公务员期刊网 精选范文 人工智能在教育的应用范文

人工智能在教育的应用精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能在教育的应用主题范文,仅供参考,欢迎阅读并收藏。

人工智能在教育的应用

第1篇:人工智能在教育的应用范文

人工智能技术应用上,教育领域也深受影响,如何更好的迎合现实需求,对此,我认为

一、人工智能技术要在促进学生学习理解上体现价值。

技术是有成本的。如果技术应用只是提高了训练的效益,其价值便只在低层次认知能力,这些成本是否值当?人工智能技术之应用须在促进学生高层次认知能力的发展上发挥作用,帮助学生从解答习题为主走向解决问题为主。我们应该依托人工智能技术在情境创设与人机互动等方面的优势,促使学生基于理解的学习,促使学生面向应用的学习。

二、人工智能技术要在促进学生个别化学习中发挥作用。

人工智能技术的出现,打破了教育的知识传播平衡,加强了“以学生为中心”的学习关系,使对每一个学习个体的尊重有了可能。而这恰是当前教育实践的薄弱之处。因而,在学校层面应用大数据与人工智能技术的关键,未必在统计意义的归因,而是关于学习个体的过程信息的采集,这是促进学生个别化学习的技术凭借。

第2篇:人工智能在教育的应用范文

关键词:人工智能;教育;应用;问题

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2012)03-0159-02

人工智能是研究如何构造智能机器(智能计算机)或智能系统,使其模拟、延伸、扩展人类智能的学科。随着人工智能的理论与技术在社会各个领域的广泛应用,其在教育领域内的应用也越来越受到重视,并取得了一定的研究成果。

一、人工智能教育应用的主要形式

人工智能在教育领域应用的最直接结果就是诞生了智能教学系统。智能教学系统是以计算机辅助教学为基础而兴起的,它是以学生为中心,以计算机为媒介,利用计算机模拟教学专家的思维过程而形成的开放式人机交互系统。目前,智能教学系统已成为人工智能在教育中应用的主要形式。智能教学系统主要是在知识表示、推理方法和自然语言理解等方面应用了人工智能原理。由于它综合了知识专家、教师与学生三者的活动,因此,与之相对应的,智能教学系统一般分成知识库、教学策略和学生模型三个基本模块,再加上一个自然语言智能接口。智能教学系统的功能具体来说有以下几条:了解每个学生的学习能力、认知特点和当前知识水平;能根据学生的不同特点选择适当的教学内容和教学方法,并可对学生进行有针对性的个别指导;允许学生用自然语言与“计算机导师”进行人机对话。智能教学系统的设计不仅要有计算机科学的知识,还需要有教育科学的理论指导。

二、人工智能在教育中应用的局限性分析

1.阻碍人工智能发展的关键因素。在人工智能的发展中,一直存在着对“计算机是否能代替人脑甚至超过人脑”的问题的讨论,实际上,以电子计算机为主要工具模拟人的某些思维活动而产生的人工智能是有局限的。①计算机处理问题的根本原理。要计算机解决某种问题,有三个基本的前提:必须把问题形式化;问题还必须是可计算的,即要有一定的算法;问题必须有合理的复杂度,即要避免指数爆炸。由于人的智能活动不能完全形式化,因此,机器就不能将人脑的智力活动全部复制出来。电子计算机最终只能把握0、1这两个开关代码,遇到不能形式化、不能找到算法或不能程序化的任务,计算机则难以执行。②人和机器之间的根本区别。智能模拟利用了人和机器的共性,即两者都是一个信息转换系统,但两者之间存在着不容忽视的本质区别。智能模拟与天然智能属于两种不同的进化系统,人类的智能是人类社会实践的产物,机器的智能是机械制造的结果。大脑和电脑的组织结构也不相同,两者属于两种不同的运动过程,前者是复杂的生理--心理过程,后者是机械--物理过程。智能模拟可以在局部上超过天然智能,但是,模拟的根本方法是功能模拟法,两个系统在结构和实际过程上是不一样的。智能模拟不具有人的思维的社会性,不具有主观世界。

2.人工智能在教育中应用的局限。就目前人工智能的发展水平以及人工智能本身的特点而言,它在教育中的应用也是有其局限性的。①与学生之间无法畅通交流。教育本质上是一种“交互”活动,而智能教学系统无法实现最充分、最真实的交互。目前自然语言理解的研究成果非常有限,远不能达到人人交流的要求。此外,就态度、品德、情感等教育问题而言,机器只能通过学生输入计算机的信息来判断其掌握和内化程度,而无法像人类教师通过自然状态的交流和观察来判断学生的真实情况,因此,“机器智能”很容易被蒙蔽“双眼”,无法做到像人与人之间那样自然畅通的交流。②决策和推理机制不完善。智能教学系统的关键智能所在是其决策和推理机制,即“教学策略”模块根据不同学生的具体情况通过推理做出灵活决策,这种决策基于学生模块提供的有关学生的知识水平、认知特点和学习风格,而这些不能完全被形式化。同时,随着教育理念的不断更新以及教学模式和教学方法的不断改进,系统所应用的教学策略模块用于评估和判断学生学习过程的能力是有限的。③人工智能并非适合所有的学习领域。根据加涅的学习结果分类,学习分为言语信息、智慧技能、认知策略、动作技能和态度五类。言语信息分为符号学习、事实学习和有组织的知识学习,这些属于可形式化内容,适用于智能教学系统;智慧技能分为辨别、具体概念、定义性概念、规则和高级规则,其中前四项属于可形式化内容,适用于智能教学系统,而高级规则属于复杂――形式化内容,部分内容不适用于智能教学系统;动作技能和态度领域的学习,在其认知成分中可以使用智能教学系统,但情感和行为成分等非形式化内容,则难以用智能教学系统来实现。因此,并不是所有的学习领域都适用于智能教学系统。智能教学系统在教育中应用的重点应放在认知领域中的符号学习、事实学习和有组织的知识学习、辨别、具体概念、定义性概念以及规则这些学习内容上。

三、人工智能教育应用的发展方向

近年来,随着计算机技术、网络技术、人工智能技术以及现代教育教学理论的发展,人工智能在教育中应用的发展呈现出以下几个趋势。

1.开始突破单一的个别化教学模式。长期以来,计算机辅助教学系统和智能教学系统都是强调个别化教学模式,这种模式在发挥学生的学习积极性、主动性和进行因人而异的指导等方面确实有许多优点。但是,随着认知学习理论研究的进展,人们发现在计算机辅助教学系统和智能教学系统中只强调个别化是不够的,在某些场合(例如问题求解)采用协作方式往往更能奏效。因此,近年来在智能教学系统中,协作型教学模式得到越来越多的重视和研究。

2.智能教学系统日益与超媒体技术相结合。超媒体系统具有良好的开发环境、灵活方便的用户界面以及图、文、声并茂的特点,而且其信息的组织方式与人类认知的联想记忆习惯相符,已成为目前一种最理想的信息载体和最有效的信息组织与信息管理技术,在许多领域尤其是教育领域有广阔的应用前景。把超媒体技术引入智能教学系统,从而发展成为智能超媒体辅助教学系统,可以大大改善计算机辅助教学系统的教学环境,激发学生的学习积极性,从而显著提高教学效果。

3.智能教学系统与网络的关系日益密切。网络的应用和普及为远程教育和终身教育提供了一个良好的空间。当前,智能教学与多媒体网络的结合成为人工智能在教育中应用的一个势不可挡的发展趋势。

4.传统人工智能与神经网络模糊决策机制相结合。传统人工智能从宏观角度开展认知模拟,可以部分地模拟人类的逻辑思维过程,而神经网络模糊决策机制从微观方面进行认知模拟,着力实现模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。今后将探索一种新的智能处理模型:把神经网络的模糊决策机制和符号专家系统的推理能力结合起来,利用多重知识源、多种模型进行复合协同处理。如果上述技术能够成熟运用,那将对人工智能的发展及其在教育中的应用起到决定性的作用。

参考文献:

[1]王士同.人工智能教程[M].北京:电子工业出版社,2001.

[2]王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,1998.

[3]何克抗.计算机辅助教育[M].北京:高等教育出版社,1997.

[4]徐鹏,王以宁.国内人工智能教育应用研究现状与反思[J].现代远距离教育,2009,(5):3-5.

第3篇:人工智能在教育的应用范文

关键词:人工智能;应用领域;实际应用

1. 人工智能中智能体的功能

1.1人工智能

人工智能是以知识为对象,研究知识表现、知识获取、知识挖掘等的学科。从其功能来看,人工智能即参照人类智能活动的客观规律,借助一定的智能体,模拟人类的思维执行诸如判断、推理、识别、决策、检测等活动。

1.2智能体

人工智能必须借助一定的智能体来实现,也就是说,智能体是人工智能的载体。因此,分析人工智能就要借助智能体来阐述。一个性能良好的智能体,应尽量准确捕捉用户的用意,通过对环境的感知,敏锐地获取相关信息和知识,并根据环境的数据变动适时作出调整,高效执行用户指令,完成用户指定的任务。

1.2.1单智能体的功能

依照智能体的功能,人们通常将智能体划分为思考型、反应型、混合型三种。

图1 思考型智能体的功能示意图

  思考型智能体主要通过用户根据目标或任务,下达行动指令,用知识和计划指导行动,并根据行动的反应,对环境进行感知,智能体感知内部状态等对环境状态,适时对动作进行调整,实现思考型智能体的功能。

图2 反应型智能体的功能示意图

反应型智能体主要通过规则动作指导行动,并利用智能体对环境状态的感知,指导规则动作对环境作出适应性改变,实现反应型智能体的功能。

图3 混合型智能体的功能示意图

混合型智能体的功能较为复杂,它通过智能体对环境的一般、紧急情况作出反应,对环境状况建模,对环境可能发生的情况进行预测,与其它智能体进行交流,共同指导决策,指导行动的准确性。

1.2.2多智能体的功能

多智能体即通过多个智能体间的相互协调,共同配合,构成一个综合智能体,联合达成一个任务。每个成员智能体有着各自的目标和动作,可以不受其他成员的限制,自主执行自身的动作规则,利用各个智能体间的竞争与协调,化解多个智能体间的矛盾与冲突,实现多智能体的任务,体现多智能体的功能。在多智能体的综合功能下,各个智能体作为综合功能的子功能,每个智能体都具有较高的适应性,能够根据问题,进行规划和推理,判断应该采用的策略,对环境施加影响。多智能体基于简单的设计理念,具有有利于建模,可扩展性强,管理方便,能够节省构建成本,明白易懂等特点。通过多智能体,可以面向对象,实现智能体的多元化和多层次性的构架,缓解了综合系统的复杂性,也缓解了各个系统解决问题的复杂性,并通过协调与协作,提高解决问题的效率,提高整个系统行动的效率。

2. 人工智能的主要应用领域

2.1人工智能在教育的应用

2.1.1教师辅导的智能化

人工智能在教育的应用,主要表现在利用Agent技术,实现智能化教学。Agent技术是一种基于分布式的智能技术,通过智能体Agent,可以实现自主学习的功能,并根据感知自身和环境状态,采取相应的行动,达成系统规定的目标或任务。Agent具有多种优势,诸如可以自主完成行动,快速对动作做出反应,协作能力强,系统处于开放状态,通信性能好,能够随时随地进行行动等。多Agent系统由多个成员Agent组成,各个成员Agent都有既定的动作,通过成员hgent间的通信,获知相关信息,共同协调完成整个系统的复杂任务。Agent在智能化教学中的主要功能:对教学过程进行跟踪监控、教学分析、教学信息的整理、辅助学习、学习方法建议等。通过上述功能,能够适时监督学生的自主学习和教师的辅导,并能够结合学生的学习行为、学习效果等,提供有效的学习指导,实现教师辅导工作的智能化。

2.1.2教学资源的智能检索

目前,各种网络教学资源五花八门,信息量非常大且较为分散,并且各种教学资源还在不断的增长,给学生和教师利用教学资源带来相应的困难。智能检索系统的应用,能够帮助学生和教师在海量信息中,快速准确地搜索到所需信息,节省学生或教师的检索时间,提高用户检索效率。

2.1.3智能化评价

随着现代教育的发展,运用专家系统技术,通过网络考试系统,采用智能组卷算法,实现自动组织考卷。通过试题库,依照既定规则,对精选的试题进行筛选,实现自适应的试题测试功能。根据相关需要,设计自动评卷功能,对考试结果进行评价,并可根据需要对考试题型进行评价。

2.2数据挖掘技术

2.2.1数据挖掘技术

数据挖掘技术,就是通过揭示数据间的关系和数据的存在模式,对数据和数据库进行处理的技术。它是人工智能、数据库管理、仿真等多学科交叉的边缘学科。数据挖掘技术的应用,为工商、科研工作的发展提供了较多的新方法,对工商业与科学研究都具有非常重要的意义。由于数据挖掘技术蕴含着知识表现、知识获取和知识挖掘等理念,使得其与人工智能的功能如出一辙,很多人认为数据挖掘技术应该是人工智能的一支。从实际来看,虽然数据挖掘技术与人工智能有相应的交集,但它已经成为一个独立的系统,具有更为丰富的内容体系,与人工智能、机器仿真、OLAP、专家系统等都具有相关性,其规则、分类、算法等都自成体系,体现出数据挖掘技术的博大精深。

2.2.2数据库的知识发现

通过数据挖掘技术,对数据库中的知识存量进行充分的研究,从中找出潜在的规律性,从而利用数据的相关性分析,挖掘出蕴含在数据中的抽象知识,揭示数据所表现的客观世界状况,从中得出相关的本质和规律,从而自动获取知识。知识表现所概括的是数据所揭示内容的概念,比数据本身更有应用价值。

2.3智能检测技术的应用

2.3.1智能机器人研究

在智能机器人的研究中,研究者更加关注对机器人的行动进行智能控制,也就是说,研究者在给定机器人任务后,必定要根据任务设计相关的动作规则来实现任务,然后根据智能控制,使机器人的行动达到研究者的预期目的。

2.3.2对流水线的智能监控

很多工厂的生产流水线,都需要通过过程监控,保障产品质量和系统性能。很多企业已经采用人工智能对流水线进行监控 ,确保流水线的物理参数精度,实现流水线的高效和产品的优质。例如汽车工业的模糊逻辑智能控制,轧钢厂的神经元智能控制,水泥旋窑的模糊智能控制等。

2.3.3故障的智能诊断

一般情况下,智能系统根据检测到的故障状况,对照系统存储的相关诊断数据和信息,判断系统、器官、元件等出现故障的原因,采用系统给定的信息进行故障处理,及时排除故障,提高系统的稳定性和可靠性。故障的智能诊断系统构架主要有:故障信息库、诊断信息、数据接口、数据库等。例如,飞控系统的故障诊断、雷达的专家诊断等。

2.3.4医疗领域的专家系统技术

从上世纪70年代,医疗领域已经开始广泛应用专家系统技术。例如在外科手术中,采用模糊逻辑控制,通过模糊函数与语言,准确把握病人的麻醉深度,实现对病人麻醉深度的智能控制。

3. 人工智能的实际应用

3.1机器人在教育界的应用

3.1.1模拟教学

根据教材的安排,对某些需要解释的现象进行机器人模拟演示,让学生认真观察,从中发现一定的规律,使学生加深对规律性的认识和理解。如数学教学中的抛物线轨迹演示,物理教学中的阿基米德定理演示等,都能够利用直观的演示,揭示其中的规律,使学生加深对相关知识的理解。

3.1.2人机交互的辅导方式

利用机器人辅导学生学习,可以通过人机交互,为学生提供量身定制的辅导模式,使学生的个性得到充分发展。采用微型机器人与学生的交互辅导,可利用微型机器人其体积小、重量轻,便于携带等优点,随时随地进行学习,随时为学生解决问题,提供学习指导。利用家庭机器人与学生的交互辅导,承担家庭教师的职责,有利于学生问题的适时解决,也有利于学生的学习得到及时的巩固。通过软件机器人与学生的交互辅导,可以对学生的学习情况进行分析,为学生制定专门的指导计划,提高学生的学习质量。

3.1.3仿真训练

在教学中,教师可以利用机器人,将相关内容通过机器人的演示展现给学生,减轻教师的负担,并能够通过规则的动作,使教学更为规范。例如,用机器人示范体育高难动作,可以将动作分解、定格、重复播放等,从多方位展示动作,使学生能够充分掌握动作的规范,比教师的示范更为科学,也更为有效。

3.1.4机器人远程教育

通过机器人,可以通过对学生的特征数据分析,建立学生模型库,根据学生的个性,同时对多名远程教育的学生实施个性化教学和辅导,提高远程教育的效率,实现远程教育的智能化。

3.1.5激发学生的学习兴趣

机器人为学生创设富有情趣的教学环境,根据教学任务,采用与学习相关的游戏,调动学生的学习积极性,使学生在尽可能短时间内,掌握需要了解的知识点,提高学习效率。

3.2数据挖掘技术的实际应用

数据挖掘技术的应用领域较为广泛,主要有:

(1)商业领域

商业领域是最早应用数据挖掘技术的重要领域。通过数据挖掘,对产品销售数据进行分析,对产品进行市场定位;根据消费者需求分析,对产品的销售进行预测,调整产品营销策略;根据市场销售情况,制定合理的库存,减少资金的占用;对顾客的购买行为模式进行识别,据此布置货架,适应顾客的购买习惯;通过食品的滞销、畅销分析,制定相应的促销手段和促销时间,避免商品过期积压等等,使数据挖掘技术在商业领域得到极为广泛的应用。

(2)金融业

利用金融服务的各种卡品信息,分析客户的需求,了解客户的存款和贷款信息,对存、贷款趋势作出科学预测,从而制定合理的存、贷款优惠策略;对金融交易活动进行监控,从中提取有用信息。例如,有信用卡客户对私家车感兴趣,金融机构就可以将信息告知汽车销售部门,并为客户提供量身定制的贷款服务。

(3)工业生产

在产品销售环节,工业生产企业对数据挖掘技术的应用与商业领域的应用大致无异。随着市场竞争的激烈,很多工业生产厂家已经通过数据挖掘技术对生产过程进行动态监控。

(4)网络应用

随着信息流量的增大,简单的索引与搜索系统已经很难满足网络用户的需要,有待开发高层次的搜索引擎来适应网络不断的发展,智能化的搜索引擎带给用户的是快捷、高效与易用,使其成为今后搜索引擎的应用趋势。

(5)其它方面的应用

通讯公司利用远程通信,及时了解客户信息,创新客户服务,拓展新的业务,扩大市场影响力,赢得最佳效益。高校利用数据挖掘技术,了解生源信息,将学校的专业信息发送给目标生源;对教师的情况进行分析,从中找出关联性,有针对地制定教学方案,有效提高高校的教学质量。医药公司通过对医生处方分析,了解医生的用药情况,可以制定合理的供货计划和营销策略。旅游机构对旅游团体进行分析,可以采用有效的旅游模式,吸引更多的旅游团体。利用卫星遥感技术获取的数据,提高天气预报的准确度。

3.3人工智能在检测系统的应用

人工智能在检测领域的应用非常广泛,如前面介绍流水线的监控、智能故障诊断、专家技术系统等,现对网络入侵的智能检测系统加以简要说明。

3.3.1网络入侵专家检测系统

该系统的智能化程度高,用户不用干预专家系统的推理。然而,其系统信息是建立在专家知识的基础上,必然受专家认知网络攻击模式的限制。该系统的构建基于以下几点:首先,采用安全入侵规则的描述方式,如判断树描述、图形描述等。其次,通过合理推理,参照专家库的规则,判断网络安全状况,检测是否有入侵行为发生。最后,更新专家库,调整专家规则,结合神经网络技术,利用神经网络技术的敏感性与快速反应能力,不断增强系统的自适应功能,提高系统检测能力。

3.3.2入侵统计智能检测系统

该系统主要对异常的安全问题进行检测。它通过建立正常行为模型,对照进行网络入侵检测,检测出正常行为有较大偏离,则视为异常。首先,确立门限值,统计某一事件在特定时间出现的频率,检测是否超出门限值,判断系统是否异常。其次,设定事件度量均值、度量标准偏差的置信区间,统计系统的两个参数值,判断系统是否偏离区间,检测系统异常与否。最后,根据事件的矩阵数据,对事件转移的概率进行统计分析,结果小则预示存在异常。

参考文献:

[1] 于大方.浅析人工智能及其应用领域[J].科技信息.2008(23)

[2] 张鹏.智能机器人辅助教育及其应用[J].中国电化教育2009(2)

[3] 龚成清.基于人工智能的网络入侵检测系统设计[J].南宁职业技术学院学报.2009(5)

[4] 张睿.浅论数据挖掘技术及其应用[J].成功(教育版). 2009(10)

第4篇:人工智能在教育的应用范文

关键词:航天类专业 人工智能 教学探索

中图分类号:G64 文献标识码:A 文章编号:1674-098X(2014)10(b)-0155-02

面对航天科技迅猛发展,现代军备技术快速提升,培养具有专业性的高素质航天类人才,是我国航天科技发展的战略选择,也是航天重点高校面向并有效服务航天事业的历史责任。航天类本科生的教育形式也需要突破传统的方式,着重多样性、前沿性、工程性,因此,该专业的各门课程教育都应该结合专业特点,探索新的教学模式。

人工智能自1956年诞生50多年以来,引起众多科研机构、政府和企业的空前关注,已成为一门具有日臻完善的理论基础、日益广泛的应用领域和广泛交叉的前沿学科。由于航天领域的特殊要求,人工智能在其发展中发挥着不可替代的重要作用,各发达国家都相继开展了人工智能与航天技术相结合的研究,致力于实现可重构的、具有容错能力的、智能的飞行系统和管理系统。因此,“人工智能”作为航天类专业的一门特色选修课,应结合专业特点展开更具有实用性和创新性的教学。

1 人工智能课程特点

一方面,“人工智能”是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域,具有知识点多、涉及面广、内容抽象、不易理解、理论性强等特点,使得该课程的教学具有较大的灵活度和较高的难度。另一方面,“人工智能”是一门正在发展中的学科,具有较强的前沿性,计算机科学、信息科学、生物科学等相关学科的发展不断的提出了许多新的研究目标和研究课题,使得人工智能的技术和算法也需要不断更新,这在很大程度上增加了“人工智能”课程的教学难度。

2 航天类专业特点

首先,航天类专业具有较强的工程性。在专业的教学改革中有统一的特点,即强调要体现航天工程技术的综合性、系统性, 注重培养复合型人才。其次,航天类专业具有一定的前沿性。因为航天飞行器作为现代高科技和多种学科技术综合应用的结晶,应及时把现代先进科技融入到了专业基础和专业类的课程教学中, 专业知识更新快成为又一特点;另外,航天类专业应注重实践性教育。尊重个性和兴趣,强调动手能力,实验室对学生开放,要求学生自主地设计完成实验,强调对学生设计理念和创造能力的培养。最后,航天类专业应重视产学合作。产学合作的目的在于推动学校与航天产业的持续全面合作,造就一支科学技术研究和工程实践兼备的教师队伍。

3 教学模式的探索

3.1 教材的选择

人工智能作为一门新兴的学科,其理论与方法都还在不断的发展与完善中。就目前来看,关于人工智能的定义和范围都没有一个统一的标准,不同的教材所介绍的内容也不尽相同。在教材选用方面,需要综合考虑专业特点和学生的知识背景。本课程主要针对航天类专业高年级本科生,该类学生具有一定的数学、计算机、信息论、通信理论等基础知识,对航天应用的基本需求有初步的了解,因此,“人工智能”课程难度应该控制在中级,可以较深入的介绍人工智能的基础算法和应用案例。

中南大学蔡自兴教授积累了多年的教学与科研经验,借鉴了国内外其他专家和作者的最新研究成果,吸取了国内和国外人工智能领域学术书籍的长处,于1987年编写了“人工智能及其应用”一书,该书根据人工智能学科的新发展不断修订,推出四个版本。本课程采用“人工智能及其应用(第4版)”,其中大部分内容适合本科生学习。另外,本课程还给学生提供其他一些参考书目,如N.J.Nilsson 的“Artificial Intelligence:A New Synthesis.Morgan Kanfmann”等经典教材。

3.2 课堂教学形式的探索

“人工智能”课程内容较抽象,概念较为繁多,若采用单一的课堂讲授的方式,学生容易概念混淆、理解不透,逐渐产生厌倦情绪,导致教学效果差。本文探索不同的课堂教学手段,根据不同内容采用不同的教学手段,有利于学生对课程内容的理解与吸收。另外,考虑到航天类的专业特点,突出课程内容的工程应用,增加研究性质的教学内容与形式,有利于培养学生的创新能力和实践能力。

(1)课件采用图文并茂的PPT。综合利用文字、图像、声音、视频等多种媒体表示方法,在介绍原理和概念时采用精辟的文字,介绍算法流程时采用图像,介绍算法应用时采用视频。在PPT中适当利用不同的字体、颜色或动画来突出重点,细化流程,引导学生的思路,便于集中注意力接受重点内容。

(2)适当增加课堂讨论与练习。对于人工智能的一些基本问题,可以引导学生进行调研和讨论,来深化课程内容的了解,并提高学生的学习兴趣;对于重要的算法和理论,可以增加课堂练习,让学生实际动手进行公式的推导或演算,并在练习中分析学生对问题的理解程度,有针对性的增加讲解或指导。

(3)适当采用类比的讲解方式。对人工智能的不同学派,不同方方法,以及方法的不同应用,广泛的采用类比的形式进行讲解,不仅可以复习已学习的内容,也利于对新内容的理解。并且,通过对不同内容的比较总结相似点、区分不同点,可以避免概念的混淆,清晰的掌握课程内容。

(4)增加研究性教学。研究性教学强调通过问题来进行学习,有必要将实际应用案例或者授课教师的科研项目融入日常的教学工作中去,用“启发式”、“案例式”教学激发学生“自主学习”能力。

3.3 课程内容的探索

一方面,鉴于本科生知识结构还不够完善,“人工智能”课程的内容要控制在适应本科生学科基础的中等难度;另一方面,鉴于航天类专业的特点,课程内容应更注重与航天应用相结合的内容,并且在课程中增加具体应用的介绍。具体的课程内容如表1所示。

3.4 考核形式的改革

“人工智能”课程注重学生创新能力和实践能力的培养,传统的试卷形式不能全面的反应学生的学习效果,因此,应采用课堂表现和课程报告相结合的方式进行综合考核。

一方面,重视学生提出问题、分析问题和解决问题的能力,对学生课堂讨论与练习的表现进行考核评分,作为总成绩的参考;另一方面,注重学生课题调研和实践的能力,采取提交课程论文的形式进行考核。正确引导学生根据个人兴趣、课程内容、可行性、实践难度进行合理选题,并根据所选题目进行文献查阅和总结,完成调研报告或算法实现报告。结合者两个方面进行最终成绩的评定,综合衡量学生问题分析能力、论文写作能力和创新实践能力。

4 结语

航天类专业的本科生教学需针对专业特点有的放矢,该专业的课程教育都应该趋向于前沿性、专业性和实用性。本文的“人工智能”课程教学改革方案不仅考虑到该课程属于前沿叉学科的特点,也综合考虑了航天类专业的特点。为了使课程教学更好地服务于学生,本文提出的改革方案打破传统的教学模式,将课堂理论讲解、课堂讨论、课后调研、项目实践等相结合,充分调动学生的学习兴趣和积极性,提高学生的创新能力,有利于培养真正符合航天领域所需要的综合型高级人才。

参考文献

[1] 王甲海,印鉴,凌应标.创新型人工智能教学改革与实践[J].计算机教育,2010(15):136-138,148.

[2] 刘兴林.大学本科人工智能教学改革与实践[J].福建电脑,2010(8):198-199.

[3] 怀丽波.32课时《人工智能基础》课程教学的几点思考[J].华章,2013(34):193-194.

[4] 纪霞,李龙澍.本科人工智能教学研究[J].科教文汇(上旬刊),2013(6):91-92.

[5] 肖春景,李建伏,杨慧.《人工智能》课程教学方法改革的探索与实践[J].现代计算机(专业版),2013(26):32-34.

[6] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1):146-148.

[7] 张伟峰.本科高年级人工智能教学的几点思考[J].计算机教育,2009(11):139-141.

第5篇:人工智能在教育的应用范文

关键词:教学改革;人工智能;游戏设计;游戏编程

人工智能(Artificial Intelligence,AI)是计算机科学的一个分支,是研究、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学[1]。人工智能技术研究领域包括机器人、模式识别、自然语言处理、机器学习、数据挖掘、人工神经网络和专家系统等[2],其最为广泛的应用之一就是游戏设计[3]。游戏设计虽然涉及多门学科,但其作为应用并没有形成一门单独的理论[4-5]。由于游戏存在较大的市场以及其作为人工智能的一个重要应用,国外已有多所大学开设了游戏设计课程。如卡内基梅隆大学(Carnegie Mellon University)于1999年设立了娱乐科技硕士学位,并开设了相关课程;南加州大学(The University of Southern California)设立了为期3年的互动媒体艺术(fine arts in interactive media)硕士学位课程,并于大学部设立电子游戏设计(video-game design)副修课程。该校也为美国军队创作训练士兵的电子游戏,透过战斗情境模拟来进行沙盘演练。麻省理工学院(Massachusetts Institute of Technology)提供多种电子游戏设计相关课程,并研发将电玩游戏纳入教室教学的方法。斯坦福大学(Stanford University)提供电子游戏设计史及包含最佳电子游戏竞赛奖的计算机绘图课程。华盛顿艺术学院(The Art Institute of Washington)为亚特兰大艺术学院的分校,提供授予学士学位的视觉及游戏程序设计课程。在初期的艺术与设计重点培训后,学生将学习立体动画相关技术。国内也有多所高校开设了游戏设计的相关课程,如北京邮电大学,首都师范大学等,为了适应市场许多培训机构也开设了游戏设计课程,但培训机构将课程的重点放在了实际的编辑代码中而过少的关注理论。中南大学开设人工智能课程已有20多年的历史,在教学实践中,中南大学智能系统与智能软件研究所的教师们在教学科研方面取得了许多令人振奋的成果。在良好的环境中,人工智能与游戏编程课程应运而生[6-7]。

1教学目标与要求

中南大学人工智能与游戏设计课程主要面向智能方向4年级学生,在4年级第一学期开设。学习该门课程之前需要具备人工智能以及计算机编程方面的课程知识,并且需要一定的计算机图形学的相关知识基础。

此门课程的学习使学生了解游戏设计与虚拟现实的基本概念和术语及其基本设计方法,理解人工智能在游戏中的相关应用,熟悉游戏设计中编程以及建模技术,为学生将来利用人工智能技术以及游戏设计技术奠定必要的知识基础。除此之外向学生介绍计算机游戏的基本原理和最新进展,包括计算机游戏动画的最新概况、游戏程序设计概览、2D游戏的基本编程技术、3D游戏动画的基本编程技术、3D游戏场景的组织与绘制、游戏中的高级图形技术、游戏中的音频编程、游戏中的人机界面技术、人工智能在游戏动画中的应用,纹理贴图、基于图像的绘制和加速算法等。

基于该教学目标,本课程有两个重点内容,其分别是人工智能技术如何在游戏设计中的应用,以及游戏编程的相关技术。对于人工智能技术在游戏设计中的应用这一内容,主要采用理论结合实际的理念,将学生已具备的人工智能理论知识与游戏设计的具体应用联系起来,使学生一方面能体会人工智能的基础理论,另一方面使学生能够将其所学用于实践,避免理论与实践脱节。游戏编程内容主要从设计模式入手,然后依托多媒体平台对学生进行讲授设计以及编程方面的相关知识。

围绕这个教学目标,我们安排了28个学时的课堂教学,4个学时的实验,总共32个学时的课程。接下来针对课堂教学、实验设计、考核方式这几个方面分别展开讨论。

2课堂教学设计

本课程采用培训学校模式与大学理论教育折中的方式进行讲授,本节将着重对28个学时的课堂教学内容分别介绍。

1) 游戏程序设计概论与计算机图形学基础。

该部分内容可以分为以下两部分。

(1) 计算机游戏简介与游戏设计概论(2课时)。

(2) 计算机图形学基础(2课时)。

概论部分主要介绍计算机游戏的基本概念、特点以及目前国际上该领域的研究和应用情况。图形学部分主要是介绍计算机图形学的相关理论基础,目的是让没有学过计算机图形学的学生有一定了解,由于考虑到智能专业也开设计算机图形学的相关选修课,因此,本部分内容只是对之前学习的相关知识的复习,目的是为后续的程序设计课程打好相应的理论基础。

本次课程是正门课程的开篇之讲,一方面,教师要开宗明义,让学生明确何为计算机游戏,并对计算机游戏有大致的了解,为后续课程学习起铺垫作用;另一方面,为增强学生学习兴趣,必须介绍计算机游戏的类型以及各种知识与其的关联。

2) 游戏编程技术。

如上所述,游戏编程是本门课程的一个重点内容,游戏编程可以分为如下几个部分。

(1)Windows编程基础(2课时)。

(2)DirectX编程基础(2课时)。

(3)2D游戏的基本编程(2课时)。

(4)3D游戏场景的组织和绘制(2课时)。

(5)3D动画的基本编程技术(2课时)。

(6)游戏中的人机界面技术(2课时)。

对于Windows编程基础,其主要内容是Windows操作系统的发展史、Win32程序的基本结构、消息循环与处理、Windows窗口、GDI接口、集成开发环境(IDE)。

DirectX编程[8]基础的主要内容是DirectX开发包的历史及其框架、介绍每一个组件的功能、DirectX开发包的安装以及与IDE连接的配置。

2D游戏基本编程的主要内容是游戏的基本流程和体系结构、游戏开发的基本理念及方法、游戏引擎简介、游戏的调试与测试。

3D游戏场景的组织与绘制的主要内容是3D场景的组织与管理、游戏场景的几何优化、3D场景的快速可见性判断与消隐、地形场景的绘制与漫游、3D游戏场景中的碰撞检测。

3D动画的基本编程技术的主要内容是3D动画技术概述、Direct3D开发包的使用、关键帧动画技术、基于动作捕捉的动画技术、脚本驱动的动画技术。

游戏中的人机界面技术主要内容是游戏的可玩性与人机界面、用户界面设计基础。

游戏程序设计部分内容主要是让学生了解和掌握面向Windows平台的游戏编程的技能。现在绝大部分游戏和娱乐都是基于Windows平台,因此掌握Windows平台的设计模式与编程方法是必须的。又因为DirectX软件开发包是微软公司面向Windows平台开发的一套专门应用于游戏开发的API,因此了解其原理以及掌握其技术能够提高学生的游戏开发能力。

3) 人工智能在游戏中的应用。

如今的游戏应用了大量的人工智能技术,本门课程将从以下几个方面介绍人工智能技术在游戏中的应用。

(1)遗传算法(6学时)。

(2)神经网络(6学时)。

遗传算法主要内容是遗传算法的概念及其相关研究、杂交操作、变异操作、适应性函数选择、遗传算法优化的算子、创建和处理矢量图形。

神经网络主要内容是神经网络概述、适应性函数、环境探测、有监督的学习、演化神经网络的拓扑。

该部分内容主要是介绍如何将人工智能中的理论用计算机语言实现,并介绍如何在游戏设计中应用这些理论。这部分内容是本门课程一个核心内容,通过学习学生们能够认识到人工智能在游戏设计中的重要性,并提高应用能力。

3实验设计与课程设计

由于该门课程为选修课,因此课时较少,除课堂课时之外只剩下4个学时的实验课时。我们针对这4个课时的实验进行了重点设计,其主要内容是引导学生熟悉Visual Studio .Net 2008集成开发环境、安装与配置DirectX 软件开发包、使用有限状态机设计状态驱动智能体,设计2D图形驱动引擎。

虽然课时很短,但学生能够实际动手操作,熟悉游戏编程的相关开发工具与开发包,另外,学生学习兴趣提高了,学习内容从枯燥的抽象概念、理论变成实际的事例。此外,学生还可以在课下完成任务,继续钻研新的理论应用。

我们针对本门课程实验课时少的缺点,特别设定了一个课程设计环节。课程设计并不占用实验课时,而是要求学生利用课外的时间,自由组合,以团队的模式完成相应的设计要求。

课程设计主要内容是要求学生完成一个项目设计,该项目设计主要是要求学生使用相关的集成开发环境和开发包,利用一个人工智能技术编写出一个小的游戏软件,并给出设计报告。考虑到学生的实际能力,开发与报告以小组的形式进行设计开发,设计团队由3~5人自由组合,具体分工必须在报告中体现,报告要求不少于4000字,以软件开发文档的形式提交,报告中不仅有游戏软件的需求分析文档、设计文档和测试文档,还必须包括游戏的内容设计,即游戏的情节创意或功能设计。设计题目以及游戏类型由学生自选,图形界面可以是3D也可以是2D,开发包可以使用Direct3D也可是Windows自带的GDI。

4考核方式及其安排

考核一个方面是检测学生学习的状况,另一个方面是为了通过考核方式,提高学生的实践动手能力。基于这个原因,我们将整个考核分为3个模块。

1) 期末考试(开卷),占总成绩的50%。

2) 项目设计,占总成绩的35%。

3) 实验,占总成绩的15%。

期末考试采用开卷形式,主要目的在于检测学生通过课程学习,对知识点的掌握程度,以及运用知识点解决问题的能力。其占总成绩比例的一半。虽然期末考试为开卷,但考核的知识点无法直接从教材中直接找到,需要学生实际运用能力和解题手段才能完成答题。精心设计的开卷试题,可以使学生对虚拟现实知识体系进行一个系统的回顾,同时,它也是对教学的补充。

课程设计需要学生有很强的自主性,认真完成将使学生受益匪浅,敷衍了事不仅学生没有得到锻炼,教学目的也难以达成。课程设计以小组的形式有优势也有劣势,好处在于学生可以根据自身能力对应团队中的角色,例如,某同学编程能力强,他可以作为程序设计与开发人员;另一同学数学好,或理论方面出色,他就可以担任算法设计的工作;某些同学有创意,他则可以担任游戏情节设计的工作,等等。这样做分工明确,每个人都能够根据自己的实际需求和情况得到锻炼。劣势在于,如果团队同学能力重点都一样,就会出现分工不清,而最大的问题就是团队合作会导致某些同学出现依赖思想,最终导致整个团队只有一个人完成整个项目,甚至导致项目无法完成的情况。对此,我们应当强调每一个学生都要积极主动参与到课程设计中来,发挥自己的主观能动性,协作完成项目。

5结语

本文探讨了人工智能与游戏设计教学目标与任务、课堂教学、实验设计、考核方式,希望能够给其他相关教学工作者以参考和启发,共同促进其完善与提高。

由于人工智能与游戏设计这门课程是中南大学新开的一门课程,在许多方面存在考虑不周或欠缺的情况,需要向兄弟单位多学习并且多在教学实践中摸索与提高。本门课程是以中南大学智能系统与智能软件研究所为依托,它具有很好的研究基础与良好的实验平台,并能够将这门课程融会贯通,使学生理解人工智能与游戏开发设计的基本理念,并培养学生实际应用技能。

参考文献:

[1] 杨刚,黄心渊. 虚拟现实技术课程的教学设计与讨论[J]. 计算机教育,2008(2):1-3.

[2] 蔡自兴,徐光v. 人工智能及其应用[M]. 3版. 北京:清华大学出版社,2003.

[3] 刘锴. 应用型院校的虚拟现实技术课程教学探讨[J]. 电脑知识与技术,2009,23(5):6486-6487.

[4] 刘明昆. 三维游戏设计师宝典:Virtools开发工具篇[M]. 成都:四川出版集团,2005.

[5] 王一剑. 人工智能在游戏开发中的应用[M]. 上海:同济大学软件学院,2008.

[6] 于金霞,汤永利. 人工智能课程教学改革及实践探讨[J]. 教学园地,2009(5):91-118.

[7] 蔡自兴,肖晓明,蒙祖强,等. 树立精品意识搞好人工智能课程建设[J]. 中国大学教学,2004(1):28-29.

[8] Microsoft. DirectX Software Development Kit[EB/OL]. [2010-7-20]. /downloads/details.aspx.

Design in Artificial Intelligent and Game Programming Courses

LI Yi

(Institute of Information Science and Engineering, Central South University, Changsha 410083, China)

第6篇:人工智能在教育的应用范文

据统计,2017年中国人工智能核心产业规模超过700亿元,随着各地人工智能建设的逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,年复合增长率将达31.7%。

随着人工智能技术的不断成熟,人工智能创业的难度逐步降低,越来越多的创业公司加入人工智能的阵营。

2018年被称为人工智能爆发的元年,人工智能技术应用所催生的商业价值逐步凸显。人工智能逐步切入到社会生活的方方面面,带来生产效率及生活品质的大幅提升。智能红利时代开启!资本、巨头和创业公司纷纷涌入,将人工智能拉到了信息产业革命的风口。

如何把握产业动向,抓住风口机会?创业邦研究中心凭借在人工智能等前言科技领域持续研究、洞察的能力,在对国内人工智能创业公司进行系统调研的基础上,推出《2018中国人工智能白皮书》,对人工智能的核心技术、主要应用领域、巨头和创业公司的布局、未来发展态势和投资机会进行了深度解析。

第一部分人工智能行业发展概述

1.人工智能概念及发展

人工智能(Artificial Intelligence, AI)又称机器智能,是指由人制造出来的机器所表现出来的智能,即通过普通计算机程序的手段实现的类人智能技术。

自1956年达特茅斯会议提出“人工智能”的概念以来,“人工智能”经历了寒冬与交替的起起伏伏60多年的发展历程。2010年以后,深度学习的发展推动语音识别、图像识别和自然语言处理等技术取得了惊人突破,前所未有的人工智能商业化和全球化浪潮席卷而来。

人工智能发展历程

2.人工智能产业链图谱

人工智能产业链可以分为基础设施层、应用技术层和行业应用层。

A基础层,主要有基础数据提供商、半导体芯片供应商、传感器供应商和云服务商。

B技术层,主要有语音识别、自然语言处理、计算机视觉、深度学习技术提供商。

C应用层,主要是把人工智能相关技术集成到自己的产品和服务中,然后切入特定场景。目前来看,自动驾驶、医疗、安防、金融、营销等领域是业内人士普遍比较看好方向。

人工智能产业链

资料来源:创业邦研究中心

第二部分人工智能行业巨头布局

巨头积极寻找人工智能落地场景,B、C 端全面发力。

资料来源:券商报告、互联网公开信息,创业邦研究中心整理

第三部分机器视觉技术解读及行业分析

1.机器视觉技术概念

机器视觉是指通过用计算机或图像处理器及相关设备来模拟人类视觉,以让机器获得相关的视觉信息并加以理解,它是将图像转换成数字信号进行分析处理的技术。

机器视觉的两个组成部分

资料来源:互联网公开信息,创业邦研究中心整理

2.发展关键要素:数据、算力和算法

数据、算力和算法是影响机器视觉行业发展的三要素。 人工智能正在像婴儿一样成长,机器不再只是通过特定的编程完成任务,而是通过不断学习来掌握本领,这主要依赖高效的模型算法进行大量数据训练,其背后需要具备高性能计算能力的软硬件作为支撑。

深度学习出现后,机器视觉的主要识别方式发生重大转变,自学习状态成为视觉识别主流,即机器从海量数据里自行归纳特征,然后按照该特征规律使图像识别的精准度也得到极大的提升,从70%+提升到95%。

3.商业模式分析

机器视觉包括软件平台开发和软硬件一体解决方案服务。整体用户更偏向于B端。软件服务提供商作为技术算法的驱动者,其商业模式应以“技术层+场景应用”作为突破口。软硬件一体化服务供应商作为生态构建者,适合以“全产业链生态+场景应用”作为突破口,加速商业化。

(1)软件服务:技术算法驱动者—“技术层+场景应用”作为突破口

这种商业模式主要是提供以工程师为主的企业级软件服务。有海量数据支撑,构建起功能和信息架构较为复杂的生态系统,推动最末端的消费者体验。

此类商业模式成功关键因素:深耕算法和通用技术,建立技术优势,同时以场景应用为入口,积累用户软件。视觉软件服务按处理方式和存储位置的不同可分为在线API、离线SDK、私有云等。

国内外基础算法应用对比

资料来源:互联网公开信息,创业邦研究中心整理

(2)软硬件一体化:生态构建者—“全产业链生态+场景应用”作为突破口

软硬一体化的商业模式是一种“终端+软件+服务”全产业链体系。成功的因素是大量算力投入,海量优质数据积累,建立算法平台、通用技术平台和应用平台,以场景为入口,积累用户。亮点是打造终端、操作系统、应用和服务一体化的生态系统,各部分相辅相承,锐化企业竞争力,在产业链中拥有更多话语权。

4.投资方向

(1)前端智能化,低成本的视觉解决模块或设备

从需求层面讲,一些场景对实时响应是有很高要求的。提供某些前端就本身有一定计算能力的低成本的视觉模块和设备将有很大市场需求。前置计算让前端设备成为数据采集设备和数据处理单元的合体,一方面提升了处理速度,另一方面可以处理云端难以解决的问题。

机器视觉在消费领域落地的一个障碍是支持高性能运算的低功耗、低价位芯片选择太少。从低功耗、高运算能力的芯片出发,结合先进的算法开发模块和产品,这类企业将在机器视觉领域拥有核心竞争力。

(2)深度学习解决视觉算法场景的专用芯片

以AI芯片方式作为视觉处理芯片有相当大的市场空间。以手势识别为例,传统的识别方案大都基于颜色空间,如 RGB,HSV ,YCrBr,无法排除类肤色物体及黑色皮肤对识别精度的干扰。借助深度学习,如通过 R-CNN 训练大量标注后的手势图像数据,得到的模型在处理带有复杂背景及暗光环境下的手势识别问题时,比传统方案的效果好很多。

(3)新兴服务领域的特殊应用

前沿技术带来的新领域(如无人车、服务机器人、谷歌眼镜等),对机器视觉提出了新要求。机器视觉可以让机器人在多种场合实现应用。服务机器人与工业机器人最大的区别就是多维空间的应用。目前国内的机器视觉,涉及三维空间、多维空间,其技术基本上处在初始阶段,未来存在较大市场增长空间。

(4)数据是争夺要点,应用场景是着力关键

机器视觉的研究虽然始于学术界,但作为商业应用,能解决实际问题才是核心的竞争力。当一家公司先天能够获得大量连续不断的优质场景数据,又有挖掘该数据价值的先进技术时,商业模式和数据模式上就能形成协同效应。创业公司要么通过自有平台获取数据,要么选择与拥有数据源的公司进行合作,同时选择一个商业落地的方向,实现快速的数据循环。

第四部分智能语言技术解读及行业分析

1.语音识别技术

(1)语音识别技术已趋成熟,全球应用持续升温

语音识别技术已趋成熟,全球应用持续升温。语音识别技术经历了长达60年的发展,近年来机器学习和深度神经网络的引入,使得语音识别的准确率提升到足以在实际场景中应用。深度神经网络逐步找到模型结构和调参算法来替代或结合高斯混合算法和HMM算法,在识别率上取得突破。根据Google Trends统计,自2008年iPhone及谷歌语音搜索推出以来语音搜索增长超35倍。百度人工智能专家吴恩达预测,2020年语音及图像搜索占比有望达到50%。Echo热销超过400万,带动智能音箱热潮。

(2)语音识别进入巨头崛起时代,开放平台扩大生态圈成主流

语音识别即将进入大规模产业化时代。随着亚马逊Echo的大卖,语音交互技术催生的新商机,吸引大大小小的公司构建自己主导的语音生态产业链。各大公司纷纷开放各自的智能语音平台和语音能力,欲吸引更多玩家进入他们的生态系统。

(3)语音识别技术发展瓶颈与趋势

低噪声语料下的高识别率在现实环境使用中会明显下降到70-80%,远场识别、复杂噪声环境和特异性口音的识别是下一个阶段需要解决的问题。

麦克风阵列类前端技术不仅是通过降噪和声源定位带来识别率的提高,带环境音的语料的搜集、标注可用于模型的训练,有助于打造更新一代的语音识别引擎技术。语音巨头已经在布局。

在IOT包括车载领域,云端识别并非通行的最优方案,把识别引擎结合场景进行裁剪后往芯片端迁徙是工程化发展的方向。

2.自然语言处理(NLP)发展现状

(1)多技术融合应用促进NLP技术及应用的发展

深度学习、算力和大数据的爆发极大促进了自然语言处理技术的发展。深度学习在某些语言问题上正在取得很大的突破,比如翻译和写作。2014年开始LSTM、Word2Vec以及Attention Model等技术研究的进展,使DL有了路径在语义理解领域取得突破,并且已经有了明显的进展。对话、翻译、写作新技术成果里都开始逐渐混合入DL的框架。2014-2015年,硅谷在语义理解领域的投资热度剧增。

深度学习能最大程度发挥对大数据和算力资源的利用,语义理解的发展还需要深度学习、搜索算法、知识图谱、记忆网络等知识的协同应用,应用场景越明确(如客服/助理),逻辑推理要求越浅(如翻译),知识图谱领域越成熟(如数据饱和度和标准性较强的行业),技术上实现可能性相对较低。在各种技术融合应用发展的情况下,具备获取一定优质数据资源能力并可结合行业Domain knowledge构建出技术、产品、用户反馈闭环的企业会有更好的发展机会。

(2)NLP主要应用场景

问答系统。问答系统能用准确、简洁的自然语言回答用户用自然语言提出的问题。基本工作原理是在线做匹配和排序。比如 IBM 的 Watson,典型的办法是把问答用FAQ索引起来,与搜索引擎相似。对每一个新问题进行检索,再将回答按匹配度进行排序,把最有可能的答案排在前面,往往就取第一个作为答案返回给用户。

图像检索。同样也是基于深度学习技术,跨模态地把文本和图片联系起来。

机器翻译。机器翻译的历史被认为与自然语言处理的历史是一样的。最近,深度学习被成功地运用到机器翻译里,使得机器翻译的准确率大幅度提升。

对话系统。对话系统的回复是完全开放的,要求机器能准确地理解问题,并且基于自身的知识系统和对于对话目标的理解,去生成一个回复。

(3)创业公司的机遇

1)机器翻译方面:经过多年的探索,机器翻译的水平已经得到大幅度提升,在很多垂直领域已经能够在相当大程度上替代一部分人工,机器翻译技术的商业化应用已经开始进入大规模爆发的前夜。

2)应用于垂直领域的自然语言处理技术

避开巨头们对语音交互入口的竞争,以某一细分行业为切入点,深耕垂直领域,对创业公司也是一个不错的选择。

第五部分人工智能在金融行业的应用分析

人工智能产业链包含基础层、技术层、应用层三个层面。基础层的大数据、云计算等细分技术被应用到金融征信、保险、理财管理、支付等金融细分领域;技术层的机器学习、神经网络与知识图谱应用于金融领域的征信与反欺诈、智能投顾、智能量化交易,计算机视觉与生物识别应用于金融领域的身份识别,语音识别及自然语言处理应用于金融领域的智能客服、智能投研;应用层的认知智能应用于金融领域的智能风控。

人工智能在金融行业的典型应用情况

资料来源:创业邦研究中心

第六部分人工智能在医疗行业的应用分析

1.人工智能在医疗行业的应用图谱

人工智能在医疗行业的应用潜力巨大,目前在健康管理、辅助诊疗、虚拟助理、医学影像、智能化器械、药物挖掘和医院管理等领域均有企业在布局,其中医学影像、药物挖掘、健康管理,辅助诊疗、虚拟助理的应用发展速度较快。

图 人工智能在医疗行业的应用图谱

资料来源:创业邦研究中心

2.人工智能在医疗行业的具体应用场景

医学影像。人工智能应用于医学影像,通过深度学习,实现机器对医学影像的分析判断,是协助医生完成诊断、治疗工作的一种辅助工具,帮助更快的获取影像信息,进行定性定量分析,提升医生看图/读图的效率,协助发现隐藏病灶。 人工智能通过影像分类、目标检测、图像分割、图像检索等方式,完成病灶识别与标注,三维重建,靶区自动勾画与自适应放疗等功能,应用在疾病的筛查、诊断和治疗阶段。目前较为火热的应用有肺部筛查、糖网筛查、肿瘤诊断和治疗等。

药物挖掘。人工智能在药物研发上的应用可总结为临床前和临床后两个阶段。临床前阶段:将深度学习技术应用于药物临床前研究,在计算机上模拟药物筛选的过程,包括靶点选择、药效和晶型分析等,预测化合物的活性、稳定性和副作用,快速 、准确地挖掘和筛选合适的化合物或生物,提高筛选效率,优化构效关系。临床后阶段:针对临床试验的不同阶段,利用人工智能技术对患者病历进行分析,迅速筛选符合条件的被试者,监测管理临床试验过程中的患者服药依从性和数据收集过程,提高临床试验的准确性。

虚拟助理。医疗虚拟助理是基于医疗领域的知识系统,通过人工智能技术实现人机交互,从而在就医过程中,承担诊前问询、诊中记录等工作,成为医务人员的合作伙伴,使医生有更多时间可以与患者互动。医疗虚拟助理根据参与就医过程的功能不同,主要有智能导诊分诊,智能问诊,用药咨询和语音电子病历等方向。

第七部分智能驾驶行业分析

1.智能驾驶行业产业链

智能驾驶行业的中心业务是以Google、百度为代表的智能驾驶操纵解决方案提供商和以特斯拉、蔚来为代表的成车厂商。该类厂商,上接上游软硬件提供商,下接公司和消费者,在整个业务链中扮演至关重要的一环。

产业链上游厂商多为细分技术提供商,如深度学习、人机交互、图像识别和新材料、新制造新能源等。

智能驾驶产业链图谱

资料来源:创业邦研究中心

2.智能驾驶市场分析

伴随着 ADAS 技术的不断更新,推断全球 L1-L5 智能驾驶市场的渗透率会在接下来 5年内处于高速渗透期,然 后伴随半无人驾驶的普及进入稳速增长期。在未来的 2025 年无人驾驶放量阶段后,依赖全产业链的配合而进入市场成熟期。预测到2030年,全球 L4/5 级别的自动驾驶车辆渗透率将达到 15%,单车应用成本的显着提升之 外,从 L1-L4 级别的智能驾驶功能全面渗透为汽车产业带来全面的市场机会。

按照 IHS Automotive 保守估计,全球 L4/L5 自动驾驶汽车产量在 2025 年将接近 60 万辆,并在 2025- 2035 年间获得高速发展,年复合增长率将达到43%,并在2035年达到2100万辆。另有接近 7600 万辆的汽车具备部分自动驾驶功能,同时会带动产业链衍生市场的大规模催化扩张。

根据独立市场调研机构 Strategy Engineers 的预测,L4 高度自动驾驶等级下,自动驾驶零部件成本约在 3100 美元/车,其中硬件占比 45%,软件占比 30%,系统整合占比 14%,车联网部分占比 11%。按照全球 1 亿辆量 产规模计算,理想假设所有车辆全部达到 L4 高度自动驾驶水平,那么全球自动驾驶零部件市场规模在 2020 年 将达到 3100 亿美元。

第八部分中国人工智能企业画像分析

随着人工智能技术的不断成熟,人工智能创业的难度逐步降低。创新的大门吸引众多创业企业进入。为了观察行业风向,助力创新企业发展,创业邦研究中心对国内200多家人工智能创业公司进行了系统调研,从发展能力、创新能力、融资能力等多维度指标,评选出“2018中国人工智能创新成长企业50强”。

地域分布

全国88%的人工智能企业聚集在北京、上海、广东和江苏。其中,北京人工智能企业最多,占比高达39.66%;其次是上海,人工智能企业占比达21.55%;位列第三的是广东,人工智能企业占达15.52%。北京以领先全国其他地区的政策环境、人才储备、产业基础、资本支持等,成为人工智能创业首要阵地;华东地区的上海、江苏、浙江均有良好的经济基础和科技实力,人工智能应用实力雄厚,也聚集了一批人工智能垂直产业园;广东互联网产业发达,企业对数据需求强烈,依靠大数据产业链推动人工智能产业发展。

行业分布

从行业大类分布来看,行业应用层的企业占比最大,为56.03%;其次是应用技术层的企业,占比达31.04%;基础技术层的企业占比最小,仅为12.93%。随着人工智能技术的发展,人工智能与场景深度融合,应用领域不断扩展,行业应用公司比重不断提升。在基础层技术方面,国际IT巨头占据行业领先地位, 国内与国际差距明显,中小初创企业很难进入。

从行业应用来看,智能金融企业占比最大,为16.92%;其次是机器人企业,占比达15.38%;位列第三的是智能驾驶和智能教育,占比均为12.31%。金融行业的强数据导向为人工智能的落地提供了产业基础,智慧金融被列入国家发展规划中,庞大的金融市场为人工智能落地带来了发展前景。机器人作为人工智能产业落地输出, 目前市场需求较大,商业机器人占据较大份额。中国智能驾驶市场在资本推动下进入者较多,企业积极推动应用落地,百度、北汽等大型企业尝试商业化落地智能驾驶汽车。人工智能推动教育个性化落地,相关初创企业涉入教育蓝海,推动智慧教育的发展。

收入情况

收入分布在500-10000万之间的企业最多,占比达49.14%;500万以下的企业位居其次,占比达 26.72%;位列第三的是10000-100000万之间的企业,占比为17.24%。

最新估值

企业最新估值均在亿元级别,且分布较为均衡。三成企业估值超过15亿元,还有企业估值达到百亿级别,如优必

选科技、达闼科技和商汤科技等,将来或将跻身人工智能独角兽企业。(备注:分析样本量剔除一半未披露企业)

第九部分典型企业案例分析

1.Atman

企业概述

Atman由来自微软的人工智能科学家和产业经验丰富的产品团队创办,提供专业领域机器翻译、机器写作、知识图谱、大数据智能采集挖掘等语言智能产品,致力于成为医学、新闻、法律等专业领域语言智能专家,为专业领域用户赋能,推动专业领域用户进入人工智能时代,助力专业领域文字智能水平实现跨越式提升。Atman已为强生、新华社参考消息、北大法宝、君合律师事务所等世界领先药企、新闻媒体、法律服务机构开发机器翻译、机器写作、知识图谱、大数据智能采集挖掘等语言智能产品。

目前Atman在北京和苏州两地运营,能快速响应全国各地客户需求。

企业团队

创始人&CEO:马磊

清华大学计算机系毕业,曾先后在微软研究院和工程院担任研究员和架构师,机器学习专家、多次创业者、曾主导多项人工智能重大项目,和申请国际专利共计15+项。

Atman公司核心团队由来自微软、百度、法电等领域高端人才和资深技术人才组成,公司员工40人,其中硕士以上学历占比60%,技术开发人员占比70%,一半以上来自微软亚洲研究院和工程院。

核心技术与产品

技术方面,擅长机器学习(深度学习、强化学习、群体智能)在复杂问题的应用,和国际专利15项,Atman神经网络机器翻译系统于2016年9月首秀,早于谷歌的GNMT,专业领域翻译效果在公测标准和行业客户测试中均持续领先。核心产品为垂直领域机器翻译、机器写作、知识图谱抽取构建、大数据智能挖掘等语言智能产品。

Atman的机器翻译产品可自动翻译编辑专业文献、报告、音视频和网页,支持私有部署和云端混合部署,提供包括数据隐私安全以及自学习的端到端解决方案。

机器写作可对海量数据进行快速搜索、过滤、聚类,根据行业需求自动生成专业文档,适用于所有专业写作场景,可大幅减少专业报告写作过程中的繁复工作,大幅提升专业领域写作效率。

知识图谱可实现海量数据的语义检索、长链推理、意图识别、因果分析,形成一个全局知识库。大数据智能采集挖掘系统为专业领域用户提供智能数据源管理、海量专业数据获取和非结构化数据自动解析并结合知识图谱提供auto-screening、知识重构、专业决策辅助,帮助用户建立强大的以专业大数据为基础的业务辅助能力。

2.黑芝麻

企业概述

黑芝麻智能科技有限公司是一家视觉感知核心技术与应用软件开发企业,2016年分别在美国硅谷和上海成立研发中心,主攻领域为嵌入式图像、计算机视觉,公司核心业务是提供基于图像处理、计算图像以及人工智能的嵌入式视觉感知平台,为ADAS及自动驾驶提供完整的视觉感知方案。

目前公司和博世、滴滴、蔚来、上汽、上汽大通、EVCARD、中科创达、车联天下和云乐新能源等展开深入合作,提供基于视觉的感知方案;除此之外,公司还在消费电子、智能家居等领域布局为智能终端提供视觉解决方案。目前公司已经完成A+轮融资。

企业团队

团队核心成员来自于OmniVision、博世、安霸、英伟达和高通等知名企业,平均拥有超过15年以上的产业经验,毕业于清华、交大、中科大和浙大等知名高校。

创始人&CEO:单记章此前在硅谷一家全球顶尖的图像传感器公司工作近20年,离职前担任该公司的技术副总裁一职,工作内容覆盖了图像传感器研发和设计、图像处理算法研发和图像处理芯片设计。

核心技术和产品

在汽车领域,黑芝麻可提供车内监控方案(DMS),自动泊车方案(AVP),ADAS/自动驾驶感知平台方案。黑芝麻智能科技提供的解决方案包括算法和芯片两个核心部分:黑芝麻感知算法从基础的控光技术,到面向AI的图像处理技术出发来提高成像质量,以及应用深度神经网络训练,结合视频处理和压缩技术,形成从传感器端到应用端的处理过程;黑芝麻芯片平台采用独有的神经网络架构,包括独有的图像处理,视频压缩和计算机视觉模块,与黑芝麻视觉算法结合,采用16nm制程,设计功耗2.5w,每秒浮点计算达20T。

3.乂学教育

企业概述

乂学教育,成立于2014年,是一家网络教育培训机构,采用人工智能和大数据技术,为学生提供量身定制学习解决方案和个性化学习内容。核心团队来自美国Knewton、Realizeit、ALEKS等人工智能教育公司,销售团队有全国40亿toC销售额的经验。

企业自主研发了针对中国K12领域的学生智适应学习产品,其核心部分是以高级算法为核心的智适应学习引擎“松鼠AI”,该产品拥有完整自主知识产权,能够模拟真实特级教师教学。企业发表的学术论文得到了全球国际学术会议AIED、CSEDU、UMAP认可,并在纽约设计了人工智能教育实验室,与斯坦福国际研究院(SRI)在硅谷成立了人工智能联合实验室。

主要产品

学生智适应学习是以学生为中心的智能化、个性化教育,在教、学、评、测、练等教学过程中应用人工智能技术,在模拟优秀教师的基础之上,达到超越真人教学的目的。该产品性价比高,以人工智能+真人教师的模式,做到因材施教,有效解决传统教育课时费用高,名师资源少,学习效率低等问题。

智适应学习人工智能系统

智适应学习人工智能系统模拟特级教师,采用图论、概率图模型,机器学习完成知识点拆分和个人学习画像,采用神经网络、逻辑斯蒂回归和遗传算法为学生实时动态推荐最佳学习路径,实现个性化教育。

业务模式

线上与线下,2B和2C相结合。以松鼠AI智适应系统教学为主,真人教师辅助,学生通过互联网在线上学习课程。开创教育新零售模式,授权线下合作学校,已在全国100多个城市开设500多家学校。

4.云从科技

企业概述

云从科技成立于2015年4月,是一家孵化于中国科学院重庆研究院的高科技企业,专注于计算机视觉与人工智 能。云从科技是人工智能行业国家队,是中科院战略先导项目人脸识别团队唯一代表,唯一一家同时受邀制定人 脸识别国家标准、行业标准的企业。2018年,云从科技成为祖国“一带一路”战略实行路上的人工智能先锋,与 非洲南部第二大经济体津巴布韦政府完成签约。

云从科技奠定了行业领导地位: 国家肯定,国家发改委2017、2018年人工智能重大工程承建单位;顶层设计,唯一同时制定国标、部标和行标的人工智能企业;模式创新,三大平台解决方案,科学家平台、核心技术平台和行业应用平台。

企业核心团队

创始人

周曦博士,师从四院院士、计算机视觉之父—ThomasS.Huan黄煦涛教授,专注于人工智能识别领域的计算机视觉 研究。入选中科院“百人计划”,曾任中国科学院重庆研究院信息所副所长、智能多媒体技术研究中心主任。

周曦博士带领团队曾在计算机视觉识别、图像识别、音频检测等国际挑战赛中7次夺冠;在国际顶级会议、杂志 上发表60余篇文章,被引用上千次。

核心技术团队

云从科技依托美国UIUC和硅谷两个前沿实验室,中科院、上海交大两个联合实验室上海、广州、重庆、成都四 个研发中心组成的三级研发架构。目前研发团队已经超过300人,80%以上拥有硕士学历。

技术优势

全方位多维智能学习模块适应不同场景要求;模块化设计为在工业视觉、医学影像、自动驾驶AR等领域扩展打下良好基础。

云从科技具有高技术壁垒:世界智能识别挑战赛成绩斐然,在CLEAR、 ASTAR、 PASCAL VOC、 IMAGENET、FERA以及微软全球图像识别挑战赛上共计夺得7次世界冠军;在银行、公安等行业智能识别技术 PK实战中,85次获得第一;2018年,云从科技入选MIT全球十大突破性技术代表企业。

在跨镜追踪(ReID)技术上取得重大突破。Market-1501,DukeMTMC-reID,CUHK03三个数据同时集体刷 新世界记录, Market-1501上的首位命中率达到96.6%,首次达到商用水平。

正式在国内“3D结构光人脸识别技术”,可全面应用于手机、电脑、机具、设备、家电。相较以往的2D人 脸识别及以红外活体检测技术,3D结构光人脸识别技术拥有不需要用户进行任何动作配合完成活体验证的功能, 分析时间压缩到了毫秒级以及不受环境光线强弱的影响等诸多优点,受到国际巨头公司的关注。

行业应用

目前国内有能力自建系统的银行约为148家。截止2018年3月15日,已经完成招标的银行约为121家,其中云从科 技中标了88家总行平台,市场占有率约为72.7%;在安防领域推动中科院与公安部全面合作,通过公安部重大课题研发火眼人脸大数据平台等智能化系统,在民航领域,已经与中科院重庆院合作覆盖80%的枢纽机场。

5.Yi+

企业概述

北京陌上花科技是领先的计算机视觉引擎服务商,为企业提供视觉内容智能化和商业化解决方案。致力于“发现视觉信息的价值”。

旗下品牌Yi+是世界一流的人工智能计算机视觉引擎,衣+是时尚商品搜索引擎。公司在图像视频中对场景、通用物体、商品、人脸的检测、识别、搜索及推荐均达到领先水平。

目前公司和阿里巴巴、爱奇艺、优酷土豆、中国有线、CIBN、中信国安、海信、华为、360等数十家顶级机构/产品深度合作,通过提供边看边买引擎、图像视频内容分析引擎、人脸识别引擎等基于视觉识别技术的数据结构化产品服务于海量用户,同时帮助政府机构、广电系统、内容媒体、零售商、电商、视听设备等行业实现智能分析、智能互动与场景营销。目前公司已经获得B轮融资。

企业团队

团队成员来自于斯坦福、耶鲁、帝国理工、新加坡国大、南洋理工、清华、北大、中科院等名校及谷歌、微软、IBM、英特尔、阿里巴巴、腾讯、百度、华为等名企。

创始人&CEO:张默

北京大学软件工程硕士, 南洋理工大学创业创新硕士。连续创业者, 曾任华为算法工程师、微软WindowsMobile工程师、 IBM SmarterCity 架构师,北方区合作伙伴经理,主机Linux中国区负责人,中国区开源联盟负责人,年销售额数亿。 2013年创业于美国硅谷和新加坡,2014年6月在中国设立北京陌上花科技有限公司。

核心技术与产品

技术方面,在国际顶级计算机视觉竞赛ImageNet中,成绩曾超过谷歌、斯坦福等,2015-2016年2年获得十项世界第一。2018年3月,人脸识别准确率位列LFW榜首。Yi+通过遵循无限制,标记的外部数据协议。 Yi+的系统由人脸检测,人脸对齐和人脸描述符提取组成。使用多重损失和训练数据集训练CNN模型,其中包含来自多个来源的约10M个图像,其中包含150,000个人(训练数据集与LFW没有交集)。在测试时, Yi+使用原始的LFW图像并应用简单的L2norm。图像对之间的相似性用欧氏距离来测量,最终取得优异成绩。

公司的核心产品主要包括视觉搜索引擎,图像视频分析引擎以及人脸识别和分析引擎:

行业解决方案

针对营销、安防、相机和电视的不同特点,推出相应解决方案。

营销+AI。场景化广告方案中,大屏AI助理信息流推荐、神字幕、物体/人脸AR动态贴图、video-out、场景化角标与广告滤镜等形式的广告内容推荐,适用于快消、汽车、电商、IT、金融、旅游服务等多个行业。

智慧城市+AI。使用计算及视觉助力智慧城市,在智慧安防、智慧交通、智慧园区等方面提供解决方案。在智慧安防实时识别上,实时处理直播摄像头信息,算法反应敏捷,相应迅速。建立智慧园区方案模型,考虑扩展性&灵活性、数据管理、松散耦合性、安全性、实时整合性以及功能性和非功能性需求等技术方案要素,从业务和技术两方面整合解决方案实现步骤。

电视+AI。电视+AI的解决方案赋予智能电视多样播放能力和营销能力。

相机+AI。相机更具交互能力。用户通过搜索关键字标签同步展示图片,打通相册和购物一站式体验。准确识别人物属性特征,动态适应表情变化,可以在视频以及图像中对人脸实时检测,基于深度学习技术,进行人脸相似度检测,实现面部关键点定位、妆容图像渲染,试用与粉底、唇彩以及眼影等多种虚拟试装方式。实时检测摄像头中出现的物品、场景和人脸等,添加AR效果,SDK支持本地检测、识别、追踪,平均检测帧率可达到25fps。

新零售+AI。Yi+新零售解决方案是基于公司自主研发的人脸识别、商品识别和其他图像识别算法技术为核心,建立一整套基于人脸、商品的智能零售门店管理方案。Yi+新零售解决方案主要包含数据采集、算法模型说明和部署方案三部分,其中数据采集包括人脸数据采集、商品数据采集;算法模型说明包括识别算法训练、商品识别、识别输出;部署方案包括本地部署、云端部署、本地部署与云端部署结合。

6.擎创科技

企业简介

擎创科技成立于2016年,专注于将人工智能和机器学习赋予传统IT运维/企业运营管理,为企业客户提供智能运维大数据分析解决方案,从而取代和改善对高技能运维人员严重依赖的现状。2017年,擎创科技已实现全年2000万营收,迅速成为国内AIOps领域的领跑者和中流砥柱。2018年初,擎创科技完成了数千万人民币的A轮融资,由火山石投资领投,晨晖创投、元璟资本及新加坡STTelemedia跟投。

核心团队

擎创团队的核心成员主要由BMC、微软等美国企业服务上市公司的运维老兵,与新浪、饿了么等知名互联网公司的大数据、算法专家组成,核心团队成员至少拥有10年以上的行业经验。其中CEO杨辰是国内最顶级的B端销售,曾带领团队获得10倍的业绩增长;CTO葛晓波拥有长达15年的企业级软件开发和运维经验;而产品总监屈中泠则来自甲方,创业前为浦发硅谷银行企业架构师,深知甲方对企业运维产品的需求。这个曾经深耕于运维企业服务市场的团队,如今在智能运维企业服务赛道继续领跑,让擎创科技成为最懂企业的客户,最值得企业客户信赖的软件厂商。

主要产品

“夏洛克AIOps” 作为擎创自主研发的大数据智能运维主打产品,自2016年上线以来,已从1.0版本升级至1.9版本,可应用在金融、大型制造业、铁路民航、能源电力等涉及国家发展和民生问题的多种行业。在2017全球运维大会上,夏洛克AIOps获得由中国信息通信研究院与高效运维社区联合颁发的“年度最具影响力AIOps产品”奖。

“夏洛克AIOps”充分利用自研算法辅助客户实现IT运维价值,结合客户的现有情况,规划从传统ITOM至AIOps智能运维的一站式路径,助其运营落地,由此打破数据孤岛,建立统一的大数据智能分析平台,实现以人工智能为核心,驱动传统IT运维监、管、控三个层面,并将相关运维数据及业务数据实时展现。

“夏洛克AIOps”拥有多项自研算法,犹如运维界的福尔摩斯,能迅速发现并定位运维问题的根因,实现秒级排障,最大程度避免企业产生重大损失。更有价值的是,“夏洛克AIOps”还能通过长期的数据积累和机器学习,运用新型深度神经网络算法对企业的业务数据进行预测,帮助企业提前规划IT资源,高效预防各类黑天鹅事件的发生。

商业模式

目前,擎创科技已与多家金融和制造行业标杆客户形成稳定的合作关系,包括浦发银行、浦发硅谷银行、国家开发银行、上海铁路局、银联、海尔、浙江能源等。针对不同客户,采用个性化的商业模式进行服务,目前主要有私有模式和SaaS模式两种,都具有较强的可复制性。

核心优势

第7篇:人工智能在教育的应用范文

算起来,在线教育的争夺战是在三年之前开始的。2013年8月“学而思”网校正式更名为“好未来”,作为最早发力在线教育的一家公司,发展了布局相对完整的中小幼教育专业门户网站群――e度教育网,该网站由育儿网、幼教网、奥数网、中考网、高考网、留学网等多个网站构成。此后,新东方、学大网等一票传统教育机构纷纷发力于在线教育。

根据《2015年中国在线教育白皮书》数据显示,2011到2014年间,中国在线教育市场规模增速均保持在17%以上,最高增速达到21.84%;市场规模从2011年的575亿元增至2015年的1171亿元,预计到2021年在线教育市场规模将达到2830亿元。在线教育用户突破2亿人,在线教育项目数量已经超过3000个。

如今,BAT、网易等互联网巨头也争相跨界进入教育领域……

争相布局

10月,网易宣布其有道词典用户突破6亿。这意味着,网易的产品已经可以在在线语言培训市场占有一席之地。2007年推出有道词典以来,网易在互联网巨头之中率先“误入”在线教育行业,并逐渐形成有道翻译官、有道口语大师、网易云课堂等产品矩阵。

语文学习产品――有道语文达人,引进职业教育与通识教育等课程、推出网易云课堂企业版产品等等动作,都说明了网易在在线教育各个细分领域重度垂直、精耕细作的野心。

与此同时,阿里巴巴终于也按捺不住。在10月宣布启动“星火计划”,称未来将会大力扶持生产优质内容的个体老师以及中小型教育机构。比如调用周边资源,引入专业第三方扶持基金等,以此为中小创业群体提供高效的变现机制。

自去年12月成立教育事业部以来,百度在教育领域的布局正在加快。除了在传统的教师资源方面,百度推出了专为教师服务的互联网平台“百度优课”。百度在线教育的一大特色在于其教育信贷市场。百度CFO李昕曾在Q3财报电话会议上表示,百度要借助人工智能和大数据技术,从教育领域进入互联网金融。

据百度透露的数据,在教育信贷领域,百度已与超过700家教育培训机构达成合作,学生通过在线填写信息,线下和教育机构确定培训意向,审核通过后,即可获得“百度有钱花”提供的学费贷款,实现分期交学费。

腾讯坐拥QQ和微信两大社交平台,其固有用户与在线教育针对用户重合度之高,不容小觑。去年,腾讯将这一优势应用于教育信息化领域――分别以QQ和微信为基础推出QQ智慧校园和腾讯智慧校园,为各类学校提供一体化互联网智慧解决方案,范围涵盖学校管理、教务教学、校园生活等方面。扶持优质内容方面,腾讯也不甘落后推出了名师计划,旨在帮助名师实现知识经济化,扩大知识生产力与传播力,同时提供标准化服务与资源扶持。

加之腾讯出手向来大方。今年2月,腾讯3.2亿元投资新东方在线,而目前新东方在线申请挂牌已经获批,将登陆新三板。按照最近一次股票发行的价格来算,新东方网的总市值达到了31.72亿元,而腾讯当初的投资金额也由3.2亿元升值到了3.9亿元,平均每个月赚了1400万元。

线上线下结合

近年来在线教育的项目虽多,但往往良莠不齐,真正实现盈利的更是少数。

互联网教育研究院在2015年调查了400家在线教育公司,结果显示,有70.58%的公司处于亏损状态,13.24%的公司处于持平状态,仅有16.18%的公司保持盈利状态。同时,其报告还指出,由于新进入的项目非常多,而且有一部分项目已经死亡,整体上盈利的在线教育企业预计不超过5%。

在这个资本的“寒冬”,包括老师来了、36号教师、轻舟网等在线教育创业项目,都相继倒下。一位多年从事在线教育的业内人士向《中国经济信息》记者分析:“一个项目从开端投入资金到逐步发展,进入盈亏平衡状态,至少需要3到5年的时间。”作为一个更重视长期发展循环的行业,在线教育前期需要投入大量资金,而后期课程的制作、平台的维护以及产品的营销和推广,都需要团队极大的耐心和毅力。

随着在线教育行业的发展,平台的竞争,已经从最初的野蛮走向有序,从跑马圈地走向深耕细作,优质的教育内容成为巨头们的抢夺焦点。还有一些业内人士指出在线教育的一些弊病,例如在线教育APP更多是单向机械灌输,缺乏线下辅导为学生的知识体系做一个完整的梳理以及打通思维知识上的逻辑关联。

信天创投合伙人张俊熹对《中国经济信息》记者分析,线上与线下的结合将会是在线教育接下来发展的趋势。以留学教育为例,“以前的出国留学只是在国内做一些语言培训,但是长周期的链条并没有被开发出来,出国后的实习、就业、移民、置业等等,有很多内容可以深入挖掘。”张俊熹说。

尽管在线教育市场前景广阔,但在创新工场投资总监张丽君的眼里,其实它每个细分领域的市场规模并不大。而且,与其他行业不同,教育行业的内容不能完全规模化复制,往往面对不同的时期和对象,都需要重新做,因此并不容易找到大的市场。

今年在线教育还有一个创新动作就是与AR、VR合力。正如李彦宏多次在公开场合强调的,人工智能是百度核心的核心。人工智能之于百度教育的重要性也不例外。

11月,百度教育“教育云”平台,宣布百度教育生态将依托人工智能技术,朝着内容化、智能化、个性化方向发展。百度教育事业部总经理张高透露,人工智能在百度教育的布局分成内容的数字化、学习的个性化与交互的拟人化三个部分。不过,业内声音普遍认为,鉴于教育行业自身的慢热特点以及技术发展尚在初期等原因,人工智能与教育的融合还需要一个漫长的过程。

第8篇:人工智能在教育的应用范文

关键词:智能信息处理;智慧城市;卓越工程师计划

0 引言

我们处于信息时代,衣食住行时刻与信息技术相关联,信息技术的发展水平从侧面反映了社会的发展进度。当前计算网络与大型数据库的广泛使用,给决策者和经营者带来了很大的压力,他们面对海量的数据而无从下手。因此智能信息处理应运而生,它能便捷快速地解决这一困境,推动社会信息化的发展。智能信息处理的最终目的是发明出能够集学习能力、理解能力和判断能力于一身的人工智能系统。其根本就是要基于部分算法来得到并提出信号中的有用信息,最终实现智能系统控制。智能信息处理技术几十年来经历了模拟数字,现在正向以“人工神经网络”为主,与模糊数学、遗传算法、小波分析、混沌理论相结合的方向发展。一些新思想、新理论、新算法、新器件也不断涌现。所有这些给未来信息科学的发展,描绘出了一副诱人的前景。

智能信息处理作为智能类专业的重要基础专业课程,为更深入地学习后续的智能类专业知识奠定了基础,同时,将所学知识融会贯通巧妙应运用于专业学习中,为日后科研打下坚实的基础,所以,如何进行教学改革,以达到培养高素质人才的目标,是我们需要认真研究的重要课题。

1 智能信息处理改革背景

智慧城市的建设基于云计算、人工智能、决策分析优化等信息技术,针对包括政务、民生、环境、公共安全、城市服务、工商活动在内的各种信息的需求,提供智能化响应和智能化决策支持的信息服务。因此,智慧城市建设的核心内容是智能信息处理。换种角度来看,将智慧注入城市之后,便有了智慧城市,若没有智能信息处理技术,传统的城市在面对海量数据时就远不能满足其主体要求,这便使得供求关系严重失衡。在这种供求矛盾激化的前提下,才使得智能信息处理技术的发展更加快速。

在智慧城市背景下的智能信息处理是在城市的建设过程中,借助互联网、物联网和智能化设备等高度发达的信息化手段,在其管辖的城市环境、公共服务、本地产业和全体公民的范围中,将城市的政治、经济、生活和文化等综合信息进行广泛地采集和动态的监控,通过充分地统计、互联和共享,将这些信息进行智慧地感知、分析、集成和应对,为城市运营和发展提供更好的决策支持和动态管控的能力,让城市管理变得更加智能,以尽可能最大化地去解放、利用和提升人自身的智慧,为城市居民提供一个更加健康、安全、和谐和幸福的生活环境。

“卓越工程师教育培养计划”是《国家中长期教育改革与发展规划纲要》的重要内容,由教育部发起,目的是为了向未来的工程领域培养高品质、类型丰富的工程师后备军。其要求是高等院校需要经过转换办学理念、调整人才培养目标的定位和转换人才培养模式等途径来培养面向工业领域、面向未来、面向世界的优秀工程技术人才,从而提升我国产业的国际竞争力。卓越计划为智能化信息处理的改革指明了道路,为高等工程教育培养提出了要求。高等工程教育要遵守以德为先、能力为重、全面发展的培养规律,增强为国家、为行业和企业主动奉献的意识,持续提高大学生的竞争能力、实践能力和创新能力,最终建设出布局合理、结构优化、类型多样、主动适应经济社会发展需要的高等工程教育体系,从而加快我国向工程教育强国迈进的步伐。针对目前的人才需要,智能信息处理教学改革势不可挡。

2 原有教学方式

智能信息处理是信息处理的一种方法,将不完全的信息改变为完全的信息,同时使其具有可靠性、精确性、一致性和确定性。智能信息处理学科于当前来说是相对前沿的,同时也是新观念、新思想、新理论、新技术不断出现并迅速壮大的新兴学科。智能信息技术是多个领域的综合,其中包含了人工智能、现代信号处理、人工神经网络、模糊理论等理论。基于对智能信息处理理论和方法的分析,原有的智能信息处理的教学安排如表1所示。

原有授课方法主要是讲授法,教师通过口头语言叙述向学生传授知识的同时培养其思考能力的教育方法,在以语言传递为主的教学方法中应用最广泛,是最基础的授课方法。这种授课方式使教学内容较为单一,教学质量不稳定,无法使学生对智能信息处理这种学科有更深刻的认识。

3 改革教学方式

3.1 以竞赛的方式开展

1998年中华人民共和国颁布的高等教育法中曾提出:“高等教育的任务是培养具有创新精神和实践能力的高级专门人才”。自1990年至今,一定数量的研究型高等院校开始借鉴国外成功的教学思路,实施本科生科研训练计划。2006年教育部面向全国重点大学和部分有较强行业背景和特色的地方大学,在国家层面上开始实施大学生创新性实验计划,引起许多地方高校的重视。

围绕“智能”和“智慧城市”参加与其相关的“和利时杯”电气控制应用设计大赛、“亚控杯”组态软件应用设计大赛、全国大学生西门子杯挑战赛等面向全国高校学生的赛事,可以优化学生的知识结构,培养学生科学实践和动手能力,增强创新和竞争意识,并且能够提高学生的整体素质。通过开展竞赛式教学模式,脱离枯燥的课堂,锻炼实际操作能力,让学生体验新颖的教学方式,能调动学生的积极性,培养学生团队合作意识和竞争意识。重要的是通过竞赛,学生能深切掌握书本的理论知识,切实掌握智能信息技术的关键。竞赛的教学方式符合国家和社会对人才的需求,能在诸多方面提高学生的综合素质,推动了“卓越工程师计划”的培养进程。

3.2 以建构主义开展

建构主义教学理论是一种源于欧美的新兴教学改革理论,国外教育专家曾对建构主义理论有过较为深入的探索。建构主义强调以学生为中心,教师只对学生的意义建构起帮助和促进作用,较传统教育来讲,这使教师和学生的地位有了较大的改变。所以,自建构主义提出至今,教育专家始终不放弃对其进行分析和研究,努力建立起一整套能够与建构主义教学相适应的方法体系和设计理论。可是整个过程非常艰难,需要非常长的时间才能完成,尽管如此,建构主义教学理论的基本思想和主要原则已经取得阶段性成果,已经成功地运用于Intemet和多媒体的建构主义学习环境中。以建构主义为基础,融合智慧城市的建设需求,更深入地理解智能信息处理在智慧城市中的作用和必要性,对整体提高学生对学科的认知和应用能力起到推动作用,十分契合“卓越工程师计划”对学生素质的要求。

由于个人的基础、水平、背景等方面的原因,每个学生对知识点的理解程度参差不齐,所以,为了让更多的学生理解和提高水平,教学中就不能以教师为中心,更不能“填鸭式”教学,而要结合智能信息处理教学,以学生为中心。面向全体学生,教师在教学时不仅要通俗易懂、深入浅出,还要注意知识的广度和深度,以便适应不同学生的需要。再结合智能信息处理教学中学生应建构起自己的知识结构,教师要善于启发、诱导,帮助学生丰富和调整自己的理解。

3.3 以智慧城市案例开展

案例教学法早在20世纪20年代就已被提出。它从出现至今始终具有强大的活力和影响力,所以一直被美国企业界、学术界、教育界等高度重视。采用智慧城市案例开展智能信息处理教学类似于医学院运用病例分析来辅助教学,都是应用大批实际情况和经历的介绍材料来训练学生。这样既达到锻炼大学生思维的目的,也显示了学校先进的教育方式,这是已经被证实的显著有效的教学方式。顾名思义,案例教学法就是结合案例,让学生以自己的认知来分析和理解案例,或与集体共同讨论、实践,最终培养和提高各自实际管理工作的能力或处理解决问题的能力。“卓越工程师计划”所培养的人才以工程师的身份为智慧城市设计智能产品,满足智慧城市建设需求的同时也对人才培养起到督促作用。

在智能信息处理教学改革中以智慧城市的案例开展教学活动,能让学生在模拟的智慧城市情景中对实际问题进行分析,使学生能在非实践的情况下对实际情况进行分析从而巩固学习的理论知识,同时能够发展学生解决实际问题的能力,使知识得到内化,增强学生的表达能力和自信心,其主要教学流程如图1所示。

第9篇:人工智能在教育的应用范文

洪泰基金创始人盛希泰讲述自己去硅谷看项目的体验――

每次基本上看100个,30个甚至以上是有技术含量的项目;而在中国,目前为止仍然是看100个,甚至可能看不到一个有技术含量的公司。不仅如此,美国十多年前就设置了人工智能专业,而中国教材二十年不变。

从量变到质变。作为一个经济体量冉冉升起渐与美国比肩的国家,中国在产业创新的价值层面却严重滞后。在中国,模式创新占到80%,而美国60%以上是技术创新。

有用即真理。当很多模式还没走到穷尽的时候,实用主义观念如此有效,也很正常。但即便中国企业界诞生诸如小米、微信乃至马云这样的现象级事件,那些在本土行之有效的技巧依然很难跨境移植,获得更具普世意义的成功。更可怕之处在于,这些企业个体的成功,对更广泛的企业群体几乎毫无意义。

――为什么中国亟须一场商业思想新启蒙?

不仅仅是因为“中国经济面临着一个严重的缺陷,即缺乏思想市场。这是中国经济诸多弊端和险象丛生的根源”,从某种程度上说,中美经济拥有两套话语体系。在这个无人看管的接力区,渴望与焦虑并存。丛林规则的信徒最终将加入公共秩序。

如何打破平行世界的藩篱,让中国企业融入全球价值链?

时间是技术的朋友

谷歌的阿尔法狗战胜世界围棋冠军;曾经价格昂贵并只服务于政府、军队的基因测序,现在普通消费者只需花约1 000美金便可以采用;史上首部人工智能编剧的短片《Sunspring》入围今年伦敦科幻电影竞赛十强……

事实上,过去数十年科技创新的积累已经促进创新由量变向质变转化,同时现在已迎来恰逢其时的市场契机,市场应用窗口已经打开,科技创新带来的社会变革及其伴随的蝴蝶效应正在发生。

在新兴的技术领域中,具备生态和产品颠覆性的创新获得了比较积极的商业认可。比如机器人、虚拟现实(VR)、增强现实(AR)、物联网与智能家居等。而以人工智能、计算机视觉、生命科学为代表的技术革新,正在带动诸多关联性技术领域迎来爆发期。

全球科技创新的浪潮之下,美国依然是中心,但以中国为代表的新兴力量正在崛起。中国的技术创新公司凭借庞大的智能设备和互联网用户基础,快速获得生长空间与商业增长,它们正尝试通过产品与投资形式,参与全球科技公司的竞争。

全球科技创新与中国机遇,在未来很长的一段时间里,都将是以技术创新为主导的中国公司需要破解的命题。毫无疑问,前沿技术将是未来商业模式的核心驱动力,因为只有技术创新才能保住企业的基业常青。

风马牛都相连的生意真那么好?

软银总裁孙正义一个月内从阿里巴巴和腾讯拿了186亿美元,又借了136亿美元,买了一家好多人都不认识的公司。什么公司?

2016年7月18日,日本软银集团宣布将以320亿美元现金收购英国移动芯片公司ARM。目前,全球逾95%的智能手机配置ARM芯片,应用范围覆盖传感器、智能手机及服务器。

在债务累累的情况下,软银斥巨资收购ARM,目的很简单――押注物联网的未来。

继计算机、互联网与移动通信网之后,物联网被认为是新一波信息产业浪潮。在这股浪潮下,世界上的万事万物,只要嵌入一个微型感应芯片,就能变得智能化。据相关机构预测,到2020年,物联网设备安装量将达260亿。未来,所有能想到的任何事物都将连接物联网。

不只是ARM卖了一个好价钱,国内物联网平台Broadlink也在今年完成C轮7 000万元融资。在资本寒冬中,Broadlink能获得巨额融资也说明了物联网的吸金能力。

在国内物联网应用市场,Broadlink是鲜有在软硬件解决方案上均取得领先的新兴企业。在具体应用中,Broadlink自主研发的Wi-Fi物联网传输模块、云计算平台和智能终端应用,可以为各类家电厂商提供成熟完整的智能家电解决方案;同时Broadlink还为用户提供 DIY 智能插座、智能遥控、家庭空气质量分析仪等智能家居产品。

今年3月,Broadlink了Broadlink DNA 3.0计划。BroadLink DNA 系统是目前全球较成熟的物联网PaaS平台之一,能够帮助智能家居产品实现快速无缝接入。它是家电智能化的一站式解决平台,支持多连接协议,一次接入DNA系统后,可对接所有云平台(京东、阿里、微信、华为、国美、苏宁等),同时提供免费的数据SaaS服务。

目前,BroadLink已经连接服务了超过200家企业,包括家电、电工以及智能硬件行业,真实联网设备超过8百万台。接下来,BroadLink将把连接厂家的数百个品类产品进行整合与场景化,落地智慧地产与物业的实际应用。

“人人基因”探索者

随着基因组科学的发展,未来人类将进入“人人基因”时代。基因测序领域在技术突破和政策放宽的影响下,不断迎来爆发。中国企业目前在基因测序服务及信息分析领域处于世界领先地位,华大基因、贝瑞和康等都在各自主打领域扮演着探索者角色。

从应用市场来看,癌症检测是目前最被消费者关注的项目,无创产前测序则是第一个落地并商业化的项目。无创产前检测的目的是预防新生儿出生缺陷,并提供整体解决方案,这一技术的背后是一个百亿元规模的庞大市场。

作为在国内无创DNA产前检测领域市场占有率第一的公司,贝瑞和康以高通量基因测序技术为核心,将步骤繁琐到只能在实验室进行的检测技术,优化成为可直接在医院提供服务的商业化产品。

2015年3月20日,国家食品药品监督管理总局批准了贝瑞和康基因测序仪和胎儿染色体非整倍体检测试剂盒注册。其中基因测序仪NextSeqCN500正是针对中国临床需求,贝瑞和康与美国最大基因测序公司亿明达合作研发出一款新型高通量的基因测序仪。贝瑞和康着力于将这款测序仪的步骤简化,检测流程从原来几天的时间缩短成几个小时。目前国内获批无创产前基因检测的108家试点医院中,有60度家与贝瑞和康达成合作,其中有超过50家已进入产品模式。

更为重要的是,贝瑞和康测序仪的大批量检测单位成本较低,医院或第三方检测机构的唐氏综合征检测价格或能直线下降,从而有望成为唐氏综合征等染色体病的产前“普筛”手段。

除了产前基因检测,在肿瘤基因检测领域,贝瑞和康也在探索技术产业化的有效路径。

事实上,基因测序行业是一个庞大的产业。很多基因检测公司开始以孕前、产前、新生儿、青少年等完整生命周期的各阶段来进行产品开发和应用。未来将有更多产品进入商业化。

从大众创业到精英创业

在互联网女皇玛丽・米克尔的报告中,智能语音被认为是下一代人机交互的新范式,正在各个领域全面开花。

作为国内最大的智能语音厂商,科大讯飞目前已经将智能语音技术应用在移动应用、智能家居、机器人、车载、教育等各个领域。与BAT围绕自身技术、用户与基础服务构建着差异化的人工智能竞争生态不同,科大讯飞选择在语音识别这一单点领域进行突破,并围绕于此建立基于语音系统的通用解决方案平台。

依托于中文语音合成、语音识别、口语评测等多项技术研发与突破,科大讯飞以专用领域的技术解决方案为切口,研发构建了目前国内最全的语音技术平台,并实现了语音领域最为广泛的落地解决方案。

目前,科大讯飞推出的从大型电信级应用到小型嵌入式应用,从电信、金融等行业到企业和家庭用户,以及从PC到手机等各种移动设备来看,其已具备能够满足不同应用环境的多种产品的能力。比如,在人脸和声纹识别的演示中,科大讯飞利用声纹识别可以将任何人说的话实时转译成郭德纲、林志玲等明星的声音;在人机交互中,科大讯飞支持多轮对话和上下文理解,并且攻克了粤语、闽南语等方言识别。

在国内语音识别市场上,科大讯飞研发的语音合成产品的市场份额达到70%以上,在电信、金融、电力、社保等主流行业的份额更达 80% 以上,开发伙伴超过 10 000 家,以讯飞为核心的中文语音产业链已粗具规模。

科大讯飞依托市场份额的绝对占有率和构筑多年的技术门槛形成了他们在语音识别解决方案领域独特的市场竞争力,这也为国内其他初创型人工智能企业的未来发展提供了良好的借鉴。

价值再定义,不懂就出局

我们面对的是一个商品不再作为主要价值载体的世界,商品的价值链与服务价值链相比,重要性将大不如前。

在新的全球价值链条下,消费升级正在带来新的需求和新的商业服务。高端医疗、定制旅游、在线教育、文娱IP、互联网金融、企业服务等非商品的消费重构着商业世界。在重构一切当中,消费者在价值链条上的作用空前强大。因此,能否为用户创造价值,是考验企业商业能力的第一条军规。

重构即创新,创新即价值。今天的商业逻辑已经转变为用户为王,我们的商业的模式,也必须作出相应的调整和布局。从价值革命的角度来说,评判一个商业模式可以分为两个基本维度:第一个维度是价值的创造和传递,能否满足用户新的消费需求,并把价值有效地传递给用户;第二个维度是在为用户创造价值的基础上,如何来获取企业的那部分价值。

因此,对于企业来说,不但要融入全球价值链条,还要不断优化供给侧,从而跑赢消费端升级,实现高水平的供需平衡。创造新供给,才能更好地激活新需求。在未来商业的变革中,企业只有真正创造出有高价值的产品、内容、技术,才可能得到消费者的认可。

企业服务斗法新战场

当前,连接越来越成为未来商业的核心。由用户思维引发“连接型商业”时代的到来,使得国内企业服务市场空间将是万亿级的新商业。

中国最大的企业通讯云服务商容联云通讯,近日宣布完成7 000万美元C轮融资,这是国内企业通讯领域迄今为止最大的一笔融资。

容联是国内第一个踏足互联网通讯的企业,通过整合运营商的网络资源、通信资源,将专业的通讯能力打包成API接口与SDK,为企业和开发者提供通话、短信、视频、呼叫中心、IM、流量等便捷、高效和高性价比的通讯服务和不同场景下的行业通讯解决方案。

目前容联的平台上已累计拥有超过20万名开发者和5万家企业客户,服务的客户包括但不限于腾讯、阿里巴巴、京东、百度、360、小米等知名企业,全面覆盖O2O、出行、旅游、物流、房产、在线教育、互联网医疗、政企、企业IT系统等众多行业。

在国内,真正面向企业提供全渠道融合通信能力的企业服务市场,还只是刚刚开始。尽管容联云通讯在呼叫中心、IM等各细分领域都有竞争对手,但从全通讯、一站式的概念来看,能够看到的竞争对手并不多。

作为容联C轮的领投方,红杉资本中国基金合伙人周逵认为:容联产品满足了企业客户、尤其是互联网企业对通讯服务“便捷、高效、高性价比”的需求,以平台为核心,从分享通讯资源到分享通讯技术再到分享企业级入口,容联是国内企业通讯云服务的开创者。

以容联为代表的云通讯,正推动通信业从以“硬件”为特征的1.0时代和以“软件”为特征的2.0时代,迈向以“云计算”为特征的3.0时代。