公务员期刊网 精选范文 教育领域的人工智能范文

教育领域的人工智能精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的教育领域的人工智能主题范文,仅供参考,欢迎阅读并收藏。

教育领域的人工智能

第1篇:教育领域的人工智能范文

2016年1月,美国佐治亚理工学院计算机学院的教授AshokGoel,借助IBM的Watson人工智能系统创建了一个在线机器人JillWatson,并将其作为课程教学助理。其目的是帮助教师回答学生通过在线论坛提出的大量课程问题。通过几个月的反复调试,JillWatson的回答已经能够达到97%的正确率。现在,机器人助教已经可以直接与学生沟通,不需要真人助教的帮助。这项人工智能在教育中的使用,解决了AshokGoel教授的助教人数不够,难以及时回答学生提问的困境,增加了学生参与在线学习的兴趣,提高了在线学习的留存率。

这只是人工智能在教育领域的小试牛刀。虽然有专家预测在未来十年内不会看到人形机器人替代教师进入课堂,不过地平线报告2016年基础教育版和2107年高等教育版都预测未来五年内人工智能将会在教育行业普及。

教育行业已有的人智能研究和应用

Woolf等人在2013年提出了人工智能在教育领域应努力解决“五大挑战”:①为每一个学习者提供虚拟导师:无处不在地支持用户建模、社会仿真和知识表达的整合。②解决21世纪技能:协助学习者自我定位、自我評估、团队合作等。③交互数据分析:对个人学习、社会环境、学习环境、个人兴趣等大量数据的汇集。④为全球课堂提供机会:增加全球教室的互联性与可访问性。⑤终身学习技术:让学习走出课堂,进入社会。

过去十年,一些研究者对人工智能在教育领域中的应用做了大量的探索。相关的研究成果包括:①跟踪学习者的思维步骤和解决问题的潜在目标结构(Anderson等,1995);②诊断误解和评估学习者的理解域(VanLehn,1988);③提供及时的指导、反馈和解释(Shute,2008);④促进高效学习的行为,如自我调节、自我监控和自我解释(Azevedo&Hadwin,2005);⑤以合适的难度水平和最适当的内容来规划学习活动(VanLehn,2006)。

这些研究,基本上使用到了人工智能的每一项技术——自然语言处理、不确定性推理、规划、认知模型、案例推理、机器学习等。“智能导师系统”就是基于这些研究和技术而开发的人工智能教育应用。类似的成熟产品包括Tabtor(hellothinkster.com)、CarnegieLearning(carnegielearning.com)和FrontRow(frontrowed.com)。2014年,加拿大西蒙弗雷泽大学的一项试验发现用智能导师系统的学习者比使用其他教学方法的学习者获得的成绩更高。

人工智能在教育行业的新发展

教育行业的三种类型(内容、平台和评估)的服务商都在经历着一场变革。内容出版商面临纸质印刷到数字出版和开放教育内容的挑战。学习平台正试图区分自适应、个性化和数据分析的功能。评估供应商则继续探寻从多项选择题测试转向更具创新性的问题类型。人工智能将为这三种类型教育服务商带来新的发展思路和契机,同时也惠及教育生态系统中的所有利益相关者。学生通过即时反馈和指导提高学习效率,教师将获得丰富的学习分析和个性化指导经验,父母能够低成本地为孩子改进职业前景,学校能够规模化提高教育质量,政府能够提供负担得起的教育。2017年,人工智能将在以下领域发挥其效益。

1.人工智能批改作业

批改作业和试卷是一件乏味的工作,这通常会占据教师大量的时间,而这些时间本可以更多地用于与学生互动、教学设计和专业发展。

目前,人工智能批改作业已经相当接近真人教师了,除了选择题、填空题外,作文的批改能力已经大幅提高。美国斯坦福大学已经成功开发出一种机器学习程序,能够批改8~10年级的作文。随着图像识别能力的大幅提高,手写答案的识别也接近可能。就连占有美国标准化考试60%市场份额的全球最大教育企业——培生公司也认为,人工智能已经可以出现在教室并提供足够可信的评估。据培生公司近期的报告IntelligenceUnleashed推测,人工智能软件所具有的广泛的、定制的反馈能够最终淘汰传统测试。

2.人工智能实现一对一辅导

自适应学习软件已经能为学生提供个性化学习支撑。据2011年VanLehn的一项研究发现,人工智能在某些特定主题和方法上比未经训练的导师更具有效性。进一步的研究发现,人工智能导师能在学生出错的具体步骤上给予实时干预,而不是就整个问题的答案给予反馈(Corbett&Anderson,2001;Shute,2008)。

自适应学习在拉美地区正在兴起。AndréUrani市政学校的学生使用人工智能软件Geekie观看在线课程(视频和练习)。Geekie为学生提供每一步的实时反馈,并随着学习的进展来传授更为精细的课程内容。

早在1984年,本杰明·布卢姆的研究就提出一对一辅导能带来更好的学习效果。而人工智能技术可以模拟一对一辅导,以更好地跟踪、适应和支持个体学习者。这将是人工智能在教育中更高层次的个性化学习应用。例如,比尔·盖茨看好的人工智能聊天机器人或个人虚拟导师,能在学生面临挑战时提供强有力的支持,随时随地回答学生的提问;还可以为学生订制学习方案和规划职业发展路径,并引导学生走向成功。更重要的是,人工智能可以匹配聊天机器人或虚拟导师的面孔和声音来满足学生个人喜好。对比网页界面的自适应学习系统,这才是真正做到了一人一导师。

3.人工智能关注学生情感

2016年地平线报告高等教育版把情感计算列为教育技术发展普及的重要方向。也就是说,人工智能不仅限于模拟人类传递知识,还能通过生物监测技术(皮肤电导、面部表情、姿势、声音等)来了解学生在学习中的情绪,适时调整教育方法和策略。例如,机器人导师捕捉到学生厌烦的面部表情时,就可以立即改变教学方式努力激发他们的兴趣。这种关注情感的人机交流为学生营造一个更真实的个性化学习环境,更好地维持了学习者的动机。美国匹兹堡大学开发的AttentiveLearner智能移动学习系统就能通过手势监测学生的思想是否集中。突尼斯苏斯国家工程学院的研究人员正在研究开发基于网络的人工智能教学系统。该系统能够识别学生在任何地方开展科学实验的面部表情,以优化远程虚拟实验室的教学过程。

进一步的研究发现,人工智能还可以关注学生的心理健康。当前已经有使用人工智能来为自闭症儿童提供有效支持的案例。例如,伦敦知识实验室在Topcliffe小学开展试验,让自闭症学生与半自动虚拟男孩安迪开展互动交流,研究人员发现患有自闭症的学生在社交能力方面有进步。

4.人工智能改进数字出版

教科书等课程材料并非总是完美,传统印刷出版让课程的修订变得过于缓慢。这不仅是生产工艺的问题,更主要的是纸质课程材料无法快速获取使用者的反饋来识别缺陷所在。而数字化出版在人工智能的支撑下能彻底改变这一现状。

人工智能可帮助使用者快速识别课程缺陷。大规模网络开放课程Coursera的提供者已经将这一想法付诸实践。当发现大量学生的作业提交了错误的答案时,系统会提示课程材料的缺陷,进而有助于弥补课程的不足。

另一项人工智能在数字化出版的应用是自动化组织和编写教材。这是基于深度学习系统能模仿人类的行为进行读和写。ScottR.Parfitt博士的内容技术公司CTI就依据这项技术帮助教师定制教科书——教师导入教学大纲,CTI的人工智能引擎能自动填充教科书的核心内容。

随着自然用户界面和自然语言处理在人工智能领域的成熟应用,课程材料的数字化出版也会有更新的形态——不再局限于书本或网页的形式,聊天机器人和虚拟导师将成为内容表达的更好的方式。

5.人工智能作为学生

多年的研究表明,教会别人才是更好的学习,即learning-by-teaching。美国斯坦福大学教育学教授DanielSchwartz正基于这一理念来开发新的人工智能产品。他联合了多个领域的专家一起开发了人工智能应用——贝蒂的大脑(Betty’sBrain),让学生来教贝蒂学习生物知识。试点研究发现,使用这一方法来学习的学生比其他学生成绩更好,且在科学推理上也更胜一筹。

类似的研究和开发还有瑞典隆德大学的TimeElf和美国卡内基梅隆大学的SimStudent,这两个人工智能产品也是基于learning-by-teaching而开发,让学生在教会机器人知识的过程中深化对知识的理解。

另外,人工智能还推动其他教育方法和技术更好实现。如让虚拟现实学习环境更具沉浸感;给学生带来更多动手实践的机会;提供基于丰富学习分析的仿真和游戏化学习场景等。

第2篇:教育领域的人工智能范文

[关键词]人工智能;中学辅助教育;教育资源

[DOI]10.13939/ki.zgsc.2016.36.197

1 中学教育现状

教育乃立国之本,而中学教育乃是重中之重。一方面,中学生处于青春的成长期,各项综合素质逐渐完善中,中学教育意义和责任重大;另一方面,中学教育仍然是应试教育为主,仍然需要面对千军万马过独木桥的“中考”“高考”,中学教育很大程度左右了学生的未来。

目前的中学教育资源,分为公共教育资源――公办/民办学校教育,和社会教育资源――私人家教、补习班等,有如下两个特点。

1.1 学生得到的公共教育资源不足

学校班级结构的构成是:一名班主任教师,多名科任教师。在大多数学校中,无论是班主任教师,还是科任教师,均会承担其他班级的教学任务。可以看出,教师资源是非常有限的,加上“中考”“高考”的上线压力,教师往往会将有限的精力分散关注在所有的学生上,每个学生得到的公共教育资源并不多。

1.2 学生获取的社会教育资源不公

学生若在学校无法获取更多的教育资源,将不得不转向社会教育资源去求助。据统计,学生参与社会教育资源的成本在200元/小时,学习费用成本过高,进一步造成普通学生的社会教育资源也无法获取。

本文要探讨的,正是通过人工智能这一现代信息化技术,构建智能辅助学习系统,使中学生能够获取到更多、更公平的教育资源。

2 智能辅助学习

2.1 人工智能简介

人工智能(Artificial Intelligence)是计算机科学的一个分支,是一门研究运用计算机模拟和延伸人脑功能的综合性学科,能够对人的意识、思维等信息过程进行模拟。随着计算机科学技术的发展,特别是近年来大数据技术的成功应用,人工智能在越来越多的行业展现出蓬勃的冲击力。以谷歌围棋机器人“阿尔法”、微软助理机器人“小娜”等为代表的虚拟智能机器人,能像人那样思考,也具备超过常人的智能。

在国内,人工智能在教育领域的理论研究和教学实践表现得越来越活跃,尽管人工智能并不是为教育专门研发的,但是人工智能的不断发展,使得其在教育中的应用也越来越广泛,教育的智能化一直是教育界和教育技术领域的理想和目标。

2.2 智能辅助学习系统

智能辅助学习系统,其表现形式是能够为每个学生,配备一个虚拟教师。学生能够通过电子设备(如手机、计算机),与虚拟教师进行交流对话,咨询虚拟教师各学科的问题,并得到有效的学习辅助。

该智能辅助学习系统,具备以下几个特征。

2.2.1 虚拟教师跨学科能力

与传统的教师专一某一学科不同,虚拟教师并没有学科边界划分。只要学习系统研发出某一学科的学习算法,该虚拟教师就能够获取该门学科的能力。

2.2.2 虚拟教师深度自学习

虚拟教师的“智能”来源于三方面。一是学生基本信息档案,该档案涵盖了从小学教育开始的学科成绩、综合能力、爱好特长等,虚拟教师得到学生的人物画像。二是虚拟教师对学生的自学习,每一次双方的沟通交流,虚拟教师都能够不断更新发展学生的画像。三是虚拟教师对学校课堂内容的自学习,虚拟教师并不是独立于学校教育存在的,而是作为学习教育资源的一个补充,虚拟教师能够掌握课堂进展、作业部署、考试动态等信息。

2.2.3 接近自然语义的沟通

学生与虚拟教师之间,可以通过自然语义的语音和文字进行沟通,如 “今天数学作业第2题不会”“《荷塘月色》全文中心思想是什么”“Lets start a conversation”等。其他计算辅助手段为补充,如上传某道数学题图片,虚拟教师通过图形识别匹配,给出该题的解题思路和讲解。

2.3 优势分析

智能辅助学习系统,有三大核心优势。

一是“即学即问”,相比目前的学校教育和社会教育,学生在学习遇到困难时,只有有限的时间与教师交流,在智能辅助学习系统中学生将不受空间、时间限制,随时随地可以与虚拟教师互动,获取充足的教育资源。

二是“定制教学”,相比目前的教育形式,课堂上教师与学生是一对多的关系,教师不可能专为某个学生定制教学方案,在智能辅助学习系统虚拟教师与学生是一对一的关系,虚拟教师能够更了解学生,根据学生的具体情况制订最佳学习方案。

三是“受众广阔”,相比目前的公共教育资源紧缺、社会教育资源费用昂贵,智能辅助学习系统一旦推广,受众学生可无限增加,边际效应非常明显。并且计算机系统设计特有的水平扩展能力,能够随着学生人数的增加而增加,支撑广大的学生辅助学习。

2.4 前景预测

笔者比较看好人工智能在中学辅助教育中的落地前景,除了前文所述的人工智能技术发展,为中学教育带来的价值外,当前国家政策和社会环境也非常有利。

第一,未来10年国家政府和教育部门会大幅增加在教育信息化产业上的投入,随着《国家中长期教育改革和发展纲要(2010―2020年)》和《教育信息化十年发展规划(2011―2020年)》等相关规划相继出台,各级地方政府和教育部门都非常重视教育信息化产业的投入,人工智能+云计算是重中之重,人工智能技术的兴起必将教育信息化推向一个新的高度。

第二,教育信息化逐渐成为风口,根据前瞻产业研究《中国在线教育市场前景与投资战略规划分析报告》统计,2015年在线教育市场规模大约为479亿美元,而这一数字在2020年预计将增长到504亿美元。这个持续迅猛增长的市场正在吸引越来越多的创意和资本,教育领域中的人工智能也很快会成为热点,涉足其中的高科技公司也会越来越多。

3 结 论

本文通过智能辅助学习系统,探索了人工智能在中学辅助教育中的一个应用。虽然没有介绍具体的技术实现、系统研发,但对现状痛点、应用前景做了综合性分析概述,相信随着科学技术的持续发展、教育领域的融合开放,本文探索的这个应用将实现于市场,使广大中学生能够获取到更多、更公平的教育资源。

参考文献:

[1]何维贵.利用现代化教学手段打造高效课堂[J].广西教育(中等教育),2013(6).

[2]王斐.人工智能在中学教育教学中的应用现状分析[J].中国医学教育技术,2013(4).

第3篇:教育领域的人工智能范文

关键词:人工智能;教育;应用;问题

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2012)03-0159-02

人工智能是研究如何构造智能机器(智能计算机)或智能系统,使其模拟、延伸、扩展人类智能的学科。随着人工智能的理论与技术在社会各个领域的广泛应用,其在教育领域内的应用也越来越受到重视,并取得了一定的研究成果。

一、人工智能教育应用的主要形式

人工智能在教育领域应用的最直接结果就是诞生了智能教学系统。智能教学系统是以计算机辅助教学为基础而兴起的,它是以学生为中心,以计算机为媒介,利用计算机模拟教学专家的思维过程而形成的开放式人机交互系统。目前,智能教学系统已成为人工智能在教育中应用的主要形式。智能教学系统主要是在知识表示、推理方法和自然语言理解等方面应用了人工智能原理。由于它综合了知识专家、教师与学生三者的活动,因此,与之相对应的,智能教学系统一般分成知识库、教学策略和学生模型三个基本模块,再加上一个自然语言智能接口。智能教学系统的功能具体来说有以下几条:了解每个学生的学习能力、认知特点和当前知识水平;能根据学生的不同特点选择适当的教学内容和教学方法,并可对学生进行有针对性的个别指导;允许学生用自然语言与“计算机导师”进行人机对话。智能教学系统的设计不仅要有计算机科学的知识,还需要有教育科学的理论指导。

二、人工智能在教育中应用的局限性分析

1.阻碍人工智能发展的关键因素。在人工智能的发展中,一直存在着对“计算机是否能代替人脑甚至超过人脑”的问题的讨论,实际上,以电子计算机为主要工具模拟人的某些思维活动而产生的人工智能是有局限的。①计算机处理问题的根本原理。要计算机解决某种问题,有三个基本的前提:必须把问题形式化;问题还必须是可计算的,即要有一定的算法;问题必须有合理的复杂度,即要避免指数爆炸。由于人的智能活动不能完全形式化,因此,机器就不能将人脑的智力活动全部复制出来。电子计算机最终只能把握0、1这两个开关代码,遇到不能形式化、不能找到算法或不能程序化的任务,计算机则难以执行。②人和机器之间的根本区别。智能模拟利用了人和机器的共性,即两者都是一个信息转换系统,但两者之间存在着不容忽视的本质区别。智能模拟与天然智能属于两种不同的进化系统,人类的智能是人类社会实践的产物,机器的智能是机械制造的结果。大脑和电脑的组织结构也不相同,两者属于两种不同的运动过程,前者是复杂的生理--心理过程,后者是机械--物理过程。智能模拟可以在局部上超过天然智能,但是,模拟的根本方法是功能模拟法,两个系统在结构和实际过程上是不一样的。智能模拟不具有人的思维的社会性,不具有主观世界。

2.人工智能在教育中应用的局限。就目前人工智能的发展水平以及人工智能本身的特点而言,它在教育中的应用也是有其局限性的。①与学生之间无法畅通交流。教育本质上是一种“交互”活动,而智能教学系统无法实现最充分、最真实的交互。目前自然语言理解的研究成果非常有限,远不能达到人人交流的要求。此外,就态度、品德、情感等教育问题而言,机器只能通过学生输入计算机的信息来判断其掌握和内化程度,而无法像人类教师通过自然状态的交流和观察来判断学生的真实情况,因此,“机器智能”很容易被蒙蔽“双眼”,无法做到像人与人之间那样自然畅通的交流。②决策和推理机制不完善。智能教学系统的关键智能所在是其决策和推理机制,即“教学策略”模块根据不同学生的具体情况通过推理做出灵活决策,这种决策基于学生模块提供的有关学生的知识水平、认知特点和学习风格,而这些不能完全被形式化。同时,随着教育理念的不断更新以及教学模式和教学方法的不断改进,系统所应用的教学策略模块用于评估和判断学生学习过程的能力是有限的。③人工智能并非适合所有的学习领域。根据加涅的学习结果分类,学习分为言语信息、智慧技能、认知策略、动作技能和态度五类。言语信息分为符号学习、事实学习和有组织的知识学习,这些属于可形式化内容,适用于智能教学系统;智慧技能分为辨别、具体概念、定义性概念、规则和高级规则,其中前四项属于可形式化内容,适用于智能教学系统,而高级规则属于复杂――形式化内容,部分内容不适用于智能教学系统;动作技能和态度领域的学习,在其认知成分中可以使用智能教学系统,但情感和行为成分等非形式化内容,则难以用智能教学系统来实现。因此,并不是所有的学习领域都适用于智能教学系统。智能教学系统在教育中应用的重点应放在认知领域中的符号学习、事实学习和有组织的知识学习、辨别、具体概念、定义性概念以及规则这些学习内容上。

三、人工智能教育应用的发展方向

近年来,随着计算机技术、网络技术、人工智能技术以及现代教育教学理论的发展,人工智能在教育中应用的发展呈现出以下几个趋势。

1.开始突破单一的个别化教学模式。长期以来,计算机辅助教学系统和智能教学系统都是强调个别化教学模式,这种模式在发挥学生的学习积极性、主动性和进行因人而异的指导等方面确实有许多优点。但是,随着认知学习理论研究的进展,人们发现在计算机辅助教学系统和智能教学系统中只强调个别化是不够的,在某些场合(例如问题求解)采用协作方式往往更能奏效。因此,近年来在智能教学系统中,协作型教学模式得到越来越多的重视和研究。

2.智能教学系统日益与超媒体技术相结合。超媒体系统具有良好的开发环境、灵活方便的用户界面以及图、文、声并茂的特点,而且其信息的组织方式与人类认知的联想记忆习惯相符,已成为目前一种最理想的信息载体和最有效的信息组织与信息管理技术,在许多领域尤其是教育领域有广阔的应用前景。把超媒体技术引入智能教学系统,从而发展成为智能超媒体辅助教学系统,可以大大改善计算机辅助教学系统的教学环境,激发学生的学习积极性,从而显著提高教学效果。

3.智能教学系统与网络的关系日益密切。网络的应用和普及为远程教育和终身教育提供了一个良好的空间。当前,智能教学与多媒体网络的结合成为人工智能在教育中应用的一个势不可挡的发展趋势。

4.传统人工智能与神经网络模糊决策机制相结合。传统人工智能从宏观角度开展认知模拟,可以部分地模拟人类的逻辑思维过程,而神经网络模糊决策机制从微观方面进行认知模拟,着力实现模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。今后将探索一种新的智能处理模型:把神经网络的模糊决策机制和符号专家系统的推理能力结合起来,利用多重知识源、多种模型进行复合协同处理。如果上述技术能够成熟运用,那将对人工智能的发展及其在教育中的应用起到决定性的作用。

参考文献:

[1]王士同.人工智能教程[M].北京:电子工业出版社,2001.

[2]王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,1998.

[3]何克抗.计算机辅助教育[M].北京:高等教育出版社,1997.

[4]徐鹏,王以宁.国内人工智能教育应用研究现状与反思[J].现代远距离教育,2009,(5):3-5.

第4篇:教育领域的人工智能范文

科技巨头布局人工智能

在欧洲,“欧盟人脑计划”将通过ICT的庞大资源库,更有效地为神经科学和医疗领域提供技术支持。长远来说,该计划将为各类脑部疾病提供更好的治疗方案,以及通过探索大脑运作模式,研发更先进的ICT技术。“欧盟人脑计划”的主要研究领域可以大致划分为三大类:未来神经科学、未来医学、未来计算。旗下涵盖13个子项目,其中包括老鼠大脑战略性数据、人脑战略性数据、认知行为架构、理论型神经科学、神经信息学、大脑模拟仿真、高性能计算平台、医学信息学、神经形态计算平台、神经机器人平台、模拟应用、社会伦理研究和“欧盟人脑计划”项目管理。

作为“欧盟人脑计划”神经形态计算系统项目和SpiNNaker计划的的负责人,Steve Furber博士透露说,目前“欧盟人脑计划”的最新进展是近期将对外开放一系列欧盟人脑计划的平台系统,让更多研究者、专业人士可以使用这些先进的系统。现在谁都可以申请使用内置500,000个特制ARM处理器核心的“脉冲神经网络架构(SpiNNaker)计划”和德国海德堡的“大脑规模(BrainScaleS)计划”的设备,以及其他平台系统。我们在3月30日举行会宣布这一举措,并在4月1日正式实施对外开放。通过开放平台系统的共享,我们相信一定能够极大地促进世界范围内的大脑科学研究的发展,为每一位参与到大脑科学研究中的科学家们提供广阔的发展前景和机遇。

扎克伯格也在他的Facebook上透露,他2016年的新目标是打造一个人工智能助手。事实上,他对人工智能的布局早已开始,早在2014年,他就以个人身份入股了人工智能公司 Vicarious,因为他觉得人工智能可以提升互联网服务的智商,从而对于用户变得更有价值。

除了Facebook,另一个科技巨头谷歌也在人工智能领域动作频频,它收购了8个机器人公司和1个机器学习公司,并在许多新的业务中使用了人工智能技术,比如无人驾驶汽车。同时,谷歌还利用人工智能技术来改善其现有业务,比如安卓手机操作系统或者谷歌搜索引擎。

中国人工智能商用元年

而在国内企业中,进军人工智能的科技企业也不在少数。早在2009年,百度就提出通过推进人工智能实现国家综合国力的弯道超车。百度身体力行,2014年5月将AI最权威的学者之一、谷歌大脑项目之父吴恩达纳入麾下。眼下百度人工智能实验室搭建了作为百度人工智能核心的“百度大脑”,融合了深度学习算法、数据建模、大规模图形处理器(GPU)并行化平台等技术,拥有200亿个参数,构成了一套巨大的深度神经网络。

腾讯也不甘示弱,基于微信平台,开发了多种模式识别功能,推出了“微信智能开发平台”,将微信的图像识别能力和语音识别关键词技术向第三方开放,“扫一扫”和“语音转文字”功能就是典型应用。

从国家意志来说,2015年7月,国务院印发《“互联网+”行动指导意见》,明确人工智能为形成新产业模式的11个重点发展领域之一,将发展人工智能提升到国家战略层面,提出具体支持措施,清理阻碍发展的不合理制度。统计显示,到“十三五”末,我国机器人产业集群产值有望突破千亿元。

“十三五”规划纲要首次出现“人工智能”一词,在科技创新2030项目中,智能制造和机器人成为重大工程之一。培育人工智能、智能硬件、新型显示、移动智能终端等,被列入战略性新兴产业发展行动。种种迹象表明,2016年,不仅是“十三五”起步之年,也是我国人工智能商用元年。

而市场也普遍认为如今人工智能已经在诸如智能穿戴设备、无人机、虚拟客户服务、智慧城市、安防、基于大数据的业务分析等领域得到应用,节省了大量人工成本。随着人工成本的增长,人工智能的经济效益优势将会愈发明显。在技术突破、应用领域拓展以及相关扶持政策推动下,人工智能的大潮即将来袭,万亿元的市场规模值得期待。

人工智能的现实入口

在教育领域,你想象一下这样的世界,任何一个孩子都可以使用智能手机访问熟悉其学习风格的个人导师,以便提高学习成绩。

“比如遇到问题需要帮助的学生,可以将问题拍摄下来,并上传到专门应用中。机器人识别出问题,并给出相关答案。由于机器人了解提问者的学习风格,它可以引导他们解决这个问题,跳过他们已经了解的知识点,重点集中在需要帮助的方面,而非仅仅提供标准答案。由于机器人很了解你,它甚至比负责全班同学学习情况的人类教师更加胜任,因为后者需要应对不同学习风格和不同水平的学生。”Uber联合创始人、独立创业家奥斯卡. 萨拉查说。

除了教育领域,医疗领域恐怕是人工智能商业化的最主要领域了。此前研发出“深蓝”打败国际象棋世界冠军的科技巨头IBM在医疗领域耕作多年。2013年,IBM研发的认知计算系统Watson已正式向癌症“宣战”。美国Bumrungrad国际医院采用为肿瘤学而开发的Watson解决方案――已由世界一流的肿瘤医生及研究人员进行过培训,让Watson为其遍布东南亚、包含超过100万名癌症病患的庞大网络提供支持。

早在2011年Watson参加“Jeopardy!”电视问答挑战赛并获得冠军后,IBM坚信继制表计算、可编程计算之后,人类的第三个计算时代――认知计算时代,已经拉开帷幕。几年时间里,Watson已经取得了巨大进步。Watson原来只有1个 “深度问答”的API,现在已经有42个API应用于36个国家的几十个行业,内容涵盖文字图像识别、自然语言理解、专业知识学习、人类情绪分析等各个领域,并且有更多的API正在孵化当中。在医疗、教育、旅游、零售等各个行业里的成功案例已经开始有井喷之势。

据IBM大中华区全球企业咨询服务部合伙人、电子行业总经理徐闻天介绍,IBM将与Medtronic加强合作,利用IBM认知解决方案处理来自Medtronic可穿戴医疗设备及其他情景化来源的数据,并提供个性化的糖尿病管理。

第5篇:教育领域的人工智能范文

关键词:设计;人工智能;挑战;机遇

一、引言

第四次工业革命的到来,人工智能作为一项主要的技术,必将鞭策整个人类社会的转型。很多国家制订了战略规划,在2017年我国也了《新一代人工智能发展规划》和《新一代人工智能产业三年行动计划(2018-2020)》,人工智能产业已上升为国家战略。近年来,在人工智能涉及的领域中,艺术与技术结合,升华到与人工智能的结合且越来越受到重视。阿里智能AI“鲁班”已经掌握了上百万个设计师的创意内容,双11期间制作1.7亿张海报,没有一张是重复的,而这些工作如果人工制作的话需要100个设计师工作300年;央视节目中“鲁班”PK资深设计师取胜等等这些新闻,无不极大地震撼了整个设计行业。设计师会失业吗?高校的设计教育面对AI的挑战与机遇如何制定培养目标?如何在新的竞争中占领先机?未来已来,智能艺术设计的路在何方?

二、设计行业面对四大挑战

(一)惊人的数字

马云在一次报告中说未来30年人类只工作4个小时,大量的工作岗位会被人工智能抢走;根据白宫的人工智能报告预测,在未来10-20年间,人工智能技术有可能取代47%现有工作。麦肯锡的预测是49%,盛产劳动力的中国和印度的影响最大。Siri之父、人工智能专家温那(Winarsky)的预测是70%的工作将被取代。不得不说,AI是人类智慧的结晶,正在高速颠覆着人们的生活。

(二)AI设计发展趋势

AI最容易取代的是简单设计:如LOGO、UI界面、海报招贴、网站网页、产品造型、室内家装、产品包装……原本这种理想的设计工作不再能提供人生的庇护所,但凡是明确、简单、重复标准、规则的美术设计与制作工作,未来都容易被取代,传统设计行业将会萎缩乃至可能逐渐消失。

(三)设计环境恶劣

设计创意无法保护,设计法规没有限定,设计竞价无序,商家厂家缺乏契约精神,设计知识产权无法保护契约,新设计新技术缺乏情趣,设计同质化严重……(四)设计教育落后现有设计模式传统、设计教育落后,设计知识体系缺乏更新、进化,知识性重复训练、模仿性传统方法制约了学生创造性情感思维的发展,设计师终身教育观念的缺失阻碍了设计师的可持续发展,设计知识与设计人才近亲繁殖、代际传递的情况严重。

三、AIDesign发展迅猛

目前传统艺术设计已经发生智变,使设计更美更快更简单。人工智能艺术与设计已经一定高水平,如果设计师仍停留在传统设计水平,就会受到来自机器的“威胁”。但也不全会,除了“创意”部分让机器无可奈何,人类设计师与机器的竞合中,我们要转变方向注重数字移动媒体策划与设计、移动媒体用户需求挖掘、数字移动媒体需求文档的撰写、数字移动媒体优化、数字移动媒体UI界面设计、H5设计、App设计、UE用户体验设计、虚拟移动媒体设计、信息交互设计等媒体智能设计新技术。高品质艺术、设计依赖于混合增强智能技术。AdobeMax“SneakPeeks”将迎来Adobe全家桶的诸多全新功能,如图片变视频、静态变动态、一键设计字体、视频扣剪、纸盒自动生成、AR呈现、AE一键去马、Ru跨平台制作(剪辑、混音、调色)、跨平台同步改稿、人工智能排版等十大看似很科幻但已经实现了的AI功能。华为Mate20手机3D扫描防生建模与成像,以及AI手势动作捕捉的体感游戏功能,更为我们提供了解放设计生产力的前景。同时MIT研发的工业产品AI设计系统即将面世。主要产品体现如下:

(一)AIVD人工智能视觉设计

AI集成化的成熟产品,比如Adobe系列的产品,软件低层融入AI技术,更好更快地创作文字和图像、影音等元素。如AdobeSensei:人工智能做设计的底层技术,集成在Adobe系列软件中,有字体匹配方案、自动配色方案、基于线稿自动上色、自动校正手绘图形等。

(二)AIPD人工智能产品设计

Adobe人工智能鞋包设计、IBMWatson智能设计服装、Autodesk智能设计汽车等。

(三)AISD人工智能空间设计

Prisma智能风格化设计、Autodesk建筑智能生成设计、ZahaHadid参数化设计等产品。

四、设计人工智能教育的发展动向

未来,人工智能教育会加速发展,老师不会被AI取代,但不用AI的老师一定会被取代;未来,老师不是简单地传授知识,而是通过言传身教的沟通交流,对学生进行激励、鼓舞,成为人类灵魂的设计师;未来,AI将实现规模化和个性化间的平衡,带来了一种学生易学、教师易教的解决方案;未来,老师作为教学过程中始终核心地位,推陈出新积极善于运用AI技术进一步提高师生教与学的体验和教学效率。当务之急,要让更多的老师正视人工智能的快速发展,通过学习AI技术了解人工智能的发展情况,从而改变老师的教育教学观念和教学方法,引领高品质教育的未来。在未来教育中,教师的角色有三种观念:1.取代说,2.不可取代说,3.人机协同说大多数观点是:未来,教师将与人工智能协同共存。未来知识传授功能会逐步被人工智能取代,而人类教师则应偏重于培养学生的核心素养。正如雷克利福德所言,“科技不能取代教师,但是使用科技的教师却能取代不使用科技的教师”。如今,抛开先天财富的不同,人与人之间的差距主要来自学习能力的不同。这种差异会加剧不平等,在未来,这种趋势将会进一步加强。应对人工智能时代,教师除更新教育教学观念、转变角色、改革教学模式和方法外,必须坚持终身学习,教师的终身学习,不仅要学习Python之类的AI编程技术,更需要增强对,限于时间和精力有限,分别将有关AI知识技能分为三类,以适应设计人工智能的技术更迭和“一专多能”。

五、结束语

第6篇:教育领域的人工智能范文

关键词:新医科;智能医学;人才培养

1绪论

健康中国已上升为国家战略,新医科在我国高等教育中掀起了一阵新的改革浪潮,“智能医学”的应用性人才培养模式也随之开启。智能医学工程是以现代医学与生物学理论为基础,融合先进人工智能及工程技术,挖掘人的生命和疾病现象的本质及其规律,探索人机协同的智能化诊疗方法及其临床应用的新兴交叉学科。目前,高校在进行医工融合培养学生的指导过程中,存在许多问题,如医学和工科的理论结合层面较为薄弱,多学科交叉联合指导的机制不完善,成果转化和临床应用性不高。实践层面,在现有的医学教育模式下,医学生缺乏全面的对数据进行收集、处理与分析的能力。但是在智能医学时代,对数据的处理与分析能力会成为医生工作的重要组成部分。面向医疗健康的智能医学工程交叉学科人才的迫切需求,智能医学工程交叉学科的人才培养的机制有待完善。2019年,一些院校如南开大学和天津大学获得教育部的审批,已经率先实行招收智能医学工程专业的新生[1]。高等医学教育对新医科背景下智能医学工程专业人才培养认知还处于探索阶段,智能医学工程如何实现医工交叉学科的融合发展,如何获取人才培养中的合适方法、模式、关键技术等的研究,协同医学发展、社会需求的人才,还需要深入思考和进一步探索。

2新医科背景下智能医学人才培养

2.1新医科符合医科改革的内在需求

随着“健康中国2030”国家决策不断推进,医疗健康逐渐被国家视为重要的基础性战略资源,在大数据和人工智能技术影响下,临床应用、疾病预测与预防、公共卫生、循证公共卫生决策、健康管理、健康监测与个性化医疗服务等方面的研究以及产业发展,将是未来整个医疗领域的提升方向,给智能医学分析与决策赋予了新的意义和内涵。

2.2医工融合发展的必然趋势

随着精准医疗与智能医学诊疗技术的深度融合,理论层面,把握新医科背景下智能医学工程专业复合型创新人才培养目标,以临床应用性为导向,多学科领域知识相互渗透。调整医工结合课程体系,既符合新医科需求,又实现医工融合课程模块间的交叉互补,体现医工结合特色的宽口径学科结构。培养既懂医药科学、数据科学又懂人工智能应用的高级复合型人才。实践层面,精准医疗与智能医学工程技术紧密结合,利用临床医生在传统医学中积累丰富的临床经验,并融入到智能医学诊疗模式变化中,将彻底改变现有诊疗模式。

2.3人工智能助力智能医学工程人才培养

随着科学技术的飞速革新,人工智能核心技术推动传统学科专业建设和医工交叉融合。助力人才培养主要表现在以下三个方面。一是从智能医学诊疗技术创新的角度,技术的革新引领人工智能与各个产业领域深度融合,创造新的产业或领域,计算机模拟人脑的思维过程,实现人机交互,提高医疗资源的利用率,推动医疗产业的高效运转。智能医学诊疗主要包括疾病早期诊断、临床决策支持、正确用药、诊疗方案的选择等。如KopR和HoogendoornM等探索了医院对病人电子病历(EMR)数据进行分析,结合结直肠癌预测模型,更准确的预测早期直肠癌和干预治疗实践[2];HoshyarAN和Al-JumailyA等探索了医学影像自动诊断皮肤癌,通过数据预处理去除噪音和不必要的背景图像,提高图像质量,辅助医生进行临床决策[3]。二是从医疗健康大数据的角度,随着大数据、数字技术、机器学习和人工智能等信息技术在医疗领域的应用,电子健康记录数据呈指数型增长,医疗大数据来源包括医院记录、患者医疗记录、医疗检查结果和物联网设备[4]。智能医疗系统具有识别、筛选和决策等智能医疗辅助功能。2017年上海计算机软件技术开发中心对医疗大数据可视化系统的实践与研究[5];2018年,阿里健康与阿里云宣布共建阿里医疗大脑2.0[6],加强在图像识别、生理信号识别、知识图谱构建等能力的建设[7];同年,腾讯推出医疗AI引擎“腾讯睿知”,具备更智能化的医疗垂直搜索功能,帮助患者精准匹配合适的医生。三是从人才培养的角度,多学科交叉融合发展是大势。人工智能将打破不同学科专业的壁垒,推进多学科交叉融合发展,形成“人工智能+”的专业新的人才培养模式。高校也应根据产业需求变化调整专业设置,构建新的专业结构。高校人工智能相关的本科专业将会蓬勃发展,形成颇具特色的“人工智能+”专业集群。“人工智能+”技术所衍生的新医科、新工科专业之间的协同创新发展,实现技术创新与医疗应用的统一。以“人工智能+医学”为契机,结合医学产业发展趋势和智能医学工程专业的特点,研究相应的教学体系、制定科学的教学计划,建立具有行业特色的课程群、制定合理的课程大纲,解决学生在医学诊疗和工程技术两方面协调发展的问题,全面提升医学生的综合素养以及未来的职业竞争力。综上所述,新医科人才培养在人工智能助力下,培养学生具备较强的创新意识和具有智能医学领域科研能力,掌握关键理论与方法,创造性地将计算机科学技术、人工智能技术和方法、大数据关键技术与医学应用系统相结合,进而创新性完成的医学信息处理、行为交互和人工智能系统集成及应用。以上需培养的能力,对现有医学专业的改造升级、人才培养模式的改变、师资队伍的全面建设具有较高的要求。

3培养新医科人才的实施路径

3.1从医工融合研究的视角

智能医学工程的专业培养建设要体现医工融合发展需求,推进智能工程、医学与教育的深度融合,提升人工智能在医学中的应用,满足新医科发展要求的卓越工程师为育人目标,强调学科交叉渗透、重视临床应用、把握科技前沿,推动教学创新等。

3.2从医工融合研究的广度

目前我国部分高校开展了医工融合人才培养模式的探索,但有区域特色的医工融合研究还不多。针对新医科临床需求分析,把握智能医学工程高等教育体系,重点聚焦区域特色,研究面向健康和重大及特殊疾病防治需求的“新医科”对人才的需求。

3.3从医工融合研究的深度

(1)整体设计智能医学工程专业教学环节。建立知识能力矩阵,整体设计教学、实验、课程设计、专业实习、毕业设计等环节,突出新医科相关课程及实践,加强附属医院和教学医院的联系,深化临床实践能力。(2)培养学生专业能力和科研创新能力。智能医学工程专业教学与知识能力培养的思考是以智能医学学科的特点为基础,通过知识能力矩阵的智能医学工程专业课程创新教学,根据智能医学工程专业课程知识点的内在联系和相对独立性,优化核心知识模块形成知识能力矩阵,构建课程内容架构。通过系统理论知识教学、优化课程实验和上机安排,引导学生自主设计性学习,提高学生的学习积极性,达到有效教学效果。(3)结合学生兴趣偏好,研究如何提高学生的专业兴趣,探索将专业兴趣转换为“工匠精神”的教育理论及方法:广泛调研,全面建立当前地方高校智能医学工程专业学生与专业偏好的培养模式。

4结语

第7篇:教育领域的人工智能范文

关键词:人工智能;计算机辅助教学;智能计算机辅助教学系统

随着现代科学技术的飞速发展,先进的技术在教学领域得到了广泛的应用,并对教学过程产生了深刻的影响。其中,人工智能技术产生的影响最为深刻。它将先进的教学手段引入教学过程,在营造理想的学习环境、激发学生的学习兴趣以及提高教学效率等方面起到了重要作用。

一、人工智能

1. 人工智能的定义

人工智能(Artificial Intelligence,简称AI)是计算机科学、控制论、信息论、神经生理学、语言学等多种学科相互渗透发展起来的一门综合性的交叉学科和前沿学科。其精确定义是:一个电脑系统具有人类知识和行为,并具有学习、推断、判断来解决问题、记忆知识和了解人类自然语言的能力。

2. 人工智能的研究内容

人工智能作为一门综合性学科,其研究内容涉及到许多方面,其中与教学实际关系较为密切的是以下四个方面:

(1) 问题解决。问题解决(Problem Solving)是人工智能研究初期的主要研究内容之一,也是其他内容的研究基础,它主要研究计算机的知识表达和推理技术。

在教育领域中,研究问题解决的实际意义在于,把人类解决问题的基本过程赋予计算机,使其能够按照人类的思维规律进行问题解决,帮助学生进行有效的学习。

(2)模式识别。模式识别(Pattern Recognition)是近三十年来在信息科学与计算机科学的基础上发展起来的新兴科学,后期它又受到了人工智能科学的影响,得到了新的发展。因此,常被作为人工智能学科的一个分支。

简单地说,模式识别就是研究用电子计算机代替人来识别事物和环境的方法。所谓模式是指那些供参照模仿用的理想化的标本。因此,具体来说,模式识别的含义就是识别出给定的事物与哪一个标本相同或相似。模式识别有时可以理解为模式分类,即判别给定的事物应该属于哪一类标本。被识别的给定事物通常是字母、符号、汉字、图像、声音、语言、景物,也可以是统计数字、图表、教授状态、学习状态等,应用于教育时则称为教育模式识别和学习模式识别。

(3)自然语言理解。对自然语言理解(Natural Language Processing,简称NLP)的研究能为实现人机自然语言直接通信提供可能,并减少软件生产的负担,从而间接地推动计算机的广泛应用,提高自动化操作效率。因此,它已经成为人工智能研究中最为棘手的问题。

自然语言是人机对话的最方便的语言,其发展的最终目标是把自然语言作为程序语言来使用,使计算机直接执行自然语言,不需要中间的解释过程。

在教育领域中,计算机对自然语言的理解有助于人机对话的实现,从而能够增进计算机与学生之间的交互作用,把原有的计算机辅助教学条件下的计算机主动变为智能计算机辅助教学条件下的人机交互主动。

(4)专家系统。所谓专家系统是指一个(或一组)能在某特定领域内,以人类专家的水平去解决该领域中困难问题的计算机系统。其特点在于能把人类专家在解决问题过程中使用的启发性知识、判断性知识分成事实与规则,以适当形式存储到计算机中,建立知识库,并基于知识库采用合适的产生式系统,按输入的原始数据选择合适的规则进行推理、演绎,作出判断和决策,可起到专家的作用,因此称为专家系统。

专家系统是人工智能中最为重要的研究内容,在教育领域中的应用也最为广泛与活跃。教学专家系统的任务是根据学生的特点,以最合适的教案和教学方法对学生进行教学辅导。

二、计算机辅助教学

1. 计算机辅助教学的定义

计算机辅助教学(Computer Aided Instruction,简称CAI)是在计算机辅助下进行的各种教学活动,以对话方式与学生讨论教学内容、安排教学进程、进行教学训练的方法与技术。CAI能为学生提供一个良好的个人化学习环境。通过综合应用多媒体、超文本、人工智能和知识库等计算机技术,克服了传统教学方式上单一、片面的缺点,有利于激发学生的学习兴趣和认知主体作用的发挥。同时,它所提供外部刺激的多样性有助于知识的获取与保持。因此,使用CAI能有效地缩短学习时间、提高教学质量和教学效率,实现最优化的教学目标。

2. 计算机辅助教学的现状

尽管计算机辅助教学要比传统的教学模式先进不少,但并不是最完善的,它还存在许多不足,主要表现在以下几方面:

(1) 缺乏人机交互能力。在教学过程中,CAI课件的教学信息是按预先设置的教学流程机械式地提供,教师只能按预定的课件流程进行操作,学生的学习也是被动的,不能很好地参与教学过程。因此,人机交互能力没有很好地体现出来。

(2)缺乏师生互动。学生在自学及使用现有的CAI课件时,大多采用的是自主学习的方式。使用这种方式时鲜有师生互动,因此课件的效果会大打折扣。同时由于缺乏网络支持,现有的绝大多数CAI课件都是在单机环境下运行的,无法使用网络来快速更新知识内容,更无法提供便捷的学习讨论空间、随时随地的师生交流方式以及远程教学实现的条件。

(3) 缺乏智能性。现有的CAI系统很多都没有智能性,无法进行有针对性的教育。学生的学习是被动的,他们不能根据自身情况调整学习进度。对教师而言,教学参与度太低,他们不能按照学生的认知模型为其准备最适合的学习内容,更不能给予不同的教学模式与方法。

(4) 缺乏广泛性。CAI系统的设计都是围绕某一知识领域,对于教学内容、问题的设计和答案的呈现,都必须在原设计系统允许范围内实现,无法根据具体教学、学习情况提出新的方案。

由此可见,传统的CAI系统本身具有无法克服的缺点。随着人工智能技术的发展,人工智能技术将会越来越多地应用在教育领域。把人工智能技术引入CAI系统,使CAI系统能合理安排教学内容,变化教学方法来满足个性化教学的需要,因此就产生了智能计算机辅助教学系统。

三、智能计算机辅助教学系统

随着计算机科学和人工智能技术的不断发展和成熟,将AI引入CAI中,使CAI系统可以理解教什么、教谁以及如何教,因而也就能合理安排教学内容、改变教学方法,去满足个别教学的需要,这就是以AI技术和认知科学理论为基础而形成的智能计算机辅助教学系统(Intelligent Computer Assisted Instruction,简称ICAI)。它是计算机应用技术的一个新领域,代表了一种新的教学思想和教学方式。智能计算机辅助教学系统的出现,提高了教学质量,改善了教学的效率。

1. 智能计算机辅助教学系统的基本结构

ICAI系统主要是在知识表示、推理方法和自然语言理解等三方面应用人工智能技术。其本质上是一个基于知识的教学专家系统,通常由专家模块、学生模块、教师模块和智能接口模块组成。它的组成结构如下图所示:

(1)专家模块(知识库)。专家模块是由题域知识构成,它包括两方面的知识:一是教材内容、提问信息、教材重点、难点、评价等有关课程的知识;二是有关应用这些知识来生成问题,推理解题的知识。其功能有:作为系统全部知识的来源,为系统其他模块频繁调用,以实时完成用户行为响应,通过知识库知识,生成相应的问题、任务以及解释;通过同步问题解答,并通过预期学生行为与实际学生行为之间的比较,评价学生知识掌握程序以及学习状态、学习方式偏好等。这个部分相当于一个根据事实进行演绎推理求出解答的专家部件。

(2)学生模块。系统通过学生模块建立对学生的了解,通过比较学生行为与专家行为,对学生进行智能模拟,包括学生的知识状态、认知特点和个性特点等。学生模块用来表示学生的学习历史、当前知识水平、解题行为等方面的知识。其任务是:表示学生对所学知识的理解程度,反映学生已掌握和未掌握的部分,通过发现错误并作出错误根源的假设,为进一步指导提供依据。

(3)教师模块(教学策略模块)。在CAI 课件的交互作用中,教学策略是与教学内容融合在一起,通过教学的分支来体现的。这样做的不足是,某一教学内容只能按某一种(或几种)固定的教学策略来教。而在ICAI中,教学策略与教学内容是分开的。这样在教学过程中,系统可随时根据教学的需要,选择不同的教学策略。

教师模块的主要任务是在一定的教学原理的指导下,选择适当的教学内容,并通过接口以适当的表达形式,在适当的时刻展示给学生。该模块的主要功能有:为学生提供学习环境;指导学生的学习活动;解释现象、过程和原因;为学生提供帮助和学习材料;监视和评价学生学习活动。

(4) 智能接口模块。智能接口模块的作用是处理学生与系统间的信息交流。模块要完成两项任务,一是在教学模块作出教学决策后,智能接口模块要以一定的形式把教学内容发送出去;二是建立学生输入信息的方式,接收学生输入的信息。

2. 智能计算机辅助教学系统的发展方向

ICAI系统在发展中不是孤立、单一的,它是伴随着多种技术以及人工智能在多种领域应用的不断发展而发展的。其未来的发展方向表现为以下几方面:

(1)与网络技术的结合。随着多媒体技术和Internet网络的飞速发展,多媒体教育应用与Internet网进一步融合,CAI 不仅仅只在智能上单一发展,它不可避免地还要向多维的网络空间发展。目前,已有不少基于Internet网的多媒体教育系统在使用,它们借助网络的优势,完成在线学习、实时讨论、网上测试等多种教学任务。将网络CAI与智能CAI有机结合,互相补充,能构建成一个新的系统工程。

(2)智能(Intelligent Agent)技术的使用。人工智能(AI)技术在ICAI中的应用,除了体现在对多媒体教学系统中引入学生模块和知识推理机制以外,还可以起到在“智能导航”浏览中,使用“智能”技术代替教师、学生进行指导学习和搜索学习的作用。

在CAI中,学生学习查询有效知识可以使用进行搜索、导引,由于它自身具备的学习功能,能够主动、高效地从Internet中发现和收集用户所需要的信息。因此,它有助于解决使用单一关键字匹配查询、搜索引擎引起的大量无关信息的涌现、信息检索的精确度不高等问题。将“智能”技术引入到ICAI中,将使得教师和学生在教与学的过程中,提高知识选取效率、加强交互学习和自主能动性学习。

(3)远程教学。结合网络CAI、智能CAI以及多协作,可以实现真正意义上的远程教学模式。ICAI系统不仅可以作为教师,为学生学习提供指导,也可以作为学生,辅助学生学习,还可以成为学生学习、交流、协作过程中多方面的。因此,具有多种特性优势的远程教学具有广阔的发展前景。

(4)虚拟现实(Virtual Reality)的应用。虚拟现实也叫人工现实(Artificial Reality),是由多媒体技术与仿真技术以及计算机技术相结合而生成的一种交互式人工世界。它的根本目标就是达到真实体验和基于自然技能的人机交互。在教学辅助中,使用创建的虚拟环境,在一般人所不能亲身体验的情景中,达到演示、操作的教学目的。目前在教学中使用的有:基于Web的火电厂的虚拟实景建构学习、建筑设计的实景化学习、医学内消化道实景教学等。

四、结语

到目前为止,人工智能技术已经逐步应用于计算机辅助教学中,与教学现代化有着密切的关系。随着人工智能技术的发展,智能计算机辅助教学系统的成效将更加明显。新世纪的教学手段将是以智能化CAI为主线,多学科、多方位发展的新技术的体现。这种手段产生了人机交互、人机共生等全新概念,大大扩展了人类的能力,促进了教育事业的进一步发展。

参考文献:

[1]何克抗.教学媒体的理论与实践[M].北京:北京师范大学出版

社,2003.

[2]谢三毛.人工智能在计算机辅助教学中的应用[J].华东交通大

学学报,2005(12).

[3]刘志勇,王阿利,张伟斌.人工智能在计算机辅助教学中应用研

第8篇:教育领域的人工智能范文

摘要:本文从计算机学科本科的教学理念出发,提出了从计算机学科分支的角度认知人工智能,组织并实施教学的方法。

关键词:人工智能;综合学科;计算机学科分支

中图分类号:G642

文献标识码:B

1引言

目前国内流行的人工智能教材都是把人工智能学科作为由计算机科学、心理学、神经生理学、控制论、信息论、语言学等多种学科相互渗透的综合学科加以介绍。这些教材核心内容虽然相同,但作者编写教材的思路却有不同,有些教材以智能体(agent)的观点论述,还有一些教材以应用为目的来论述。这些教材对于各相关领域从事人工智能科研与工程的技术人员来说,是比较适宜的。但对于我国高等院校计算机专业的本科学生来讲,却存在一些问题。不仅是由于在一门课程中涉及众多学科的知识,使学生难以接受,而且讲授的角度不能与前期所学知识紧密配合,也增加了学习的困难。

人工智能是由多种学科相互渗透的综合学科,但它是明确属于计算机科学分支的学科。这是因为从功能上和方法上人工智能与计算机学科是一致的。实际上,人工智能不仅使用了许多其他计算机学科分支的技术,而且在发展过程中,也开拓了许多新的方法和技术,充实了计算机学科。若按计算机处理的对象来区分计算机应用的话,则可分为三个部分:数值计算、数据处理与知识处理,人工智能就对应知识处理工作。

对于我国高等院校计算机学科的本科教学来讲,人工智能课程的课时一般只有40课时左右。以什么角度组织教材内容,提高教学效果,使学生较容易地理解和掌握人工智能的原理与技术呢?通过多年的人工智能教学实践,我们逐渐总结出了进行人工智能教学的方法:既从计算机学科本科的教学理念出发,考虑人工智能这门学科的特点,以作为计算机学科的一门分支的角度认知人工智能,组织教材的知识架构并进行教学。用计算机学科的观点分析人工智能的基本原理与方法时,重点强调的是这些基本原理与方法与其他的计算机分支的共同点和不同点。共同点是强调计算机学科的本质,不同点是强调人工智能的本质。

2计算机学科本科的教学理念

计算机学科本科的教学理念可以归结为:传授知识、提高能力、培养素质(包括专业素质与品格素质,专业课以专业素质为主)。其中,原来作为教育核心的知识现被看成是教育的基础,即把知识作为载体,用来实现能力的提高,在潜移默化中实施素质教育。高等院校对学生能力的培养主要包括:学习能力、分析问题与解决问题的能力以及创新能力。对于本科学生,重在学习能力与分析问题与解决问题的能力,对创新只是培养兴趣。素质是知识和能力的升华,计算机专业素质显示的是这一领域的水平,素质水平的提升也将通过知识的增多和能力的增加体现出来。

3以计算机分支的角度认知人工智能

什么是人工智能?目前人们普遍接受的定义是:用机器来模拟人的智能,也就是用计算机来模拟人的智能。若以计算机分支的角度也就是用计算机学科的观点看待人工智能,我们需从两个方面加以说明。

首先,从计算机的能力,也就是它能做什么讲起。用计算机解决某种问题,需要有三个基本的条件:第一,必须把问题形式化。第二,问题是可计算的,就要有算法。第三,问题要有合理的复杂度。人的智能所能解决的问题往往不能满足这三个条件。因此,人工智能就是对于不能满足这些条件的问题,通过使用它的技术和方法,使问题满足这三个条件,由计算机去解决问题。比如,一般来讲不可能将自然语言全部形式化,但人工智能使用一阶谓词逻辑表示自然语言的部分句子,并用算法进行推理,解决一定范围的问题。另外,使用启发式搜索可降低问题的复杂度,使问题在可能的范围内得到解决。

其次,从计算机的核心技术加以阐述。用计算机解决问题是靠程序实现的,程序是什么?一本经典的计算机教科书的名字“算法+数据结构=程序”给出了解释,这说明在计算机学科中算法与数据结构的核心地位,一般的计算机程序也确实可分成这两个部分。而作为典型的人工智能程序可分成三个部分,控制部分(推理机)、规则库和数据库。其中,控制部分和规则库对应于算法,数据库对应于数据结构。实际上,控制部分由搜索策略和推理机制组成,规则库是将一般计算机程序的算法中的与实际问题有关的知识抽出来单独组成。而数据库往往用来存放一些基本的事实和一些中间的结果,也常常采用知识表示的方法,因此,人们也经常把规则库和数据库合称为知识库。在人工智能程序中与算法与数据结构对应的正是人工智能的两大核心:搜索和知识表示(包括推理)。

4以计算机分支的角度组织并实施教学

人工智能为了模拟人的智能,处理的对象是知识,知识处理则需采用知识表示。又由于往往没有确定的算法,只能使用搜索。本文的观点是人工智能课程的教学内容应以知识为主线,以知识表示和搜索为基石进行组织。

首先,教学的第一个核心是知识表示。知识表示就是研究用计算机来表示知识的方法,这些方法需满足两个条件:除了计算机可接受这个条件以外还要能刻画智能行为。这是与一般的数据结构不同的地方。什么方法适合呢?由此引出了逻辑表示方法。

形式逻辑是关于思维的形式和规律的科学,数理逻辑从逻辑上讲是现代的形式逻辑,是用符号和数学的方法来研究推理规律的学科。数理逻辑一般是指命题逻辑和一阶谓词逻辑。一阶谓词逻辑比命题逻辑表达能力强,逻辑的表达方式与人类的自然语言接近,因此,用一阶谓词逻辑作为知识表示工具容易被人接受。不仅如此,由一阶谓词逻辑表示已知条件和所要证明的定理,使用归结原理则可建立计算机程序实现自动定理证明(半可判定算法)。这一过程是在Herbrand定理的基础上得以成立的。由于人工智能中的许多问题都可以化成类似于定理证明的问题,因此可以把与Herbrand定理有关的一系列工作看成是表示和推理的理论基础。评价知识表示方法的性能,即要考察表示能力,又要考虑是否有效地支持知识的推理。显然,具有充分的表示能力又有坚实的理论基础的表示方法是最使人放心的,一阶谓词逻辑恰好满足这一条件。

在这一部分的讲授中,将通过一系列的演变过程,展现出如何将一组谓词公式转换成子句的集合,又如何通过使用置换与合一的手段,达到可以应用归结推理规则,而最终得到证明的目的,而这一切又都是在有严格的定理保证之下完成的。这些内容的讲授,对于培养学生严紧的逻辑思维能力是一个极好的实例。

逻辑表示与归结推理方法是知识表示的基础部分,用来说明人工智能系统进行推理的原理。而作为真正最实用的产生式表示法将通过Horn子句的正向推理和反向推理过程引入,产生式表示法中的带与不带变量的正、反向推理相当于命题逻辑和一阶谓词逻辑层面的Horn子句的正、反向推理。作为结构化表示的语义网络和框架表示法也以一阶谓词逻辑为基础,它们均可转变成为等价的一阶谓词逻辑的表示形式。

在教学中,关于其他知识表示方面的内容,比如:产生式规则、语义网络、框架,都以一阶谓词逻辑为基础给以说明。关于产生式表示法在人工智能的心理学认知体系结构中,被看成是人的思维中因果关系的一种反映,而在本文中则看成是一种类似于Horn子句形式的一种表示。在讲授时将这些内容作为一个整体,说明原理与实用方法之间的关系,根据实际问题的需要,可以降低表示的能力。而另一方面,为了解决实际问题,可以扩充表示的能力。

一阶谓词逻辑表示的能力虽然在通用的表示法中是最强的,但是知识与客观真理不同,它总是局部的、片面的或表面的,这在常识中尤为明显。在解题过程中还会不断地更新,知识表示要适应这个特点,采用经典的一阶谓词逻辑表达有困难,这就需要用非单调逻辑来表达。另一方面,在人工智能处理的信息和知识中,存在大量的不准确、不完全、不一致的地方,这又需要研究关于不确定性知识的表示和推理的研究。实际上,非单调逻辑和不确定性推理部分在教学中将作为知识表示的扩展加以介绍。机器学习作为人工智能的重要组成部分,它的主要方法都是基于归纳推理,也可以看成是非经典逻辑的应用。

人工智能教学的另一个核心是搜索问题。一般来讲,用计算机求解问题,就是用已知的知识,对于给定的数据进行加工,期望得到解答,其解法则由某种程序来表述。其他的计算机分支处理的问题,往往知识比较充分,例如多数的科学计算问题,就可以在看到数据以前根据知识写出程序,这个程序对于一切数据都是适用的。而人工智能处理的问题知识不够充分,或程序太复杂,此时可以写出一个元程序,对于给定的数据,它根据知识,做出一个程序专门加工这些给定的数据。这时,这个元程序可以通用于一大类知识,通常并不包含领域知识的具体细节,因此,对于这个元程序的研究就脱离了问题的具体领域,成为人工智能内部的课题,这正是搜索。

在教学中,通过掌握知识的多少来讲授各种不同的搜索。搜索是由于知识不足而产生的,同时搜索与知识是相辅相成的。当知识较多时,搜索的工作量不多,可使用一些盲目的搜索策略。当知识较少时,搜索的工作量较大,则需使用一些启发式的搜索策略。启发式搜索是搜索方法中需重点说明的,它起到了降低被求解问题复杂度,提高搜索效率的作用,但太强的启发信息,往往找不到最佳解。如何能减少搜索范围,提高搜索效率,而且还保证找到最佳解,这成为搜索方法应明确的问题。A*算法是N.J.Nilsson在20世纪70年代初的研究成果,他解决了这个问题,证明了A*算法的可采纳性。类似于定理证明,在教学时也将A*算法及其有关证明看成是搜索方法的理论基础加以介绍。

在搜索部分的教学中,除了把A*算法及其有关证明作为重点,当作是搜索方法的理论基础来讲解以外,还要给出若干搜索算法。一方面,这些算法说明了各种搜索的方法,另一方面,在这些算法中经常有一些算法细节抽象的技巧,对这些内容的细致分析,将会逐渐提高学生抽象思维的能力。

在实际的知识库系统中,回溯和与或树的搜索算法应用较多。而当问题的有关知识较少,规模大到一定程度之后,往往采用引进了随机因素的搜索算法,比如:模拟退火算法、遗传算法等。现在,这些算法一般称为高级搜索,教学时作为搜索的扩展来讲授。

人工智能技术方面的研究往往涉及各应用领域的课题。反映到教学中,就是人工智能的各个分支的介绍,这包括知识库系统、自然语言理解、规划、机器人等。

总之,教学内容可分成两个部分,第一部分是基础理论和基本方法,包括:逻辑表示与归结推理方法、搜索原理,知识表示(包括产生式系统、语义网络、框架)、推理(包括不确定性推理、非单调推理)、机器学习。第二部分是实用技术,包括知识库系统、高级搜索、自然语言理解。

5结束语

经过长期的人工智能教学实践,笔者逐渐形成了以计算机学科分支的角度来讲授人工智能课程的思路。从学生的接受、理解和掌握人工智能的基本原理与技术方面来看,有较好的效果。但如何把计算机学科和其他人工智能所涉及的领域更完美地结合起来,较好地在教学效果与宽广的知识面之间找到平衡点,还需今后进一步的研究与探索。

参考文献

[1] 贲可荣,张彦铎. 人工智能[M]. 北京:清华大学出版社,2006.

[2] 马少平,朱小燕. 人工智能. [M]. 北京:清华大学出版社,2004.

[3] 蔡自兴,徐光佑. 人工智能及其应用[M]. 北京:清华大学出版社,2004.

[4] 马希文. 逻辑・语言・计算-马希文文选[M]. 北京:商务印书馆,2003.

[5] 高济,朱淼良,何钦铭. 人工智能基础[M]. 北京:高等教育出版社,2002.

[6] 中国计算机科学与技术学科教程2002研究组. 中国计算机科学与技术学科教程[M]. 北京:清华大学出版社,2002.

[7] Stuart Russell, Peter Norvig. 人工智能-一种现代方法[M]. 北京:人民邮电出版社,2002.

[8] Nils J. Nilsson. 人工智能[M]. 北京:机械工业出版社,1999.

第9篇:教育领域的人工智能范文

关键词:人工智能;研究生教学;教学内容;启发式教学

作者简介:于化龙(1982-),男,黑龙江哈尔滨人,江苏科技大学计算机科学与工程学院,讲师。(江苏?镇江?212003)

基金项目:本文系江苏科技大学引进人才科研启动项目(35301002)的研究成果。

中图分类号:G643.2?????文献标识码:A?????文章编号:1007-0079(2012)28-0074-02

人工智能是研究理解和模拟人类智能及其规律的一门学科,中心任务是通过编程赋予计算机部分的“人类智能”,从而使其可替代人类完成某些烦琐而危险的工作。自1956年人工智能学科诞生以来,其研究成果已广泛应用于政治、经济、文化、教育等诸多领域,并对社会发展产生了巨大的影响,[1]因而人工智能逐渐发展成了高等院校信息类专业广泛开设的一门核心课程。作为一门课程,其具有如下一些特点:涉及知识面广、研究领域广泛、内容抽象、实践性强。[2]

目前,高校“人工智能”课程普遍分本科和研究生两个教学阶段讲授,前者注重学生对基本概念、基础知识的掌握,并使其能应用所学知识进行简单的开发实践,而后者更加注重学生自主学习能力、创新能力以及科研能力的培养,因而二者的教学与培养目标是不同的。[3]本文针对“人工智能”课程自身特点和研究生培养目标,并结合笔者多年来的教学经验,分别从课程内容设定、教材选择、教学方法、考核方式等多个方面对该课程的教学改革进行了探索与研究。

一、“人工智能”课程教学内容的设计

“人工智能”课程的突出特点是研究领域过于广泛,而学时数却较短(据笔者了解,各高校相关研究生专业开设该课程的时数为32~48学时不等),因而在讲授该课程时,追求授课内容“大而全”是不切实际的,有必要精选教学内容,使学生在有限的时间内学到最有用的知识。

鉴于大部分学生在本科阶段已简单学习过该课程,因此可适当减少基本概念和基础知识的授课时数,如知识表示、知识推理及搜索技术等,这部分知识点只需安排共6~8学时即可。而对于一些相对陈旧的知识,如专家系统(该技术兴起于20世纪八九十年代,目前相关研究已很少见),可在对其他知识进行讲授时,做简单介绍,没有必要占用独立的授课时数。课程的重点应放在新兴且实用的人工智能技术上,如计算智能、机器学习、模式识别、数据挖掘、多Agent系统以及自然语言处理等方面。上述知识的特点在于内容更新快且抽象,与实际应用联系紧密,极有可能成为学生在未来整个研究生阶段的研究方向,因此有必要在这些知识点上投入更多的精力,有助于学生了解并掌握学术的主流发展趋势,从而能够更好地培养自身的科学素养和创新能力。

当然,授课教师在实际授课过程中也应根据学科的研究进展,学生的基础﹑研究方向与兴趣等特点随时对教学内容作出调整,真正做到理论联系实际、与时俱进。

二、精选“人工智能”课程教材

在教材选择上,笔者分析比较了目前已公开出版的数十本人工智能教材,并结合我校研究生的特点,选定了由清华大学出版社出版﹑蔡自兴和徐光祐编著的《人工智能及其应用》(第4版)作为教材,该教材在前一版的基础上做出了较大的改进与扩展,增加了本体论、蚁群算法、粒子群算法、强化学习、词法分析以及路径规划等很多新内容,具有知识覆盖面广、讲解深入浅出,实用性、可读性强等诸多优点。同时,该教材也是普通高校“十一五”国家级规划教材,辅有国家级精品课程建设网站,是一部经典的人工智能教材。

与此同时,笔者还为学生推荐了多本经典的参考书,如清华大学出版社由拉塞尔等编著的《人工智能——?一种现代方法》(第3版)、科学出版社由史忠植编著的《高级人工智能》等,并围绕各研究专题精心挑选了数篇经典和最新的文献,力求反映各相关领域的国内外研究现状﹑发展趋势以及存在的问题等,以供学生参考。

三﹑教学方法的改革

相比于本科生,研究生通常具有更强的理论基础、接受能力和求知欲,因而在教学过程中应避免传统“填鸭式”的教学方法,要充分突出学生的主体地位,注重培养学生的学习兴趣以及自主学习的能力。为此,笔者结合该课程的特点,对教学方法进行了如下探索。

1.多样化的教学手段

“人工智能”课程的突出特点是涉及知识面广、理论性与应用性强、内容抽象且学时数短,因此有必要充分发挥现代教学手段的作用,提高教学效率。为此,笔者精心设计了整套多媒体教学课件,将较难的知识点以动画的形式呈现给学生,如基于问题归约法的汉诺塔问题求解过程、基于蚁群算法的旅行商问题求解过程等,均可以这种形式呈现。课堂教学中以课件为主,辅以少量的板书,充分利用了多媒体信息量大、直观性强的优点,改善了教学效果。除此以外,笔者也搜集了大量的视频资料,如行人检测与计数视频、机器人地震现场搜救视频等,当讲解相关专题时,作为应用实例为学生播放,充分吸引了学生的注意力,提升了他们的学习兴趣。

2.启发式的课堂教学