前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的煤层地质学主题范文,仅供参考,欢迎阅读并收藏。
关键词:瓦斯地质;安全工程;课程体系;优化
1瓦斯地质人才培养现状
我国煤炭和煤层气资源丰富,但由于地质条件复杂,煤矿瓦斯灾害严重,煤层气资源开发利用较少。[1]煤层瓦斯是地质成因的,受地质条件的控制,为了解决煤矿瓦斯灾害和煤层气资源开发技术瓶颈,河南理工大学在上世纪60年代在全国率先开展瓦斯地质研究,经过几代人的努力,开创了瓦斯地质学科,首创了瓦斯地质理论,形成了较为完备的瓦斯地质理论体系,为我国煤炭工业安全生产和煤层气开发做出了巨大的贡献。在瓦斯地质学科逐步完善的历程中,通过开设各种培训班,研究生班和博士、硕士研究生学位教育等各种形式培养了大批瓦斯地质专门人才;如1985年经煤炭部教育司批准我校招收瓦斯地质研究生班,培养了一批瓦斯地质专家;1982年原煤炭工业部组织开展全国煤矿瓦斯地质编图工作和2009年国家能源局组织开展新一轮全国煤矿瓦斯地质编图工作,通过各种形式培训班,对工程技术人员普及了瓦斯地质专业知识;研究生学位教育方面,招收少量的瓦斯地质理论与应用方向的硕士、博士研究生,培养了较高层次的瓦斯地质人才;但在本科层次瓦斯地质人才培养方面,基本属于空白。河南理工大学为了满足煤矿安全生产实际需要,使安全工程专业本科毕业生具备瓦斯地质基本知识,在安全工程专业课程的基础上加入了瓦斯地质学课程。尽管如此,很长一段时间瓦斯地质专门人才培养仍主要停留在硕士研究生、博士研究生的层次上。这样的培养层次,一是瓦斯地质方面的人才不能满足我国煤矿安全生产形势的需要,二是由于缺失本科阶段瓦斯地质知识结构、基本理论的系统学习,使得博士、硕士研究生层次瓦斯地质方向人才培养困难和生源不足。因此,进行本科层次瓦斯地质人才的培养意义重大。为了满足我国煤矿急需培养大量的瓦斯地质人才的实际和我校瓦斯地质学科的未来发展,河南理工大学从2011级开始在安全工程专业的基础上开设了瓦斯地质方向本科班,进行本科层次瓦斯地质人才培养,目前已毕业两届。
2瓦斯地质方向专业课程体系建设意义
课程体系是一所院校根据自己的培养目标进行的有计划、有系统的课程安排。安排合理的课程内容既能反映出学科的主要知识,又要符合知识发展的规律、时代的要求与前沿;合理安排各门课程之间的结构,调整课程开设的先后顺序,促使各门课程之间衔接有序,使学生通过课程的学习与训练,获得某一专业所具备的知识与能力,以达到培养人才的目的。因此,课程体系是教育教学的重要依据,受教育者的知识、能力、素质结构与其所学专业的课程体系有着密切的联系,有什么样的课程体系就会有什么样的学生素质。[2]合理的课程体系能培养出素质全面的人才,课程体系是人才培养质量的关键因素,在人才培养的过程中起着重要作用。[3-5]瓦斯地质学科是河南理工大学的旗帜和标杆,进行瓦斯地质人才培养,加强瓦斯地质专业的建设对保持瓦斯地质学科领先地位和发展后劲意义重大。为了瓦斯地质学科人才培养和未来发展,2011年,河南理工大学在本科层次上依托安全工程专业专门新开设了瓦斯地质方向,为瓦斯地质人才培养开辟了新的途径。该方向开设初期,瓦斯地质方向课程体系主要基于国内煤炭行业安全生产和煤层气勘探开发需求以及参考安全、地质、采矿等相关专业的课程体系进行了设置。瓦斯地质方向经过6年的理论教学和实践教学的实施,以及毕业生到用人单位后的反馈信息和相关高校的调研发现,本专业方向课程设置方面存在专业课程特色不鲜明、部分课程开设顺序衔接不合理、部分课程课时分配不合理、部分课程出现内容重复等突出问题,影响人才培养质量。因此,优化专业方向课程设置,建设合理的安全工程专业瓦斯地质方向课程体系对培养瓦斯地质专门人才,继续保持河南理工大学在瓦斯地质方面的优势和特色具有重要意义。
3瓦斯地质方向课程体系优化思路、目标
以“素质是前提、能力是关键、知识是载体”的新型人才观为指导,按照培养“厚基础、宽口径、创新性、复合型”高素质人才和注重学生知识、能力、素质协调发展的要求,以社会需求为导向,坚持瓦斯地质学科特色,采用走访、问卷调查等方法了解用人单位对瓦斯地质方向人才要求,探讨瓦斯地质专门人才应具备的基本知识、素质和能力,从教育学、人才学和瓦斯地质发展的角度系统分析瓦斯地质专门人才的基本特征,建立瓦斯地质专门人才知识、能力、素质相对应的该专业方向知识体系框架;以该专业方向知识体系框架为基础,在原有课程体系的基础上通过与瓦斯地质相关专业(主要包括采矿、地质、安全)有关专家、学者和现场工程技术人员进行会议交流、讨论,确定专业特色课程、专业基础课程和专业选修课程,以及相对应的工程实践内容、教学实验内容等,并与现场积极联系,建立瓦斯地质工程实习基地;以理论课程和实习内容、实验内容为主题,根据课程内容、难易程度、与瓦斯地质的相关度,讨论分析各门课程的衔接关系和课程教授的主要内容,确定各课程的开设时间、开设学时等。最终构建瓦斯地质方向的课程体系,优化瓦斯地质方向培养方案,实现如下培养目标:(1)掌握安全科学、安全工程及技术的基础理论、基本知识,掌握矿井开采、岩石力学、矿物岩石学、构造地质学、煤地质学、瓦斯地质学、矿井瓦斯抽采、煤层气勘探开发、地质勘探工程等方面的基础理论、基础知识和专业技能。(2)培养出“厚基础、宽口径、创新性、复合型”的高素质人才,适应国内外能源矿山、煤层气、页岩气发展需求,具备到能源矿山、煤层气和页岩气等相关单位进行煤层气、页岩气等非常规天然气的地面勘探开发,煤矿瓦斯地质、瓦斯抽采、瓦斯灾害防治等各类设计、施工及安全管理所需的专业知识和专业素养,同时具备从事其他安全领域的科学研究、技术研发、工程设计与施工、管理、监察以及教育培训等工作。(3)实现课程体系、教学内容、人才培养目标的良好匹配,保证人才培养方案中课程设置整体优化的要求,提升新形势下学生的创新意识、工程实践能力和就业竞争力。
4瓦斯地质方向课程体系优化设置
河南理工大学安全工程专业根据社会需求和自身优势,设立了瓦斯地质等4个专业方向。按照课程体系建设优化思路和目标,以河南理工大学安全工程专业整体要求和瓦斯地质方向的优势、特色,构建了以通识教育课程模块、专业公共课程模块、方向专业课程模块(包括方向专业基础课程和专业课程)、实践环节课程模块为框架的瓦斯地质方向合理的课程体系(图1),优化了课程之间内在逻辑性,减少了课程间的重复与脱漏。该方向课程体系总学分194,其中通识教育课程模块总学分98.5,公共专业课程模块总学分26.5,方向专业课程模块总学分38(见表1),实践环节课程模块总学分31(不含课内实验)。通识教育课程模块:是传授自然科学、社会科学领域的基础知识、基本理论和基本技能的,对学生全面发展具有基础性、通用性和长效性作用的课程。[5]河南理工大学安全工程专业下设的4个方向设置相同的通识课程,总学分98.5,包括思想政治类、军训体育类、外语类、计算机类、数学类、理化类等[6],以必修课为主。公共专业课程模块:是河南理工大学安全工程专业所设立4个专业方向都要求开设的专业课程模块,是使学生掌握安全科学、安全技术及工程的基础理论、基本知识和基本技能的必备的课程,同时体现安全工程专业特色。共设置11门课程,课时256,学分26.5,全为必修课程。方向专业课程模块:包括方向专业基础课程和方向专业课程。方向专业基础课程是学生掌握该方向专业知识、学习专业科学技术、发展个人能力的坚实基础,是提高学生最基本的职业素养的一类课程,该类课程对于后续方向专业课程的具有重要的支撑作用,课程的设置的好坏,对学生专业理论和专业技能的掌握影响较大,由必修和选修两类组成,总学分15学分,其中必修课4门,学时144,学分9,选修课6门,学时192,学分12,限选6学分;方向专业课程是与专业基础课有直接联系的,是学生适应未来从事的职业、工作环境所必须学习的课程,由必修和选修两类组成,总学分23,其中必修课程3门,学时128,学分8,选修课11门,学时336,学分21,限选15学分。方向专业课程模块的课程设置来看,方向专业基础课以必修课程为主,目的为后续专业课程的学习打下坚实的基础,方向专业课程增加了较多的选修课程,目的是为了能适应未来需求和多元的工作环境(见表1)。实践环节课程模块:实践教学课程是培养学生实践能力以及综合素质的重要教学环节,是高校课程体系的必要组成部分。[6]通过实践教学,可促进学生巩固和加深理论知识,提高运用知识分析和解决问题的能力,培养学生的系统分析、工程设计、科学研究等专业技能,增强学生的工程实践能力和对未来工作的适应能力。[7]河南理工大学安全工程专业的实践教学课程设置中,除了思想政治理论课实践教学、军训、工程基础实训与实践、画法几何与工程制图课程设计、毕业实习及毕业论文(设计)等实践教学课程外,结合本专业方向特点,特别增设了地质基础实习、煤矿瓦斯地质与瓦斯治理生产实习,并建立了登封地质实习、鹤壁生产实习等实践实习基地;并针对本方向专业特色,开设了瓦斯地质、矿井瓦斯防治技术和矿井通风与除尘等特色课程的课程设计,增强学生对专业方向理论知识和专业技能的学习和理解,培养学生动脑、动手能力和创新意识。另外,结合现场实际和科研项目,对课程实验内容进行了设计优化,减少了演示性、验证性实验,增加了结合现场实际的综合性、设计性和科研型实验,培养学生的科学素养和创新思维。在毕业设计内容的选择上,要求结合煤矿企业的实际情况进行选题,使学生的毕业设计与生产实际有机结合,培养学生解决实际问题的能力。总学分为31个,学时为33周,贯穿于大学四年的每个学期。
5结束语
课程体系是人才培养质量的关键因素,在人才培养的过程中起着重要作用。瓦斯地质方向课程体系的改革、优化应以现代大学理念和新型人才观为指导,以社会需求为导向,同时坚持专业特色,在以后的教学实践中不断进行补充、完善,培养高素质瓦斯地质专门人才,为煤矿减灾抗灾、煤层气规模性开发提供人才智力支撑。
参考文献
[1]张子敏.瓦斯地质学[M].徐州:中国矿业大学出版社,2009.
[2]陈立乾,高亮.培养目标与课程体系在人才培养中的作用及关系[J].赤峰学院学报自然科学版,2014.32(2上):270-272.
[3]颜海波.以目标为导向的本科课程体系优化的理论依据探析[J].西南科技大学学报(高教研究),2011(2):51-53.
[4]牛永红,武文斐,金光,等.建环专业课程体系建设及教学改革[J].中国冶金教育,2010(5):47-48.
[5]刘宏,吕保和.21世纪安全工程本科专业课程体系改革与实践[J].中国安全科学学报,2005.15(5):42-45.
[6]张小东.煤及煤层气工程专业课程体系建设的实践与思考[J].中国地质教育,2012(1):96-99.
关键词:煤层气;试井;破裂压力;渗透率;储层压力;贵州
引言
试井是认识和评价煤层气藏的重要手段,也是获得煤储层信息最主要、最有效的技术方法之一。煤层气试井技术源于常规油气,但由于煤储层自身的特殊性,决定了常规油气试井技术在煤层气井的应用受到限制,有的技术甚至不能采用,有些方法需要改进[1]。实践证明,注入/压降试井适合我国的煤层气试井方法[2],可以获得煤层的储层压力、渗透率及地应力等重要参数。文章将通过贵州某矿区的煤层气试井结果,分析该地区的煤层气资源开发潜力。
1 区域地质背景
贵州省煤及煤层气资源十分丰富,全省预测2000m以浅煤炭资源量2463亿吨,居全国第5位,2000m以浅、含气量大于4立方米/吨可采煤层气地质资源量31511.59亿立方米,占全国煤层气资源总量的22%左右,同样评价标准下的煤层气资源量位列全国各省区第二[3]。研究矿区位于贵州省黔西南州北部乌蒙山区,扬子地台南西缘,区内煤炭资源丰富,理论储量172亿吨,其中800m以浅资源量约35亿吨,居黔西南之首。区内煤炭资源主要分布于普安县南部的青山向斜内,中部的旧普安向斜东端、碧痕营背斜西端及北部晴隆向斜北西翼有少量分布。沉积环境海陆交互,二叠系龙潭组为该县主要含煤地层。岩性以细砂岩、粉砂岩、泥质粉砂岩、粉砂质泥岩、泥岩、煤层、泥质灰岩为主,夹薄层菱铁矿,其中含煤12~55层,可采及局部可采煤层4~8层,一般为瘦煤、贫瘦煤、贫煤及无烟煤。
统计资料显示[4],研究区煤层气资源丰富,煤层含气量一般大于8立方米/吨,介于5.33~26.47立方米/吨之间,平均12.18立方米/吨,且随着埋深的增加有增加的趋势,煤层气资源理论勘探开发潜力巨大。
2 煤层气注入/压降试井结果
贵州省煤田地质局一一三队煤层气试井测试组在研究区对2口井(A井、B井)7个煤层(A井3#、9#、12#、17#、19#,B井18#、19#)进行了注入/压降试井测试。测试结果见表1。
表1 贵州某矿区煤层注入/压降试井结果
3 煤层气注入/压降试井结果分析
3.1 破裂压力
破裂压力由微破裂试验获得,即通过向目标煤层注水,依此产生一个压裂煤层的瞬时压力脉冲,在确认煤层被压裂后井底关井,采用压力计记录井底压力随时间的变化规律获得[5]。破裂压力小利于低渗储层压裂改造,但小于钻井时泥浆的静液柱压力时,可能引起井漏,不利于钻井成型。研究区煤层破裂压力到最高达27.75MPa,介于10.28~27.75MPa之间,远高于钻井时泥浆的静液柱压力,利于钻孔钻进成型,不利于后期储层改造。
3.2 试井渗透率
试井渗透率反应试井液体在煤储层中流动的难易程度,也间接反应了煤层气开发的难易程度。一般而言,试井渗透率越高,煤层气在煤储层中流动越容易,越有利于煤层气的开发,反正,则不利于煤层气的开发。研究区内煤储层试井渗透性普遍较低,且渗透性变化很大,低至0.000173×10-3μm2,最高也不过0.0152×10-3μm2,平均0.0053×10-3μm2,随着埋深的增加,煤储层渗透率有降低趋势,不利于煤层气资源开发。
3.3 储层压力
储层压力是煤储层孔隙内流体所承受的压力,又称原始储层压力,即储层被开采前,处于压力平衡状态时测得的储层压力,一般随着煤层埋深的增加而增加。储层压力越大,越有利于煤层气资源的开发。研究区煤储层压力较高,介于3.85~10.24MPa之间,平均7.67MPa,储层压力系数均大于1,介于1.17~1.63之间,平均1.27,属高异常压力[6],利于煤层气资源开发。
4 结束语
研究区煤层气资源丰富,较高的煤层破裂压力和煤储层压力利于钻孔钻进成型和煤层气资源开发,理论上勘探开发潜力巨大。然而,区内煤储层试井渗透性普遍较低,不利于煤层气的流动,将严重制约煤层气资源开发,而较高的煤层破裂压力也不利于后期储层改造,同时,由于构造发育、地形起伏大、交通不便等不利条件的制约,研究区煤层气勘探开发具有一定难度,勘探开发应慎重进行。
参考文献
[1]苏现波,陈江峰,孙俊民,等.煤层气地质学与勘探开发[M].北京:科学出版社,2001.
[2]冯三利,胡爱梅,叶建平.中国煤层气勘探开发技术研究[M].北京:石油工业出版社,2007.
[3]毛节毕,许惠龙.中国煤炭资源预测与评价[M].北京:科学出版社,1999:337-341.
[4]唐显贵.贵州省煤炭资源潜力评价[R].贵阳:贵州省煤田地质局,2010.
[5]陈志胜.煤层气井微破裂试井测试技术及应用[J].中国矿业大学学报,2003,32(1):53-56.
关键词:补作勘查区;高岭石泥岩;夹矸;煤层对比
中图分类号:P618
文献标识码:A
文章编号:1009-2374(2009)18-0180-02
煤岩层对比是煤田地质勘查的一项十分重要的基础工作,直接关系到含煤地层层序、构造判断、煤层稳定性研究、煤质煤类确定及资源量计算等方方面面,直接关系到地质勘查报告的质量。尤其在地质构造复杂、多煤层及煤层稳定性较差地区,搞好此项工作尤为重要。
煤岩层对比方法很多,目前常用的有标志层、古生物、层间距、煤质、煤层顶底及煤岩层物性特征等对比方法,一般是各种方法进行综合对比。本文就贵州省纳雍补作井田煤层中高岭石泥岩夹石在煤层对比中的作用,谈一点粗浅认识。
一、井田地质概况
(一)井田范围及概况
补作勘查区位于贵州省纳雍县张家湾镇境内。其范围北起F1及F3号断层,南止F17号断层;西自水公河向斜轴,东至龙潭煤组底界。走向长15.5km,平均宽4.2km,面积约65km2。该区已完成普查施工,共布设勘探线9条,施工钻孔32个,钻探总进尺18075.21m,并进行了相应的地质填图、测井、水文地质及采样化验等工作。勘查工程布置情况,如图1所示:
(二)含煤地层
该区含煤地层为二迭系上统龙潭组(P3l)。主要由灰色至黑灰色细砂岩、、粉砂质泥岩、泥岩、煤层组成,间夹数层生物碎屑灰岩。含煤43~57层,其中编号煤层35层,煤层总厚24.31~42.24m,平均总厚为30.91m,含煤系数为10.2%,其中计量可采煤层7层。含煤地层厚度为277.00~350.00m,平均302.56m。
龙潭组可根据岩性、岩相和古生物特征,分为三段:上段(K2~K5)含主要煤层5层(2、5、6、7、9号),是主要可采煤层的富集地段,为海陆交互相沉积,其中灰岩标志层多。中段(K5~K7)含主要煤层5层(13、14、16、17、20号),属过渡相(三角洲)沉积,以产植物化石为主,海相标志层少。下段(K7~底界),含主要煤层4层(23、29、32、33号),其上部标志层少,下部属泻湖-潮坪相沉积,标志层较多,但中上部标志层少。
龙潭组地层层序、煤层及标志层编号,如图2所示:
二、高岭石泥岩赋存特点
(一)分布特点
补作勘查区高岭石泥岩在龙潭组中分布较广,绝大多数作为煤层夹石赋存,在垂向上,自上而下2、7、13、27、29、32、34号等煤层均有高岭石夹石。少数高岭石泥岩呈薄层状夹于灰岩或泥岩间(如标五)。单层厚度一般为1~10cm,有时与泥岩、粉砂质泥岩伴生。
(二)岩性特征
宏观特征:一般呈灰、浅灰色、暗灰紫色,少数呈黄绿色。鳞片状、结晶状或冻胶状,具滑感。标五灰岩中高岭石泥岩夹层,含大量白云母片。风化后呈粘土状。作为煤层夹石时,其中常含少量植物根部化石。夹于灰岩或海相泥岩中的高岭石泥岩,有时含少量腕足等动物化石。
微观特征:主要成份为高岭石,含量40%~50%,呈细小鳞片状分布。其次为岩屑、菱铁矿、水云母。岩屑含量变化大,岩屑大部分蚀变为细小鳞片状,岩屑由泥质粘土组成,呈砂粒状(粒度0.06~0.2mm),含量有时高达53%(29煤夹石)。水云母含量一般常在15%以下,呈细小鳞片状分布。菱铁矿多呈不规则的球粒状、放射状不均匀分布,其含量有时高达30%(13煤夹石)。煤层中高岭石夹石一般含少量炭质(2%~5%)和黄铁矿(一般
区中不同层位的高岭石泥岩夹石,其宏观特征和组分含量均不相同,如13号煤夹石,呈暗紫色、结晶状,岩屑含量少,菱铁矿含量高(30%),属菱铁矿化水云母高岭石粘土岩。而29号煤夹石,则呈灰-灰紫色、冻胶状,致密,岩屑含量高(52%),属岩屑砂质高岭石粘土岩。而标五中高岭石夹层,呈黄绿色,鳞片状,富含白云母片,蒙脱石化,属白云母蒙脱石化粘土岩。
三、高岭石泥岩夹石在煤层对比中的作用
勘探资料表明,该区高岭石泥岩夹石横向上较稳定,具有一定等时性,其中,以13、29号煤高岭石泥岩夹石和标五灰岩中夹层稳定性最好。
13号煤层中夹一层暗紫色、结晶状高岭石泥岩,似砂糖状,区内分布较广,大部分钻孔均可见及,一般厚5~10cm。13号煤位于龙潭组中段,该段煤层多,以植物化石为主,海相标志层极少,故13号煤中高岭石泥岩夹石,则是对比该煤层的良好标志。
29号煤层为一复杂结构煤层,夹石2~7层,其中,顶部1~2层为灰、灰紫色冻胶状高岭石泥岩,一般单层厚10~15cm,全区发育,十分稳定,是对比29号煤的良好标志。
标五中高岭石泥岩夹层:位于标五(硅质灰岩)的下部,灰白、黄绿色鳞片状高岭石泥岩,常蒙脱石化,富含白云母片,十分特征,厚2~10cm。横向上十分稳定,不仅在补作井田,而且在织纳煤田都广泛分布,是一区域性等时面,是对比标五和划分中、上段的良好标志。
四、高岭石泥岩夹石成因初探
煤层中高岭石泥岩夹石,其上下围岩均为煤层,其中常含植物根部化石,其沉积古地理环境应为沼泽或泥炭沼泽中的沉积产物。其物质来源可能多样,一种是母岩风化分解时游离出来的SiO2与Al2O3,呈胶体状被水流搬运到沼泽中凝聚形成。另一种可能是铝硅酸盐矿物风化残余形成高岭土后,被水流搬运至沼泽或泥炭沼泽中,机械沉积而形成于泥炭之中。
此外,少量高岭石泥岩夹石可能与火山灰有关,如7号煤中高岭石泥岩夹石,呈结晶状,在织金地区其中发现有β石英,部分呈尖针状,似未经过搬运或搬运距离不远,可能属火山灰飘落沉积所致。尤其是标五中高岭石泥岩夹层,位于灰岩之中,具蒙脱石化,富含白云母,有时含少量腕足类化石,应为浅海环境中生成的,其厚度虽薄,但分布十分广泛,至勘查区西侧马中岭一带,标五灰岩尖灭了,而该层高岭石泥岩仍然存在,可能为火山灰的产物。
五、结语
贵州省纳雍补作勘查区的含煤地层中,高岭石泥岩夹石(层)分布较广,其单层厚度虽薄(一般数厘米),但在一定范围内具有等时性,有的横向分布很广;而且不同层位的高岭石泥岩夹石,岩性(颜色、结构、成分等)差异明显。因此,在煤岩层对比中,作为煤层自身特征的一部分,是一个重要对比手段,尤其是在以陆相沉积为主,海相标志层少的多煤层地区,显得更为重要。但在煤层对比中,不能割裂开来,必须进行各种方法综合对比,互相补充,相互印证,才能收到较好的效果。
参考文献
[1]武汉地质学院煤田教研室.煤田地质学[M].地质出版社,1985.
关键词:放射性;煤田;测井
1 地质条件
鹤岗某煤田勘探区,地质背景从下到上为基底地层、煤系地层、第三系、第四系,煤系地层以白垩系下统城子河组(K1c)为主,所见地层岩石主要为砾岩、砂砾岩、粗砂岩、中砂岩、细砂岩、粉砂岩、泥质粉砂岩、泥岩、粉砂质泥岩。
2 煤层物性特征
煤是一种能快速燃烧的有机岩,由多种复杂的化合物组成。其主体是有机质,另外还有无机成分,在煤的有机成分中,碳含量最多。无机成分包括水分、矿物质、灰分。本勘探区,煤层变质程度为中等程度,一般为气煤,在煤岩层接触处电阻率值曲线界限清晰,呈陡升形态。煤的天然放射性含量很少,自然伽玛异常为低值,但随着灰分的增加自然伽玛值增大。煤的密度小于煤系地层所有的岩石,伴随煤灰分增加,密度值增大。声波时差高低值决定于骨架、孔隙度、孔隙中的流体性质,碳和甲烷的声波时差都大,所以煤层的时差值也很大。
3 岩层物性特征
砂岩由碎屑岩组成,包括砾岩、砂砾岩、粗砂岩、中砂岩、细砂岩、粉砂岩、泥质粉砂岩。不同粒度的碎屑岩,其物性特点也不同。其次构成砂岩的物质成分、胶结物、分选性、孔隙度及充填孔隙的液体的性质,决定了砂岩的电阻率、天然放射性含量、密度及对声波的传播速度。组成砂岩的颗粒越粗,胶结越致密,电阻率越高。自然伽玛强度和砂岩泥质含量有关,砂岩颗粒越粗,孔隙度越小,泥质含量越少,放射性强度越低。组成泥岩的颗粒很微小,直径小于0.01mm,孔隙为毛细管型,故为非渗透性岩层。在泥岩段上,自然伽玛曲线是高值。组成砂岩颗粒比较大,砂岩密度比较大,在伽玛伽玛曲线上,与泥岩和煤层比较,伽玛伽玛曲线呈现低值,为起伏平稳的曲线。由于泥岩密度小,故在伽玛伽玛曲线上呈现高异常反应,仅次于煤层,泥岩含水分越多,胶结越松散,砂质、碳酸质含量越少,则伽玛伽玛值越高。砂岩胶结致密,声波传播速度快,时差小,但胶结松散砂岩层除外。砂岩声波时差曲线低于泥岩、煤层。泥岩在声波时差曲线上,反映为高值,泥岩越疏松,密度就越小,对声波传播速度越慢,则时差越大。
4 煤层的测井曲线响应
5 孔间煤层对比
煤层对比在白垩系下统城子河组(K1c),岩性由粗变细,再由细变粗,见砾岩,粗、中、细砂岩,泥岩交互沉积。地层厚度近300米,所见煤层较多,有10~16层位之多。25号煤层特征明显,而且较厚。以其中三个钻孔此层为例对比分析,此层煤的伪底伪顶为泥岩或砂质类的泥岩,夹矸以炭质泥岩和粉砂岩为主。煤层段曲线形态相对上下围岩表现为高密度,高电阻,低天然的特性。钻孔1夹矸最厚,上下厚度相近。钻孔2上薄下厚,上厚段有炭质泥岩夹矸,上下段的夹矸为细砂岩,钻孔3上厚下薄,上厚段无夹矸,上下段夹矸为细砂岩。在25号煤层的下部10米之内有一层不到一米的煤或炭质泥岩,钻孔1(煤)、钻孔3(炭质泥岩)将此层定义为26号煤层。钻孔1、钻孔325号煤层的上部30之内有一层1.5左右的煤层,将此层定义为24号煤层。此结果与钻探采取的岩心相符。曲线反应特征见图1:
6 结束语
实践证明,由于测井曲线是连续变化的,并且有良好的垂向分辨率和深度控制,经解释的地层厚度能精确到5cm,所含信息丰富,人为干扰因素少,所以能够利用测井曲线追索煤、岩层,了解煤田地质构造,摸清煤层的分布规律。并且能辅助地质准确判断煤层的厚度,提高勘探效率,降低勘探成本。同时孔间对比为某些岩心采取率低的钻孔分析岩性层位提供理论依据。
参考文献
[1]潘和平,等.地球物理测井与井中物探[M].北京:科学出版社,2009.
Abstract: There are quite a lot of hydraulic connection types between the aquifers, and there are great differences between the calculation method and the detection technology of the same type of water quantity prediction. Based on the analysis of the hydrogeological characteristics of the coal bearing strata in North China, it is divided into 4 basic types according to the geometry characteristics of the water rich structure. A new idea is put forward to analyze the actual situation of the water production according to the 4 basic types, which has great theoretical significance and practical value to understand the hydrogeological conditions and take reasonable measures to prevent and control water.
关键词: 煤田水文地质;充水;几何形态
Key words: coalfield hydro geology;water filling;geometric shape
中图分类号:P641.134 文献标识码:A 文章编号:1006-4311(2017)01-0205-02
0 引言
华北煤田分布广、煤层多、储量大,矿床水文地质条件复杂。不同地区开采不同时代煤层所遏到的地质灾害问题和复杂程度亦不同,严重时可能会威胁着矿井安全生产,造成井田防治突水灾害的费用逐年增加,生产效益不断下降,使国家和人民生命财产蒙受巨大损失。基于此,对华北煤田水文地质特征的研究,对于科学有效的预测和防治煤矿突水,保证矿井安全生产具有重要意义。
1 华北煤田水文地质特征
华北煤田西以贺兰山―六盘山一线与西北为邻,南以秦岭―大别山一线与华南分界,东濒黄海,北以阴山―燕山―辉南―和龙一线与东北相接,华北煤田主要聚煤期为石炭二叠纪,早中侏罗世和第三纪煤田较少。
①含煤地层基底水文地质条件。
华北石炭二叠纪含煤地层基底大部分是奥陶纪灰岩,仅在个别地区是寒武纪或震旦亚界灰岩。
②含煤地层内部水文地质条件。
1)上石盒子组含煤地层。
上石盒子组岩性为砾岩和砂岩泥岩为主,地层厚度最小120m,最大可达700m,主要在华北的南部地区。
2)下石盒子组含煤地层。
下石盒子组的岩性以粗碎屑岩、粉砂岩、泥岩和煤等为主,地层厚度变化大。
3)山西组含煤地层。
下二叠统山西组的岩相以陆相为主,主要分为三种类型:山前冲击平原型、滨海冲击平原及滨海平原型和泻湖海湾型
4)太原组含煤地层。
上石炭统太原组主要以砂岩、泥岩、灰岩、煤层和少量砾岩为主,岩相局部为陆相,其余为海陆交替沉积。
③含煤地层盖层的水文地质条件。
在大部分平原地区,煤系地层上覆巨厚的第四系松散层,含水性强弱不一。第四系底部附近的松散含水层对矿井充水有直接影响,其中粗砂砾岩含水丰富,含泥质较多的松散层含水性弱。
在大部分丘陵地区,煤系地层上覆第四系盖层很薄,基岩风化裂隙发育,渗水性较好。这些地区煤系地层的充水水源是松散层孔隙水、风化带裂隙水、大气降水和地表水。
2 华北煤田导水构造的水文地质特征
2.1 根据导水构造几何形态特征的划分
沟通充水含水层之间水力联系的几何形态类型颇多,不同类型在涌水量计算和防治水设计等方面存在较大的差异。因此对导水构造的几何形态进行系统完整的类型划分是很有必要的。
根据几何形态可划分为以下4种类型:岩溶陷落柱、隐伏露头、条带裂隙、网状裂隙。
2.1.1 岩溶陷落柱
陷落柱本身条件复杂,分为导水陷落柱和阻水陷落柱。陷落柱边界受塌陷作用影响形成次生裂隙,易于联通上下含水层。岩溶陷落柱的分布规律不清,至今仍是研究的重点。
2.1.2 隐伏露头
煤系地层灰岩含水层、砂岩裂隙含水层和中奥陶统灰岩含水层呈隐伏露头形式与上覆第四系松散层不整合接触。隐伏露头地下水力交替的影响因素主要有隐伏露头基岩风化带的渗透能力和上覆第四系孔隙含水层底部粘性土隔水层的厚度。
2.1.3 条带裂隙
华北煤田基本上属于中朝准地台,构造相对稳定,主要以褶曲和断裂为主。导水断裂使煤层直接或间接对接中奥陶统灰岩含水层,形成不同程度的水力联系。大型断裂易于形成比较发育的裂隙网络,形成沟通上下含水层之间的水力联系通道。
2.1.4 网状裂隙
在华北煤田北部主要以砂岩含水层为主。在多次构造应力作用下,脆性的隔水层不断受力后,以断裂形式释放压力,使本来隔水的泥岩层形成了不同方向的断裂和节理,发育成比较发育网状裂隙。
以上4种类型是华北煤田所发现的最基本类型,在实际生产中可能会遇到这4种类型的不同组合形式。表1即为4种类型的组合表。
岩溶陷落柱和条带裂隙的组合类型,多分布在地层的中深部,垂向导通能力好,水力交替强度大。但大部分分布规律不清并且规模较小,是实际生产中极易忽视,从而引起威胁极大的恶性突水事故。
岩溶陷落柱和隐伏露头的组合类型,隐伏露头多分布于地层的浅部,岩溶陷落柱多分布于地层的中深部,在华北煤系地层中较为常见的一种组合类型。对其组合一般最为有效的防治水措施是采取浅截深堵,对其进行治理。
隐伏露头和条带裂隙的组合类型,隐伏露头多分布于地层的浅部,条带裂隙多分布于地层的深部,这一组合在华北煤系地层中也较为常见。这种组合的矿井水文地质条件一般较为复杂,充水水源多、通道畅通,矿井涌水量一般较大,突水灾害事件繁现。
隐伏露头和网状裂隙的组合类型。在构造运动作用下,呈脆性的相对隔水岩层不断受力,脆性地层以大面积破裂形式释放应力,形成大范围裂隙网络。
其余的两种、三种和四种组合形式在实际的煤系地层中发现不多。
2.2 根据地下水渗流的水动力特征划分
根据水动力特征可分为2种基本类型:管道式和渗滤式。
2.2.1 管道式
地下径流多呈管流状,水力条件极其复杂。其中管道式的导水通道较为畅通,充水强度一般较强,容易对矿井造成灾害性的突水事故。
2.2.2 渗滤式
地下水的运动基本符合线性渗透定律,渗流介质类似松散多孔介质性质。由此类所诱发的地下水涌入矿井的过程往往是渐变的。因而此类一般对矿井直接形成的水害威胁相对较小。
上述两种划分方案依据不同,但存在一定的联系。一般陷落柱和条带裂隙由于其介质破碎严重,通道较为畅通,地下水的流动形式多为管道流。隐伏露头和网状裂隙多为渗滤式,地下水符合线性渗透定律。
3 结论
各种类型的水力联系是建立华北煤田充水水文地质模型的基础和核心。沟通充水含水层之间水力联系的几何形态类型颇多,不同类型在水力特征模拟与水量预测的计算方法和空间展布位置的探测技术存在较大的差异。在空间展布的几何形态特征所划分的4种基本类型和各种组合类型,对认识矿井水文地质条件和采取合理的防治水措施具有极其重要的理论意义和实用价值。
参考文献:
[1]韩得馨,等.中国煤田地质学[M].北京:煤炭工业出版社,1980.
[2]杨孟达.煤矿地质学[M].北京:煤炭工业出版社,2007.
[3]葛亮涛.中国煤田水文地质基本特征与规律[J].中国煤田地质,1996(6):46-53.
[4]肖长来.梁秀娟.水文地质学[M].北京:清华大学出版社,2010.
【关键词】胜利煤矿;矿井整合;开拓;采煤
前言
龙煤集团七台河分公司胜利煤矿一采区十一井2005年核定能力6万吨/年,截止2005年12月,地质储量38.59万吨,可采储量32.80万吨,按核定能力计算,服务年限只有3.9年,为了确保国家煤资源的合理开发、利用,将邻近的一采区十井进行整合,改造。一采区十井截止2004年末保有地质储量142.8万吨,可采尺量121.38万吨,采区十井设计能力、核定能力、实际生产能力均为6.0万吨/年。一采区十一井与一采区十井整合后,年能力可达15.0万吨/年。地质储量181.39万吨,可采储量154.18万吨,服务年限7.3年。
1矿井概述
1.1自然地理概况
七煤集团公司胜利煤矿一采区十一井,一采区十井位于七台河矿区西部,在七台河市新兴区辖区内,地形属丘陵山岗,地面标高190.-215m,气候属寒温带,年最高温度+36℃,最低气温-34℃,年平均气温+5℃,年冻结期自11月至翌年4月,冻结厚度1.7-2.0m。
1.2井田范围
一采区十一井该井田北起60层煤层露头,南至-200m标高,东至F:40断层,西至F:40断层以西1000m,平均东西走向长900m,倾斜平均宽度630m,面积0.588km2,开采煤层为60号层。
一采区十井:北起63层、65层煤层露头,南至-300m标高,东至F:11断层,西至F:40断层,东西走向长800m,倾斜宽1400m面积1.12km2。开采煤层63、65层。
1.3勘探开发
该井田属七台河二次精补勘探区范围内,属七台河分公司新兴煤矿井田,七台河二次精补由黑龙江省煤田地质公司204勘探队于1964年10月提交报告,经黑龙江省储委第0019号文批准。
2矿井地质特征
2.1地质特征
2.2煤层与煤质
2.3矿井水文地质
本井设计开采60、63、65层,本井的上部58层由新兴煤矿开采,下部的66、67、68、74层由新兴煤矿开采,经过上下层的开采该井的涌水疏干程度很好,矿井的充水系数很小,故该井的水文地质情况简单而清楚,矿井最大总涌水量23.92m2/h,正常总涌水量14.02m2/h。
2.4储量、服务年限与生产能力
3.1井田开拓、整合方法
3.5采煤方法
采煤方法采用走向长壁后退式,顶板管理采用全部自然垮落法,爆破落煤,工作面支护方式为金属摩擦支柱,工作面运输采用SGW-30型刮板运输机,平巷运输选用蓄电池电机车和调度绞车。
整合后投产时布置四个回采工作面,其中60层二个,63层一个,65层一个,工作面平均长度80m,平均采高0.68m,循环进度1.6m,每日一个循环,年工作日按330天计算。
四个回采工作面及掘进煤确保矿井年生产能力15万吨,矿井整合投产时,配五组掘进(其中一组为预备队)即可满足正常接续。
参考文献:
[1]鲍仲庆,等.煤矿开采与掘进,北京:煤炭工业出版社,1994.4.
[2]张先尘,等.中国采煤学,北京:煤炭工业出版社,2003.5.
[3]陆春元.煤田地质学,北京:煤炭工业出版社,1999.10.
【关键词】地质构造 煤与瓦斯突出 出水机理 安全回采率
一、引言
地质构造主要通过影响煤层中瓦斯的保存条件和软分层的发育来控制煤与瓦斯突出发生的条件。在煤炭形成的漫长地质时期,煤层受到沉积作用、煤化作用和构造运动等影响,在煤体内部产生大量的裂隙、孔隙、褶皱和断层等构造类型。煤层的自燃主要经过氧化放热、蓄热散热和蔓延扩展等环节,裂隙、孔隙、褶皱和断层通过影响各个环节的发展,从而影响煤层的自燃。构造应力是控制矿区采动损害的一个不容忽视的因素。
二、地质构造对煤层自燃的影响
(一)煤层中的裂隙主要是内生裂隙和外生裂隙。
内生裂隙:煤层在煤化作用过程中因成煤物质结构、构造等的变化而产生的裂隙,一般面平且直,一般不切入到其它煤层中。
外生裂隙:煤层形成后,由于区域构造变动而在煤层中发育的裂缝。通常成组出现,方向性明显,裂隙面较平直,延伸远,可切入其它煤层,甚至煤的顶底板岩层。
裂隙影响煤层的供氧条件,它们的存在可以增大煤氧接触面积, 从而导致煤层自燃初期的低温氧化阶段顺利进行。
(二)孔隙对煤层自燃的影响
煤层中的孔隙主要是原生孔隙和次生孔隙。
原生孔隙:煤层在沉积时,沉积物颗粒之间生成粒间孔和植物各组织内部的胞腔, 共同组成煤层的原生孔隙。
次生孔隙:煤层在煤化作用过程中,原生矿物结晶溶蚀而形成的孔隙,因淋滤、溶蚀等作用形成的粒间孔隙,以及煤化作用过程中因甲烷等气体的逸出而留下的孔隙等,共同组成煤层的次生孔隙。
一般来说, 煤中的孔隙越多,氧气越容易进入,煤氧接触面积越大,越容易氧化升温直至自燃。煤的孔隙会随着煤化作用加深而不断减少,煤级较高的煤中原生孔隙基本消失,这就可以解释变质程度低的煤比变质程度高的煤更容易自燃,就是因为变质程度低的煤孔隙度要大于变质程度高的煤,从而使氧气更容易进入到煤层中,增大了煤氧接触的面积。
(三)褶皱对煤层自燃的影响
褶皱通过控制煤层氧化释放出的热量的运移方向和聚集状况来影响煤层的自燃。在背斜位置,煤层低温氧化释放出的热量就会运移到背斜的核部,如果核部的煤层顶板是渗透性较差的泥岩、页岩,那么核部处就会集聚大量的热量,从而使煤体温度升高,继而发生自燃。
在向斜位置,煤层中集聚的热量向上扩散,一般不会在核部周围发生自燃。另外,倒转褶皱可以使煤层厚度变大,有利于热量的集聚,并且增加了燃烧物质的数量,容易诱发大规模的煤层自燃。
(四)断层对煤层自燃的影响
在没有受到采动影响的煤层中,断层的数量、规模、性质和走向对煤层通气供氧影响很大,直接影响到煤层的自燃。煤层自燃后,火焰蔓延的方向受断层的性质和断距大小的影响。在正断层位置,煤层被断开,阻止了火焰向煤层深部蔓延。当火焰蔓延到正断层处时,由于煤层已经被断层切断,火焰在此结束蔓延趋势。当正断层完全切断煤层时,断层位置成为天然的防火墙。在逆断层附近,一旦断距较小,就会使煤层发生重复,煤层厚度增大,而厚度又是煤层自燃的一个必不可少的条件,所以煤层自燃会在逆断层处发展和蔓延。当有多个煤层且间距较小时,断层的存在则会引起不同煤层之间的煤火相互贯通,燃烧煤层可导致不同层的煤燃烧。
另外,由于断层的存在,使得在选择开采方法时必须采取工作面过断层的种种措施,从而严重影响采煤和掘进的速度,给采空区中遗煤的自燃争取了时间,加大了自燃的几率。
总之,地质构造对煤层自燃的影响很大。裂隙、孔隙、褶皱和断层的数量、规模影响煤层的供氧条件,它们的存在可以增大煤氧接触面积,从而导致煤层自燃初期的低温氧化阶段顺利进行;裂隙和断层也是煤火燃烧过程中物质和能量的喷出通道;断层的性质可决定煤火是否继续向煤层深部发展;褶皱可控制煤低温氧化释放出的热量聚集,如果背斜核部有封闭性好、导热性差的煤层顶板,那么此处是煤层聚热增温的良好场所,也是易于自燃的地方。
三、构造应力对矿区采动损害的影响
矿区采动损害,是因煤炭井工开采对覆岩和地表地质环境造成的损害。从构造地质学的观点来看,矿区采动损害是在地壳构造运动产生的应力作用、岩体本身重力以及地下开采活动联合影响下发生的主采煤层上覆岩、土体的一种特殊的表生构造现象。
对于一个具体的煤矿区来说,要么处于挤压构造应力场,要么处于拉张构造应力场。挤压与拉张是煤矿区常见的两种最基本的构造应力状态。
由于构造应力的作用,可以改变采动影响下的岩层移动方向和移动量的大小,同时也影响井下巷道的变形破坏模式。如果煤矿区处于挤压构造应力场中,在煤层未开采之前,侧向挤压应力早己存在,它使煤层覆岩有向上弯曲的趋势;在煤层被采出后,覆岩重力首先克服侧向力造成的向上的弯矩,剩余的垂向力才引起煤层顶板向下弯曲变形。同时,由于侧向挤压构造应力的存在,使岩体所受围压升高,必将使岩体的力学强度增加,从而减小煤层开采对覆岩的损害。
另一方面,由于岩石的抗拉强度最低,在受拉张应力作用后,很容易产生张节理,使岩层的连续性遭到破坏,失去内聚力;拉张应力的作用可以抵消一部分因重力作用在岩层中产生的水平关联应力,从而使岩块受到的侧向夹持力减小甚至消失,很容易在重力作用下失稳沉降,即使拉张应力不足以使岩层破断,也会使岩体的围压降低,从而导致岩体强度的下降。为了保护煤矿区地质环境,煤炭资源开发活动必须要有一个度,要把开采强度限制在煤矿区地质环境可以承受的范围之内。
四、结论
在煤矿的开采活动中,探明地质构造的类型和规模是保障安全生产的第一步。时刻注意地质构造的变化,预防煤矿重大事故的发生。关于地质构造对煤矿安全生产的研究,今后将主要集中在以下几个方面:地质构造对煤与瓦斯突出影响的定量化分析;地质构造对煤层自燃的定量化分析;地质构造对矿区采动损害的定量化分析。
参考文献:
[1]尉茂河. 煤层自燃的内外因分析及其预防对策 [J]. 煤矿安全,1998,(2).
【关键词】煤矿;环境地质;地质调查
0.前言
煤矿环境地质工作是调查和研究与煤矿环境质量及其控制有关的地质条件及其变化,为煤矿环境保护、环境规划、环境治理提供所需的地质资料。由于煤矿环境问题不同,对煤矿环境地质工作的要求和工作内容、工作方法不尽相同。一般而言,煤矿环境地质凋查与评价要做好以下工作。
1.矿区环境污染的地质调查
1.1矿区原生地质环境调查
调查矿区地理和大地构造位置、地层及其岩石组成、地质构造、矿产资源以及地形地貌等基本地质背景;对矿区内的原生岩石、风化岩石、土壤以及矿区内的地表水体(如河、湖、池塘等)和地下水体(如井、泉、钻孔和矿井充水等)进行全面系统采样、化验、分析;查明矿区岩石、水体的组成以及其中有害物质的种类、含量等;弄清与原生地质环境有关的污染源(物)和与环境污染扩散有关的地质和水文地质条件;研究各种元素的赋存、分布、迁移、浓集、扩散、流失等的规律;对矿区原始环境质量的地质条件作出评价,为控制矿区总环境污染提供基本的地质资料。
1.2矿区水土污染地质调查
调查煤矸石的矿物组成和化学成分及其含量以及某些物理化学性质、矸石山堆放场地的地形地貌及水文地质和工程地质条件;定期监测矿区土壤的化学成分和物理化学性质及其变化;定期观测矿井、选煤厂、矸石山等排放的废水的流量、化学成分及其变化情况,并结合矿区地形地貌、地质和水文条件对矿区流动水与非流动水、地下水与地表水、污染水与非污染水的化学成分、物理化学性质进行对比,确定污染水体的扩散途径、影响范围、影响程度等。在此基础上,将水质分析与岩土分析结果及岩石风化及风化过程中元素流失、富集等进行比较分析,以查明土壤污染和土壤化学元素迁移规律等与水体污染和运动的关系,为控制水土污染提供地质依据。
1.3煤矿区大气污染地质调查
有害粉尘地质调查。配合通风安全部门,在巷道、工作面和选煤厂收集粉尘样品,通过化学分析和岩矿鉴定以及与煤层及其围岩的矿物成分、岩石类型的对比,找出粉尘与原岩成分及其含量的关系,查明有害粉尘的种类、来源、数量等,为采取防尘、降尘措施提供依据。粉尘的镜下鉴定主要包括,矿物成分:粉尘的矿物成分不同,危害类型和程度各异;粉尘粒度能进入肺部的微细粉尘危害最大;粉尘形态:浑圆状尘粒比棱角状尘粒危害小。
有害气体的地质调查。有害气体主要来源于厂矿排放、地下逸散、煤与矸石堆自燃等。调查时要求查明有害气体的来源、成分、含量、产气情况、逸出地点、迁移途径等,并就其对环境的影响作出评价。为了查明地下逸出的有害气体,还必须深入调查矿区岩层的物质成分、结构构造、氧化分解条件以及与有害气体扩散有关的地质构造特征和分布规律等。
1.4地质灾害等地质调查
对矿区内的各种地质灾害,尤其是采动影响、煤矸石堆放等所引起的地面沉陷、滑坡、泥石流、沙漠化等进行全面调查,研究其形成条件、成因类型、分布和影响范围、危害程度等。对急性灾害应实施连续监测并进行预测、预报。《煤矿安全规程》规定,开采冲击地压的煤矿应有专人负责冲击地压预测和防治工作。
矿井热污染调查。在区域地温场调查的基础上,查明矿区地温场的变化规律及其影响因素,分析矿井热污染的成因、变化特征、危害程度以及与地温场的关系等。
煤层及矸石堆自燃监测研究。对有自燃倾向或已经自燃的煤层及矸石山应加强日常监测,研究自燃的影响因素-发火条件、氧化和增温规律以及自燃机理等。
2.污染矿区环境治理效果的地质调查
对环保措施实施效果进行地质调查与评价,从而为修改和补充原有措施或重新制订更加有效的措施提供依据。如对净化处理后的矿井和选煤厂排放水的水质及有害物质的种类及其含量等应进行定期检测;对采取复垦措施的土地应 定期测定其潜水位的变化、土壤中有害元素的种类及其含量的变化,以及土壤的结构、理化性质等的变化,检查有害元素是否有随潜水位升高或毛细管作用而返至地表的现象等;对采取防尘、降尘措施的工作面应定期测定其空气粉尘浓度、形态和粒度分布及其有害粉尘的含量;对采取充填措施的采空区沉陷幅度、应力场的变化、岩层变形特点以及对地表的影响程度等应进行调查评价。通过治理前后地质调查资料的对比分柝,对治理措施的有效性作出判断。
3.煤矿环境污染源资源化利用地质评价
煤矿生产过程中所产生的大量废弃物,既是导致矿区环境污染的主要污染源,又是宝贵的自然资源。加强对其的资源化利用,不仅有助于从根本上消除其对环境的危害,同时还可获得资源,提高煤矿生产的综合效益。
3.1矿井水资源化利用评价
矿井永的来源;矿井充水和矿井排水的水量、水温、水质类型;色、嗅、味、浊度等感观特征;pH值、含盐量、总硬度等化学特征;生化需氧量、化学耗氧量、溶解氧等生化特征;有毒有害元素和细菌的种类、含量等毒理性和毒害性特征,以及矿井水的利用方向、利用条件和环境效应等。
3.2煤矸石资源化利用评价
评价内容包括煤矸石的种类、排放和堆积量、矿物成分、化学组成、理化性质、工艺性质、发热量、有用成分的种类及其含量、分选的难易程度以及煤矸石的利用途径、利用方法和环境经济效应等。
3.3矿井瓦斯资源化利用评价
煤层瓦斯含量、压力、成分、赋存和分布规律,矿井瓦斯涌出量、涌出特征,瓦斯来源、瓦斯储量、可抽瓦斯量以及影响瓦斯抽放的各类地质条件及其改良方法等,并就瓦斯抽放方案、利用方式、规模和服务年限、经济技术的合理性和效益等提出建议和预测。
3.4地表移动区资源化利用评价
评价内容包括地表移动区的分布、规模、沉陷幅度、采动稳定性、新应力场分布、地质和工程地质条件、地表变形特征、积水情况、地下水和地表水的水文和水文地质条件、水土流失和土壤肥力状况、土地复垦条件、复垦类型、复垦方案以及复垦的生态效应、经济效益等。
4.结束语
煤炭资源的开发利用与地质、水文地质、地球化学等地质环境因素有着极为密切的关系,因此,煤矿环境地质也就成为煤矿地质研究的重要内容和煤矿环境保护和治理的地质依据。要以地质因素引起的环境问题为研究对象,以煤炭开采过程引起的环境地质问题为重点,分析地质环境、生态环境和煤炭开发利用活动之间的相互作用和影响;研究矿区环境地质特征和各种地质灾害引起的环境问题及其灾害预测和防治方法;探讨采矿活动产生的地质作用对地质环境的影响以及诱发的环境地质问题;提出改善和控制矿区环境质量的地质方法。
【参考文献】
[关键词]煤气层 应用 前景
中图分类号:TD845 文献标识码:A 文章编号:1009-914X(2014)47-0382-01
0 前言
随着世界原油不断减少,世界常规能源供给形势日益严峻,国际上逐渐把发展非常规能源作为新世纪能源发展的主要议题。煤层气的开发具有热值高、污染少、安全性高的特点,完全可以成为石油和天然气等常规能源的重要补充。[1]世界上很多国家逐渐开始重视煤层气的勘探和开发试验,并积极发展发达国家的地面钻井开采技术,在煤层气资源的勘探、钻井、采气和地面集气处理等技术领域均取得了重要进展。我国埋深在2000米以内的煤层中含煤层气资源量达30万亿-35万亿立方米,是世界上第三大煤层气储量国,煤层气开发前景非常可观。然而,由于种种原因,我国煤层气的开发和利用规模普遍偏小,所以合理加强煤层气的综合利用,对我国的资源建设有积极的作用。
1 煤层气的成因
天然气的成因各式各样,Macd Donald(1983)研究了天然气的形成模式,认为最具代表性的模式有六种:(1)沉积岩有机质的微生物降解;(2)沉积岩有机质的热降解;(3)原油的热裂解;(4)煤的变质作用;(5)岩浆岩的高温反应;(6)地幔原生甲烷的释放。煤层气是属于第(4)种模式,是在煤的变质作用过程中不断生成的。煤在变质作用中产生的甲烷分子被吸附在煤体的表面。吸附甲烷量的多少决定于压力、温度和煤质。即在一定的温度、压力条件下,甲烷分子主要以单分子层状态吸附于煤体的细微孔隙表面,并和微孔隙中的游离甲烷分子处于不断交换的动平衡状态。由此可知,游离甲烷的多少,取决于煤的孔隙度、温度和压力。当遇到外界条件发生变化(地壳运动、岩浆活动)时,这种平衡就会被打破,若继续沉降使煤热演化继续进行,煤层含气量增加;或地壳抬升,使煤的热演化终止,甲烷不再产出;当煤层抬升接近地表遭受风化时,所有气体将散失干净。
2 煤层气田的分类
纵观国外已有煤层气开发的生产实践和我国国内开发试验的经验教训,可以认为不同成因的煤层气田的开发,会存在一定的差别。分类划分得当对指导煤层气地面开发选区和开发方式、方法的运用均有一定的指导作用。现参考煤田地质学理论中煤变质类型的分类,结合煤层气的生成、赋存等条件,将煤层气田初步划分为三类二个亚类。
(1)深成成因的煤层气田。
(2)岩浆热成因的煤层气田,可分为:
①区域热力作用形成的煤层气田。
②岩体接触作用形成的煤层气田。
(3)挤压成因的煤层气田。
3 国内煤层气开发利用的现状
当前,国际能源局势趋紧,我国煤矿安全生产形势严峻。我国的能源消费结构很不合理,1999年煤炭约占68%,石油占23%,天然气仅占2.6%,天然气在能源结构中的比例远远低于世界平均水平(24%)。为了实现能源与环境的可持续发展,我国急需实施以优质能源为主的能源发展战略,合理调整能源结构,增加天然气在一次能源消费中的比重。煤层气有望成为接替煤炭、石油和天然气等常规能源的新能源资源。目前全国瓦斯发电的总装机容量为9万千瓦,而规划或正在实施的瓦斯发电项目装机容量接近15万千瓦。其中,山西晋城煤业集团在建的煤层气电厂计划装机达12万千瓦,是世界上目前最大的煤层气发电厂。
4 我国煤层气区划方案
根据实际资料和工作程度,按煤层气大区、含气区、含气带、气田这四个级别进行中国煤层气资源分布区划。
5 开采煤层气的技术方法
5.1 生产布局
煤层气开发的生产布局与常规油气有较大差异。当煤层气开发选区确定以后,在钻井之前,就应进行地面设施的系统设计与布局。在确定井径、地面设施与井筒的位置关系时,应综合考虑地质条件、储层特征、地形及环境条件等因素。―个煤层气采区包括生产井、气体集输管路、气水分离器、气体压缩器、气体脱水器、流体监测系统、水处理设施、公路、办公及生活设施等。只有各部分密切配合,才会使得煤层气生产顺利进行。
5.2 井筒结构
煤层气开发的成功始自井底,一般井筒应钻至最低产层之下,以产生一个口袋,使得产生气体在排出地面之前,在此口袋内汇集。煤层气生产井的结构是将油管置于套管之内,这种构型是由常规油气生产井演化而来的。这种设计还可使气、水在井筒中初步分离,从而减少地面气、水分离器的数量,并可降低井筒内流体的上返压力;一般情况下,产出水通过内径为10 mm或20mm的油管泵送至地面,气体则自油管与套管的环形间隙产出。除排水产气外,井简的设计还应尽量降低固体物质(如煤屑、细砂等)的排出量。井底口袋可用上收集固体碎屑,使其进入水泵,使地面设备的数量降至最低。在泵的入口处,可安装滤网,减少进入生产系统中的碎屑物质。另外,在操作过程中,缓慢改变井口压力,也有利于套管与油管环形间隙的清洁,降低碎肩物质的迁移。
5.3 气水地面集输与处理
5.3.1 地面气水分离
在煤层气生产井中,将油管置于套管之内的设计可实现气、水的初步分离,但在泵送至地表后,还需经地面分离器进一步分离,分离的气和水分别进入集气管线和水处理系统,同时还应除去流体中固体颗粒物(煤粉、细沙等)。
5.3.2 集输系统
集输系统的作用有二:一是利用最经济的方式将气体从井门输送至中央压缩站;二是从环保与经济效益的角度,妥善处理排出水。在铺设管线时应充分考虑地形和地面没施,输气管道不宜铺设在低洼处,而输水管尽量不要架设在高处。但如果无法避免这种情况,应安浆气压缓解阀,以免水回流至井口。
5.4 气体处理与压缩
进入销售管线的煤层气,一方面应符合管道气的成分标准,另一方面应具有足够的压力。因此,经气水分离器分离出的气体,需经进一步处理和压缩。
6 开采煤层气需要注意哪些问题
6.1 煤层气开采中水的处理
水是煤层气生产的副产品,其净化和处理费用在日常操作中占相当大的比重。合理设计水处理系统,是决定煤层气开发成功与否的主要因素之一。水的处理方法和费用上要取决于排水量和水质特征,在设计水处理系统时.应首先根据临近生产井的排水情况或煤层渗透中及水文资料估算煤层的产水量,还应考虑到生产过程中不同阶段排水量的变化。
6.1.1 产出水杂质分类
煤层产出水是一种含有溶解盐、溶解气体、非水液体和固体颗粒等杂质的多相体系。其中杂质可分为五类:(1)固体颗粒;(2)胶体;(3)分散油和浮油;(4)浮化油;(5)溶解物质。
6.1.2 水处理方式
在美国煤层气生产中,最常用的产出水处理方式是排入地表水系和注入深井,其它方法包括土地灌溉、蒸发、水力压裂时重新利用等,反渗透方法正处于试验阶段。
7 总结
我国煤储层的发育状况、煤层的含气特征、煤层的渗透性等,在地域上的分布是很不均衡的。煤层气分布的不均衡性,加上区域经济因素,就造成了当前我国煤层气勘探开发工作在地域上的不平衡发展。因此,研究和总结我国煤层气在区域分布方面的规律性,合理进行煤层气资源分布区划,对于从宏观上阐明资源分布特征,分析煤层气勘探开发态势,指导未来煤层气勘探开发工作都将具有重要意义。
参考文献:
[1] 宫诚.国外煤层气发展现状[J].中国煤炭, 2005,(03).
[2] 张建博,王红岩,赵庆波等.中国煤层气地质[J].北京地质出版社,2000.