前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能时代的特征主题范文,仅供参考,欢迎阅读并收藏。
【关键词】大数据时代;人工智能;计算机网络技术
引言
科学技术的飞速发展,使计算机网络成为人们生活和工作的重要组成部分。在计算机应用领域,将人工智能与大数据进行融合,可有效解决计算机网络管理中安全性的问题。然而,在大数据时代背景下,由于人工智能技术的发展仍处在探索阶段,在计算机网络技术中的应用还存在许多问题。基于此,深度探讨人工智能应用优势,并针对人工智能在计算机网络技术中的应用提出几点建议,具有十分重要的意义。
1大数据时代人工智能技术的含义及应用优势
1.1大数据下的人工智能技术
人工智能作为计算机技术体系下的分支,是一门融合开发和研究为一体,主要作用于开发人类智慧所应用的科学技术。在人工智能不断发展的历程中,对于人工智能的探索逐渐延伸至管理学、语言学、社会学等学科,使人工智能能够更好地接近人类大脑,完成对社会中存在各类要素和信息的采集,并模拟出人脑对图像和声音出现的反应。在大数据时代背景下,人工智能可借助大数据内容多和规模大的特征,替代人们完成部分工作,为人们生活和生产提供便利,以进一步增强人们的幸福感。人工智能与大数据的配合,可将人类思考习惯进行数字化处理,并完成对数据的储存。在未来发展中,人工智能可实现对人类日常生活的复制,实现机械化的自动操作和控制。通过大数据和人工智能的相互配合,可为人类和技术的发展提供更广阔的空间。1.2大数据时代下人工智能在计算机网络技术中的应用优势在大数据时代背景下,人工智能在计算机网络技术中应用所体现的优势,主要体现在以下几方面:①完成对信息的预测,在计算机网络运行中,要想提升运转速度就要及时处理系统中存在的模糊数据,但对于这部分信息价值的辨别存在一定的难度。如依照传统处理方法会增加系统运行成本,对系统造成影响。在大数据时代人工智能的干预,可依据模糊分析理论更有效辨别信息价值,完成对信息的预见,进而实现计算机网络运行效率的提高。②增加网络监管能力,计算机系统的快速发展使得计算机网络结构日趋复杂,为网络监管带来难度。而人工智能的参与可实现对网络的分类管理,不但提升管理的效果和能力,还为网络营造更加安全的环境。③人工智能强化数据整合,在人工智能和大数据相互协作下,对于计算机网络空间中存在的信息进行快速整合,完成对各类资源的有效配置。还可加快资源整合的速度,减少资源的消耗,降低计算机网络的运行成本。
2大数据时代下人工智能在计算机网络技术中的应用对策
2.1计算机网络安全管理中人工智能的参与
①在计算机网络网络安全入侵检测中应用人工智能。在大数据时代下,计算机网络环境日趋复杂,各类病毒和木马的入侵可对网络造成不可逆的影响。而在计算机网络管理中应用人工智能,可通过对以往入侵情况的分析,建立数据集成的系统,通过数据编码将入侵特征进行编码转换,在系统中储存完整的信息。一旦计算机网络出现入侵系统的情况,对网络安全造成威胁,系统就可依据设定对入侵类型进行辨别,并完成安全处理,保障计算机系统和网络的安全。②数据挖掘技术在计算机网络安全管理中的应用。数据挖掘主要是指将网络从主机会话中分离出来,并通过对网络控制实现计算的规范化,并将其产生的数据储存到数据库中,在遇到网络风险时就能完成数据的辨别。③人工神经模拟。人工智能的模拟技术可模仿人类大脑的思考和处理逻辑,在网络运行中,可对噪声等要素进行识别,并通过检测,完成对网络的安全性检查,提升网络运行安全性,提升检测的质量。④危险信息拦截和垃圾处理。在计算机网络安全管理中,人工智能可在网络系统中建立智能防火墙,对部分危险信息进行识别,并完成拦截。还可在系统设置访问权限,提升安全防控的效果。同时,在垃圾处理方面,人工智能和大数据的相互配合,可实现对网络遗留数据痕迹和垃圾的检测,快速找到包含病毒的文件,并在人工智能处理模式下完成病毒的处理,消除网络中存在的安全隐患。另外,人工智能可完成对系统资源的扫描,通过对信息的分析和处理,将数字化数据反馈给用户,使用户更加直接地了解计算机网络的运行状况,为进一步保障计算机网络安全提供帮助。
2.2计算机网络管理系统中人工智能的导入
①系统数据库技术。在计算机网络系统中,利用人工智能技术将计算机系统运行的内容转化为数据,将简单内容在变为复杂的程序,在运行中对其进行不断的优化,找到有效的运行方式,实现对系统对有效的管理。这种人工智能和大数据的相互配合,可有效弥补传统数据加工在内容逻辑性方面的缺陷,并通过数据库的建立,使得计算机网络系统在运行速度和储存空间方面都得到提升。②智能问答技术。在计算机网络搜索功能中,人工智能技术的参与可使得用户利用部分有效信息就能获得海量的资源,提升网络资源的使用效率。这种智能问答方式主要以简单指令为核心,通过对关键词的识别在海量数据中快速筛选到相关的资料,获取到用户需要的内容。这种工作方式可减少搜索的时间,完成对资源的合理应用。比如,用户在搜索栏中输入“流行乐”,当下在音乐市场中流行的乐曲都能显示出来,并带出“流行乐”相关的搜索标签,找到更多相关的信息和数据,减少搜索的时间,并提升搜索的整体质量。③智能技术。计算机网络系统可完整记录用户的搜索数据,并从海量资源中挑选出相关内容,完成对用户的精准推送,这种服务的机制,可减低用户大量搜索的时间,并在短时间内找到更有效的相关信息,提升计算机网络系统的应用效果,带给人们更多的便利和帮助。
2.3计算机网络运营系统中人工智能的支持
目前,计算机网络与行业领域的深度融合,奠定了计算机网络的发展基础。同时计算机网络所支持的各类平台,可为整体网络管理工作的开展提供对接渠道,依托于信息传输机制,可有效提高数据传输的时效性,进一步为行业的发展提供保障。(1)在企业管理方面。大多数企业在运行过程中,将产生大量的数据信息,有价值与无价值的信息将呈现出同步传输的模式,计算机网络系统的应用,则是对此类数据信息进行有效整合与分类,为管理人员提供一定的信息决策支持。人工智能的融合,对于原有的计算机网络运营系统来讲,则可有效建立起一种基于人工智能实现的运算环境,通过大数据技术的价值信息挖掘、神经网络与模糊网络的精密算法等,可有效提高数据信息的统计能力,以此来节约企业资金成本的投入。此类人工之能的导入可为企业经济管理建立一种数据运营框架,在相关信息的输入下,可按照有序性的运算模式实现数据的分析,进而提高企业自身的运营质量。(2)在教育教学方面。计算机网络与教育领域的结合,是我国教育改革的一个重要实现载体,通过网络海量资源的支持,可为学生提供更为全面的信息。例如,以人工智能技术为载体的信息分配机制,其可有效建立起一智能化数据体系,学生通过网络进行作答时,计算机系统的分配机制可依据学生作答情况,将各类信息进行精准记录。同时,平台本身还可依据学生的作答信息进行学习行为方面的预期分析,然后针对某一时间点下数据信息呈现出的异常特性来分析出学生学习行为的发展方向,并将此类信息及时反馈到系统中。通过此类信息的正确界定,可对教师的教学行为以及学生的学习行为等进行有效规范。人工智能的支持下,可令计算机网络呈现出智能化运作的特性,对于当前信息时代的发展态势来讲,智能化、自动化的运营模式在行业领域中属于一种必然导向,为此,应针对行业本身的需求,界定出技术的应用形式,以此来发挥出技术应有的价值效果。
这是以张国荣在影视、电台等留存下来的原声建模,通过情感语音合成技术实现与粉丝“隔空对话”。据了解,任何一个人只要用30分钟按照要求录制50句话,就可以用百度大脑的语音合成技术模拟出这个人的声音,这意味着,今后每个人都可以拥有自己的声音模型。这是百度大脑所具备的基础能力之一,从语音、图像到自然语言理解再到用户画像……百度在这些领域的应用已经深入到人们的日常生活中。当这些能力赋予全社会的每个人,就能变换出无穷无尽的可能性,让我们重塑对未来的想象。
人工智能的这种神奇魅力吸引了各大科技公司,谷歌、Facebook、IBM等国外科技巨头纷纷通过成立人工智能实验室、并购初创公司等方式,在人工智能领域进行多点布局。百度亦不例外,在人工智能方面的研发可谓不遗余力,更是第一个把人工智能提到核心技术创新地位的国内互联网公司。
2015年底,百度挖来NEC美国智能图像研究院的负责人林元庆担任百度深度实验室主任,由他带领深度学习实验室研发具有统治级别的人工智能技术。在本刊的专访中,林元庆表示,“我觉得中国的互联网节奏非常快,尤其是人工智能的发展。现在人工智能的刚需已经很明显了,可以说非常旺盛,关键是如何把刚需挖掘出来,做出来,这才是重要的。”
百度大脑是百度人工智能的核心
《网络传播》:百度大脑目前有哪些阶段性成果,其价值体现在哪里?
林元庆:百度大脑已建成超大规模的神经网络,拥有万亿级的参数、千亿样本、亿级特征训练,能模拟人脑的工作机制。通过深度学习、大规模计算和大数据三大部分,百度大脑目前已经具备了语音、图像、自然语言理解和用户画像四大前沿能力。以语音识别为例,目前百度语音识别的准确率能够达到97%。在人工智能时代,百度大脑将是百度向社会输出人工智能技术能力的核心,经过长期的投入与布局,未来百度大脑不仅将像百年以前的电力一样成为商业新能源,更将深入到生活中,将电影中的场景变为现实。
《网络传播》:百度大脑宣布对广大开发者、创业者及传统企业开放其核心能力和底层技术开放,是出于何N考虑?
林元庆:百度大脑开放共享的思路,实际上是希望在时代变革大幕开启之际,助力广大合作伙伴全面共享人工智能时代,完成下一幕的转型升级。百度大脑未来将与各行各业结合,衍生出不同领域的行业大脑,比如医疗大脑、交通大脑、金融大脑等。目前,百度大脑已经应用到教育、金融和娱乐等多个行业。
人工智能渗透百度所有产品线
《网络传播》:今年基本上全球各大互联网公司都把人工智能作为最核心突破的领域,在这一领域,百度和其他公司的战略方向有何不同?
林元庆:百度在人工智能领域起步早,布局领域广,并且已经有很深的积累,既实现了对内业务的支持,也进行了大量对外技术的输出。目前,百度的人工智能几乎已经渗透到百度所有的产品线当中,以此改进百度全线产品的用户体验并提升用户黏性。比如说手机百度的语音搜索、凤巢的推广系统以及百度外卖的调度系统、百度金融结合人工智能给用户的画像等等。接下来百度一方面将进一步提升各项人工智能技术,打造平台化的对外输出能力;另外一方面还将着力把这些人工智能技术和能力应用到具体行业和垂类中,提升行业的效率,促进行业变革。
《网络传播》:虽然业界普遍认可人工智能的巨大前景,但在目前来看,人工智能在短期内还很难看到盈利,那么,怎么看人工智能的普及和商业化?
林元庆:人工智能已经为百度的搜索业务提供了巨大帮助。人工智能的发展和普及有四大关键性的支柱――机器学习算法(特别是深度学习)、大数据、大规模计算,以及可供以上要素不断训练迭代的大应用。目前,人工智能在前三个领域都已经有了一定程度的突破,同样关键的是人工智能技术的大规模应用,只有在制造业、医疗、汽车驾驶、娱乐等各个领域各个场景的不断应用,才能形成“数据-技术-产品-用户-更多数据-更强技术”这样的一个正向循环。在这些不断扩展的应用中,商业化也就是自然伴随而来的事情了。
互联网的下一幕是人工智能
《网络传播》:如何看人工智能在2016年的“爆发”?
林元庆:1956年夏天,“人工智能”首次被提出,但在之后的半个世纪都没有能够解决人工智能的问题。上世纪70年代到90年代,美国一直有人工智能的课程,但却没有实际的应用,在当时,任何一个领域都看不到有价值的人工智能应用。上世纪90年代以后,数据量越来越大,计算的能力也越来越强,机器学习逐渐兴起;到2006年,深度学习的概念被提出,特别是在2010到2012年间,深度学习在语音识别和图像识别领域取得了突破性进展。深度学习的成功极大地推动了人工智能的商业化。实际上,在2013年,《MIT科技评论》就已经把深度学习列为当年的十大技术突破之首,但今年确实是人工智能大规模商业化落地的一年。
《网络传播》:人工智能将会如何影响各行各业?
林元庆:影响最大的是制造业。当人工智能时代到来,制造业会彻底被物联网改变。未来所有商品都能联网,将数据传回云端,通过人工智能技术进行分析,为消费者带来实实在在的价值。汽车工业也将被人工智能彻底改变,尽管安全问题的解决路径在传统汽车厂商与创新厂家间有所不同,然而我们基本上还比较自信,有一天会进入来自动驾驶时代。此外,娱乐业及健康产业同样也会被人工智能所改变。对于前者,虚拟现实与增强现实很可能会成为主流的内容形式,颠覆消费者对娱乐内容的消费方式;对于后者,通过基因分析、精准的医疗图像诊断,患者的疾病将得到更加精准和个性化的治疗。
中国人工智能发展环境分析
资料来源:前瞻产业研究院整理
目前我国在人工智能的研究上与发达国家相比、甚至与美国相比都不算落后,这对于我们国家来说是难得的历史机遇,是提升综合国力和影响力的绝佳机会。如今我国在国家层面制订人工智能发展战略,并加快推进,我国完全有可能利用市场需求优势、用户数据优势等,抢占人工智能技术和产业的制高点,实现人工智能技术“弯道超车”。
人工智能行业市场规模
随着人工智能在我国移动互联网、智能家居等领域的发展,我国人工智能产业将持续高速成长。据前瞻产业研究院的《人工智能行业市场前瞻与投资战略规划分析报告》数据显示,2015年,我国人工智能产业规模为69.3亿元,同比增长42.7%;2016年我国人工智能产业规模达到95.6亿元,同比增长37.9%。
随着相关政策的加速落地,我国人工智能产业已步入新的发展阶段。当前人工智能行业基础条件已经具备,随着深度学习算法日趋成熟以及数据资源的加速增长,人工智能技术有望不断提升,机器视觉和自然语音处理等人工智能技术将迎来发展新机遇,预计到2022年,我国人工智能产业规模将达到335.6亿元。
2014-2022年中国人工智能产业规模及预测(单位:亿元,%)
资料来源:前瞻产业研究院整理
中国人工智能企业积极布局
出于对人工智能行业商业前景的看好,国内巨头纷纷战略进军人工智能领域,百度、阿里、腾讯均在人工智能领域发力。其中,百度从2013年开始搭建AI团队,同时涉足了深度学习与自动驾驶领域,并推出了“百度大脑”计划,于2017年展出了Apollo自动驾驶平台;阿里巴巴推出了国内首个人工智能平台“DTPAI”;腾讯推出了撰稿机器人Dreamwriter,开放了视觉识别平台腾讯优图,同时成立了腾讯智能计算与搜索实验室。
除BAT之外,科大讯飞以语音技术为核心,通过语音技术开放平台和语音应用切入人工智能产业,也是当之无愧的行业巨头。这些具有创新性眼光的巨头公司的进入,让整个行业迎来了爆发的机会。感知智能试点阶段的一大特点是创业公司开始进入,目前的国内格局也正印证了这一点。
【关键词】人工智能;计算机网络技术;应用;优化
【中图分类号】TP393【文献标志码】A【文章編号】1673-1069(2020)08-0180-02
1引言
人工智能技术与大数据技术是新时期计算机网络技术快速发展的产物,在这一背景下,人工智能技术、大数据技术应用水平得到了很大提升,各个行业都需要将人工智能技术、大数据技术、计算机技术进行有效融合,积极探索先进技术的应用形式,明确计算机网络技术发展趋势,为技术研发控制工作的开展提供支持,满足计算机网络技术的科学发展需求。基于此,文章阐述了人工智能技术的相关内容,介绍了人工智能在计算机网络技术中的应用,总结了实践应用及优化措施。
2人工智能技术概述
人工智能技术将计算机科学、心理学、生理学、语言学等进行了有效融合,这项技术赋予了机器人工智能功能,机器可以针对复杂、危险的工作进行有效处理,既能够提升工作效率,又可以保障人身安全[1]。目前,人工智能技术呈现出综合性特点,为计算机科学技术的进步、发展提供了技术支持,技术人员需要将人工智能技术作为核心,针对数值计算、问题求解进行优化,可以将其发展成知识处理,人工智能还可以处理各项不确定信息,加深对系统资源状态的实时了解、追踪,以获取更多有效的信息内容,向用户提供更多的信息。人工智能技术的写作能力比较强,能够针对很多资源、信息进行整合,用户可以共享、传输各项信息,根据多写作的分布式人工智能思想、网络管理,提高网络管理工作效率、效益。在网络智能化管理过程中,人工智能具有很大优势,具备很强的学习能力、推理能力,其在网络管理中的应用能够快速、准确处理各项信息,还具备记忆功能,可以存储更多信息,构建信息库,针对信息进行总结,产生高级的信息。
3计算机网络技术中人工智能应用现状
在科学技术的快速发展中,计算机网络涉及范围日益扩大,人工智能技术和计算机网络进行有效融合,人民群众越来越关注人工智能技术优势及发展。在日常工作、生活过程中,人们可以利用人工智能技术,有效地处理模糊信息,改善了传统计算机网络技术局限性的影响,人工智能技术还能够根据网络环境强化信息监控力度,提高工作的准确性。同时,人工智能技术能够确保各项管理工作的协调性,利用人工智能技术可以制定信息约束管理系统,配合人工智能技术全面监测各项网络信息,突出各个管理层相互协作的特征。现阶段,人工智能技术的应用范围更加广泛,并处于快速发展时期,在未来社会的发展中人工智能技术水平也将提升,为人民群众的生活、工作提供更多便利。
4人工智能在计算机网络技术中的应用
4.1网络安全管理
在信息技术的快速发展中,网络安全管理是完善、探索过程中的关键管理工作,网络安全管理工作为提升网络技术应用提供了基础保障,通过确保网络技术应用安全,可以为生产工作的有效性提供支持。在这一背景下,技术人员利用大数据技术、人工智能技术,可以有效地规划网络安全管理工作要点,满足网络安全管理中的各项技术应用需求,其主要原因是大数据技术、人工智能技术的应用,有效地提升了网络安全管理系统的防护能力,为网络安全管理提供了防护保障。例如,在大数据时代,为了满足计算机网络技术、人工智能技术应用需求,应建立网络安全防护中的人工智能防护体系,可以将智能拦截防护技术、人工智能技术进行融合,组建技术控制中的核心防护网络体系,将其作为计算机网络技术传输的信息防护形式。另外,在网络安全管理过程中,利用人工智能技术、大数据技术,可以有效地整合网络安全防护体系,提升网络安全防护技术水平。
4.2数据采集与分析
现阶段,在数据采集分析过程中,技术人员需要强化人工智能技术的应用,工作人员在应用计算机技术的过程中,会产生庞大的数据量,需要挖掘更多的数据,大数据时代信息逐渐呈现出多样性、数据总量大等特点,单纯地依赖传统技术采集数据压力相对较大,而利用人工智能技术可以有效地解决数据采集问题,科学、合理地采集、分析更多数据,有效地提升数据分析效率。
4.3计算机网络系统管理及评价
为了满足大数据时代的多元化功能、服务需求,需要将计算机网络技术、人工智能技术进行融合。在计算机网络安全管理过程中,技术人员需要将人工智能渗透到计算机网络技术中,确保网络管理的安全性,其具备的问题求解技术、专家知识库能够促使计算机网络综合管理。现阶段,计算机网络呈现出瞬变性、动态性、复杂性特点,人工智能技术的应用可以将复杂的计算机网络综合管理进行简单化处理,为综合管理提供便利[2]。同时,以人工智能技术基础发展的专家决策、支持方法,已在信息系统管理中得到了有效应用,并取得了很大效果,专家系统可以自主吸收、总结专家的经验、知识,将更多的经验、知识录入系统中,针对系统知識进行完善,能够利用汇集的专家经验自主解决、处理更多相似问题。另外,人工智能技术在计算机网络管理、系统评价中的应用,可以有效地解决复杂工作。
5人工智能在计算机网络技术中的优化措施
5.1提升人工智能的智能化程度
现阶段,技术人员需要强化人工智能技术研究力度,不断提升智能化水平,充分发挥出人工智能在计算机网络中的作用,为了提升人工智能技术的智能水平,需要针对场景、数据模拟效果进行强化,如人工智能技术的应用可以根据计算机网络技术特点,创新、优化人工智能系统。
5.2政府与企业参与技术创新
人工智能技术属于高新技术,在应用、推广过程中,工作人员需要进行改革创新,政府、企业是人工智能技术的创新主体,对于政府部门来说,企业创新具有很大优势。政府部门需要根据人工智能技术研发相应的政策支持,营造良好的环境,在人工智能技术创新过程中,需要大量资金、优秀人才作为支持,政府部门需要发挥领导作用,鼓励企业进行创新,还需要加大资金投入力度,促使人工智能技术向高层次进行发展。
5.3强化网络安全维护人工智能应用环境
人工智能在计算机网络技术中的应用,需要强化网络安全维护工作,促使人工智能技术更好地应用到计算机网络技术中,相关部门需要强化网络安全维护工作,营造良好的人工智能技术应用环境,重视信息泄露问题,确保各个部门放心使用人工智能技术,实现人工智能技术应用的预期效果[3]。
6结语
关键词:人工智能;语音识别;图像识别;神经网络
0引言
伴随着经济的飞速发展与科技水平的不断提升,计算机技术的开发与应用的研究成为学者们关注的重点[1]-[2]。特别是在人工智能识别方面的研究越来越深入,其应用也越来越广泛。人工智能识别技术的应用,不仅提升了生产的效率,同时为人们的生产生活提供了方便[3]。针对此,本文在对人工智能识别技术进行介绍的基础上,对其关键性技术进行了分析,这对于提高人工智能识别技术应用水平具有重要的工程意义
1人工智能识别技术
1.1人工智能识别技术的定义
智能识别技术是以计算机系统、扫描设备、照相设备为基础设施,对目标的数据信息进行智能识别。当前的人工智能识别技术是从语音识别技术中逐步发展起来的。现在已经形成了人脸识别、图像检测、图像检索、目标跟踪、风格迁移等多项智能识别手段。这些智能识别技术的出现,提升了人们的生活质量,减小了人们的工作量、提高了生产生活小效率,对于推动我国社会主义现代技术的发展具有重要的意义。
1.2人工智能识别技术的研究现状
从目前的发展来看,我国已经在多个领域应用了人工智能识别技术。但在人工智能识别的核心技术上,仍然处于发展阶段。与国外其他发达国家相比,还未形成完成成熟的技术体系[4]。同时伴随着近几年各个国家之间加强了对人工智能识别技术的相互交流与渗透,使得我的人工智能的发展得到了新的发展机遇。在近几年的时间里,我国在人工智能的技术水平上不断提升,为人们的生活提供了便利,改善了人们的生活条件[5]-[6]。并且,我国相关科技管理部门加强了对人工智能识别技术的重视与相应资金上的投入。从目前来看,现阶段计算机人工智能识别技术的发展方向是解决应用过程中存在的各类问题以及对核心技术进行研发。
1.3人工智能识别技术的特点
人工智能识别技术在应用特点上具有高反应效率,高运算速度等特点,并且人工智能识别技术能够通过自我学习,达到能解决问题,能改造或创造,能做理论推演或理论研究的目的,在工程中,人工智能识别技术能够严格监控整个生产运行状态,如果一旦运行状态出现异常情况,就可以及时掌握故障信息反馈给维修人员,智能化的数据支持,也能给维修人员提供帮助,从而大大提高设备运行的状态稳定和安全。在实际生活中,图像识别与语音识别等人工智能识别技术的应用,能有有效的实现人与人之间信息调配和沟通,降低生活中资源浪费。因此,人工智能识别的成功应用,可以有效的解决人们在实际生产生活中遇到的问题。
2人工智能识别技术关键技术的运用
2.1语音识别
语音识别技术的研发,其核心是所采用的机械设备能够准确识别人类的语言,在此基础上开发人机语言交互技术也是其中的重要的一环。当前,基于语音识别技术的产品在不断的被研发普及。在各个领域得到了广泛应用。为人们的生活提供了便捷。语音识别技术在技术上是通过MFCC提取过程、预加重、分帧加窗、离散傅里叶变换、Mel滤波器组、Mel滤波器组、高斯函数gmm等在声控交换、语音通信识别、语音交流中的运用。在这个过程中,其预加重环节需要用到公式(1)进行处理:在整个语音识别过程中,要做到两点,其一是实现高效的语音沟通交流,第二方面是要保证通话的堡真性,从而保证人们在实际过程中有着良好的通话体验。
2.2图像识别技术
图像识别技术作为计算机人工智能技术的重要领域与分支。其核心是对图像进行相应的对象识别,以便区分出不同模式下的目标与对象。图像识别技术从发展上来讲,总共经历了三个阶段。分别为文字识别、图像处理与识别、物体识别。其通过对图像信息进行相应的处理分析,得到我们所需要的研究目标。发展到了今天,图像识别不仅仅是通过肉眼进行识别,同时借助计算机进行识别也是重要的识别手段。在识别原理上,计算机图像识别技术与人客户肉眼识别上是相同的。人类进行图像识别是根据图像本身具有的特征,将图像识别出来。当我们看到一张图片的时候,大脑会迅速反应出该相识的图片,并进行分类识别与存储记忆。人工智能图像识别技术是以图像特征为基础,关注每个图片的主要特征,并排除掉多余的输入信息,找到所需要的关键信息,分阶段的完成对图像信息的整理形成一个完整的直觉映像。在人工智能图像识别过程中,模式识别是关键,模式识别是对事物不同形式的信心进行分析处理,从而实现对一个事物或者现象的描述、辨别以及分类。如图1所示,为一个完整的图像识别过程。
2.3机器人技术
我国在进入信息化时代之后,机器人技术逐渐发展起来,并得到了广泛的应用。同时,为了满足时代的发展的需求,机器人技术已经逐渐成为一门学科。伴随着智能化技术的发展,人工智能识别技术与机器人技术的相互融合,使得机器人技术得到了飞速的发,推动了机器人行业的迅速发展。人工智能识别机器人在组成上包含内部信息以及外部信息传感器。其传感器包含了对视觉、听觉、触觉以及嗅觉等。除了感受器之外,他们号又要电动机、筋肉等主要部件组成的效应器,使得他们能够与外界充分的接触起来。从目前的技术发展来看,智能机器人在组成上至少需要感觉、反应以及思考三要素,其原理图如图2所示。
2.4人工智能神经网络技术
近几年,人工智能网络技术十分常见。其主要是通过将处理单元之间进行有效的连接,从而构建出成熟的网络系统,能够进行相应的逻辑思维思考等功能,就像人的大脑一样进行思考,与人的脑力具有相似的模拟系统。在实际工业工程中,电子元件、处理元件以及人工神经元等的有效结合,可有效的解决实际工程中的问题以及保证工业的稳定运行。一个完整的人工智能神经网络包含输入层、隐层以及输出层三部分组成。
2.5远程规划与自主控制技术
远程规划与自主控制技术是计算机人工智能识别技术的关键组成部分。通过在航空航天领域应用该项技术,可以有效的实现对外太空器件控制的目的,其中NASA技术的研究应用成功,是人工智能识别技术在航空航天领域应用成功的重要里程碑。其将系统控制与远程监控系统技术充分融合在一起。实现了动态的监控。同时工作人员也可以采用计算机智能识别技术,了解外太空设备的运行状态以及明确设备可能出现的问题。并可针对存在的问题,制定出相应的调整方案,保证设备的可靠运行。
3小结
伴随着经济水平与科学技术的不断提升,人工智能识别技术的应用也越来越广泛,因此对人工智能识别技术进行研究对于提高人们生产生活质量水平具有重要的意义。本文在对人工智能识别技术的定义、研究现状以及其优点优势介绍的基础上,对人工智能识别中的语音识别、图像识别、机器人技术、人工智能神经网络技术以及远程规划与自主控制技术的特点与原理进行的全面的分析。这对于促进人工智能水平的发展具有重要的意义。同时,在未来的人工智能识别技术的发展中,需要对相应的工程实践经验进行总结,并结合环境发展的趋势要求,做好相应的技术研发工作。
参考文献
[1]张文娟.计算机人工智能识别关键技术分析[J].电子测试,2019,000(001):139-140.
[2]朱维平,金钱菽,王海华,等.基于人工智能的船舶识别关键技术研究与应用[J].中国水运(上半月),2020.000(004):65-67.
[3]黄琳.视频监控系统中的关键技术研究[D].西南交通大学,2006.
[4]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,012(006):590-592.
[5]胡智魁.生物医学图像计算机智能识别关键技术研究[D].广东工业大学.
关键词:人工智能;大数据;交叉领域
自二战时期阿兰•图灵破解恩尼格玛密码机带来胜利的曙光之后,人工智能初见苗头,1956年“人工智能”一词首次由约翰•麦卡锡等科学家在达特茅斯研讨会上提出,时至今日,人工智能经历了60多年的浪潮和洗礼,其中有曙光、有冰封,也有期望。纵观当下,人工智能不仅仅是机器智能,在深度学习和推陈出新的算法推动下,其携手云计算、大数据、卷积神经网络等,攻破了自然语言语音处理、图像识别的瓶颈,像潘多拉的盒子一样在认知科学、机器人学、机器学习等领域全面开花,人工智能涵盖了从基础层、技术层到应用层等多个方面,为人类文明带来了翻天覆地的变化[1-2]。人工智能包罗万象,在其基础上衍生的大数据“洪流”对人类社会的方方面面进行冲击,这些数字的价值已然超越了诸如金钱、财产、黄金、石油,甚至是土地。然而,大数据技术也如同普罗米修斯盗得的圣火,一方面给人间带来温暖和光明,另一方面也有可能使自身被奴役甚至使人葬身火海[3]。因此,当我们沉迷于大数据的海洋中时,我们是否有能力像蓝鲸遨游大海一样自由掌舵,是当今大数据和人工智能时代存在的一个重大问题。是“曲径通幽”还是“会当凌绝顶”,我们如何在大数据中“浮游”,而不是一味地扩充,需要理性看待与合理评价大数据对人类生存和发展的影响。
1.人工智能和大数据与“工业革命”
2020年刚刚结束的新一轮美国总统竞选上演了各种“国家闹剧”,为何特朗普在2016年赢得大选,而4年之后却无法连任?时间推移,2016年他胜利的部分原因在于他利用了面临技术威胁的工业行业中工人们的焦虑,同时指责非法移民对美国及美国人资源和就业机会的占用[4]。但在技术浪潮的挑战中,自动化和人工智能才是占用的“根源”。早在18世纪60年代工业革命时期,机器取代人力,规模化工厂生产取代个体手工生产,即引发了人工智能数据的工业大变革。从机械结构、电气控制等模块的设计和改良,车间机器人的智能化已可以代替人完成生产作业[5]。通过智能化机器人可以减轻劳动负担,还可以用于环境检测[6]和实施救援[7]等,保护我们的人身安全。这些“机器人”在为我们减负的同时确实也引发了“失业危机”,这种现象不仅于美国,日本、韩国和德国亦是如此。我们也许可以形象一下,未来20或30年后,工厂中工伤几乎为“零”,完全实施机器人24小时作业,速度惊人,质量统一,而仅有的几个人使用简单的触摸界面对机器下达“命令”。机器的发展已超乎我们对普通机械的认知,21世纪开发的三大机器人中大狗(BigDog)解决了运动和重载运输问题,特别用于军事领域,被誉为“当前世界上最先进适应崎岖地形的机器人”;亚美尼亚(Asimo)从人类如何移动上展现了机器人仿人运动;Cog具有了人类所特有的思考,由不同处理器组成的异种机互联网络形成了“大脑”。特斯拉——其除了是电动汽车和能源公司外,还是自动驾驶汽车行业的领跑者之一。其2016年已销售具有自动驾驶、自动自制和自动停车功能的电动汽车,但出于法律和伦理层面,驾驶员还是要坐在驾驶位上,但他可以做他想做的其他事,发短信、打电话或是休息,而不再是驾驶汽车。我们可以不用担心酒驾,不用因为时间紧张而疲劳驾驶,不必为新手司机而变得脾气暴躁……汽车自动驾驶将让我们行驶得更规则、更安全和更“无聊”。自动驾驶上的智能进化,使得自驾型派送车为商业化服务成为可能,还有自驾型飞行器也在被研发,通用、宝马、谷歌等公司一直在努力开发,通过无人机在您家门口投送包裹将对电子商务世界带来更多创造性方案。“如果你够走运的话,机器可以把你当成宠物。”虽为戏谑之言,却又饱含心酸。工厂变得越来越自动化,但其仍需要人类专家,他们才知道如何监控传感器,知道在发生故障时如何进行修复,机器的运行离不开人的监控,只有人的思考才能有新产品的诞生以及高效的生产流程,我们与机器共存,是从体力中解放,但要从事脑力工作。
2.人工智能和大数据与金融的未来
“数字蝶变”席卷金融行业各个领域[8],金融行业应用大数据、移动互联网、人工智能等先进信息技术,累积了非常多的客户信息。通过大数据的帮助,金融公司在分析数据下寻找更多的金融创新机会。在商业智能(BI)的辅助下,电信业可以对客服描述和定位及需求进行预测;保险业可以在进行风险分析的同时进行损益判断;银行业可以调整市场活动,建立信贷预警机制等等[9]。人工智能和大数据让金融业形成了“以客户为中心”的模式。与客户最密切的金融即是金钱,但是它们已经被“支付宝”和“微信”以及更多的电子支付方式取代,越来越少的人使用现金,数字金钱是否会完全取代物质金钱,我们很可能会发展为无现金社会。那么首先“下岗”的是谁呢?答案毫无疑问:银行。巴克莱银行前首席执行官安东尼•詹金斯曾预测,对于工业化国家,银行员工和其分支机构在未来10年内会消失;花旗全球视角与解决方案的一项研究预测,美国和欧洲的银行将在未来10年裁减约180万员工;甚至2016年2月的一份丹麦银行家协会新闻稿表示,银行抢劫案数量连续第5年下降。就支付领域而言,在这样的时代背景下,如何利用大数据技术对跨越式发展的支付行业进行监管,成为一个值得深入研究的课题[10]。在人工智能下,我们都有被银行自动回复或自会读取特定问题的“员工”惹恼过。沟通技巧和财务知识同样重要,因此,银行业员工的下岗只是在基础性操作上,对于“专业咨询”,需要更多受过高等教育、具有更好沟通能力的员工。目前,我国的多数银行还没建立“开放、共享、融合”的大数据体系,数据整合和部门协调等问题仍是阻碍我国金融机构将数据转化为价值的主要瓶颈。大数据的整合、跨企业的外部大数据合作不可避免地加大客户隐私信息泄露的风险。有效防范信息安全风险成为商业银行大数据应用中急需解决的问题。
3.人工智能和大数据与“专家系统”
电子病历数据、医学影像数据、用药记录等构成了医疗大数据。医疗数据不仅包括大数据的“4V”特点,即规模大(volume)、类型多样(variety)、增长快(velocity)、价值巨大(value),还包括:时序性、隐私性、不完整性和长期保存性。医疗大数据可以提供预警性,当数据发生异常时,通过一定的机制可以发出警告,从而迅速采取相应措施,及时解决问题[11]。成立于1989年的美国胸外科协会(STS)数据库,至今已经涵盖了美国95%的心脏手术,收集了500万条手术记录[12]。其中的先天性心脏手术(CHSD)数据库是STS数据库的重要组成部分,是北美最大的关注儿童先天性心脏畸形的数据库,被认为是医学专业临床结果数据库的金标准。近年来,基于CHSD数据库所进行的数据挖掘不断增加,大型数据库对提高医疗质量所起到的正向作用正在日益凸显。如Welke等基于CHSD数据库探讨小儿心脏外科病例数量和死亡率之间的复杂关系[13];Pasquali等基于CHSD数据库探讨新生儿Blalock—taussig分流术后的死亡率[14];Jacobs等基于CHSD数据库采用多变量分析方法来研究病人术前因素的重要性[15];Dibardino等基于CHSD数据库采用多变量分析的方法来探讨性别和种族对进行先天性心脏手术结果的影响[16]。这些都是在医疗领域采用人工智能提供的医疗诊断,形成了“专家系统”,专家系统可以说是一种最成功的人工智能技术,它能生成全面而有效的结果。借助医疗大数据的平台,“专家系统”可以智能辅助诊疗、影像数据分析与影像智能诊断、合理用药、远程监控、精准医疗、成本与疗效分析、绩效管理、医院控费、医疗质量分析等。不仅是数据平台,“达芬奇机器人”可以看成医疗的高精尖“人工智能”,它能缩短泌尿外科手术以及术后患者恢复时间,促进患者早期下床活动,减低并发症发生率[17]。达芬奇手术机器人在消化系统肿瘤、泌尿系统肿瘤、妇科肿瘤和心胸部肿瘤等手术中均有运用[18]。正是机器人,还有其他人工智能设备,如插入手表或衣服里的传感器、植入我们皮肤下的芯片,以及智能手机中装有各种“专家系统”的远程医疗、预防医学,甚至是器官的3D打印和虚拟现实治疗等的发展,让医学发生相应的转变,并使其逐步突破人类的传统健康概念,那么是否意味着医学将成为只有科学性,毫无直觉性的学科呢?我们携带的内部传感器和外部应用程序将成为我们的医生吗?“你好,医生”被“嘿,Siri”取代吗?这不尽然。医学必然将是向精准化发展,并更具个性化、参与性、预防性和可预测性。医生不再是疾病的修理工,而是改善我们健康状况的顾问。直观当下,我们还是被“看病难”所困扰,我们提出“分级诊疗”,是在拥有家庭医生、全科医生和专科医生的基础上再加上人工智能,以实现预期的健康监测、辅助诊疗和疾病筛查。
4.人工智能和大数据与教育变革
面对各行业和各学科,教育作为传承文明和创新知识的载体,似乎被排除在人工智能之外。就目前而言,人工智能与教育深度融合发展还存在技术基础不稳、教育数据缺陷、算法能力不足等现实问题[19]。我国目前更想要做到的是在教育上消除“信息鸿沟”,促进教育公平、均衡发展。因此,目前可以看到人工智能的教育多在于语言学习软件,通过虚拟技术和人工智能构建一个灵活的、可扩充的虚拟交互平台,设计多维虚拟场景和智能人工角色,实现不同场景下人机角色的交流和学习,提升学习者的口语能力和语感知识[20]。这使得教师不再是唯一的知识传播者,任何互联网搜索引擎都将提供比教师所有的更多信息,并且可以更快捷地获取。肺炎疫情暴发以来,远程网络教育成了主要教学形式,互联网教育形式其实早在小学、中学和大学中运用,虚拟现实技术在教学领域的研究和探索也在全面展开。谷歌已经开发一款VR纸板视图,并将研发的虚拟课程一起推向市场,使现实生活中在生物课上解剖一只青蛙成为一件容易且有趣的事,通过虚拟青蛙,学生们可以去除心脏和其他器官,而不再是象征性的抽象体验。虚拟现实可以像互动游戏一样,比单一的在教室听老师授课带来更多乐趣和体验,学习效果可能更好。我们的学习是知识的积累,那么教育就是我们的库,荀静等结合自身情况对西安工业大学知识库构建进行探究,认为机构知识库在保存知识资产的同时,更重要的是促进学校知识资产的传播利用和管理,提升学校影响力和学术声誉[21]。刘畅等通过对东北大学机构知识库服务的推广研究,了解到开放获取的概念和实践已经受到了广泛的认可,机构知识库不仅可以成为一个知识的存储库,也可以成为各个学科领域的学者进行在线交流的平台,提供个性化的增值服务,既有利于机构知识库的内容建设,也可以进一步促进学术交流和科研合作[22]。知识库,即大数据的有机整合和有序利用,是学术成果、视频文档、实验数据等进行收集、长期保存、传播和提供开放利用的知识资产管理与教育服务[23]。
5.人工智能和大数据应用的共性需求
人工智能和大数据时代,海量的信息来自“五湖四海”,但都通过互联网络汇聚智能终端。这些数据只会进一步增多,不仅仅是云存储,对于信息的进一步挖掘、处理、分析和利用,目标性结果才是我们最想要的信息。全球包括IBM、微软、谷歌和亚马逊等一大批知名企业纷纷掘金大数据挖掘这一市场,大家都在开拓自己大数据分析平台。数据挖掘是大数据时代孕育的产物[24],是我们的共性需求,与传统的统计分析技术相比,数据挖掘有着自身的本质特征,数据挖掘是在没有明确假设的前提下去挖掘信息并发现知识。数据挖掘所得到的信具有先前未知、有效以及可实用三个特征[25]。数据挖掘的出现不是为了替代传统的统计分析技术,相反,它是统计分析方法学的延伸和扩展[26]。随着信息时代的到来,数据挖掘被越来越多地应用于各个领域。
6.人工智能和大数据的展望
大数据与人工智能相辅相成,在人工智能的加持下,海量的大数据输出优化的结果,使人工智能向更为智能的方向进步,大数据与人工智能的结合将在更多领域中击败人类所能够做到的极限。漫长的人类历史发展和进化,信息和人类一直“缠缠绵绵”“你追我藏”,因此,我们应该明白信息就是信息,我们需要的是“维基百科”,而不是仅仅的“维基”。走出狭隘的信息资源,管理和洞察大数据,才是对数据的有用。因为,我们早已告别了数据库放在一间房间的时代。此刻不得不提蓝鲸法则——大数据之道:了解数据懂得利用数据的“浮力”才是关键;“以简约为目标”将数据最终形成洞察及行为;可以通过“数据”“信息”“知识”流程式、组合式、直通车式各种需要的方式来获取[27],在简约中“印象”处理繁杂的大数据,使之“为我所用”。=数据也是一门科学、一项技术,如果实验不能证明其具有可重复性和一般性,那它是没有科学依据,但是,任何一项科技,如果你坚信它必将改变社会和商业,选择从长期展望其发展并持续付出努力,那么就是一种战略选择[29]。人类社会的政治、经济、文化、思维等固有“态势”被重刷,数据思维将为我们带来一个智能全新的世界观。
最近,有关各种新兴科技的新闻不绝于耳。
一方面是人机大战,AlphaGo方兴未艾,德州扑克大战又来。虽然人们对于这些人机大战的细节并不熟稔,甚至对德州扑克和围棋的规则都所知有限,但是并不妨碍对比赛结果的关心。是人胜利了,还是机器更厉害?
另一方面是VR大潮涌动,虚拟现实进入快速增长期,各种VR/AR产品粉墨登场。可是繁华过后,智能商业时代似乎还未到来,实现盈利的企业和项目屈指可数。当新一代信息技术不断推动产业发展,这些技术创新究竟能够从哪些方面,改变企业的经营形态和商业模式?
总体而言,未来智能商业的价值创造形态将呈现三个重要的特征:小前端、大平台、生态圈。从1G到5G,随着互联网基础设施的成熟和完善,“入口”和“平台”成为构建商业生态的关键要素。首先,小前端的优势在于建立用户联系,在员工方面,海尔做“小微”、恒大招聘兼职销售员,都是在做“小前端”,强化与用户的联系,更好更快地发现用户需求。在界面方面,移动终端尤其是手机成为关键的用户入口。同时,VR正在成为新兴的用户入口,不同之处在于电视屏幕挂在墙上、手机屏幕拿在手中,而VR直接把屏幕戴在眼睛上。这也是此起彼伏的VR大战的潜在动力,目标还是争夺用户入口。
然而,决定这些入口所提供的内容和体验的关键在于“云平台”,利用大数据进行决策,人工智能的水准非常关键。通过发展人机交互、深度学习、自然语言理解、机器人等核心技术,利用算法进行决策,人工智能能够精准匹配用户需求。只有围绕入口和平台,企业所构建的商业生态系统才具备用户价值,才能创造出具有黏性的用户体验。这种生态,未必要像BAT那么大而全,关键在于各元素间的协同性,以及关键的连接点。比如小米,用手机将各类智能小家电串联、并联,打造出一个智能家居的小生态。
围绕人工智能,产生了物理和数字世界互动技术、数字化与智能化服务技术、信息化与云端迁移技术、增强信用安全技术等。这些关联性技术形成了一个重要的技术生态圈,互促共荣,并产生良性的化学反应。此外,新一代信息技术还改变了传统制造业的生产方式和产业组织模式。云计算、智能终端等成为基础设施,以算法和决策为特征的数据成为生产要素,围绕商业生态系统实施大规模协作与共享,提升产业组织的效率。
以汽车制造行业为例,互联网汽车虽然饱受“PPT造车”的诟病,一直不为外界看好,但随着蔚来汽车、车合家等企业的崛起,产业组织变革正在发生。因为制造范式的改变,传统汽工业的大规模生产模式将面临更大挑战。
1936年人工智能之父提出人工智能这个概念,为人工智能乃至现代信息科技奠定了基础。
1958年,10位美国年轻的学者在一起研讨,正式提出人工智能这个概念。
人工智能经过了60年曲折的发展,有过令人兴奋激动的时刻,也有令人非常沮丧的时刻,现在到了一个新的,这是没有异议的。
特别值得一提的是,专用人工智能领域取得了突破性进展,今年,阿尔法狗是标志性之一,包括竞赛性能的不断提高,特别是在测试中已经超越人。
新版的人型机器非常的震撼人心,在地面上走,尽管歪歪扭扭,但走得还很稳;还有自动驾驶汽车,在雪地里,也可以走得很好;语音识别,这是科达讯飞一个典型的语音识别的例子,效果非常好;人脸识别,尽管还有一些挑战,但是这几年还是不错的。
专用人工智能确实取得了突破性的进展,但人工智能的研究与应用依然任重道远,要在通用人工智能方面取得巨大突破还需要尽洪荒之力,曾经有四句话描写了人工智能目前的水平,有智能没智慧,有智商没情商,会计算不会算计,有专才无通才。
另外,人工智能产业化应用也有了很好的发展,2015年全球人工智能市场规模为1270亿美元,今年预计1650亿美元,到2018年预计超过2000亿美元,发展非常之快。目前,人工智能已经上升到国家战略高度。过去一年人工智能领域的十件大事
过去的一年里,人工智能领域有很多新的变化。
第一项,阿尔法狗。
第二项,各国政府高度重视人工智能发展,包括今年5月份美国白宫举行的4场研讨会。
第三项,IBM类脑超级计算机平台,是基于前几年的芯片。
第四项,软银320亿美元收购ARM,这是很大的收购。
第五项,谷歌、facebook等开源人工智能基础平台反映了一个趋势和动向。
第六项,创建公益性的人工智能机构OpenAI。
第七项,在学术方面,Science发表Bayesian Program 论文。
第八项,微软深层残差网络夺冠2015年ImagnNet。
第九项,谷歌量子计算机取得重要突破,为人工智能计算搭建了一个平台。
第十项,剑桥大学成立了人工智能伦理研究所。
怎样通过这个标志性事件看目前人工智能发展的状态,我将其概括成十段话。
人工智能十大趋势动态
第一,人工智能热潮全球化,从东方到西方,从发达国家到发展中国家,从大国到小国,都掀起了热潮。
第二,产业竞争白热化。
第三,投资并购密集化,过去一年的收购、投资,数不胜数。
第四,人工智能应用普适化,开始向各个领域渗透。
第五,人工智能的服务专业化,一个是研究通用化的人工智能,一个是专业化的人工智能。
第六,基础平台开源化,包括IBM、谷歌开源的平台,是过去一年特别明显的一个新的特征。
第七,关键技术硬件化,包括IBM的类脑计算平台。
第八,技术方法集成化,单一的人工智能计算理论和方法不可能包打天下,集成创新势在必行,阿尔法狗里集成了很多。
第九,学科创新协同化,多学科跨界融合交叉协同创新人工智能创新途径,其中包括量子技术跟人工智能的结合。
第十,社会影响大众化。
人工智能未来发展五大思考
第一,要保持警醒。热潮下面尤其需要冷思考,阿尔法狗在围棋上的表现,确实提高了人们对人工智能的期望,但是对人工智能希望太高,如果没有实现就会非常失望。过去60年中我们有很多这样的教训,在热潮下尤其需要冷静的思考,有就一定会有低谷,这是发展的客观规律,而任何一个时段不可能一直蓬勃,所以一定要保持冷思考。引用最新的新兴技术成熟度曲线。智能机器人、认知等热门技术正处于期望膨胀期,接下来可能是幻灭期,所以需要我们冷静的思考。
第二,切忌跟风。我认为跟风难有大作为,这几年风口热好像说得很多,找风口不如找关口,发展的瓶颈在哪里,突破瓶颈就可能开创一个新天地,抢占先机,大家不要再跟风。
第三,不忘初心。对于人工智能来说是不忘初心继续探索,回归人工智能的本原,是要解决什么问题,别走偏了。所以从研究的内容到研究的目的,在回归本原的过程中尤其要记着,信息科技与脑类科技的交汇,人脑智能机理的挖掘孕育着信息科技的重大变革。
第四,苦练内功。重视前沿基础理论研究,现在是家喻户晓,但是大家不要忘记不是那么火爆的时候在干什么,一直坚持,才有深度学习的今天,所以苦练内功很重要,不能被当下的热点一叶障目。深度学习不等于AI,深度学习只是人工智能领域机器学习方向的一种方法,尽管现在效果很好,确实需要思考如何克服这个瓶颈,人工智能发展的下一个关口在什么地方。深度学习的成功不是理论方法的突破,而是在大数据和大规模计算资源驱动下的基于基础理论的技术突破,其本质是通过映射对复杂函数进行逼近。
深度学习依旧存在明显的局限性,尤其在任务的切换和对环境变化自身完善、对小样本的举一反三等方面,人工智能与人类还是相差甚远。
第五,以史为鉴。丘吉尔说你能看到多远的过去,你就能看到多远的未来,你过去看的有多深,你对未来才能看得有多准,我认为是有道理的,所以这个时候就需要我们做一个思考。从浅层智能到深层智能;从专用人工智能到通用人工智能;从机器智能到混合智能;从数据驱动到数据和知识协同驱动;从线下智能到云上智能;从网下到网上。
人工智能在中国的发展
这些具体的趋势实际上都反映在整个社会化大趋势上,智能化是新一轮科技与产业革命的最显著特征。
我们国家发展有很多机遇,天时地利人和,当然也有挑战,我们的战略思维、冒险精神还不够,所以要思考这些问题,人工智能如何更好地服务社会。
如何抓住这个机会,我觉得首先应该有一个规划,因为只有通过顶层规划协调才能实现一盘棋,最终实现人工智能强国。
Web3.0大量借用人工智能的成果,其媒介形态直接指明网络广告的发展方向是越来越高级的智能性。可以说智能广告是未来网络广告发展的必然趋势。Web3.0可以使“网站内的信息直接和其他网站相关信息进行交互,能通过第三方信息平台同时对多家网站的信息进行整合使用;用户在互联网上拥有自己的数据,并能在不同网站上使用;完全基于Web,用浏览器即可以实现复杂的系统程序才具有的功能。”通过这个定义,我们可以看出Web3.0具有个性化、定制化、整合性等特征。从实现原理上来说,Web3.0是一种全新的人机对话方式,它借助开放的API(应用编程接口),使网站成为一个基于“定向搜索+开放式TAG(分类系统)+智能匹配”的操作系统。这种操作系统具有极强的智能性,以至于能够部分替代人类的劳动和思考。Web3.0作为一个广告营销活动平台,可以完全根据用户的需求智能化的整合互联网上的信息,最终满足个性化的消费需求。
Web3.0相对Web2.0转变的一个重要标志就是前者升级为人工智能。人工智能又称“智能模拟”。利用电子计算机和各种电子技术来模拟人类的某些智力活动。有模拟识别、学习过程、推理过程、探索过程、环境适应等。新一代人工智能主要特征是具备学习、进化和自组织能力。注入了人工智能因子的Web3.0将极大的改变互联网广告的形态。
可以说,从Web1.0到Web2.0,再到Web3.0的划分,不但实现了时间上的跨越,更重要的是这种划分实现了人类使用网络方式的革新。也在潜移默化中影响了我们这个时代。如果说Web1.0时代以门户网站的信息综合呈现以及客户的单向访问为代表,Web2.0推进了普通个人使用互联网的进程使之成为草根狂欢的世代,那么Web3.0则进一步发挥了Web2.0的优势,大大提高了网络的智能化程度,解决协同生产方式的恒久动力问题和信息最优化自动整合的问题,极大提高了生产力。智能广告就其传播学意义上来说是关于广告主及其产品或服务与消费者之间通过智能网络进行的信息高效化合理化沟通问题,Web3.0平台为解决这个问题铺平了道路。
随着Web3.0人工智能技术在网络广告领域广泛应用,产生了许多以Web3.0为平台以人工智能等技术为支撑新的广告形态。尽管它们的形式可能各有不同,但他们都表现出一个共同的本质能力,就是能够针对用户接触媒体的习惯做出简单的分析归纳、推理判断,进而合理的安排广告方式,解决传统广告无法解决的定向、精准、高效的问题。我们将这些具有近乎人类思考和行动的简单推理判断能力的广告形态,称之为智能广告。
二、智能广告的几种表现形态
智能广告常见的表现形态主要有如下几种:
1多感官广告
在互联网Web3.0的发展方向下,智能广告主要表现形态就是多感官广告。人类对外界的体验能力来自于视觉、听觉、味觉、嗅觉、触觉,以及第六感(潜意识)几大感官。前五感是人类可以借之明确传递感觉、情感、思想或其他体验的感官。人类在感知事物时同时运用这五种感官,因此,在某种体验的传播中,如果媒介调动受众的感官越多,人的感知感觉就越仿真。显然,广告信息若经由这种仿真媒介得以传播,广告的作用效果将会大大提升。Web3.0时代,计算机图形、数字影像、人机交互、传感设备、人工智能等技术的进步和综合运用能创造出一种基于可计算信息的沉浸式交互环境,这就是“虚拟现实”。人们通过人机交互设备与虚拟环境当中的对象自然交流,产生“沉浸”于等同真实环境的感受和体验。
2自动广告
随着网络广告的进一步智能化,互联网上出现了越来越多的智能广告系统。这种广告系统能够根据一些特定因素自动选择将广告放置在哪里。这些因素包括用户信息、站点分析、页面内容和广告过去的表现等。随着Web3.0步伐的加速,网络广告的发展也进一步智能化。
3智能搜索引擎广告
智能搜索引擎被称为第三代搜索引擎,是区别于以人工进行目录分类的Yahoo等第一代搜索引擎和当今以百度、Google所代表的以关键词搜索为核心技术的第二代搜索引擎而提出来的全新的搜索方式。作为对第二代搜索的一种超越,第三代搜索的范式革命主要在于呈现方式以及参差多态的演化路径。其呈现方式有诸如Clusty、bbmao的自动分类、聚类功能以及Autonomy基于某种专有的模式匹配和概念搜索的算法,可以自动根据文本中的概念进行分类,自动标引,并基于用户兴趣自动匹配出个性化、多侧面的直接或隐含的相关档案。其演化路径有例如个性化搜索、社会化搜索、本地化搜索、知识问答社区、社区内容搜索等等。而在核心搜索技术上,则大致包含人工智能、模式识别、语义分析、神经网络等发展方向。
4微件广告
微件广告是一种新型的广告服务方式,广告商通过它为用户提供有用的服务,增强网站的个性化功能,从而获得消费者的眼球和宝贵时间。这种广告的妙处就在于,消费者在享受广告商提供的微件服务时无形中接受了广告信息,建立起与品牌之间的情感联系。整个体验微件服务的过程是一个人机交流的过程,充分体现了网络应用的智能性。三、智能广告的主要特征
通过对以上几种常见的广告形态的分析,我们可以发现智能广告可以具有虚拟现实、自动、智能匹配等特征。尤以受众识别、方式、内容生成和效果监测等方面的智能化特征最为显著。
1受众识别的智能化
智能广告首先要解决的问题就是如何精确的识别广告的目标受众。受众的细分是一个鲜明的趋势,细分的同时伴随着的是新的聚合方式,而受众识别的任务就是发现细分后个性化了的人以及重新聚合了的群体。从现有的模式来看,受众的选择和识别方式有以下几种:
(1)基于网络用户使用行为的识别方式
这种识别方式主要结合IP和Cookie方式追踪和收集用户信息。发现用户的浏览兴趣和使用行为。通过使用探针检测、Netflow采集、DNS访问统计、鼠标轨迹分析(鼠标点击热图)、基于系统日志收集技术等数据采集技术,可以获取大量网络用户使用行为方面的数据。除此之外,用户的属性数据和价值数据、本企业和竞争对手的经营数据等业务数据还可以从业务系统或者通过情报分析获取。
采集到了原始数据后,要对数据进行分析。根据网络数据、用户数据和业务数据,制定相关的数据过滤、预处理、数据综合分析处理等程序,从中获取有价值的分析结果,并以准确直观的方式表示出来。现有的一些技术已经能够分析出网络用户的人口统计学方面的信息。
(2)基于页面内容的识别方式
基于网页内容识别用户的定向网络广告(Content-Tar-getedAdvertising)大大拓展了广告投放的空间。增加了被用户浏览的机会。这种识别方式是对基于关键词识别方式的一种演进。这种识别方式使用智能技术分析页面内容。进而对用户使用习惯作出判断。通过用户浏览过的页面进行内容分析,根据信息主题对页面进行聚类。把用户浏览行为对其兴趣的作用列入聚类结果,得到综合评估模型。页面内容的分析受计算机自然语言处理水平的限制,比如有时会产生在关于“人工智能”的网页内投放“人工流产”广告的失当行为。
(3)基于内容过滤的识别方式
这种识别方式多见于一些社会性网络(SocialNetwork-ing)中,这些网站通过诸如类型、关键词、标签等表述、分类或评价方式来建造个性化的发现和推荐机制。通过这类网络服务,可以很好的发现具有不同个性特征的用户。比如,国内用户熟悉的音乐推送网站“潘多拉”()。只要在“潘多拉”网站首页的播放器中输入用户最喜欢的歌手名字或者歌曲标题,网站就会自动建立一个网络电台,源源不断地播放最符合用户口味的曲目。用户喜欢或者不喜欢一首歌,可以点击相应的反馈按钮,让系统更明白自己的喜好。
(4)基于协同过滤的识别方式
协同过滤(CollaborativeFiltering)技术,是推荐系统中应用最为广泛的技术之一。它基于一组兴趣相同的用户进行推荐。协同过滤基于这样的假设:为用户找到他真正感兴趣的内容的好方法是,首先找他与他兴趣相似的用户,然后将这些用户感兴趣的内容推荐给此用户。国内网民比较熟悉的当当网、豆瓣网等就是使用了协同过滤技术的代表性网站。这种过滤方式是基于一定的推荐算法。通过这些算法可以推测出用户喜欢的内容。当然协同过滤除了运用了智能技术,也大量借助了网民自身的力量完成推荐任务。协同过滤方式使网络能够更加智能化和个性化的向用户推荐他们所喜欢的东西。也包括适合他们阅听的广告信息。
2广告方式的智能化
据艾瑞网消息,一个完全自动化的广告网络业已。它能将几种价格模式和定向方式混合在一起,以保证广告获得最好的设置,广告主获得最大的投资回报。消息详细报了Turn公司刚刚的与众不同的广告网络TurnSmartMarket,它能够根据一些因素自动选择将广告放置在哪里。这些因素包括用户信息、站点分析、内容和广告过去的表现等。由于把不同的定向方法联合起来,该广告网络可以采用几种价格模式,如CPA。CPC和CPM等。Tum的机器知识平台可以预测什么广告和价格模式结合后,能给广告主带来最多的收入,给消费者带来最大的相关性。广告主保留着排除某些商站点的权利,并且可以根据效果反馈和回复分析来调整广告活动。但是对于广告出现在那里则基本没有控制权。
3广告内容生成的智能化
广告内容的生成能够根据受众识别的结果并配合广告系统进行精确匹配,智能组合,生成适合特定用户的特定广告信息。
当然这只是在广告推送过程中使用了智能匹配技术,广告内容生成更具智能化的目标广告内容生产本身的“智能化”,这种生产过程是通过智能网络挖掘人类智慧潜能,进而生产出最具传播力的广告内容。
4广告效果监测的智能化
为了网络广告的科学投放,需要对广告效果进行系统有效的监测,对受众行为进行科学分析,从而保证网络广告投放的效果。在网络广告效果监测方法,最有效的方式便是采用智能监测系统。比如DoubleClick公司推出的DART(DynamicAdvertisingReportingandTargeting)便是一款业界领先的广告智能管理监测系统,其含义是动态广告传送及精准传送。该系统能够对在线广告和其它数字传播渠道进行管理、跟踪服务和报告,帮助网站在现有架构上最大限度地实现客户广告的命中率。
四、智能广告的发展方向
1广告本体的淡化
Web3.0时代,传统意义上的广告将不复存在,广告日益超脱了原来的形态,变得越来越隐性化。而且消费者主动阅听广告的情况将越来越普遍。广告与内容之间的界限变得消弭,广告被沟通、体验、娱乐、文化消费等活动所替代。
2处处有广告,处处都不是广告
法国广告评论家罗贝尔·格兰曾说过:“我们呼吸的空气是由氧气、氮气和广告组成的。”在Web3.0时代,借助先进的客户端普通用户就能实现复杂的网络应用,屏蔽不请自来的广告显得轻而易举,所以广告被驱逐出用户的视野。然而,即使是用户的一个最简单的网络应用,都被广告商布下天罗地网,你的身心都被暗含的广告所洗礼。广告以一种友好的方式出现在Web3.0时代的消费者终端屏幕上。
3创意依旧为王
无论媒体技术如何发展,在网络广告界最有话语权的永远是创意和创新。在“世界是平的”的时代里,技术复制成本是如此低廉和便捷,使技术不再掣肘创意,更多是创意在填平技术的沟壑。
网络广告早已进入动屏时代。即SISOMO时代。SISOMO是由Saatehi&Saatchi广告公司全球总裁凯文·罗伯茨在其新书《SISOMO——thefutureonscreen》一书中提出的一个全新的概念,是由画面(Sight)、声音(Sound)和动作(Motion)的前两个字母组成的。强调通过画面、声音和动作的整合将要成为新时代的主要传播形态,这一传播形态呈现为无处不在的屏幕媒体,从而创造了一种全新的生活方式。