡钻进、不压井起下钻具、不压井起下电测仪器等,虽然各种文献对于全过程欠平衡钻井的叫法不一致,但是对其的理解是相同的。

为了使得在钻井的整个过程中井下都保持欠平衡状态,近年来发展了一些新的技术和辅助设备,这就是在全过程欠平衡钻井中使用的套管阀和液体冻胶阀,这些井下封井系统促进了欠平衡钻井更大的发展和更广泛的应用[3-5]。

3 套管阀及其应用

3.1 套管阀原理

套管阀是在全过程欠平衡钻井中安装在井下一定位置,并且和井口防喷器配合使用的一种单向阀,有自动控制系统控制套管阀的开关,并且根据需要隔离井底压力,套管阀是全过程欠平衡钻井中一种很有创新的井

下封井装置[6-7]。

钻进过程中,套管阀呈开启状态,对作业不产生任何影响。当提钻至套管阀以上一定的位置时,将其关闭,即可达到控制井内流体和压力的目的,并在封井的条件下快速进行后续作业。当下钻至封井器以上一定的位置时,将其打开,可使井眼畅通,继续下钻,或进行其它作业。

3.2 套管阀在安1-H8井的应用

2010年在辽河油田大民屯凹陷静安堡构造带的安1-H8井使用了套管阀,安1-H8是辽河油田第一口全过程欠平衡双分支鱼骨水平井,在全过程欠平衡钻井作业过程中,通过井下套管阀的开关,使井底压力始终处于欠平衡状态,完成带压起下钻作业,有效的保护了储层。

起下钻过程中,共开关套管阀5次,每次开关返出油量符合设计要求,正常开关。通过套管阀在安1-H8井的现场使用,使得欠平衡钻井实现了真正的带压起下钻,做到了真正的全过程欠平衡钻井,同时这口井还实现了全过程欠平衡钻井和水平井技术的结合。

安1-H8中途试油取得了日产量75吨的好成绩,比同区块没有使用全过程欠平衡的井的产量大大提高了,可见使用全过程欠平衡钻井对于辽河油田油气产量的稳步增长有着很积极的意义。

4 冻胶阀及其应用

4.1 液相冻胶阀介绍

国内最早的应用于全过程欠平衡的冻胶阀是由吐哈油田钻井所研制成功的,这种冻胶阀是一种复合型物质,混合有适当比例的主剂,交联剂,PH调节剂,增效剂和稳定剂。基液和交联剂被同时注入,在底部地层边界和套管鞋之间形成阻塞冻胶,这样就有效的避免了上部压井流体的循环漏失和碳氢化合物及有害气体从地层流出。这种冻胶的基本特性,它在20~100℃之间是不会破裂的,这就满足了长时间压井的要求,当冻胶破裂后低粘度又有助于它的回流[8-9]。

玉门油田最先用这种冻胶阀进行筛管完井,并且完成了第一口氮气钻井,这在开发志留纪地层重油上是个很大的突破,同时2009年在新疆油田又使用这种冻胶成功的完成了在DXHW141井的高温欠平衡完井工作,这在国内高温欠平衡完井技术上有着里程碑的意义。

4.2 液相冻胶阀在边台-H15井的应用

2010年年底在辽河油田大民屯凹陷边台-法哈牛构造带北部的边台-H15井进行了冻胶阀现场试验,取得了的不错的油气产量,比同区块其他未使用全过程欠平衡的井产量大大提高了,可见使用冻胶阀实施全过程欠平衡技术钻井对于辽河油田油气产量的稳步增长有着非常深远的意义。

5 建议

为了更好的满足辽河油田欠平衡的实际要求,同时增强欠平衡的施工效果,减少钻井费用和提高整体的勘探和开发效果,以下是一些建议:

(1)加强对全过程欠平衡钻井井口回压系统的研制;

(2)力求大规模对开发井使用全过程欠平衡技术来增加单井产量;

(3)加强选择合适的井位和地层,把最合适的欠平衡技术用在最合适的储层中;

(4)加强技术研究及欠平衡技术和相关设备的整合,加速它们与一些复杂井(例如:水平井,多分支井,侧钻井和小井眼井)和一些新技术(例如:连续油管钻井和套管钻井)的结合;

(5)加速欠平衡设备的国产化,独立研发自己的全过程欠平衡设备(套管阀和冻胶阀),以及随钻井下压力测量系统;

(6)继续研究欠平衡完井技术,选择更适合某种底层的欠平衡完井技术;

(7)发展成本合适的适合辽河油田实际情况的精细控制压力钻井技术(MPD)和设备,力求在窄密度窗口井,高压气井和高危井钻井过程中减少钻井的复杂性和事故发生。

(8)通过与生产欠平衡钻井设备的相关核心公司合作来帮助更好的为欠平衡技术的进步而努力。

(9)通过与一些科研单位和高校合作共同来解决全过程欠平衡钻井中存在的一些技术瓶颈。

参考文献

[1] 孙念,刘永贵,等.全过程欠平衡水平井在大庆油田的应用[J].探矿工程(岩土钻掘工程),2009,(05)

[2] Agzamov F.A.,etal. Enhancement of Underbalanced Drilling-In Technology Efficiency[R]. SPE 117383

[3] 周英操,等.欠平衡钻井技术与应用[M].石油工业出版社,2003.80-81

[4] 陈永明.全过程欠平衡钻井中的不压井作业[J].石油钻探技术,2006,(02)

[5] 陈养厚,陈国明,殷志明.欠平衡钻井过程中的井控新设备[J].石油矿场机械,2006,(03)

[6] 李晓军等.用于全过程欠平衡钻井施工的井下封井器[J].石油机械,2006,(10)

[7] 白晓捷,高翔.井下套管阀技术特点及应用前景分析[J].西部探矿工程,2010,(06)

第2篇:有机合成的前景范文

项目计划构建合成材料建设项目,所搭建的合成材料主要包括塑料、合成橡胶和合成纤维,其全部采用人工方法,由低分子化合物合成的高分子化合物,相对分子量可在10000以上,未来所建合成材料将逐步取代金属,成为现代社会使用的重要材料。预计未来3年内将实现合成材料年产能达20xx万吨,年交易额高达5000千万元。

项目背景:

合成材料又称人造材料,是人为地把不同物质经化学方法或聚合作用加工而成的材料,主要是指通过化学合成将小分子有机物如烯烃等合成大分子聚合物。现在人们用的很多东西都是有机合成材料,比如很多眼镜都是用有机玻璃做的,当然汽车上的窗,轮胎都是,生活中用的塑料袋,电磁炉上的底盘等。可以说有机合成材料在很多方面已经能够代替一些金属的耐高温的功能作用。

数据统计20xx-20xx年中国合成材料行业规模以上企业资产和负债规模基本保持同步增长。20xx年,资产总额为9224.99亿元,同比增长 19.63%;负债总额为5395.57亿元,同比增长14.88%。20xx年,资产总额为10342.26亿元,同比增长12.11%;负债总额为 6214.50亿元,同比增长15.18%。整体来看,中国合成材料行业规模扩张较为平稳。

从总体上看,我国合成材料呈现出较好的市场前景,产品的市场增长率近年来一直维持在10%以上,稍高于同期GDP增长率。某些重要的新材料品种市场增长率甚至超过20%。如果再考虑到普通工业原材料价格、钢铁和有色金属价格上升的趋势,以及市场上以塑代钢观念的强化,合成材料在工程材料、日用品材料中的替代作用会不断增强,市场空间可望得到更大扩展。

目 录

第一章 项目总论

一、项目背景

二、项目概况

三、可行性与必要性分析

四、项目主要经济技术指标

五、可行性报告编制依据

第二章 项目建设单位介绍

第三章 行业与市场分析

一、市场环境分析

二、合成材料市场发展现状

三、合成材料市场发展前景及需求分析

四、市场分析小结

第四章 产品与技术方案

一、项目产品概述

二、合成材料的技术方案

三、原材料供应

四、项目设备选型

第五章 项目选址与建设条件

一、项目选址

二、建设条件

第六章 工程建设方案

一、工程建设基本原则

二、总图布置方案

三、项目主体工程

四、公用工程与辅助设施

五、总图经济技术指标

第七章 组织机构与人力资源配置

一、组织架构

二、劳动定员

三、工作制度

四、人员培训

第八章 节能、节水措施

一、编制依据

二、设计原则

三、节能措施

四、节水措施

第九章 环境保护

一、设计依据及执行标准

二、建设期环境影响分析与保护措施

三、运营期环境影响分析与保护措施

四、环境保护综合评价结论

第十章 劳动安全卫生与消防

一、设计依据及执行标准

二、危害因素及危害程度分析

三、劳动安全措施

四、消防措施

第十一章 项目实施进度安排

一、项目实施阶段规划

二、项目实施管理

三、项目实施进度表

第十二章 投资估算与资金筹措

一、投资估算依据和说明

二、资金使用计划

三、资金筹措方案

第十三章 项目财务评价

一、基本财务数据假设

二、收入与成本费用估算

三、盈利能力分析

四、财务评价小结

第十四章 项目社会效益分析

第十五章 项目综合评价及投资建议

一、综合评价

第3篇:有机合成的前景范文

关键词:漆酶 催化剂 有机合成

中图分类号:Q554.9 文献标识码:A 文章编号:1007-3973(2013)003-078-03

漆酶是一种含铜的蛋白酶,通过夺取底物一个电子能够催化酚类、多酚类和苯胺氧化,通过电子传递将氧气还原成水。漆酶和漆酶介质体系在生物修复、纸浆漂白、纺织品生物整理和生物燃料电池等方面都有潜在的应用。值得注意的是,漆酶具有在官能团的氧化与将异源分子连接到新的抗生素衍生物之间执行快速精密的转化的功能,或者催化合成复杂天然产物的关键步骤,因此可用于有机合成领域。

1 漆酶的性质

1.1 生化特征

漆酶是含有四个铜原子并与三个氧化还原位点(T1,T2和T3)相结合的典型单体胞外酶。T1型Cu在氧化还原测试中呈现绿色,与还原性底物的氧化作用有关。三核簇(含有一个T2型Cu和两个T3型Cu)与T1位点相距12A,分子氧在此处被还原成水。

在不同的培养条件下,真菌合成漆酶会出现不同的同工酶。大多数漆酶都是单体蛋白,不同来源的漆酶其分子被不同程度的糖基化,平均分子量在60-70kDa,碳水化合物含量在10-20%,这有助于漆酶的高稳定性。通常与酶通过共价键相连的碳水化合物包括甘露糖,N-乙酰葡糖胺和半乳糖。氨基酸链含有包括N-末端分泌肽在内大约含有520-550个氨基酸。

1.2 生物学功能与工业应用

漆酶生物学功能包括孢子抗病性,色素沉着,选择性的催化木质素降解,腐殖质脱毒过程等。漆酶具有广泛的底物专一性,因此广泛应用与生物技术中。在小分子介质存在的情况下,漆酶能显著增强其底物专一性。通过使用漆酶介体体系可能扩宽漆酶工业应用的范围。例如,漆酶和漆酶介体体系已经应用于纸浆造纸中的脱木质素和生物漂白,发电站废水处理,纺织和染印工业中纤维素酶学修饰和染料漂白,酶法交联木质素材料生产中密度纤维板等。

在有机合成中,漆酶广泛用于官能团的氧化,酚类和甾类化合物的耦合,碳-氮键的构建以及复杂天然产物的合成中。

2 漆酶介体体系

漆酶与小分子如ABTS和HBT的结合不仅会具有更强的催化氧化还原能力,而且会扩大漆酶对底物的作用范围,并能够氧化氧化还原势能比其更高的化合物。此外,小分子介质作为电子载体,能够氧化木质素,纤维素或淀粉等生物高分子。由于氧化还原介质的作用,克服了阻碍酶与多聚物间的直接影响的空间结构的影响。

漆酶介体体系给生物技术和环境应用带来较高的效率。选择合适的介质在生物转化应用中是至关重要的。由于漆酶介体体系中底物通过不同的机制发生氧化,因此使用相同的前体时,不同介质的选择可能导致不同的终产物。介体自由基根据化合物的结构和有效的氧化还原势能执行具体的氧化反应。

尽管漆酶介体体系有较大的优势,但是以下两点阻碍了介质的使用:介体价格昂贵并会产生有毒的衍生物。在某些情况下,由于介质自由基的存在,漆酶在氧化介质时是不显示活性的。或者后者转化为无活性的化合物并失去充当介质的能力。因此寻找一种廉价高效、应用面广的介体将是LMS系统处理技术得以推广应用的关键。研究表明,一些真菌能自然合成天然的介体。例如苯酚,苯胺,4-对羟甲基苯甲酸,4-羟基苯甲基醇。最近,人们证明来自木质素降解过程中的酚类化合物(如乙酰丁香酮,丁香醛,香草醛,香草乙酮,阿魏酸,p-香豆酸)在染料脱色,多环芳烃的去除,纸浆漂白和沥青的去除中是高效的漆酶天然介体。

3 漆酶工程

迄今为止,很少有报道关于活性漆酶的晶体结构。根据已报道的漆酶结构,过去十年研究对具有催化活性的铜离子周围一些残基进行定点突变,以确定催化活性参数和真菌漆酶势能。收集在T1铜原子中心发生结构混乱的突变体是这些结构功能综合研究的结果之一。

在没有足够结构信息的情况下,分子定向进化能克服许多合理设计中的限制因素,并能显著增强有针对性的特征,例如耐高温和有机溶剂,提高催化活性及专一性等。Arnold等首次成功定向漆酶进化,通过定向进化在毕赤酵母中完成了耐热性漆酶的功能性表达:经过10轮实验室进化和筛选,总体酶活提高了170倍并具有更好的耐热性。

大多数漆酶在有机合成中催化转化必须发生在有机溶剂中。漆酶在高浓度有机助溶剂中会失去活性。Adinarayana Kunamneni等经过5轮定向进化在毕赤酵母中表达出一种耐热性漆酶,并能耐高浓度的有机助溶剂。这种进化的漆酶突变体能够抵抗大量与生物技术有关的浓度高达50%的可溶性助溶剂。固有的电化学漆酶特性如T1位和T2/T3位处的氧化还原势能,催化铜原子的几何和电子结构在体外进化过程中明显改变。通过形成更多的静电和氢键,一些突变体在蛋白质表面形成更加稳定的漆酶,此外,在转录翻译过程中,在加工区域突变体蛋白质折叠似乎被修饰。

除了随机突变和DNA重组外,利用通过饱和突变构建组合库和蛋白质结构的半经验研究也被成功运用。这一技术普遍运用在提高"热点"残基处酶学特性。它还可用来同时突变一些密码子,使残基进行所有可能的组合,通过评估获得最佳的相互作用和协同效应。

最近对毕赤酵母中表达的耐热性漆酶变体T2研究表明,将重组饱和突变体应用到L513和S510残基,突变体比野生型菌株提高3倍利用率,包括一个有益突变(TCGS510GGGG),由于它取决于两个连续的核苷酸的改变,该突变体不能通过传统的易错PCR技术而获得。

4 漆酶在有机合成中的应用

有机合成化学药品成本较高,反应步骤繁琐且反应物毒性较大。漆酶由于其广泛的底物范围且能将底物转化为不稳定的阳离子自由基并进一步进行非酶促反应,如聚合或水化,使得漆酶能应用于复杂聚合物和药物等的有机合成中。

4.1 漆酶的酶促聚合反应和聚合功能

漆酶或漆酶介体体系能直接产生聚合物使得通过漆酶酶促聚合反应引起广泛的关注。例如,运用漆酶的聚合能力,通过邻苯二酚单体合成聚合邻苯二酚。通过漆酶催化反应生产惰性酚类聚合物等。通过漆酶反应酶法制备聚合多酚由于无毒安全可以替代通常以甲醛为基础合成的化合物。

研究表明,漆酶诱导一种新型的4-羟甲基苯甲酸衍生物,3,5-二甲基-4-羟基苯甲酸和3,5-二甲氧基-4-羟基苯甲酸氧化聚合物。聚合作用参与单体中二氧化碳和氢气的消除,使得多酚氧化酶衍生物分子量高达1.84。

已经证实了一种新型的酶聚合反应体系,例如漆酶催化交联反应新的漆酚类似物来制备人造漆高分子薄膜。通过聚酚氧化酶和漆酶聚合得到的类黄酮素具有更好的抗氧化特性和酶抑制影响。

漆酶能诱导丙烯酰胺彻底的聚合,用于化学酶法合成木质素接枝共聚物。研究发现漆酶具有使木质纤维素复合物交联并赋予功能的潜力,漆酶能够用于纤维素的酶法粘附来制备木质纤维素复合材料,如纤维板。值得注意的是,漆酶在合成物制备期间能活化纤维板木质素。使用漆酶也获得了具有良好的机械性能且无毒性的合成粘合剂的板。另一种可能性是漆酶使木质纤维板功能化以提高纤维素产品的化学或物理性能。研究显示,漆酶能够将各种酚酸衍生物转移到牛皮纸浆纤维上,利用这种能力能将化学多功能化合物连接到纤维素表面,使得纤维素材料具有完全新型的特征,如疏水性或带电荷。

漆酶-TEMPO介体体系也被用来催化糖类衍生物甚至淀粉,支链淀粉和纤维素主要羟基的特定的氧化反应。最初用单糖或二糖(如苯基- -D-吡喃型葡糖苷)来检测该体系的效率,相应的吡喃型葡糖苷醛酸基被分离并表征。该化学酶法已经被用来实现水溶性纤维素样品的部分氧化和用于糖基化皂角苷,积雪草苷和一些天然葡糖苷的轻度氧化。

4.2 漆酶参与的有机化合物的氧化转化

漆酶在合成药物产品中具有重要的作用。可以4-甲基-3-羟基苯甲酸为原料通过漆酶催化反应合成有效的抗癌药物actinocin,也可运用漆酶氧化耦合长春质碱和文多林来生产治疗白血病的长春新碱。长春新碱在植物中含量减少,利用相对便宜且来源广泛的前体长春质碱和文多林来合成长春新碱是一种有效的方式。利用漆酶合成能使前体转化率达到40%。漆酶耦合也能合成一些新型化合物并显示出一些优良的特性,例如:抗菌能力。

由于抗肿瘤药物如丝裂霉素的大量使用或对新药物的研发,开发同时具有抗癌能力,抗过敏和5-脂肪氧合酶抑制活性的氨基苯醌新的合成路线一直受到人们的关注。漆酶已经被用来合成新的环孢素衍生物。通过漆酶/HBT介质体系催化氧化底物,将环孢素A转化为环孢素A甲基乙烯基酮。

儿茶酸能清除体内自由基,在预防癌症,慢性或心脑血管疾病方面有较好的的功效。经漆酶氧化后的儿茶酸,其氧化产物抗氧化能力显著提高。

国际上利用漆酶与活性自由基介质耦合合成激素二聚体或寡聚体衍生物也有所报道。Intra和Nicotra等人已经分别利用漆酶成功分离得到新的 -雌二醇激素和植物抗毒素白藜芦醇二聚体衍生物。在漆酶的作用下,桃柘酚,异丁香油酚或松柏醇能分别氧化生成新的二聚体衍生物,二聚体和四聚体衍生物混合物,当取代咪唑基被氧化时,能得到更加复杂的衍生物。这些新产品通常用于医药制造中。研究表明,漆酶催化芳香胺和脂肪胺N-耦合的作用下能将天然化合物3-(3,4-二羟基苯基)-丙酸成功衍生化。这种具有抗病毒功效的天然化合物3-(3,4-二羟基苯基)-丙酸衍生物在制药领域中越来越受到关注。最近,在氧气的存在下,利用漆酶催化p-对苯二酚和芳香胺发生核胺化作用形成相应的单胺或二胺醌。

5 结论

漆酶在有机合成中的应用展示了光明的前景,是替代化学氧化的优良选择。相信在将来,真菌漆酶将在生物催化转化木质纤维素;木索硫酸盐修饰改造生产乳化剂,表面活性剂和粘附剂;抗生素合成;高氧化还原性能生物电池多聚物合成等方面发挥更大的作用。同时,通过蛋白质工程进一步开发利用真菌漆酶,探索环境友好型介质满足工业应用,进一步克服漆酶的异源表达等重大障碍,需要众多科研工作人员的不断努力。

(南京师范大学泰州学院青年项目(Q201242)资助)

参考文献:

[1] Baldrian P: Fungal laccases - occurrence and properties. FEMS Microbiol Rev 2006,30: 215-242.

[2] Xu F: Applications of oxidoreductases: recent progress.Industrial Biotechnol 2005,1: 38-50.

[3] Alcalde M,Ferrer M, Plou FJ.Ballesteros A: Environmental biocatalysis: from remediation with enzymes to novel green processes.Trend Biotechnol,2006(24):281-287.

[4] Fabbrini M, Galli C, Gentili P: Comparing the efficiency of some mediators of laccase. J Mol Catal B Enzym 2002, 16: 231-240.

[5] Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI: Laccase mediator systems and their applications: A review. Appl Biochem Microbiol 2007, 43: 523-535.

[6] Bourbonnais R, Paice, MG: Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation.FEBS Lett 1990,267:99-102.

[7] Sch fer A, Specht M, Hetzheim A, Francke W, Schauer F: Synthesis of substituted imidazoles and dimerization products using cells and laccase from Trametes versicolor. Tetrahedron 2001, 57: 7693-7699.

[8] Aktas N, Tanyolac A: Reaction conditions for laccase catalyzed polymerization of catechol. Bioresour Technol 2003,87:209-214.

第4篇:有机合成的前景范文

关键词:羧酸酯类;香料

羧酸酯是一类重要的化工原料,低级的酯一般都有水果香味,可作香料(如醋酸异戊酯有香蕉味,戊酸乙酯有苹果香味等)。液态的酯能溶解很多有机物,故常用作溶剂(如醋酸乙酯等)。有些酯还可用作塑料、橡胶的增塑剂。以乙酸辛酯(octyl acetate)为例:乙酸辛酯具有桔子、茉莉和桃子似香气,天然品存在于苦橙、绿茶等中,是我国gb2760-86规定允许使用的食用香料,同时被fema(美国食用香料与提取物制造协会)认定对人体是安全的,fda(美国食品及药物管理局)也批准其用于食品。乙酸辛酯主要用以配制桃子、草莓、树莓、樱桃、苹果、柠檬和柑橘类香精,也可用于日化香精配方中。 

 

1. 羧酸酯类香料的市场前景 

 

随着生活水平的提高,消费者对食品、饮料的口味、口感要求越来越高,这就需要大量使用香精、香料来迎合消费者,促进了食品企业对香精香料的应用。食用香精在食品配料中所占的比例虽然很小,但却对食品风味起着举足轻重的作用。国际知名咨询公司freedonia于去年5月底的研究成果表明:预计从2006~2008年,发展中国家对香精和香料的需求,将以年均4.4%的速度快速增长,到2008年该市场的份额 将达到186亿美元。而亚太地区(不包括日本)对香料和香精的需求特别强劲,未来几年有望以年均7.3%的增速快速增长。发展中国家人均收入增加,对消费品质量要求有很大提高。随着全球消费者越发注重健康,市场对营养和健康食品的需求也日益增加。因此,由于预计低糖低脂食品和饮料市场将迎来强劲增长,全球消费者对食用香精和香料的需求也必将不断增加。香料配料市场需求量的继续增长,还主要源于化妆品生产,在发达国家和地区,消费者的护肤化妆品消费呈上升趋势。羧酸酯类香料作为优良的可食用香料品种其需求也必将不断激增。 

羧酸酯类香料的主要生产和消费国有美国、西欧、日本、墨西哥和中国等,国内食品、饮料生产企业中目前应用最多的添加剂就是香精香料,随着消费者对于味觉享受越来越高,这种趋势会对香料需求产生积极影响。香料产品是香料工业的上游产品,是后续香精产品的原料,香料和香精产品是其他有关产品的配套性产品,它们被广泛地用于日化、食品、医药、饲料等工业产品的生产。据了解,饮料行业是香料最主要的应用领域,该领域2005年的香料消费份额达31.1%。就各地区而言,美国、日本和西欧地区目前统领香料消费市场。香料市场未来的发展大部分可能会出现在亚太地区,尤其是中国和印度这些发展中国家。这将进一步刺激香精香料市场的快速发展。我国目前在世界香料市场中所占份额仅5%左右,日本所占份额达到12%,而美国则达到20%。 

 

2. 羧酸酯类合成的传统工艺 

 

传统上羧酸酯类的合成都是用浓硫酸作催化剂,由相应醇与酸酯化而得。但由于浓硫酸作催化剂合成酯化反应具有以下缺点:(1) 在酯化反应条件下,浓硫酸的氧化性和强脱水性易导致一系列副反应,给产品的精制和原料的回收带来困难,且酯的质量差。(2) 反应产物的后处理要经过碱中,水洗等工序,比较复杂困难,同时产生大量废液,污染环境。(3) 浓硫酸严重腐蚀设备,加快了设备更新,增加生产成本。为克服这些缺点,倡导绿色化学,人们选择环境友好型催化剂催化酯化反应,近年来,已发现氨基磺酸、结晶固体酸、杂多酸、无机盐等均可作为酯化反应的催化剂。 

 

3. 羧酸酯类合成的发展 

 

近年来,人们对于羧酸酯类的合成的研究开发和应用发展很快,研究和开发出高效、环保的催化剂,是羧酸酯类的合成的研究发展方向:

无机盐催化剂:无机盐大多性质稳定,来源广泛,对设备几乎没有腐蚀,反应条件温和,不会对环境造成太大污染,但是由于无机盐容易潮解,影响其催化的效果。常用的催化剂有三氯化铝、三氯化铁、硫酸钛、十二水合硫酸铁铵、五水合氯化锡、一水合硫酸氢钠和硫酸锌。 

磺酸类催化剂:磺酸类催化剂来源广泛、性能稳定、安全、使用方便、对酯化反应有较高的活性、产品收率较高、产物处理方便、催化剂可以重复使用等特点,适合于工业化生产的需要。 

杂多酸催化剂:杂多酸是一种含氧桥的多核化合物,其特点是催化活性高。选择性好,反应时间短,反应温度低。不易造成环境污染,对设备几乎没有腐蚀。再生速度快。 

阳离子交换树脂催化剂:其主要特点是价廉易得,不腐蚀设备,不污染环境,不会引起副反应,不溶于反应体系,能够重复使用,易于分离、回收和再生,操作简单,产品收率较高,具有工业推广价值。 

固体超强酸催化剂:固体超强酸在有机合成中的优点是活性高,重复使用性好,不腐蚀设备,制备方法简便,处理条件易行,便于工业化。这对于节约能源,提高经济效益是很有意义的。 

负载型催化剂:其优点是催化活性高,重复使用性好,不腐蚀设备,制备方法简便,处理条件易行,便于工业化,这对于节约能源,提高经济效益是很有意义的。 

钛酸四丁酯催化剂:不仅具有催化活性高,重复使用性好,不腐蚀设备等基本优势,而且同制备方法简便,酯收率高,价廉易得,反应时间短,反应温度低,处理条件易行,便于工业化,这对于节约能源,提高经济效益是很有意义的。 

酶催化(脂肪酶催化、菌体催化等)工艺不仅催化化活性高、产品质量好,而且反应条件简单、温和, 酶重复使用方便, 酶活性保持时间长, 在生物酶的固定及精细化学品的合成中有较大的使用价值。 

 

4. 讨论 

 

目前,国内外羧酸酯类的合成的发展趋势越来越多的偏向于研究合成绿色、高效、环保等多功能的新型催化剂剂。一方面,合成环境友好的催化剂所采用的原料都比较易得,在开发过程中可以降低成本;另一方面,合成环境友好的催化剂所采用的都是低毒、高效、无污染的工艺,较大范围的降低了环境的负荷。发展我国羧酸酯类香料应当注意加大科技投入力度,大力开展技术创新,加强安全法规和环境保护,强化企业管理,提高经济效益。 

 

参考文献 

[1] 中国医药公司上海化学试剂采购供应站. 试剂手册[m]. 第2版. 上海:上海科学技术出版社,1985. 

[2] 刘树文. 合成香料技术手册[m]. 北京:中国轻工业出版社,2000. 

[3] 中华人民共和国卫生部,gb 2760-1996,食品添加剂使用卫生标

准[s]. 中华人民共和国国家标准, 1996. 

第5篇:有机合成的前景范文

随着生活水平的提高,消费者对食品、饮料的口味、口感要求越来越高,这就需要大量使用香精、香料来迎合消费者,促进了食品企业对香精香料的应用。食用香精在食品配料中所占的比例虽然很小,但却对食品风味起着举足轻重的作用。国际知名咨询公司Freedonia于去年5月底的研究成果表明:预计从2006~2008年,发展中国家对香精和香料的需求,将以年均4.4%的速度快速增长,到2008年该市场的份额将达到186亿美元。而亚太地区(不包括日本)对香料和香精的需求特别强劲,未来几年有望以年均7.3%的增速快速增长。发展中国家人均收入增加,对消费品质量要求有很大提高。随着全球消费者越发注重健康,市场对营养和健康食品的需求也日益增加。因此,由于预计低糖低脂食品和饮料市场将迎来强劲增长,全球消费者对食用香精和香料的需求也必将不断增加。香料配料市场需求量的继续增长,还主要源于化妆品生产,在发达国家和地区,消费者的护肤化妆品消费呈上升趋势。羧酸酯类香料作为优良的可食用香料品种其需求也必将不断激增。

羧酸酯类香料的主要生产和消费国有美国、西欧、日本、墨西哥和中国等,国内食品、饮料生产企业中目前应用最多的添加剂就是香精香料,随着消费者对于味觉享受越来越高,这种趋势会对香料需求产生积极影响。香料产品是香料工业的上游产品,是后续香精产品的原料,香料和香精产品是其他有关产品的配套性产品,它们被广泛地用于日化、食品、医药、饲料等工业产品的生产。据了解,饮料行业是香料最主要的应用领域,该领域2005年的香料消费份额达31.1%。就各地区而言,美国、日本和西欧地区目前统领香料消费市场。香料市场未来的发展大部分可能会出现在亚太地区,尤其是中国和印度这些发展中国家。这将进一步刺激香精香料市场的快速发展。我国目前在世界香料市场中所占份额仅5%左右,日本所占份额达到12%,而美国则达到20%。

2.羧酸酯类合成的传统工艺

传统上羧酸酯类的合成都是用浓硫酸作催化剂,由相应醇与酸酯化而得。但由于浓硫酸作催化剂合成酯化反应具有以下缺点:(1)在酯化反应条件下,浓硫酸的氧化性和强脱水性易导致一系列副反应,给产品的精制和原料的回收带来困难,且酯的质量差。(2)反应产物的后处理要经过碱中,水洗等工序,比较复杂困难,同时产生大量废液,污染环境。(3)浓硫酸严重腐蚀设备,加快了设备更新,增加生产成本。为克服这些缺点,倡导绿色化学,人们选择环境友好型催化剂催化酯化反应,近年来,已发现氨基磺酸、结晶固体酸、杂多酸、无机盐等均可作为酯化反应的催化剂。

3.羧酸酯类合成的发展

近年来,人们对于羧酸酯类的合成的研究开发和应用发展很快,研究和开发出高效、环保的催化剂,是羧酸酯类的合成的研究发展方向:

无机盐催化剂:无机盐大多性质稳定,来源广泛,对设备几乎没有腐蚀,反应条件温和,不会对环境造成太大污染,但是由于无机盐容易潮解,影响其催化的效果。常用的催化剂有三氯化铝、三氯化铁、硫酸钛、十二水合硫酸铁铵、五水合氯化锡、一水合硫酸氢钠和硫酸锌。

磺酸类催化剂:磺酸类催化剂来源广泛、性能稳定、安全、使用方便、对酯化反应有较高的活性、产品收率较高、产物处理方便、催化剂可以重复使用等特点,适合于工业化生产的需要。

杂多酸催化剂:杂多酸是一种含氧桥的多核化合物,其特点是催化活性高。选择性好,反应时间短,反应温度低。不易造成环境污染,对设备几乎没有腐蚀。再生速度快。

阳离子交换树脂催化剂:其主要特点是价廉易得,不腐蚀设备,不污染环境,不会引起副反应,不溶于反应体系,能够重复使用,易于分离、回收和再生,操作简单,产品收率较高,具有工业推广价值。

固体超强酸催化剂:固体超强酸在有机合成中的优点是活性高,重复使用性好,不腐蚀设备,制备方法简便,处理条件易行,便于工业化。这对于节约能源,提高经济效益是很有意义的。

负载型催化剂:其优点是催化活性高,重复使用性好,不腐蚀设备,制备方法简便,处理条件易行,便于工业化,这对于节约能源,提高经济效益是很有意义的。

钛酸四丁酯催化剂:不仅具有催化活性高,重复使用性好,不腐蚀设备等基本优势,而且同制备方法简便,酯收率高,价廉易得,反应时间短,反应温度低,处理条件易行,便于工业化,这对于节约能源,提高经济效益是很有意义的。

酶催化(脂肪酶催化、菌体催化等)工艺不仅催化化活性高、产品质量好,而且反应条件简单、温和,酶重复使用方便,酶活性保持时间长,在生物酶的固定及精细化学品的合成中有较大的使用价值。

4.讨论

目前,国内外羧酸酯类的合成的发展趋势越来越多的偏向于研究合成绿色、高效、环保等多功能的新型催化剂剂。一方面,合成环境友好的催化剂所采用的原料都比较易得,在开发过程中可以降低成本;另一方面,合成环境友好的催化剂所采用的都是低毒、高效、无污染的工艺,较大范围的降低了环境的负荷。发展我国羧酸酯类香料应当注意加大科技投入力度,大力开展技术创新,加强安全法规和环境保护,强化企业管理,提高经济效益。

参考文献

[1]中国医药公司上海化学试剂采购供应站.试剂手册[M].第2版.上海:上海科学技术出版社,1985.

[2]刘树文.合成香料技术手册[M].北京:中国轻工业出版社,2000.

[3]中华人民共和国卫生部,GB2760-1996,食品添加剂使用卫生标准[S].中华人民共和国国家标准,1996.

[4]张富捐,路永才.钨硅酸催化合成乙酸辛酯[J].许昌学院学报,2004.

[5]黄金凤,王世铭.Ti02负载杂多酸催化合成乙酸正丁酯[J].福建化工,2003

第6篇:有机合成的前景范文

关键词:己二酸 技改优化 节能环保

己二酸又名肥酸,是一种有机二元酸,也是二元羧酸,在工业上具有重要的意义,主要用于工程塑料的原料,还可以用于塑料的有机合成,及助焊剂、以及固体饮料粉等。己二酸常态下是一种白色晶体,可以溶解于水,并随着水的温度的升高溶解度不断变大,还能溶于醇、醚、丙酮、环己烷和苯。

己二酸对人体的皮肤、眼睛、粘膜等有刺激作用,由于其酸性值在很大范围内变化都很小,因而会对环境产生影响,污染水和空气,造成酸雨。大量的己二酸还会对动植物造成影响,导致严重的生态环境问题。因此在生产己二酸时,对其生产装置进行技改优化,以保护生态环境就十分必要。

一、己二酸对环境的危害

己二酸在生产过程中会产生大量的废水、废气、和废油,这些工业生产废物对环境有着极大的危害。

己二酸生产过程中产生的废气重要成分是氧气、氮气、二氧化氮、一氧化碳和二氧化碳。众所周知,二氧化氮会对环境造成很大的影响,它同二氧化碳一样是温室气体,虽然增温作用远比不上二氧化碳,但由于其在空气中存活的时间长,对空气造成的影响,完全不低于二氧化碳,而己二酸生产过程中所产生的废气里,二氧化氮的成分更是高达38%,给空气带来了很大的危害。

己二酸在生产过程中还会产生工业废水,由于己二酸的酸性,在生产过程中产生的蒸气里就会含有大量的酸,这些蒸气与生产过程中使用的水接触后,是工业水含有了大量的酸,排出之后,含酸的水流入地下或者河流湖泊中,造成了水源的污染。

己二酸在生产的过程中还会产生大量的废油。

二、生产装置的技改优化

己二酸生产装置节能环保的技改优化重要是通过对其所排出的废气、废水和废油进行分解、循环利用和回收来实现。

二氧化氮在一定条件下通过化学反应可以生成对空气没有危害的氮气和氧气,通过技改优化,在己二酸生产过程中,使用二氧化氮的分解装置可以将二氧化氮转化成为对空气无害的气体,从而达到环保的效果。

己二酸在生产过程中所产生的废油里含有如丁二酸、戊二酸等仍旧有比较高的利用价值的化学原料。在己二酸的生产装置中加入一套废油回收装置,能够使己二酸在生产中产生的废油混合物与其它的有机物产生化学作用,从而将废油中可利用的二元酸从废油中分离出来,分离出来的二元酸冷却之后就能成为二元酸结晶,实现其回收再利用,在保护环境的同时,还可以实现资源的节省。

己二酸在生产中所产生的废水PH值较低,废水中酸的含量浓度过于国家的二级排放标准,但己二酸生产过程中所排放出来的工业废水含有硝酸和己二酸,与己二酸生产装置系统中的内硝酸浓缩塔回流水成分基本上完全相同。因此利用己二酸生产排出的废水来代替回流水,能够很好地实现系统的水平衡。而通过对排出废水的循环利用,既回收了会环境造成污染的工业废水,有节约了大量的水资源,实现节能环保。

三、技改优化后的节能环保效果

对己二酸的生产装置进行技改优化之后,其所产生的节能环保效果十分显著,以河南省神马尼龙化工有限责任公司给出的数据来看:

在对己二酸生产装置技改优化之前,其生产过程所排出的废气每小时约1100立方米,其中温室气体二氧化氮的含量达到38%;每小时排出废油1.3吨,全部焚烧之后,对空气产生了二次污染;废水的排放则达到每小时19吨,这种大量的废气、废油、废水的排放对环境的污染十分严重。

而在对己二酸的生产装置进行技改优化之后,每小时排出的1300立方米的废气中二氧化氮的含量仅为0.1%;每小时1.3吨的废油也被全部回收制成了二元酸结晶,不会对环境造成二次污染;通过对废水的循环利用,则完全达到了工业废水的零排放。

从以上数据中不难看出,己二酸的生产装置技改优化之后,产生的节能环保效果十分显著,因此在己二酸生产过程中对其装置进行科学合理的技改优化,能够十分有效地达到减少环境污染、节约能源的作用。

四、结语

己二酸在工业中具有十分重要的地位,是一种十分重要的有机二元酸,除了能用来制作尼龙66纤维和树脂外,还能在有机合成的工业中,作为己二腈、己二胺的基础原料使用,同时还能用来生产剂,甚至在医药方面也有使用,使用的范围十分广,用途很大。但是在己二酸的生产过程中会产生大量的废水、废油和废气,对环境造成了很严重的污染。而对己二酸生产装置进行技改优化则能很好地解决“三废”的问题,为节能环保做出贡献,因此,我们应该努力加强对己二酸生产装置的技改优化,在实现经济效益的同时,做好生态环境保护工作,协调经济效益和环境效益之间的关系,建立生态良好环境优质适合人类居住的美好家园。

参考文献

[1] 赵志正. 新型增塑剂己二酸二丁氧基乙酯在耐寒橡胶密封件生产中的应用前景.[J].世界橡胶工业,2012,(4).

[2]王晓丹,崔天放,于秀兰. 酸性离子液体中催化氧化环己烯清洁合成己二酸 .[J].沈阳化工大学学报,2012,(1).

[3]徐新,陆明秋,叶玟希,董华平,施丹萍. 己二酸二酰肼交联透明质酸薄膜的制备及性能研究. [J].广东化工,2012,(2).

第7篇:有机合成的前景范文

关键词 药物化学;课程群建设;教学改革;实验;微课程

中图分类号:G642.3 文献标识码:B

文章编号:1671-489X(2016)16-0106-03

1 前言

教育部《关于地方本科高校转型发展的指导意见(征求意见稿)》和《江苏省教育厅关于全面深化应用型本科院校人才培养改革的意见(2014年3月征求意见稿)》明确指出,应用型本科院校必须紧跟高等教育的发展趋势,科学定位、特色发展,提高应用型本科人才培养质量。

药物化学是制药工程专业基础课程及核心课程,其内容主要涉及化学药物的化学结构、化学名、理化性质、构效关系、制备方法及作用和用途[1],在制药工程专业教学计划中占有十分重要的地位,是整个药学领域的“带头学科”,课程质量的好坏直接影响人才培养素质[2]。要在有限学时内更有效地深化理论知识学习和提高实践综合能力,就更多地需要考虑到专业基础课程――药物化学与专业课程在实验和理论教学过程中的衔接、优化和提高等问题,因此,打破以单一理论课程教学为主的传统教学模式,建立“理论教学”“实践教学”和“综合应用能力培养”三维并重的课程体系,紧紧围绕“药物研发与生产”这一主线开展药物化学课程群建设。

药物化学课程群包括传统理论课程,如有机化学、药物化学、药物合成反应、化学制药工艺学等[3],注重各门课程之间有机联系,相互渗透与深化,更突出理论结合实践,将药物化学实验、药物合成反应实验、制药工艺专业实验及制药工艺综合实验等相应的实践课程也纳入其中,旨在提高学生专业技能和综合素质。

2 改革药物化学课程群体系内容,通过重构专业知识结构,实现知识体系的完备互融

药物化学课程涉及面较广,本身具有一定难度。而独立学院学生学习基础参差不齐,在有限的课堂时间里,教师不可能详细讲解基础化学知识,这样往往会出现教师难讲、学生难学的尴尬局面[4]。因此,整合课程群教学内容,注重药物化学教学内容与其他上下游课程交叉融合[5],帮助学生理清学科交叉脉络是十分必要的。

夯实有机化学的基础知识 有机化学是本课程群的专业基础课程,重点讲解酸、醇、醛、酯、杂环等物质结构和化学性质,同时适当举例讲解常见药物,在增加课堂趣味的同时,提升学生的学习兴趣。如果药物化学采用传统教学模式,脱离有机化学基础知识,学生仅依赖于死记硬背,学习效果必然欠佳[3]。因此,在药物化学教学中注意联系相关的有机化学基础知识:以药物结构为核心,联系基本官能团推导药物的理化性质;通过药物分子结构逆合成分析,获得合成方法,学生在理解的基础上更易记忆,从而提高学习积极性,提高教学质量[3-6]。

强化药物合成反应的基本原理 药物合成反应课程是有机化学课程的深化和延续,是完成药物化学合成理论和技能训练的主要课程。它在说明有机药物骨架的构建和基团相互转换的基础上,深入探讨有关药物合成单元反应的机理、反应条件、影响因素及其应用[7]。改革注重教材内容的更新,选取最新的教材――闻韧主编的《药物合成反应》(第三版),同时简化叙述性内容,强化官能团转化规律,结合单元反应在药物合成中的应用实例进行讲解,紧密结合有机合成的知识点来加深学生对药物合成方法的认识和理解。

注重化学制药工艺学的实际应用 化学制药工艺学是药物化学在实际药物生产中的深化和延续。改革后的新课程着重介绍典型化学药物的工业化生产制备方法,在教学中补充现代制药技术中最新理论及最新技术,如手性制药技术、半合成抗生素制备技术、心血管疾病治疗药制备技术等,强化药物工艺路线设计评价、工业生产中的可行性分析,培养学生的生产观点,突出应用性和实践性[8]。

3 强化药物化学课程群实验环节,通过优化各类实验方式,实现实践与创新同生共进

优选实验内容,减少验证性实验 对药物合成部分实验进行调整,选取环境友好、多步药物合成实验代替环境污染大、反应类型单一的实验[3],增加手性药物中间体的不对称合成等,既包含之前有机合成基础操作,又加强薄层层析、红外光谱分析、柱层析等实验操作技能训练,进一步丰富学生的知识,增强学生的各项能力[9]。

开设新型的综合性实验 比如将药物合成、药物制剂和药物分析等实验有机整合在一起,开设综合性实验“盐酸普萘洛尔片剂的处方设计及质量检查的制备”。该实验要求学生首先合成盐酸普萘洛尔原料药,之后对原料药进行质量检验,包括鉴别、纯度检查、含量测定等,最后通过处方筛选、制剂工艺选择,确定最佳处方,工艺制备出盐酸普萘洛尔口服片。实验体现了药物化学与药物合成反应、药物分析、药剂学的交叉融合[5],通过此类综合性实验,既让学生熟悉药物从原料药合成、制剂生产到药物质量控制的整个过程,又让学生充分意识到专业知识之间的相互联系与渗透,对于学生就业后从事制药生产或研发工作都大有益处。从近三届实验开展情况来看,实验教学效果与反映很好,极大地激发了学生的创新积极性,具有良好的示范作用。

注重实验教学与药学文献与专业外语课程的结合 如药物合成反应实验重新编写全英文讲义,教师进行双语实验教学,学生提交英文实验报告。化学制药工艺实验让学生通过查阅文献、设计方案,改进传统药物落后合成工艺,能培养学生从实验方案设计、实验操作到实验结果分析等各方面的能力,从而达到提高学生专业综合素质的目的。

结合毕业论文、大学生创新实践等环节,提高学生的创新实践能力 从2010年开始,每年大批制药工程专业学生积极参加省级、院级大学生课外创新实践活动;学生进入到医药研发、生产企业、大学科研机构等完成毕业论文工作,实现学生直接参与到科研和创新环节。通过这些实践环节的强化,学生的制药专业理论水平和动手能力得到进一步提高,多位学生在创新实践活动中发表科研论文,在毕设工作期间申报专利。

4 提升药物化学课程群教学模式,通过采用多元教学元素,实现知识形态的重生再现

激发学生求学兴趣,全程引入教学“系统案例” 为使枯燥的理论教学更加生动,顾军[10]等人提出“系统案例教学法”,包括药物化学发展史案例、明星药物案例、全新药物设计案例、焦点事件案例、生活中合理用药案例等。在上述已有传统案例的基础上,每个基础单元都会列举专业实习基地生产上或学校科研、毕设中的多个实例,通过使用实例加强学生理论联系实际及灵活应用所学内容的能力。

发挥现代信息化教学手段的作用,实现信息化互动教学 利用多媒体技术化解传统教学的不足,将图像、文字、声音、视频等多种信息融为一体,充分调动学生视觉和听觉等多种感官的处理功能[11],以用形象、动态的方式表达药物的复杂结构、抽象概念、枯燥内容,让教学变得直观、形象,提高教学效率,调动学生学习积极性,教学和学习效果显著增强。师生共建药物化学网络教学平台,拓展教学时空,动态交互。利用网络平台将教学大纲、电子教案、参考书籍、制药前沿等学习资源在网上免费向学生开放。学生可以不受时间限制自主安排学习,同时有效克服个体差异带来的学习困难。网站建设过程中,学生参与资料收集、资料分类、探索新知识、学习重构,激发自信心和荣誉感及对本专业课程的学习热情。同时拓宽网络师生交流渠道,方便沟通,及时答疑解惑,教学也得到更好的反馈。

此外,积极开发新型微课程,拓展新型教学资源,以多样化互动提升学习兴趣,取得较好成果。

培养学生自主学习能力,开展项目教学模式 选取十多个市场前景较好的药物为项目,组织学生分组进行综述报告。几年来,项目教学的实施情况表明,学生通过完成项目课题,不仅增加了对药物化学相关课程的学习兴趣,加深了对制药技术发展现状的了解,而且自学能力、分析解决问题能力、实践动手能力和表达能力都有了不同程度的提高。

5 完善药物化学课程群考核方式,通过实行立体考核手段,实现教学质量的可控提升

建立合理的、全面的考核方法,药物化学、化学制药工艺学等理论课程成绩均由平时考核、期中检查及期末考试三部分组成,平时成绩以上课出勤、课堂表现、课后作业、项目综述报告等综合情况为考核依据。

实验课不再将结果作为评定成绩的唯一标准,同时全面考查平时整个实验操作熟练程度、实验态度、实验结果和实验报告,加入期末实验考查作为综合评定标准[9]。期末考查实验要求完成指定实验后当场交实验报告,有完整的实验记录,正确回答思考题,并参考省级实验竞赛标准制定实验操作评分表,实行现场给分,取得很好效果。

6 结语

基于应用型人才培养的药物化学课程群的建设改革时间虽不长,但成效显著。例如:药物化学微课作品获首届全国高校“微课”教学比赛江苏省赛区二等奖;2名学生参与红斑狼疮新药研发,获国家专利1项;1名学生在江苏省大学生化学化工实验竞赛中获一等奖。毕业生以良好的专业基础和职业素养、较强的实践创新能力赢得社会良好的反响。今后建设的重点是在教学中充分展现制药专业应用型人才培养的目标,注重培养和引导学生的创新实践能力,加强训练和提高学生的综合业务素质,同时建立一种能够更加客观地评价学生能力的指标体系,培养更符合社会经济发展需要的优秀制药工程专业人才。

参考文献

[1]刘凤志,朱小东,张海娟,等.我院制药工程专业药物化学课程教学改革与实践[J].中国药房,2014,25(12):1146-1147.

[2]徐进宜,尤启冬,姚其正.药物化学课程群的改革与建设[J].药学教育,2005,21(2):23-26.

[3]张玲,刘毅.有机药物化学课程群的构建与改革[J].科技视界,2013(30):43-44.

[4]昌盛.提高药物化学教学质量的思考[J].中国科教创新导刊,2013(34):103-104.

[5]陈未,邢晓玲,冯艺.多课程交叉融合法在高校《药物化学》教学中的应用探索[J].新课程学习,2013(12):10-11.

[6]曹洪玉,冯宝民,牟红梅.以药物结构为核心的药物化学教学设计[J].广州化工,2014(17):204-206.

[7]孙然锋.基于问题式学习(PBL)在“药物合成化学”教学中的应用[J].广州化工,2013,41(1):186-187.

[8]王亚楼.化学制药工艺学的教学改革[J].药学教育,2003,19(4):23-25.

[9]黄健军,邓刚,蒋才武.对药物化学实验教学改革的探讨[J].广西中医药大学学报,2010,13(1):105-106.

第8篇:有机合成的前景范文

一、化学所面临的挑战

1.1化学的形象正在被与其交叉的学科的巨大成功所埋没

化学是一门中心科学,化学与生命、材料等朝阳科学有非常密切的联系,产生了许多重要的交叉学科,但化学作为中心学科的形象反而被其交叉学科的巨大成就所埋没。化学这门重要的中心科学(centralscience)反而被社会看作是伴娘科学(bridesmaidscience)而不受重视。

1.2化学正被各种各样的环境污染问题所困扰

化学的发展在不断促进人类进步的同时,在客观上使环境污染成为可能,但是起决定性的是人的因素,最终要靠人们的认识不断提升来解决这个问题。一些著名的环境事件多数与化学有关,诸如臭氧层空洞、白色污染、酸雨和水体富营养化等;另一方面把所有的环境问题都归结为化学的原因,显然是不公平的,比如森林锐减、沙尘暴和煤的燃烧等。这当然与化学没有树立好自己的品牌有关系,在最早的化学工艺流程里面,根本没有把废气和废渣的处理纳入考虑范围,因此很多化学工艺都是会带来环境污染的。现在,有些人把化学和化工当成了污染源。人们开始厌恶化学,进而对化学产生了莫名其妙的恐惧心理,结果造成凡是有“人工添加剂”的食品都不受欢迎,有些化妆品厂家也反复强调本产品不含有任何“化学物质”。事实上,这些是对化学的偏见,监测、分析和治理环境的却恰恰是化学家。

二、绿色化学是应对挑战的必然

科学不但要认识世界和改造世界,还要保护世界。化学也如此,为了应对化学所面临的挑战,提倡绿色化学是刻不容缓。

2.1绿色化学的概念

绿色化学又称环境无害化学、环境友好化学或清洁化学,是指化学反应和过程以“原子经济性”为基本原则,即在获取新物质的化学反应中充分利用参与反应的每个原料原子,在始端就采用实现污染预防的科学手段,因而过程和终端均为零排放和零污染,是一门从源头阻止污染的化学。绿色化学不同于环境保护,绿色化学不是被动地治理环境污染,而是主动的防止化学污染,从而在根本上切断污染源,所以绿色化学是更高层次的环境友好化学。

2.2绿色化学的产生及其背景

当今,可持续发展观是世人普遍认同的发展观。它强调人口、经济、社会、环境和资源的协调发展,既要发展经济,又要保护自然资源和环境,使子孙后代能永续发展。绿色化学正是基于人与自然和谐发展的可持续发展理论。在1984年,美国环保局(EPA)提出“废物最小化”,这是绿色化学的最初思想。1989年,美国环保局又提出了“污染预防”的概念。1990年,美联邦政府通过了“防止污染行动”的法令,将污染的防止确立为国策,该法案条文中第一次出现了“绿色化学”一词。1992年,美国环保局又了“污染预防战略”。1995年,美国政府设立了“总统绿色化学挑战奖”。1999年英国皇家化学会创办了第一份国际性《绿色化学》杂志,标志着绿色化学的正式产生。我国也紧跟世界化学发展的前沿,在1995年,中国科学院化学部确定了《绿色化学与技术》的院士咨询课题。

2.3绿色化学的核心内容

原子经济性是绿色化学的核心内容,这一概念最早是1991年美国Stanford大学的著名有机化学家Trost(为此他曾获得了1998年度的“总统绿色化学挑战奖”的学术奖)提出的,即原料分子中究竟有百分之几的原子转化成了产物。理想的原子经济反应是原料分子中的原子百分之百地转变成产物,不产生副产物或废物,实现废物的“零排放”。他用原子利用率衡量反应的原子经济性,认为高效的有机合成应最大限度地利用原料分子的每一个原子,使之结合到目标分子中。绿色化学的原子经济性的反应有两个显著优点:一是最大限度地利用了原料,二是最大限度地减少了废物的排放。原子利用率的表达式是:

原子利用率=(预期产物的式量/反应物质的式量之和)×100%

如无公害氧化剂过氧化氢的制备可采用乙基蒽醌法,即由氢和氧在2-乙基蒽醌和Pd为催化剂作用下直接合成,2-乙基蒽醌复出并可循环使用。此反应原子利用率为100%,体现了原子经济性,减少废物的生成和排放,是典型的零排放例子。

2.4绿色化学的12项原则和5R原则

为了简述了绿色化学的主要观点,P.T.Anastas和J.C.Waner曾提出绿色化学的12项原则,这12项原则对我们今后从事绿色化学的研究具有一定的指导作用。

Ⅰ.防止——防止产生废弃物要比产生后再去处理和净化好得多。

Ⅱ.讲原子经济——应该设计这样的合成程序,使反应过程中所用的物料能最大限度地进到终极产物中。

Ⅲ.较少有危害性的合成反应出现——无论如何要使用可以行得通的方法,使得设计合成程序只选用或产出对人体或环境毒性很小最好无毒的物质。

Ⅳ.设计要使所生成的化学产品是安全的——设计化学反应的生成物不仅具有所需的性能,还应具有最小的毒性。

Ⅴ.溶剂和辅料是较安全的——尽量不同辅料(如溶剂或析出剂)当不得已使用时,尽可能应是无害的。

Ⅵ.设计中能量的使用要讲效率——尽可能降低化学过程所需能量,还应考虑对环境和经济的效益。合成程序尽可能在大气环境的温度和压强下进行。

Ⅶ.用可以回收的原料——只要技术上、经济上是可行的,原料应能回收而不是使之变坏。

Ⅷ.尽量减少派生物——应尽可能避免或减少多余的衍生反应(用于保护基团或取消保护和短暂改变物理、化学过程),因为进行这些步骤需添加一些反应物同时也会产生废弃物。

Ⅸ.催化作用——催化剂(尽可能是具选择性的)比符合化学计量数的反应物更占优势。

Ⅹ.要设计降解——按设计生产的生成物,当其有效作用完成后,可以分解为无害的降解产物,在环境中不继续存在。

Ⅺ.防止污染进程能进行实时分析——需要不断发展分析方法,在实时分析、进程中监测,特别是对形成危害物质的控制上。

Ⅻ.特别是从化学反应的安全上防止事故发生——在化学过程中,反应物(包括其特定形态)的选择应着眼于使包括释放、爆炸、着火等化学事故的可能性降至最低。

为了更明确的表述绿色化学在资源使用上的要求,人们又提出了5R理论:

Ⅰ.减量——Reduction减量是从省资源少污染角度提出的。减少用量、在保护产量的情况下如何减少用量,有效途径之一是提高转化率、减少损失率。②减少“三废”排放量。主要是减少废气、废水及废弃物(副产物)排放量,必须排放标准以下。

Ⅱ.重复使用——Reuse重复使用这是降低成本和减废的需要。诸如化学工业过程中的催化剂、载体等,从一开始就应考虑有重复使用的设计。

Ⅲ.回收——Recycling回收主要包括:回收未反应的原料、副产物、助溶剂、催化剂、稳定剂等非反应试剂。

Ⅵ.再生——Regeneration再生是变废为宝,节省资源、能源,减少污染的有效途径。它要求化工产品生产在工艺设计中应考虑到有关原材料的再生利用。

Ⅴ.拒用——Rejection拒绝使用是杜绝污染的最根本办法,它是指对一些无法替代,又无法回收、再生和重复使用的毒副作用、污染作用明显的原料,拒绝在化学过程中使用。

三、绿色化学的发展前景

3.1反应原料的绿色化即反应原料符合5R原则。

3.2原子经济性反应在基本有机原料的生产中,已有一些原子经济性反应的典范,如丙烯氢甲酰化制丁醛、甲醇羰化制醋酸和从丁二烯和氢氰酸合成己二腈等。

3.3高效合成法不涉及分离高效的的多步合成无疑是洁净技术的重要组成部分。

3.4.提高反应的选择性———定向合成如不对称合成。

3.5.环境友好催化剂例如在正己烷的裂解反应中,固体酸SiO2-AlCl3比普通AlCl3具有更好的选择性,更小的腐蚀性。

3.6.物理方法促进化学反应如微波引发和促进DielsAlder反应、Claisen重排、缩合等许多重要的有机反应。

3.7.酶促有机化学反应酶促有机化学反应有高效性、选择性、反应条件温和和自身对环境友好等特点。

3.8溶剂化学污染不仅来源于原料和产品,而且与反应介质、分离和配方中使用的溶剂有关,有毒挥发性溶剂替代品的研究是绿色化学的重要研究方向。如超临界流体、水相有机合成和室温熔盐溶剂等。

3.9.计算机辅助绿色化学设计和模拟在化学化工领域,计算机已广泛用于构效分析、结构解析、反应性预测、故障诊断及控制等许多方面。无疑,计算机在寻找符合绿色化学原则的最佳反应路线、化工过程最优化、产品设计等方面推动了绿色化学的更快发展。

3.10环境友好产品如可降解塑料、环境友好农药、绿色燃料、绿色涂料和CFCs替代物等。绿色化学为化学的发展注入了新的活力,在21世纪化学必将大有可为。

参考文献

[1]王恩举.漫谈绿色化学.大学化学,2002,(4)

第9篇:有机合成的前景范文

一、微波的加热原理和主要特点

微波加热有2个主要特点。其一,该加热属于体加热,热量产生于物质内部;其二,微波加热表里一致,均匀、速度快、热效率高、产品质量好,可以进行选择性加热,容易实现自动化控制。微波对被照物有很强的穿透力,对反应物起深层加热作用。对于凝聚态物质,微波主要通过极化和传导机制进行加热。微波不仅可以改变化学反应的速率,还可以改变化学反应的途径。微波辐射改变化学反应速率的原因主要有微波热效应(Thermaleffects)和微波非热效应(Nonthermaleffects)。微波作用于反应物,加剧分子的运动,提高了分子的平均动能,加快了分子的碰撞频率,从而改变反应速率。这种通过微波加热,使温度升高,改变反应速率的现象称为热效应。微波热效应得到了众多学者的认可,微波加热机理也很清楚。而微波非热效应则一直处于争论之中。微波化学中温度测量是一个难题,因此在研究微波化学机理时一定要注意温度的测量和控制,这样才可能得到与常规加热对比的可靠结果。

二、微波的产生与传输

奇妙的微波以它独特的功能开拓了微波应用的新领域,那么微波是怎样产生和传输的呢?无线电波是由传统的电子管产生的,通过改进电子管的结构或控制电子运动速度,不断提高振荡频率,让它们一直高到微波段,从而可产生微波。连续低功率微波可用Gunn二极管或速调管振荡器产生;而100w以上微波功率常用磁控管。微波一般是通过波导或同轴电缆传输,也可以用天线将其聚

集成波束进行传输。

三、微波在化学中的应用类型

1.微波等离子体化学

微波对气态物质的化学作用主要属于这一类,它是利用微波场来诱导产生等离子体,进而在化学反应中加以应用。最早在分析化学中利用等离子体的报道出现于1952年,H.P.Broida等用形成等离子体的方法,以原子发射光谱法测定了氢-氘混合气体中氘同位素的含量,后来他们又将这一技术用于氮的稳定同位素分析,开创了微波等离子体原子发射光谱分析的新领域。微波等离子体也用于合成化学,其中最为成功的事例包括金刚石、多晶硅、超细纳米材料的制备;高分子材料的表面修饰及微电子材料的刻蚀净化等加工,其中不少已形成产业。

2.直接微波化学

即是指微波场直接作用于化学体系,从而促进或改变各类化学反应,它的作用对象主要是凝聚态物质。1974年J.A.Hesek等首先利用微波炉加热样品。次年,有人用它做生物样品消解。在微波炉密闭容器中,微波辐射引起的内加热和吸收极化作用及所达到的较高温度和压强使消解速度大大加快,而且减少了氧化剂用量和痕量元素的损失。现微波溶样技术已作为标准方法广泛用于分析样品的预处理。微波直接用于化学合成,从R.Gedye等在1986年用微波炉进行酯化、水解、氧化以来,在有机化学的十几类合成反应中也取得了很大成功。该法的主要优点在于大大提高了收率、缩短了反应时间。如在酯化反应中,使用微波与普通加热方法相比,反应速度要增加113~1240倍。同样微波在无机固相合成中也取得了可喜的成功,如沸石分子筛、陶瓷材料及超细纳米粉体材料的合成。

四、微波化学的应用

微波化学是利用现代微波技术来研究物质在微波场作用下的物理和化学行为的一门科学,是一门新兴的前沿交叉学科。微波辐射技术可加剧分子运动,提高分子平均能量、降低反应活化能,所以在化学领域主要用来提高化学反应速度,甚至改变化学反应机理,启动新的反应渠道;对一些反应物是极性的,而产物是非极性的或是弱极性的可逆反应来说,微波加热同时还能提高收率。

1.石油化工中的化学应用

微波作用于稠油及高凝原油主要表现为稠油中的高分子化合物通过热效应(热裂解)和非热效应(链、键的断裂),从而生成低分子有机化合物,通过提高油品质量降低粘度以达到提高采收率与便于地面输送的效果。微波化学在油气田开发中其它方面的应用有:微波破乳、微波脱硫、微波解堵、微波防止天然气中水化物的形成等。

2.烟草行业中的化学应用

烟叶加工成卷烟烟丝前通常需使用香精香料进行处理,以矫正卷烟的吸味和增加卷烟嗅香,可用微波加速来提取天然烟用香原料;以微波烘烤代替传统的蒸汽加热,不仅可使HT工艺后的梗(烟)丝迅速烘干,同时还可提高产品填充率15~20%(对卷烟的降焦降耗有极大意义)。微波辐射烟杆废料制造活性炭工艺一方面利用了微波加热的特性(选择性加热、快速升温、易自动化控制等),另一方面利用了价格低廉、来源广泛的烟杆废料,拓宽了活性炭生产原料的来源,保护了生态环境。

3.微波辅助萃取复方中药中的化学应用

目前,最常用的微波萃取系统有两种,一种是使用多模式微波炉,在密闭容器中加热样品及有机溶剂,将目的组分从样品基体中萃取出来,该法能在短时间内完成多种组分的萃取,溶剂用量少,结果重现性好。另一种是采用聚焦微波炉,在敞开体系中进行样品中多种成分的萃取。用这种方法进行微波萃取的研究较少,一般都与索氏萃取相结合,提高了萃取效率,降低萃取时间。该法最突出的优点是样品始终用纯的萃取溶剂萃取,最终的萃取物不需要过滤,给后续分析带来方便。此外,微波化学在等离子体、矿物处理、医疗等很多方面都有应用。

4.微波技术在无机化学中的应用

4.1超导陶瓷材料的合成

超导材料YBa2Cu3O7-x用常规加热合成方法制备需要24h,若采用微波合成,CuO,Y2O3和Ba2(NO)3按一定的化学计量比混合,置入经过改装的微波炉内,500W辐射5min,放出NO气体。物料经重新研磨,130~500W微波辐射15min;再研磨,辐射25min。取样,经X射线衍射分析显示,产物的主要成分为YBa2Cu3O7-x,其四方晶胞参数为:a=b=0.3861nm,c=1.1389nm。此结构按常规方式缓慢冷却,将转变为具有超导性质的正交结构。

4.2超细氧化物粉体的制备

1988年,Meek等的专利报道了利用金属硝酸盐、硫酸盐或氯化物溶液在微波辐射下直接分解制备超细氧化物粉体,所得产物的离子直径小于0.1μm。

4.3沸石的合成

Arafat等利用聚四氟乙烯作为高压反应器,在微波辐射下合成了Y型和ZSM-5沸石。PTFE反应器设计内径为5cm,以保证反应物处在2450MHz微波对水溶液体系的穿透深度范围内。常规加热条件制备的Y型沸石,常伴随有P型结晶或水钙沸石或钠菱沸石生成。微波加热条件下,未发现有上述非Y型结晶相生成。微波合成的选择性优于常规方式。采用微波加热诱导期极短,甚至没有诱导期,从而有效地防止了其它晶相的生成。

4.4无水硫化钠的制备

工业硫化钠一般为Na2S·3H2O,国内年产量几十万吨,其它纯度高一些的结晶硫化钠主要有Na2S·9H2O和Na2S·5.5H2O。限于目前的工业条件,无水硫化钠生产难度较大,市场短缺。采用真空微波技术,在选定功率下可在10min之内完全脱水,Na2S含量达到98%,较传统真空脱水速度提高12倍。

目前应用微波技术在无机合成、材料科学和它领域取得的较大成果还有:通过Fe3+的微波辐射强迫水解制备均匀分散氧化物胶体离子,太阳能电池材料的合成,金属有机化合物、配合物和嵌入化合物的合成,ABO3型氧化物的微波水热合成,微波烧结精细陶瓷等。